‘Tercera edicion

4

Cubre:
SQL:2006 ANSI/ISO stan - SQL/XML -
La Gltima versién de los pr as RDBMS.

Andy Oppel
Robert Sheldon

www.FreeLibros.org

Fundamentos de

SQL

Tercera edicién

Andy Oppel
Robert Sheldon

Traduccion

Carlos Fabidan Jiménez Castillo

Traductor profesional

-IUT

MEXICO « BOGOTA » BUENOS AIRES » CARACAS * GUATEMALA * MADRID » NUEVA YORK

SAN JUAN » SANTIAGO * SAO PAULO * AUCKLAND « LONDRES * MILAN « MONTREAL
NUEVA DELHI « SAN FRANCISCO « SINGAPUR ¢ ST. LOUIS « SIDNEY * TORONTO

Director editorial: Fernando Castellanos Rodriguez
Editor: Miguel Angel Luna Ponce
Supervisor de produccion: Zeferino Garcia Garcia

FUNDAMENTOS DE SQL
Tercera edicion

Prohibida la reproduccién total o parcial de esta obra,
por cualquier medio, sin la autorizacién escrita del editor.

% Educacion

DERECHOS RESERVADOS © 2010, respecto a la primera edicién en espafiol por
McGRAW-HILL INTERAMERICANA EDITORES, S.A. DE C.V.
A Subsidiary of The McGraw-Hill Companies, Inc.

Corporativo Punta Santa Fe,

Prolongacién Paseo de la Reforma 1015, Torre A

Piso 17, Colonia Desarrollo Santa Fe,

Delegacién Alvaro Obregén

C.P. 01376, México, D.F.

Miembro de la Cdmara Nacional de la Industria Editorial Mexicana, Reg. Nim. 736

ISBN: 978-607-15-0251-3

Translated from the 3rd English edition of

SQL: A Beginner’s Guide

By: Andrew Oppel and Robert Sheldon

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved.
ISBN: 978-0-07-154864-9

1234567890 109876543210

Impreso en México Printed in Mexico

The McGraw-Hill Companies

Acerca de los autores

Andrew (Andy) J. Oppel es graduado de la Latin School de Mrayland y la Transylvania Uni-
versity (Lexington, Kentucky) donde obtuvo un grado en ciencias de la computacién en 1974.
Desde entonces ha sido empleado continuamente en una amplia variedad de puestos sobre
tecnologias de la informacion, incluyendo programador, programador/analista, arquitecto en
sistemas, administrador de proyectos, administrador senior de base de datos, administrador
del grupo de bases de datos, asesor, disefiador de bases de datos, modelador de datos y arqui-
tecto de datos. Ademads, ha sido instructor de medio tiempo para un campus de la Universidad
de California (Berkeley) durante mas de 20 afios, y recibi6 el premio de Instructor Honorario
durante el afio 2000. Su labor en la enseianza incluye el desarrollo de tres cursos para el cam-
pus de la Universidad de California, “Conceptos de Sistemas de Administraciéon de Bases de
Datos”, “Introduccién a los Sistemas de Administracién de Bases de Datos Relacionales”, y
“Modelado de Datos y Disefio de Bases de Datos”. También obtuvo la certificacion Oracle 91
Database Associate en 2003. Actualmente se encuentra empleado como modelador de datos
senior para Blue Shield de California. Muy aparte de los sistemas de computo, Andy disfruta
la musica (la guitarra y el canto), el radio amateur (vicedirector de la Pacific Division, Ameri-
can Radio Relay League) y el fitbol (instructor de arbitros, U.S. Soccer).

Andy ha disefiado e implementado cientos de bases de datos para un amplio rango de
aplicaciones, incluyendo investigacion médica, para la banca, seguros, fabricacién de indu-
mentaria, telecomunicaciones, comunicaciones inaldmbricas y recursos humanos. Es el autor
de Databases Demystified (McGraw-Hill/Osborne, 2004) y SQL Demystified (McGraw-Hill/
Osborne, 2005). Su experiencia en productos de bases de datos incluye IMS, DB2, Sybase,
Microsoft SQL Server, Microsoft Access, MySQL y Oracle (versiones 7, 8, 8i, 91y 10g).

Robert Sheldon ha trabajado como asesor y escritor técnico durante muchos afios. Como
asesor, ha administrado el desarrollo y mantenimiento de aplicaciones basadas en Web y
aplicaciones servidor-cliente y las bases de datos que soportan a esas aplicaciones. Ha di-
sefiado e implementado diferentes bases de datos de Access y SQL y ha utilizado SQL para
construir bases de datos, crear y modificar objetos de las bases de datos, consultar y modificar
los datos, y para solucionar problemas relacionados con los datos y con los sistemas. Robert
también ha escrito o coescrito ocho libros sobre diferentes tecnologias de red y de servidor,
uno de los cuales recibi6 un certificado al mérito del Puget Sound Chapter de la Society for
Technical Communication. Ademads, dos de los libros que Robert ha escrito se enfocan ex-

clusivamente al disefio e implementacion de SQL Server. Robert también ha escrito y editado
una gran cantidad de material relacionado con las bases de datos SQL y otras tecnologias de
computacién. Su trabajo en escritura no sélo incluye material sobre la industria de la compu-
tacion (también ha escrito un poco de todo, desde articulos de noticias hasta trabajos en docu-
mentacion legal) y ha recibido dos premios de la Colorado Press Association.

Acerca del revisor técnico

James Seymour es graduado de la universidad de North Carolina en Chapel Hill con grado
en historia y ciencias politicas, y de la universidad de Kentucky con una maestria en histo-
ria. Se involucrd por primera vez con tecnologia computacional en 1965 con el entorno de la
computadora central en North Carolina. En el ejército de Estados Unidos durante la guerra de
Vietnam perteneci6 al pequefio equipo que trabajé con la puesta en marcha de la computadora
central del Pentdgono para diferentes escenarios de estrategia militar.

Desde 1972 estd involucrado en diferentes entornos de computacion con el segundo pro-
yecto punto de venta y control de inventarios en la industria de venta al publico, programas
analiticos e iniciativas de bases de datos para industrias de seguros y ayuda social, la puesta
en marcha de controles de pérdida, y otros proyectos de control de inventario y rastreo de ven-
tas a través de diferentes industrias.

De 1987 a 1995, James fue instructor de manejo de bases de datos en el sistema de uni-
versidades comunitarias en el estado de Kentucky. Con esta capacidad cred los primeros cur-
sos de manejo de bases de datos y de programacién en C en el estado de Kentucky y ayud6
a las entidades tanto publicas como privadas con sus necesidades urgentes de entrenamiento,
incluyendo la programacion de sistemas guia para los misiles crucero para Tormenta del De-
sierto.

Antes de 1985 fue administrador de sistemas, administrador de redes, programador y ad-
ministrador de bases de datos. A partir de 1985, James ha sido administrador senior de bases
de datos y ha trabajado principalmente con DBMS de DB2 y Oracle en multiples plataformas,
incluyendo SQL Server desde la versién 7.0. Actualmente es el administrador senior de bases
de datos y arquitecto de datos para una compaiia del Fortune 100 supervisando proyectos ma-
yores en Estados Unidos, Canadd y el Reino Unido.

Contenido

ACERCADELOSAUTORES

AGRADECIMIENTOS. . ..
INTRODUCCION.

Parte 1 Bases de datos relacionales y SQL

1 Introduccién a las bases de datos relacionalesyaSQL

Entienda las bases de datos relacionales

El modelo relacional.. . .
Aprenda acercade SQL.
La evolucién de SQL . .

Tipos de instrucciones de SQL..

Tipos de ejecucion

El estandar SQL frente a las implementaciones de producto.............

2 Trabajoconelentorno SQLciuiiiiiiirinenenenenenennns

Entienda el entorno SQL
Entienda los catalogos SQL.. .
Esquemas
Objetos de esquema . . .

Creacién de un esquema
Creacion de una base de datos

11l
X1
X1

15
15
18
19
21

29

30
32
34
35
37
40
41
42
44

vi Confenido

3 Creacion y modificaciondetablas.ccoviiiiiiieiiiinennn, 49
Creacionde tablasen SQL. 50
Especificacién de los tipos de datos enunacolumna 54
Tiposde datosdecadena it 55
Tipos de datos NUMETICOS oottt e e e e 57
Tiposde datosdefechayhora.......... 58
Tipode datos de intervalo. oot 60

Tipo de datos booleanos i 61
Utilice tiposde datos SQL 62
Creacion de tipos definidos por el usuario. 63
Especificacién de los valores predeterminados en una columna. 64
Eliminaciéon de tablasen SQL 69
Implementacion de la integridad dedatoscoeviiveenn. 73
Entienda las restricciones de integridad. 74
Utilice restricciones NOT NULL. i i 76
Anada restricciones UNIQUE i 77
Anada restricciones PRIMARY KEY i 79
Aifiada restricciones FOREIGNKEY o, 83
Laclausula MATCH. e 88

La cldusula <accién referencial desencadenada>. 89
Defina restricciones CHECK. 95
Defina afirmaciones i 97
Creacién de dominios y restricciones de dominio 98
Creacionde vistasen SQLoiitiiiiiiiiiiiiiiieenrneennns 103
Afada vistasalabasede datos 104
Definicionde vistasde SQL. 108
Creacion de vistas actualizables. i 114
Utilice la clausula WITH CHECK OPTION 116
Eliminacién de vistas de labasededatos 117
Gestion de seguridad enlabasededatos........covvvevevenenananss 123
Entienda el modelo de seguridadde SQL 124
Sesiones SQL 126
Acceda a objetos de basededatos 128
Creacion y eliminacion de roles. i 130
Otorgue y revoque privilegiost 131
Revoque privilegios 135
Otorgue y revoque roles.ot 137

Revoque 1olesot e 138

Contenido Vil
Parte Il Acceso y modificacién de datos

7 Consultadedatosde SQLcooitiiiiiiiiiiiiiiiiiiinenennn, 145
Utilice la instruccion SELECT para la recuperaciéon de datos. 146
La cldusula SELECT y lacldusula FROM 147
Utilice la cldusula WHERE para definir condiciones de bisqueda............. 152
DefinalaclausulaWHERE 156
Utilice la cldusula GROUP BY para agrupar los resultados de una consulta 159

Utilice la cldusula HAVING para especificar un grupo de condiciones
de bisquedaot 164
Utilice la cldusula ORDER BY para ordenar los resultados de una consulta 166
8 Modificar datos SQLcvitititieiererereeeeenesesosonacanans 175
Insertar datos SQL 176
Insertar valores desde una instrucciéon SELECT 180
Actualizar datos SQL. 182
Actualizar valores desde una instruccion SELECT 185
Eliminar datos SQL 186
9 Utilizar predicados ovoviiitiiii ittt iiiiitneeneneencenenens 193
Comparar datos SQL 194
Utilizar el predicado BETWEEN 199
Arrojar valores NULOSo 200
Arrojar valores SImilaresttt 203
Hacer referencia a fuentes adicionales de datos 209
Utilizar el predicado IN 209
Utilizar el predicado EXISTS. 213
Determinar la cantidad de predicadosde comparacion 216
Utilizar los predicados SOME y ANY 216
Utilizar el predicado ALL.o e 218
10 Trabajar con funciones y expresionesde valorccc0uunn. 225
Utilizar funciones Set.o 226
Utilizar la funcion COUNT e 227
Utilizar las funciones MAX yMIN 229
Utilizar lafuncidon SUM 231
Utilizar [a funcion AVG 232
Utilizar funciones de valor. 232
Trabajar con funciones de valorde cadena. 233
Trabajar con funciones de valor de fechayhora 236
Utilizar expresiones de valor 238
Trabajar con expresiones de valor numéricas. 238

viii Contenido

Utilizar la expresionde valor CASE.
Utilizar la expresion de valor CAST.
Utilizar valores especiales

11 Acceder amiltiplestablas.coiiiiiiiiiiinnenenennnnns

Realizar operaciones basicas JOin
Utilizar nombres de correlacion i
Crear operaciones join con masde dos tablas
Crear la operacion Cross joinouuiuniiuninninann....
Crear la operacion self-join.

Unir tablas con nombres de columna compartidos
Crear el método joinnatural
Crear el método join de columna nombrada.

Utilizar el método joinde condicion
Crearlainnerjoin. i
Crear [a OULET JOIM . . . oottt ettt e e e e e e

Realizar operaciones de UniOn.ottt

12 Utilizar subconsultas para acceder y modificar datos.................

Crear subconsultas que arrojen maltiples filas
Utilizar el predicado IN
Utilizar el predicado EXISTS.
Utilizar predicados de comparacion cuantificados.

Crear subconsultas que arrojenunsolovalor

Trabajar con subconsultas correlacionadas

Utilizar subconsultas anidadas. i i

Utilizar subconsultas para modificar datos
Utilizar subconsultas para insertar datos
Utilizar subconsultas para actualizar datos.
Utilizar subconsultas para eliminardatos.

Parte Il Acceso avanzado a los datos

13 Crear rutinas invocadas por SQLoiiiiiiiiiiiiiererenanns

Entender las rutinas invocadas por SQL
Procedimientos y funciones invocadas por SQL
Trabajar con la sintaxis basica,

Crear procedimientos invocados por SQL.
Invocar procedimientos invocados por SQL.

Agregar parametros de entrada a sus procedimientos
Utilizar procedimientos para modificar datos.

Agregar variables locales a sus procedimientos.

Contenido

14

15

16

Trabajar con instrucciones de control 313
Crear instrucCioNes COMPUESEAS « .« v vt v vt et e e e e e e e ea e ae 313
Crear instrucciones condicionales 314
Crear instrucciones de repeticionttt .. 316

Agregar pardmetros de salida a sus procedimientos 320

Crear funciones invocadas por SQL i 321

Crear activadores SQL.ottt ittt ittt i e 329

Entender los activadores SQL 330
Contexto de ejecucion del activador. 331

Crear activadores SQL. i 333
Referenciar valores antiguos y NUEVOS vvv ittt 334
Quitar activadores SQL 335

Crear activadores de inSerciOn vttt e 336

Crear activadores de actualizacion. it 338
Crear activadores de eliminacion, 343

Utilizar cursores SQL. ... oot iiiiiiiiiiiiiiiiiiitieienenenennns 351

Entender los cursores SQL 352
Declarar y abrir cursores SQL 353

Declarar Un CursOorottt e 355
Trabajar con elementos opcionales de la sintaxis 356
Crear una instruccidn de Cursorc.ovuvnvnvnennnnenenen... 360

ADIIT Y CEITAT UN CUTSOT & &« o\ et et et et e e et e et e e e e e e e e es 363

Recuperar datos desde un cursor i 363

Utilizar instrucciones UPDATE y DELETE posicionadas 368
Utilizar la instruccién UPDATE posicionada. 369
Utilizar la instruccién DELETE posicionada. 370

Manejar transacciones SQLttt 377

Entender las transacciones SQL 378

Configurar las propiedades de la transaccion 381
Especificar un nivel de aislamiento 382
Especificar un tamafio de diagndéstico, 387
Crear una instruccion SET TRANSACTION. 388

Iniciar una tranSacCion oottt ittt et e e 389

Determinar el aplazamiento de una restriccion 390

Crear puntos de recuperacion en una transaccion 392
Liberar un punto de recuperacion.ouuuinineenene... 394

Finalizar una transaccionttt e 395
Completar una transaccionottt 395
Reinvertir una transacCiono.inuirent e, 396

X Contenido

17 Acceder a datos SQL desde un programa host 403
Invocar SQL directamenteiiutiirm i 404
Incrustar instrucciones SQL enel programa 406

Crear una instruccion SQL incrustada 407
Utilizar variables host en las instrucciones SQL 408
Recuperardatos SQL 411
Manejo de eITOTeS vt vttt ettt e 413
Crear modulos cliente de SQL 417
Definir médulos clientede SQL 418
Utilizar una interfaz de nivel de llamadade SQL 419
Asignar indicadores 421
Ejecutar instrucciones SQL 423
Trabajar con variables host 424
Recuperar datos SQL o 426

18 Trabajarcondatos XMLcoiiiiiiiiiiiiiiiiinrnennannnns 433
Aprender los conceptos basicosde XML 434
Aprender acercade SQL/XML 437

Eltipode datos XML 437
Funciones SQL/XML 439
Reglas de trazadode SQL/XML. 441

Parte IV Apéndices

A Respuestas 2 10S aUtOEXAMENES . .. oo vvvvererererereeereneneaanannns 449
B Palabras clave de SQL:2006ccoiiiieiiiieenrnncessnsannns 491
Palabras clave reservadas de SQL 492
Palabras clave noreservadasde SQL 494
C Codigo SQL utilizado en los ejercicios Pruebe esto. 497
Cddigo SQL por cada €JerciCioo vt vt e 498
Labase de datos INVENTARIO i, 514

Agradecimientos

H ubo mucha gente involucrada en el desarrollo de Fundamentos de SQL, tercera edicion, muchos de
los cuales ni siquiera conozco por nombre. Primero que nada, a los editores y el personal en McGraw-
Hill Professional que proporcionaron incontables horas de soporte para este proyecto. Me gustaria agra-
decer especialmente a la editora Jane K. Brownlow, a la coordinadora de compras Jennifer Housh y a Wil-
son Drozdowski quien cubri6 brevemente a Jennifer, y a todas las personas con quienes individualmente

tuve contacto directo a través de todo el proceso de escritura y edicién. Sus comentarios y sugerencias,
asi como sus rdpidas y exactas respuestas a muchas de mis preguntas, hicieron que las tareas de escritura
se realizaran sin ningtn problema; su trabajo tras bambalinas mantuvo al proyecto completo avanzando
suavemente. También me gustaria agradecer al corrector de estilo y todos los demds editores, correctores
de pruebas, indiceros, disefiadores, ilustradores y otros participantes cuyos nombres desconozco. Un
agradecimiento muy especial va dedicado para mi amigo y ex colega Jim Seymour, revisor técnico, por su
atencion a los detalles y sus aportaciones de mucha ayuda a través de todo el proceso de edicion. También
me gustaria agradecer el trabajo de Robert Sheldon, autor de las primeras dos ediciones, cuyo excelente
trabajo en escritura hizo que las revisiones necesarias para esta edicién fueran mucho més féciles de
lograr. Finalmente, quiero agradecer a mi familia por su apoyo y comprension para poder organizar un
horario para la escritura y creacion de este libro en mi ya muy ocupada vida.

Andy Oppel

Introduccidn

L:s bases de datos relacionales se han convertido en el mecanismo de almacenamiento de datos mas
omin para las aplicaciones computacionales modernas. Los lenguajes de programacién como Java, C
y COBOL, y los lenguajes interpretados de programacion como Perl, VBScript y JavaScript muy a me-
nudo acceden a las fuentes de datos para poder recuperar o modificar los datos. Muchas de estas fuentes
de datos son administradas a través de un sistema de administracion de bases de datos relacionales
(RDBMS), como Oracle, Microsoft SQL Server, MySQL y DB2, que tiene como base el Lenguaje de
Consulta Estructurado (SQL) para crear y alterar los objetos de la base de datos, agregar datos y elimi-
narlos de la base de datos, modificar datos que han sido agregados a esa base de datos y, por supuesto,
recuperar datos almacenados en la base de datos para su desplegado y procesamiento.

SQL es el lenguaje mas ampliamente implementado para las bases de datos relacionales. De la
misma manera que las matematicas son el lenguaje de la ciencia, SQL es el lenguaje de las bases de
datos relacionales. SQL no solamente permite administrar los datos dentro de la base de datos, sino
también manejar la base de datos en si.

Utilizando las instrucciones SQL, es posible acceder a una base de datos SQL directamente al
utilizar una aplicacidn cliente interactiva o a través de un lenguaje de programacion de aplicacién o

Xii

Introduccién

lenguaje interpretado. Sin importar cudl sea el método que se utilice para acceder a una fuente de da-
tos, es obligatoria una buena base acerca de cémo escribir instrucciones SQL para poder acceder a los
datos relacionales. Fundamentos de SQL, tercera edicion, le proporciona esa base. Se describen todos
los tipos de instrucciones que soporta SQL y se explica cémo son utilizadas para administrar bases de
datos y sus datos. A través del trabajo con este libro, usted construird fuertes cimientos en SQL bdsico y
obtendrd un profundo entendimiento de cémo utilizar SQL para acceder a los datos en su base de datos
relacional.

Esta tercera edicién ha sido actualizada para incluir las disposiciones del estindar ISO SQL:2006
ademads de todos sus errores corregidos que se publicaron en 2007. El capitulo 18 ha sido incluido para
cubrir SQL/XML, que fue agregado al estaindar SQL en 2006. Ademads, las instrucciones SQL han sido
reformateadas y todos los nombres de objeto de la base de datos han sido convertidos a mayusculas para
hacer mas facil su lectura y conversion, a través de la amplia variedad de los productos RDBMS dispo-
nibles comercialmente.

Quién deberd leer este libro

Fundamentos de SQL esta recomendado para cualquiera que busque construir una base en programa-
cién de SQL basado en el estdndar ISO SQL:2006. El libro esta disefiado especificamente para aquellos
que son nuevos, o relativamente nuevos en SQL; sin embargo, aquellos que necesitan refrescar sus co-
nocimientos en SQL también encontraran beneficios en este libro. Ya sea que usted sea un programador
experimentado, tenga cierta experiencia en el desarrollo Web, sea un administrador de bases de datos

o0 sea completamente nuevo en programacion y bases de datos Fundamentos de SQL le proporcionara
fuertes bases que serdn ttiles para cualquiera que desee aprender mds acerca de SQL. De hecho, cual-
quiera de los siguientes ejemplos de personas encontrara util este libro cuando intente comprender y
utilizar SQL:

El novato que no tenga conocimiento acerca del disefio de bases de datos y programaciéon SQL

El analista o administrador que quiera una mejor comprension de como implementar y acceder a las
bases de datos SQL

El administrador de bases de datos que quiera aprender mas acerca de programacion

El profesional de soporte técnico o ingeniero de pruebas/control de calidad quien realiza consultas
ad hoc en alguna fuente de datos SQL

El desarrollador Web que escribe aplicaciones que deberan acceder a bases de datos SQL

El programador del lenguaje de tercera generacién (3GL) que incrusta SQL dentro del cédigo fuen-
te de una aplicacion

Cualquier otro individuo que desee aprender acerca de cémo escribir cdigo SQL que pueda ser
utilizado para crear y acceder a bases de datos dentro de algiin RDBMS

Cualquiera que sea la categoria en la que se encuentre, un punto importante a recordar es que el libro
estd enfocado a cualquiera que quiera aprender SQL estandar, y no una version especifica de un producto o
de este lenguaje. La ventaja de esto es que es posible tomar las habilidades aprendidas en este libro y apli-
carlas a situaciones del mundo real, sin estar limitado a los estdndares de un solo producto.

Adn necesitard, por supuesto, conocer como implementa SQL el producto en el que esta traba-
jando; pero con la base proporcionada por este libro, serd capaz de moverse entre un RDBMS y otro

Intfroduccién Xill

y aun tener una comprension bdsica de como se utiliza SQL. Como resultado, este libro es una herra-
mienta util para cualquier persona que no sepa utilizar las bases de datos basadas en SQL, sin importar
el producto que utilice. Los programadores de SQL necesitardn solamente adaptar su conocimiento al
RDBMS especifico.

Qué contenido cubre el libro

Fundamentos de SQL esta dividido en tres partes. La parte I introduce al lector a los conceptos basicos
de SQL y explica cémo crear objetos dentro de la base de datos. La parte II proporciona una base acerca
de cdmo recuperar datos desde una base de datos y modificar (agregar, cambiar y eliminar) esos datos
que se encuentran almacenados en la base de datos. La parte III proporciona informacién acerca de téc-
nicas avanzadas de acceso de datos que permiten expandir lo que se aprendid en las partes [y II. Adi-
cional a estas tres partes, Fundamentos de SQL contiene apéndices que incluyen material de referencia
para la informacién presentada en las tres partes.

Descripcién de los contenidos del libro

El siguiente resumen describe los contenidos del libro y muestra cémo el libro se encuentra separado en
capitulos que se enfocan en determinadas tareas.

PARTE |: Bases de datos relacionales y SQL

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL
En este capitulo se encuentra la introduccidn a las bases de datos relacionales y al modelo relacional,

que forma la base para SQL. También se proporcionard un vistazo general a SQL y cémo se relaciona
con los RDBMS.

Capitulo 2: Trabajo con el entorno SQL

Este capitulo describe los componentes que conforman el entorno SQL. También se encontrard una in-
troduccién a los objetos que conforman un esquema, y se aprenderd como crear un esquema dentro del
entorno SQL. Se presentara el concepto de crear un objeto de la base de datos en una implementaciéon

SQL que soporte la creacién de objetos de base de datos.

Capitulo 3: Creacién y modificacién de tablas

En este capitulo se aprenderd como crear tablas SQL, especificar tipos de datos de columna, crear tipos
definidos por el usuario y especificar valores de columna por defecto. Se aprenderd como alterar una
definicion de tabla y eliminar esa definicion de la base de datos.

Capitulo 4: Implementacién de la integridad de datos

Este capitulo explica como se utilizan las restricciones de integridad para reforzar la integridad de los
datos en las tablas SQL. El capitulo incluye informacion sobre restricciones relacionadas con las tablas,
afirmaciones y restricciones de dominio. Se aprenderd como crear restricciones NOT NULL, UNIQUE,
PRIMARY KEY, FOREIGN KEY y CHECK.

Capitulo 5: Creacién de vistas en SQL
En este capitulo se aprenderd como agregar vistas a las bases de datos SQL. También se aprendera
cOmo crear vistas actualizables y cémo abandonar vistas de la base de datos.

Xiv

Introduccién

Capitulo 6: Gestion de seguridad en la base de datos

En este capitulo se introducird el modelo de seguridad de SQL y se aprenderd cémo se definen los iden-
tificadores de autorizacién dentro del contexto de una sesién. Luego, se aprenderd como crear y elimi-
nar roles, otorgar y revocar privilegios, y otorgar y revocar roles.

PARTE Il Acceso y modificacién de datos

La parte II explica como acceder y modificar los datos en una base de datos SQL. También se aprendera
como utilizar predicados, funciones y valores de expresion para manipular esos datos. Adicionalmente,
la parte II describe cdmo unir tablas y utilizar subconsultas para acceder a los datos en multiples tablas.

Capitulo 7: Consulta de datos de SQL

Este capitulo describe los componentes basicos de la instruccién SELECT y cémo la instruccién es uti-
lizada para recuperar datos desde una base de datos SQL. Se aprenderd como definir cada cldusula que
pueda ser incluida en la instruccién SELECT y c6mo esas cldusulas son procesadas cuando se consulta
una base de datos.

Capitulo 8: Modificar datos SQL

En este capitulo se aprendera cémo modificar los datos en una base de datos SQL. Especificamente, se
aprenderd como insertar datos, actualizar datos y eliminar datos. El capitulo repasa cada componente de
las instrucciones SQL que permiten realizar esas modificaciones a los datos.

Capitulo 9: Utilizar predicados

En este capitulo se aprenderd cémo utilizar predicados para comparar datos SQL, arrojar valores nulos,
arrojar valores similares, hacer referencia a fuentes adicionales de datos y cuantificar predicados de
comparacion. El capitulo describe los diferentes tipos de predicados y muestra como son utilizados para
recuperar datos especificos de una base de datos SQL.

Capitulo 10: Trabajar con funciones y expresiones de valor

Este capitulo explica como utilizar los diferentes tipos de funciones y expresiones de valor en las ins-
trucciones SQL. Se aprenderd cémo utilizar funciones set, funciones de valor, expresiones de valor y
valores especiales en diferentes cldusulas dentro de la instruccién SQL.

Capitulo 11: Acceder a miltiples tablas

Este capitulo describe como unir tablas para poder recuperar datos desde esas tablas. Se aprenderd
coémo realizar operaciones join bdsicas, unir tablas con nombres de columna compartidos, utilizar la
funcién join de condicién y realizar operaciones de union.

Capitulo 12: Utilizar subconsultas para acceder y modificar datos

En este capitulo se aprendera cémo crear subconsultas que arrojen multiples filas y otras que arrojen
solamente un valor. También se aprenderd como utilizar subconsultas correlacionadas y subconsultas
anidadas. Adicionalmente, se aprenderda cémo utilizar subconsultas para modificar datos.

PARTE Ill Acceso avanzado a los datos

La parte III presenta una introduccidn a las técnicas avanzadas de acceso de datos como las rutinas in-
vocadas por SQL, activadores y cursores. También se aprenderd cémo administrar transacciones, como
acceder a los datos SQL desde el programa host y cémo incorporar datos XML a la base de datos.

Intfroduccién XV

Capitulo 13: Crear rutinas invocadas por SQL

Este capitulo describe los procedimientos y las funciones invocadas por SQL y cdmo pueden crearse en
la base de datos SQL. Se aprenderd como definir pardmetros de entrada, agregar variables locales a la
rutina, trabajar con instrucciones de control y utilizar pardmetros de salida.

Capitulo 14: Crear activadores SQL

Este capitulo presenta los activadores SQL y explica como crear activadores de insercion, de actualiza-
cién y de eliminacion en la base de datos SQL. Se aprenderd cmo los activadores son invocados auto-
madticamente y qué tipos de acciones se pueden tomar.

Capitulo 15: Utilizar cursores SQL

En este capitulo se aprenderd cémo los cursores SQL se utilizan para recuperar una fila de datos a la vez
desde un conjunto de resultados. El capitulo explica cémo declarar un cursor, abrir y cerrar un cursor,

y cémo recuperar datos desde un cursor. También se aprenderd cémo utilizar instrucciones UPDATE y
DELETE posicionadas después de buscar una fila utilizando un cursor.

Capitulo 16: Manejar transacciones SQL

En este capitulo se aprenderd como se utilizan las transacciones para asegurar la integridad de los datos
SQL. El capitulo describe como establecer las propiedades de la transaccion, iniciar una transaccion,
establecer el desplazamiento de las restricciones, crear puntos de recuperacion en una transaccion y fi-
nalizar una transaccion.

Capitulo 17: Acceder a datos SQL desde un programa host

Este capitulo describe los cuatro métodos soportados por el estaindar SQL para acceder a una base de
datos SQL. Se aprendera como invocar SQL directamente desde una aplicacion cliente, incrustar ins-
trucciones SQL en un programa, crear modulos cliente de SQL y utilizar una interfaz de nivel de llama-
da de SQL para acceder a los datos.

Capitulo 18: Trabajar con datos XML

Este capitulo describe como los datos XML pueden incorporarse a una base SQL. Aprenderd los as-
pectos basicos de XML, como usar los tipos de datos de XML para almacenar XML en los valores de
columna de la tabla, escribir funciones SQL/XML para arrojar datos desde las bases formateadas como
XML, y las reglas de trazado de SQL/XML que describen cémo los valores SQL son transformados a
XML y viceversa.

PARTE IV Apéndices

Apéndice A: Respuestas a los autoexdmenes
Este apéndice proporciona las respuestas para las preguntas de las autoevaluaciones enlistadas al final
de cada capitulo.

Apéndice B: Palabras clave de SQL:2006

Este apéndice enlista las palabras clave reservadas y no reservadas de la forma en que se utilizan en las
instrucciones SQL, como se define en el estandar SQL:2006.

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto

Este apéndice enlista todo el cédigo SQL utilizado en los ejercicios de este libro, consolidados en
un solo lugar para una referencia més fécil. Este c6digo también puede ser descargado desde www.
mcgraw-hill-educacion.com. Haga una biisqueda por autor, ISBN o titulo.

Introduccién

Contenido de cada capitulo

Como se puede observar en el resumen, Fundamentos de SOL esta organizado en capitulos. Cada capi-
tulo se enfoca en un conjunto de tareas relacionadas. El capitulo contiene la informacién de importancia
que se necesita para comprender los diferentes conceptos relacionados con esas tareas, explica cémo
crear las instrucciones SQL necesarias para realizar las tareas y proporciona ejemplos de como se crean
esas instrucciones. Suplementariamente, cada capitulo contiene elementos adicionales para ayudar a
comprender mejor la informacién cubierta en ese capitulo:

Pregunte al experto Cada capitulo contiene una o dos de estas secciones; proporcionan informa-
cion acerca de preguntas que pudieran surgir referentes a la informacion presentada en el capitulo.

Autoexamen Cada capitulo termina con un Autoexamen, que es un conjunto de preguntas que
examinan al usuario acerca de la informacién y habilidades que se aprendieron en este capitulo. Las
respuestas a los autoexdmenes se encuentran en el apéndice A.

Sintaxis SQL

La sintaxis de una instruccién SQL se refiere a la estructura y a las reglas utilizadas para esa instruc-
cién, como se especifica en SQL:2006. La mayoria de los capitulos incluirdn la sintaxis para una o mas
instrucciones para que se pueda tener un entendimiento de los elementos bésicos contenidos en esas ins-
trucciones. Por ejemplo, la siguiente sintaxis representa la informacién necesaria cuando se define una
instruccion CREATE TABLE:

<definicién de la tabla> ::=

CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <nombre de la tabla>
(<elemento de la tabla> [{ , <elemento de la tabla> } ... |)

[ON COMMIT { PRESERVE | DELETE } ROWS]

NOTA

Por el momento no tiene que preocuparse acerca del significado de este cédigo SQL. Se pre-
senta este ejemplo solamente para mostrar cémo se representan las instrucciones SQL en este

libro.

Como se puede ver, la sintaxis de una instruccién puede contener muchos elementos. Nétese que
la mayoria de las palabras utilizadas dentro de la instruccién se muestran en mayusculas. Las palabras
en mayusculas son palabras clave SQL que se utilizan para formular la instruccion SQL. (Para una lista
completa de las palabras clave SQL:2006, vea el apéndice B.) A pesar de que SQL no requiere que las
palabras clave sean escritas en mayusculas, se utiliza esa convencion en este libro para que pueda iden-
tificar facilmente las palabras clave dentro de una instruccién. Adicionalmente a las palabras clave, la
sintaxis para una instruccion SQL incluye otros muchos elementos que ayudan a definir como deberd
ser creada una instruccion en particular:

Corchetes Los corchetes indican que la sintaxis encerrada en esos corchetes es opcional. Por ejem-
plo, la cldusula ON COMMIT en la instruccién CREATE TABLE es opcional.

Corchetes angulares Los corchetes angulares encierran informacién que representa un marcador
de posicién. Cuando la instruccién ha sido creada, el marcador de posicién es reemplazado por los

Intfroduccién xvii

elementos o identificadores SQL apropiados. Por ejemplo, deberd reemplazarse el marcador de po-
sicién <nombre de la tabla> con un nombre para la tabla cuando se defina la instruccion CREATE
TABLE.

Llaves Las llaves se utilizan para agrupar elementos. Las llaves indican que primero se debera
decidir cémo manejar los contenidos dentro de las llaves y luego determinar cémo encajan dentro
de la instruccién. Por ejemplo, el conjunto de palabras clave PRESERVE | DELETE est4 encerra-
do entre llaves. Primero se deberd elegir entre PRESERVE o DELETE y luego tratar con la linea
completa del codigo. Como resultado, la cldusula puede leerse como ON COMMIT PRESERVE
ROWS, o como ON COMMIT DELETE ROWS.

Barras verticales La | Puede leerse como “0”, lo que significa que deberd utilizar ya sea la op-
ciéon PRESERVE o la opcién DELETE.

Tres puntos Los tres puntos indican que se puede repetir la cldusula tantas veces como sea nece-
sario. Por ejemplo, se pueden incluir tantos elementos de la tabla como sean necesarios (representa-
dos por <elemento de la tabla>).

Dos puntos y signo de igual El simbolo ::= (dos veces consecutivas los dos puntos y el signo de
igual) indica que el marcador de posicion a la izquierda del simbolo esta definido por la sintaxis
que sigue al stmbolo. En el ejemplo de la sintaxis, el marcador de posicién <definicion de la tabla>
iguala a la sintaxis que conforma una instrucciéon CREATE TABLE.

Al referirse a la sintaxis deberd ser capaz de construir una instruccién SQL que cree objetos de la
base de datos o modifique datos SQL segun sea necesario. Sin embargo, para poder demostrar mejor
como se aplica la sintaxis, cada capitulo contiene también ejemplos de instrucciones SQL reales.

Ejemplos de instrucciones SQL
Cada capitulo proporciona ejemplos de como se implementan las instrucciones SQL cuando se accede a
una base de datos SQL. Por ejemplo, podria observarse una instruccién SQL similar a la siguiente:

CREATE TABLE ARTISTAS

(ID_ARTISTA INT,
NOMBRE ARTISTA VARCHAR (60) ,
FDN_ARTISTA DATE,

POSTER_EN EXISTENCIA BOOLEAN) ;

Observe que la instruccidn estd escrita en un tipo especial para mostrar que se trata de c6digo SQL.
Observe también que las palabras clave y los nombres de objeto estdn todos en mayusculas. (Hasta este
punto, no es necesario preocuparse por ninguno de los demds detalles.)

Los ejemplos utilizados en este libro son de SQL puro, lo que significa que estdn basados en el
estandar SQL:2006. Se encontrard, sin embargo, que en algunos casos las implementaciones SQL no
soportan una instruccién SQL exactamente de la misma forma en la que estd definida en el estdndar. Por
esta razon, también pudiera ser necesario referirse a la documentacion para un producto en particular
con tal de asegurarse de que sus instrucciones SQL acaten la implementacién de ese producto de SQL.

XVl

Introduccién

Pudiera ser a veces solamente una variacion ligera, pero habra ocasiones en las que la instruccion del
producto serd sustancialmente diferente de la instruccién SQL estdndar.

Los ejemplos en cada capitulo estan basados en una base de datos relacionada a un inventario
de discos compactos. Sin embargo, los ejemplos no son necesariamente consistentes en términos de
los nombres utilizados para los objetos de la base de datos y cdmo esos objetos estdn definidos. Por
ejemplo, dos capitulos diferentes pudieran contener ejemplos que hacen referencia a una tabla llamada
INVENTARIO_CD. Sin embargo, no se puede asumir que las tablas utilizadas en diferentes ejemplos
estén conformadas por las mismas columnas o contengan los mismos datos. Debido a que cada ejem-
plo se enfoca en un aspecto tinico de SQL, las tablas utilizadas en los ejemplos estdn definidas en una
forma especifica para las necesidades de ese ejemplo, como se verd mientras se avanza en los capitulos.
Este no es el caso para los ejercicios, que utilizan una estructura de base de datos consistente a través de
todo el libro.

Ejercicios Pruebe esto

Cada capitulo contiene uno o dos ejercicios que permiten aplicar la informacién que se aprendi6 duran-
te el capitulo. Cada ejercicio estd dividido en pasos que lo llevaran a través del proceso de completar
una tarea en particular. Muchos de los proyectos incluyen archivos relacionados que pueden ser descar-
gados desde nuestro sitio Web en www.mcgraw-hill-educacion.com. Los archivos a menudo incluyen
las instrucciones SQL utilizadas dentro de los ejercicios Pruebe esto (en inglés). Adicionalmente, se
incluye una consolidacion (en espaiiol) de estas instrucciones SQL en el apéndice C.

Los ejercicios estan basados en la base de datos INVENTARIO. Usted creard la base de datos y las
tablas en otros objetos en la base de datos, agregard datos a esas tablas, y luego manipulard esos datos.
Debido a que los proyectos se construyen uno sobre el otro, es mejor que los complete en el orden en
que estan presentados en el libro. Esto resulta de especial importancia para los capitulos en la parte I, en
la cual se crean los objetos de la base de datos, y en el capitulo 7, en el cual se insertan los datos en las
tablas. Sin embargo, si de todas maneras usted prefiere hacerlos de forma aleatoria, puede referirse al
apéndice C, que proporciona todo el c6digo necesario para crear los objetos de la base de datos y poblar
esas tablas con datos.

Para completar la mayoria de los ejercicios de este libro, usted necesitard tener acceso a un
RDBMS que le permita ingresar y ejecutar instrucciones SQL interactivamente. Si estd accediendo a un
RDBMS a través de una red, verifique que el administrador de la base de datos se asegure de que usted
estd ingresando con las credenciales necesarias para crear una base de datos y un esquema. Podria nece-
sitar permisos especiales para crear esos objetos. También verifique si es que existen ciertos parametros
que deberd incluir cuando cree la base de datos (por ejemplo, el tamafio de archivo de ingreso), restric-
ciones acerca de los nombres que puedan utilizarse o restricciones de cualquier otro tipo. Asegurese de
revisar la documentacién del producto antes de trabajar con cualquier producto de base de datos.

Parte

Bases de datos
relacionales y SQL

Capitulo 1

Introduccidn a las
bases de datos
relacionales y a SQL

4 Fundamentos de SQL

Habilidades y conceptos clave

Entienda las bases de datos relacionales
Aprenda acerca de SQL

Use un sistema de gestion de base de datos relacional

En el 2006, la International Organization for Standardization (ISO) y el American National Stan-
dards Institute (ANSI) publicaron revisiones a su estdndar SQL, al cual llamaré SQL:2006.
Como vera después, el estandar estd dividido en partes, y cada parte es aprobada y publicada en

su propia linea de tiempo; por lo tanto, diferentes partes tienen distintos aios de publicacion. Es
comun usar el dltimo afio como nombre colectivo para el conjunto de todas las partes publicadas
durante ese afo. El estindar SQL 2006, como sus predecesores SQL:2003, SQL:1999 (también
conocido como SQL3) y SQL-92, se basa en el modelo de datos relacional, el cual define cémo los
datos pueden ser almacenados y manipulados dentro de una base de datos relacional. Los sistemas
de gestion de base de datos relacional (RDBMS) como Oracle, Sybase, DB2, MySQL y Microsoft
SQL Server (o s6lo SQL Server) usan el estindar SQL como base de su tecnologia, proporcionan-
do entornos de base de datos que apoyan tanto a SQL como al modelo de datos relacional. Hay
mas informacion sobre el estindar SQL mas adelante en este capitulo.

Entienda las bases de datos relacionales

El lenguaje estructurado de consultas (SQL, Structured Query Language) apoya la creacién y man-
tenimiento de la base de datos relacional y la gestion de los datos dentro de la base de datos. Sin
embargo, antes de entrar en discusion acerca de las bases de datos relacionales, quiero explicar el
significado del término base de datos. El término ha sido utilizado para referirse a cualquier cosa,
desde una coleccién de nombres y direcciones hasta un complejo sistema de recuperacién y alma-
cenamiento de datos que se basa en interfaces de usuarios y una red de computadoras y servidores.
Hay tantas definiciones para la palabra base de datos como libros sobre €stas. Por otra parte, los
distintos proveedores de DBMS han desarrollado diferentes arquitecturas, por lo que no todas las
bases de datos estdn disefiadas de la misma manera. A pesar de la falta de una definicién absoluta,
la mayoria de las fuentes coinciden en que una base de datos, por lo menos, es una coleccion de
datos organizada en un formato estructurado que es definido como metadatos que describe esa
estructura. Puede pensar en los metadatos como informacién sobre los datos almacenados, que de-
fine cdmo se almacenan éstos en una base de datos.

A lo largo de los afios se ha implementado una serie de modelos de base de datos para almace-
nar y administrar la informacién. Varios de los modelos mds comunes incluyen los siguientes:

Jerarquico Este modelo tiene una estructura primario y secundario que es similar a un arbol
invertido, que es lo que constituye la jerarquia. Los datos estan organizados en nodos, el equi-
valente l6gico de tablas en una base de datos relacional. Un nodo principal puede tener mu-

chos nodos secundarios, pero un nodo secundario sélo puede tener un nodo principal. Aunque

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL

el modelo ha sido muy utilizado, a menudo se considera inadecuado para muchas aplicaciones
debido a su estructura inflexible y la falta de apoyo de relaciones complejas. Aun algunas
implementaciones como IMS de IBM han introducido caracteristicas que trabajan en torno a
estas limitaciones.

Red Este modelo aborda algunas de las limitaciones del modelo jerarquico. Los datos estan
organizados en tipos de registro, el equivalente 16gico de tablas en una base de datos relacio-
nal. Al igual que el modelo jerdrquico, el modelo de red usa la estructura de un arbol invertido,
pero los tipos de registro se organizan en una estructura que relaciona pares de tipos de regis-
tro en propietarios y miembros. Cualquier tipo de registro puede participar en cualquier con-
junto con otros tipos de registro en la base de datos, que apoya a las consultas y relaciones més
complejas de lo que es posible en el modelo jerarquico. Hasta el modelo de red tiene sus limi-
taciones, y la mds seria es la complejidad. Al acceder a la base de datos, el usuario debe estar
familiarizado con la estructura y mantener un seguimiento cuidadoso de dénde estd y cémo
lleg6 ahi. También es dificil cambiar la estructura sin afectar las aplicaciones que interactdan
con la base de datos.

Relacional Este modelo aborda algunas de las limitaciones de los modelos jerarquicos y de
red. En una base de datos de modelo jerdrquico o de red, la aplicacion se basa en una imple-
mentacion determinada de esa base de datos, que luego es codificada en la aplicacién. Si agre-
ga un nuevo atributo (elemento de datos) a la base de datos, debe modificar la aplicacidn, aun
cuando no se use ese atributo. Sin embargo, una base de datos relacional es independiente de
la aplicacién; puede hacer modificaciones no destructivas a la estructura sin afectar la aplica-
cion. Ademds, la estructura de la base de datos relacional se basa en la relacidn, o tabla, junto
con la habilidad de definir relaciones complejas entre ellas. Se puede acceder directamente

a cada relacion sin la lentitud de las limitaciones de los modelos jerdrquicos o propietario/
miembro que requiere de una navegacion a través de una estructura compleja de datos. En la
siguiente seccion, “El modelo relacional”, se verd con mayor detalle este modelo.

Aunque aun se usan en muchas organizaciones, las bases de datos de modelo jerarquico y de
red ahora se consideran como soluciones heredadas. El modelo relacional es el mas ampliamente
aplicado en los sistemas de negocios modernos, y es el modelo relacional el que proporciona la
base para SQL.

El modelo relacionadl

Si alguna vez tiene la oportunidad de ver un libro acerca de base de datos relacionales, es muy po-
sible que vea el nombre de E. F. (Ted) Codd, a quien se hace referencia en el contexto del modelo
relacional. En 1970, Codd publicé su trabajo mds importante “A Relational Model Of Data For Lar-
ge Shared Data Banks” (Un modelo relacional de datos para grandes bancos de datos compartidos),
en el diario Communications of the ACM, volumen 13, nimero 6 (junio de 1970). Codd define una
estructura de datos relacional que protege los datos y permite que sean manipulados de manera que
es previsible y resistente al error. El modelo relacional, el cual se basa principalmente en los princi-
pios matemadticos de la teorfa de conjuntos y légica de predicados, apoya la recuperacién de datos
sencilla, aplica la integracion de datos (1a precision y coherencia de los datos), y proporciona una
estructura de base de datos independiente de las aplicaciones al acceder a los datos almacenados.

6 Fundamentos de SQL

El nicleo del modelo relacional es la relacién. Una relacion es un conjunto de columnas y
filas reunidas en una estructura en forma de tabla que representa una entidad unica formada
por los datos relacionados. Una entidad es una persona, lugar, cosa, evento o concepto sobre el
cual los datos son recolectados, como un artista, un libro o una transaccion de ventas. Cada re-
lacién comprende uno o més atributos (columnas). Un atributo es un hecho simple que describe
o caracteriza una entidad de alguna manera. Por ejemplo, en la figura 1-1, la entidad es un disco
compacto (CD) con atributos de NOMBRE_CD (el titulo del CD), NOMBRE_ARTISTA (el nom-
bre del artista) y ANO_DERECHOSDEAUTOR (el afio de los derechos de autor del disco).

Como se ve en la figura 1-1, cada atributo tiene un dominio asociado. Un dominio define el
tipo de datos que son almacenados en un atributo particular; sin embargo, un dominio no es lo
mismo que un tipo de datos. Un tipo de datos, el cual se tratard con mayor detalle en el capitulo
3, es un tipo especifico de restriccion (un control usado para hacer cumplir la integridad de los
datos) asociados con una columna, mientras que un dominio, tal como se utiliza en el modelo rela-
cional, tiene un significado mas amplio y describe exactamente qué datos pueden ser incluidos en
un atributo asociado con ese dominio. Por ejemplo, el atributo ANO_DERECHOSDEAUTOR es
asociado con el dominio de Aflo. Como se ve en este ejemplo, es comun la practica de incluir una
clase de palabra que describe los nombres de dominio en el atributo, pero esto no es obligatorio. El
dominio puede ser definido de manera que el atributo sé6lo incluya datos cuyos valores y formato
sean limitados a afios, a diferencia de dias o meses. El dominio también puede limitar los datos
a un rango especifico de afios. Un tipo de datos, por otro lado, restringe el formato de los datos,
como el permitir Unicamente digitos numéricos, pero no los valores, a menos que esos valores vio-
len de alguna manera el formato.

Los datos se almacenan en una relacion en tuplas (filas). Una tupla es un conjunto de datos
cuyos valores hacen una instancia de cada atributo definido por esa relacién. Cada tupla representa
un registro de datos relacionados. (De hecho, el conjunto de datos se conoce en ocasiones como re-
gistro.) Por ejemplo, en la figura 1-1 la segunda tupla de arriba hacia abajo contiene el valor “Joni
Mitchell” para el atributo NOMBRE_ARTISTA, el valor “Blue” para el atributo NOMBRE_CD y
el valor “1971” para el atributo ANO_DERECHOSDEAUTOR. Estos tres valores juntos forman

una tupla.
Atributo ~ Nombre del atributo Nombre del dominio
(NOMBRE_CD) (Ano)
NOMBRE_ARTISTA:NombreCompleto|NOMBRE_CD:Titulo ANO_DERECHOSDEAUTOR:AfA0
Jennifer Warnes Famous Blue Raincoat 1991
Joni Mitchell Blue 1971
William Ackerman Past Light 1983 Relacion
Kitaro Kojiki 1990 <4—Tupla
Bing Crosby That Christmas Feeling 1993
Patsy Cline Patsy Cline: 12 Greatest Hits 1988

Figura 1-1 Relacién con los atributos NOMBRE_CD, NOMBRE_ARTISTA y ANO_DERECHOSDEAUTOR.

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL

NOTA

Los términos légicos relacién, atributo y tupla se usan principalmente para referirse al modelo
relacional. SQL usa los términos fisicos tabla, columna y fila para describir esos elementos.
Debido a que el modelo relacional se basa en modelos matemdticos (un modelo légico) y SQL
se enfoca mds a la implementacién fisica del modelo, los significados para los términos del
modelo y los términos de lenguaje de SQL son ligeramente distintos, pero los principios bési-
cos son los mismos. Los términos de SQL se analizan con mds detalle en el capitulo 2.

El modelo relacional es, por supuesto, mds complejo que los meros atributos y tuplas que ha-
cen la relacion. Dos consideraciones importantes en el disefio e implementacion de cualquier base
de datos relacional son la normalizacién de los datos y las asociaciones de relaciones entre los
distintos tipos de datos.

Normalizacién de datos

La parte central de los principios del modelo relacional es el concepto de normalizacion, una técni-
ca para producir un conjunto de relaciones que poseen un conjunto de ciertas propiedades que mi-
nimizan los datos redundantes y preservan la integridad de los datos almacenados tal como se man-
tienen (afiadidos, actualizados y eliminados). El proceso fue desarrollado por E. F. Codd en 1972, y
el nombre es un chiste politico debido a que el presidente Nixon estaba “normalizando” relaciones
con China en ese momento. Codd imagind que si las relaciones con un pais pueden normalizarse,
entonces seguramente podria normalizar las relaciones de la base de datos. La normalizacion se
define por un conjunto de normas, que se conocen como formas normales, que proporcionan una
directriz especifica de cdmo los datos son organizados para evitar anomalias que den lugar a incon-
sistencias y pérdida de los datos tal como se mantienen almacenados en la base de datos.

Cuando Codd presentd por primera vez la normalizacion, incluia tres formas normales. A pe-
sar de que formas normales adicionales se han agregado desde entonces, las tres primeras cubren
la mayoria de las situaciones que se encontrardn en las dos bases de datos personales y empresa-
riales, y ya que la intencién principal es presentar el proceso de normalizacidn, s6lo se analizardn
esas tres formas.

Elecciéon de un identificador Unico Un identificador tnico es un atributo o conjunto de
atributos que unicamente identifican cada fila de datos en una relacion. El identificador tnico
eventualmente se convertird en la clave principal de la tabla creada en la base de datos fisica desde
la relacion de normalizacion, pero muchos usan los términos identificador tinico y clave principal
de manera intercambiable. A cada identificador potencial tnico se le denomina candidato clave,
y cuando hay varios candidatos, el disefiador elegird el mejor, el cual es el menos probable de
cambiar valores o el mds simple y/o el mds corto. En muchos casos, un solo atributo se identifica
unicamente en los datos en cada tupla de la relacion. Sin embargo, cuando ningun atributo que
es Unico se encuentra, el disefiador busca varios atributos que puedan ser unidos (puestos juntos)
para formar un identificador dnico. En los pocos casos donde ningtin candidato clave razonable
es encontrado, el disefiador debe inventar un identificador tinico denominado sustituto clave, fre-
cuentemente con valores asignados al azar o secuencialmente cuando las tuplas sean agregadas a
la relacion.

Mientras no sea absolutamente necesario hasta la segunda forma normal, es habitual seleccio-
nar un identificador Gnico como primer paso en la normalizacién. Es més fécil de esa manera.

8 Fundamentos de SQL

Primera forma normal La primera forma normal, que proporciona la fundacién para la se-
gunda y tercera forma normal, incluye las siguientes directrices:

Cada atributo de una tupla contiene sélo un valor.
Cada tupla en una relacién contiene el mismo nimero de atributos.

Cada tupla es diferente, lo que significa que la combinacién de los valores de todos los atribu-
tos de una tupla dada no puede ser como ninguna otra tupla en la misma relacién.

Como se ve en la figura 1-2, la segunda tupla y la dltima tupla violan la primera forma nor-
mal. En la segunda tupla, el atributo NOMBRE_CD y el atributo ANO_DERECHOSDEAUTOR
contienen cada una dos valores. En la dltima tupla, el atributo NOMBRE_ARTISTA contiene tres
valores. También debe vigilar la repeticion de valores en forma de repeticién de columnas. Por
ejemplo, dividir el atributo NOMBRE_ARTISTA en tres atributos llamados NOMBRE_ARTIS-
TA_1, NOMBRE_ARTISTA_2 y NOMBRE_ARTISTA_3 no es una solucién adecuada porque es
muy probable que necesite un cuarto nombre, luego un quinto, y asi sucesivamente. Ademds, re-
petir columnas hace que las consultas sean mds dificiles, ya que debe recordar buscar en todas las
columnas cuando busque un valor especifico.

Para normalizar la relacién mostrada en la figura 1-2, debe crear relaciones adicionales que
separen los datos de modo que cada atributo contenga un solo valor, cada tupla contenga el mismo
nimero de atributos y cada tupla sea diferente, como se muestra en la figura 1-3. Ahora los datos
se ajustan a la primera forma normal.

Observe que hay valores duplicados en la segunda relacién; el valor de 10002 en el ID_AR-
TISTA se repite y el valor de 99308 en el ID_CD también se repite. Sin embargo, cuando el valor
de los dos atributos en cada tupla son puestos juntos, la tupla como un todo forma una combina-
cion Unica, lo cual significa que, a pesar de la aparente duplicidad, cada tupla en la relacion es

diferente.
NOMBRE_ARTISTA NOMBRE_CD ANO_DERECHOSDEAUTOR
Jennifer Warnes Famous Blue Raincoat 1991
Joni Mitchell Blue; Court and Spark 1971; 1974
William Ackerman Past Light 1983
Kitaro Kojiki 1990
Bing Crosby That Christmas Feeling 1993
Patsy Cline Patsy Cline: 12 Greatest Hits 1988
Jose Carreras; Placido Domingo; . -
Luciano Pavarotti Carreras Domingo Pavarotti in Concert 1990

Figura 1-2 Relacién de la violacién de la primera forma normall.

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL 9
ID_ARTISTA| NOMBRE_ARTISTA ID_ARTISTA | ID_CD ID_CD [NOMBRE_CD ANO_DERECHOSDEAUTOR
10001 Jennifer Warnes 10001 99301 99301 | Famous Blue Raincoat 1991
10002 Joni Mitchell 10002 99302 99302 | Blue 1971
10003 William Ackerman 10002 99303 99303 | Court and Spark 1974
10004 Kitaro 10003 99304 99304 | Past Light 1983
10005 Bing Crosby 10004 99305 99305 | Kojiki 1990
10006 Patsy Cline 10005 99306 99306 | That Christmas Feeling 1993
10007 Jose Carreras 10006 99307 99307 | Patsy Cline: 12 Greatest Hits 1988
10008 Placido Domingo 10007 99308 99308 | Carreras Domingo Pavarotti in Concert| 1990
10009 | Luciano Pavarotti 10008 |99308
10009 99308

Figura 1-3 Relacién que se ajusta a la primera forma normal.

(,Observo que los atributos ID_ARTIST y ID_CD fueron agregados? Se hizo esto porque
no habia otros candidatos clave. NOMBRE_ARTISTA no es tinico (dos personas con el mismo
nombre pueden ser artistas), y tampoco es NOMBRE_CD (dos CD pueden terminar con el mismo
nombre, aunque es probable que sean de diferentes sellos discogréficos). ID_ARTISTA es la clave
principal de la primera relacion, e ID_CD es la clave principal en la tercera. La clave principal en
la segunda relacién es la combinacién de ID_ARTIST y ID_CD.

Segunda forma normal Para comprender la segunda forma normal, primero debe entender
el concepto de dependencia funcional. Para esta definicién se usardn dos atributos arbitrarios,
habilmente llamados A y B. El atributo B es funcionalmente dependiente (dependiente para abre-
viar) del atributo A si en cualquier momento no hay mds que un valor del atributo B asociado con
el valor dado al atributo A. Para que no te preguntes de qué planeta vengo, tratemos de hacer la
definicion mas entendible. Si se dice que el atributo B es funcionalmente dependiente del atributo
A, también estaremos diciendo que el atributo A determina al atributo B, o que A es un factor de-
terminante (identificador unico) del atributo B. En la figura 1-4, ANO_DERECHOSDEAUTOR
depende de ID_CD, ya que s6lo puede haber un valor d¢ ANO_DERECHOSDEAUTOR para
cualquier CD. Dicho de otra manera, ID_CD es un factor determinante de ANO_DERECHOS-
DEAUTOR.

La segunda forma normal expone que una relacién debe estar en la primera forma normal y
que todos los atributos en la relacién dependen del identificador Gnico completo. En la figura 1-4,
si la combinacién de ID_ARTISTA y ID_CD es seleccionada como identificador tinico, enton-
ces ANO_DERECHOSDEAUTOR violaria la segunda forma normal porque s6lo dependeria de
ID_CD en lugar de la combinacién ID_CD y ID_ARTISTA. A pesar de que la relacién se ajusta a
la primera forma normal, se violarfa la segunda forma normal. De nuevo, la solucién serfa separar
los datos en relaciones diferentes, como se vio en la figura 1-3.

Tercera forma normal La tercera forma normal, como la segunda forma normal, depende
de la relacion del identificador dnico. Para adherir a las directrices de la tercera forma normal, una

10 Fundamentos de SQL

\¢«—— ldentificador Ginico —p|
ID_ARTISTA ID_CD ANO_DERECHOSDEAUTOR
10001 99301 1991
10002 99302 1971
10002 99303 1974
10003 99304 1983
10004 99305 1990
10005 99306 1993
10006 99307 1988

Figura 1-4 Relacién con un identificador Gnico concatenado.

relacién debe estar en la segunda forma normal y sin un atributo clave (atributos que no sean parte
de algin candidato clave) deben ser independiente el uno del otro y depender del identificador
unico. Por ejemplo, el identificador tnico en la relacion mostrada en la figura 1-5 es el atributo
ID_ARTISTA.

Identificador
tnico

ID_ARTISTA{NOMBRE_ARTISTA | ID_AGENCIA|ESTADO_AGENCIA

10001 | Jennifer Warnes 2305 NY

10002 | Joni Mitchell 2306 CA
10003 William Ackerman| 2306 CA
10004 Kitaro 2345 NY
10005 Bing Croshy 2367 vT
10006 Patsy Cline 2049 N
10007 | Jose Carreras 2876 CA

10008 Placido Domingo 2305 NY

10009 Luciano Pavarotti | 2345 NY

Figura 1-5 Relacién con un atributo que viola la tercera forma normal.

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL

11

Los atributos NOMBRE_ARTISTA e ID_AGENCIA dependen del identificador tinico y son in-
dependientes uno del otro. Sin embargo, el atributo ESTADO_AGENCIA depende del atributo
ID_AGENCIA, y por lo tanto viola las condiciones de la tercera forma normal. Este atributo se
adapta mejor en una relacién que incluye datos sobre las agencias.

NOTA

En el mundo tedrico del disefio relacional, el objetivo es almacenar los datos de acuerdo con
la reglas de normalizacién. Sin embargo, en el mundo real de aplicacién de bases de datos,
ocasionalmente se desnormalizan los datos, lo que significa que se violen deliberadamente
las reglas de normalizacién, particularmente la segunda y la tercera forma normal. La des-
normalizacién se usa principalmente para mejorar el rendimiento o reducir la complejidad en
los casos en donde una estructura demasiado normalizada complica la implementacién. Con
todo, el objetivo de la normalizacién es asegurar la integridad de los datos; por lo tanto, la
desnormalizacién se realizaria con sumo cuidado y como Gltimo recurso.

Relaciones
Hasta ahora el enfoque en este capitulo se ha centrado en la relacién y la manera de normalizar los
datos. Sin embargo, un componente importante de cualquier base de datos relacional es de qué for-
ma esas relaciones se asocian entre si. Esas asociaciones, o relaciones, se vinculan en forma signi-
ficativa, lo que contribuye a garantizar la integridad de los datos de modo que una accién realizada
en una relacién no repercuta negativamente en los datos de otra relacion.

Hay tres tipos principales de relaciones:

Unaauna Una relacién entre dos relaciones en la cual una tupla en la primera relacion esté
relacionada con al menos una tupla en la segunda relacién, y una tupla en la segunda relacién
esté relacionada con al menos una tupla en la primera relacion.

Una a varias Una relacién entre dos relaciones en la cual una tupla en la primera relacién
esté relacionada con ninguna, una o mas tuplas en la segunda relacién, pero una tupla en la se-
gunda relacién esté relacionada con al menos una tupla en la primera relacién.

Varias a varias Una relacion entre dos relaciones en la cual una tupla en la primera relacion
esté relacionada con ninguna, una o mds tuplas en la segunda relacién, y una tupla en la segun-
da relacion esté relacionada con ninguna, una o mds tuplas en la primera relacion.

La mejor manera de ilustrar estas relaciones es ver un modelo de datos de varias relaciones
(mostrado en la figura 1-6). Las relaciones se nombraron para hacer referencia a ellas con mayor
facilidad.

Una relacion una a una existe entre las relaciones AGENCIAS_ARTISTA y NOMBRES_AR-
TISTA. Para cada uno de los artistas que se listan en la relacion AGENCIAS_ARTISTA, sélo
puede haber una tupla correspondiente en la relacion NOMBRES_ARTISTA, y viceversa. Esto
implica una regla de negocio que un artista puede trabajar con sélo una agencia a la vez.

12

Fundamentos de SQL

Una relacion una a varias existe entre las relaciones NOMBRE_ARTISTA y CD_ARTISTA.
Para cada uno de los artistas en la relacion NOMBRES_ARTISTA, ninguna, una o mas tuplas
para ese artista pueden estar en la lista en la relacion CD_ARTISTA. En otras palabras, cada
artista pudo haber hecho ninguno, uno o mas CD. Sin embargo, para cada uno de los artistas
que figuran en la relacion CD_ARTISTA, s6lo puede haber una tupla correspondiente para
cada artista en la relacion NOMBRES_ARTISTA debido a que cada artista puede tener sélo
una tupla en la relacion NOMBRES_ARTISTA.

Una relacion una a varias existe entre las relaciones CD_ARTISTA y DISCOS_COMPAC-
TOS. Para cada CD, puede haber uno o mas artistas; sin embargo, cada tupla en CD_ARTIS-
TA puede corresponder en sélo una tupla en DISCOS_COMPACTOS debido a que cada CD
s6lo aparece una vez en la relacion DISCOS_COMPACTOS.

Una relacion varias a varias existe entre las relaciones NOMBRE_ARTISTA y DISCOS_
COMPACTOS. Para cada artista, puede haber ninguno, uno o mas CD, y para cada CD, puede
haber uno o maés artistas.

NOTA

Las bases de datos relacionales sélo apoyan una relacién una a varias directamente. Una
relacién varias a varias se implementa fisicamente agregando una tercera relacién entre la
primera y la segunda para crear dos relaciones una a varias. En la figura 1-6, la relacién
CD_ARTISTA se agregé entre las relaciones NOMBRES_ARTISTA y DISCOS_COMPACTOS.
Una relacién una a una se aplica fisicamente al igual que una relacién una a varias, excepto
que se afiade una limitacién para evitar duplicar los registros que coinciden en los “muchos”
lados de la relacién. En la figura 1-6 se afiadié una limitacién Gnica en el atributo ID_ARTISTA
para evitar que un artista aparezca en més de una agencia.

Una a una Una a varias Una a varias
AGENCIAS_ARTISTA NOMBRES_ARTISTA CD_ARTISTA DISCOS_COMPACTOS
ID_ARTISTA |AGENCIA|--L-{ ID_ARTISTA | NOMBRE_ARTISTA |-/~ ID_ARTISTA| ID_cD |-1{ID_CD [NOMBRE_CD
10001 2305 10001 Jennifer Warnes 10001 99301 99301 [Famous Blue Raincoat
10002 2306 10002 Joni Mitchell 10002 99302 | |99302 (Blue
10003 | 2306 10003 William Ackerman | | 10002 199303 | 199303 |Court and Spark
10004 2345 10004 Kitaro 10003 99304 | | 99304 |Past Light
10005 | 2367 10005 Bing Crosby 10004 [99305 | 99305 |Kojiki
10006 | 2049 10006 Patsy Cline 10005 | 99306 | |99306 |That Christmas Feeling
10006 99307 99307 |Patsy Cline: 12 Greatest Hits

\

Varias a varias

Figura 1-6 Tipos de relaciones entre relaciones.

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL

13

Las relaciones se clasifican también por cardinalidad minima (el nimero minimo de tuplas
que participan en una relacion). Si cada tupla en una relacién debe tener una tupla correspondiente
en la otra, la relacién se dice que es obligatoria en esa direccién. Del mismo modo, si cada tupla
en una relacién no requiere una tupla correspondiente en la otra, la relacién se dice que es opcio-
nal en esa direccion. Por ejemplo, la relacion entre NOMBRES_ARTISTA y AGENCIAS_ARTIS-
TA es obligatoria-obligatoria porque cada artista debe tener una agencia y cada tupla de AGEN-
CIAS_ARTISTA debe referirse a un unico artista. Las reglas de negocio deben entenderse antes
que la cardinalidad minima se determine con certeza. Por ejemplo, ;podemos tener un artista en
la base de datos que en alglin momento no tenga CD en la base de datos (es decir, ninguna tupla
correspondiente en CD_ARTISTA)? Si es asi, entonces la relacién entre NOMBRES_ARTISTA y
CD_ARTISTA es obligatoria-opcional; de lo contrario, es obligatoria-obligatoria.

Pregunta al experto

P: Se mencioné que las relaciones entre relaciones contribuyen a garantizar la integridad
de los datos. ;Como pueden las relaciones hacerlo posible?

R: Suponga que su modelo de datos incluye una relacién (lamada NOMBRE_ARTISTA) que
muestre en su inventario todos los artistas que han grabado CD. Su modelo también incluye
una relaciéon (CD_ARTISTA) donde coinciden los ID de los artistas con los ID de los discos
compactos. Si existe una relacién entre las dos relaciones, las tuplas de una relacion siempre
corresponderdn a las tuplas de la otra relaciéon. Como resultado, se podran evitar ciertas accio-
nes que puedan comprometer los datos. Por ejemplo, no seria posible afiadir el ID de un artista
a la relacion CD_ARTISTA si ese ID no se muestra en la lista en la relacion NOMBRE_AR-
TISTA. Tampoco seria posible borrar un artista de la relacion NOMBRE_ARTISTA si el ID
del artista hace referencia a la relacién CD_ARTISTA.

P: (A qué se refiere con el término modelo de datos?

R: Con modelo de datos me refiero al disefio, presentado a menudo usando diagramas, que repre-
sentan la estructura de la base de datos. El modelo identifica las relaciones, atributos, claves,
dominios y relaciones dentro de la base de datos. Algunos disefiadores de bases de datos crean
un modelo l6gico y un modelo fisico. El modelo l6gico se basa mds en la teoria relacional y
aplica los principios de normalizacién apropiados a los datos. El modelo fisico, por otro lado,
se refiere a la aplicacién real, ya que los datos se almacenan en un RDBMS. Basado en el di-
seflo 16gico, el disefio fisico trae la estructura de datos al mundo real de la implementacién.

14 Fundamentos de SQL

Normalizacién de datos

e identificacién de relaciones

Como programador principiante de SQL, es poco probable que sea responsable de la normaliza-
cion de la base de datos. Sin embargo, es importante que entienda estos conceptos, al igual que es
importante que entienda las clases de tratos que existen entre relaciones. La normalizacién y las
relaciones, como las relaciones mismas, ayudan a proporcionar la base sobre la que se construye
SQL. Como resultado, el ejercicio se enfoca en el proceso de normalizacién de datos e identifica-
cion de las relaciones entre relaciones. Para completar el ejercicio, s6lo necesitard papel y lapiz en
el cual esbozar el modelo de datos.

Paso a paso
1. Revise la relacion en la siguiente ilustracion:

ID_CD |[NOMBRE_CD CATEGORIA
99301 | Famous Blue Raincoat Folk, Pop
99302 |Blue Folk, Pop
99304 | Past Light New Age
99305 | Kojiki New Age, Classical
99306 | That Christmas Feeling Christmas, Classics
99307 | Patsy Cline: 12 Greatest Hits | Country, Pop, Classics

2, Identifique cualquier elemento que no se ajuste a las tres formas normales. Encontrard que el
atributo CATEGORIA contiene mas de un valor por tupla, que viola la primera forma normal.

3. Normalice los datos de acuerdo a las formas normales. Proyecte el modelo de datos que incluya
las relaciones, atributos y tuplas apropiadas. Su modelo incluird tres tablas, una para la lista de
CD, otra para la lista de las categorias de musica (por ejemplo, Pop), y otra que asocie los CD
con las apropiadas categorias de musica. Vea el archivo en linea Try_This_01-1a.jpg para un
ejemplo de cémo el modelo de datos puede verse (en inglés).

4. En la ilustracion que dibujo, identifique las relaciones entre la relaciones. Recuerde que cada
CD se puede asociar con una o mds categorias, y cada categoria se puede asociar con cero, uno
o mas CD. Vea el archivo en linea Try_This_01-1b.jpg para ver las relaciones entre relaciones
(en inglés).

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL

Resumen de Pruebe esto

Los modelos de datos suelen ser mds especificos que las ilustraciones mostradas en el ejercicio.
Las relaciones y claves se marcan claramente con simbolos que se ajustan a un tipo particular de
sistema de modelado de datos, y las relaciones muestran sélo los atributos, pero no las tuplas. Sin
embargo, para efectos de este capitulo, es suficiente con que tenga los conocimientos basicos de
normalizacién y relaciones entre relaciones. El ejercicio se entiende como un forma para que en-
tienda mejor esos conceptos y como se aplican al modelo relacional.

Aprenda acerca de SQL

Ahora que tiene un conocimiento fundamental del modelo relacional, es el momento para introdu-
cirlo a SQL y sus caracteristicas basicas. Como recordara de la seccién “Entienda las bases de da-
tos relacionales” vista anteriormente en este capitulo, SQL se basa en el modelo relacional, aunque
no se trate de una aplicacién exacta. Mientras el modelo relacional proporciona las bases tedricas
de la base de datos relacional, es el lenguaje SQL el que apoya la aplicacién fisica de esa base de
datos.

SQL, el lenguaje relacional casi universalmente aplicado, es diferente de otros lenguajes
computacionales como C, COBOL y Java, los cuales son de procedimiento. Un lenguaje de pro-
cedimiento define como las operaciones de una aplicacién deben realizarse y el orden en el cual
se realizan. Un lenguaje de no procedimiento, por otro lado, se refiere a los resultados de una
operacion; el entorno fundamental del software determina cdmo se procesan las operaciones. Esto
no quiere decir que SQL respalda a la funcionalidad de no procedimiento. Por ejemplo, los proce-
dimientos almacenados, agregados a varios productos RDBMS hace algunos afios, son parte del
estandar SQL:2006 y proporciona capacidades parecidas a procedimiento. (Los procedimientos
almacenados se analizan en el capitulo 13.) Muchos de los proveedores de RDBMS afiadieron
extensiones a SQL para proporcionar esas capacidades de procedimiento, como Transact-SQL en-
contrado en Sybase y Microsoft SQL Server y PL/SQL encontrado en Oracle.

SQL atin carece de muchas de las capacidades bésicas de programacién de la mayoria de los
lenguajes computacionales. Por esta razén, a menudo SQL se considera como un sublenguaje
de datos porque se utiliza con frecuencia en asociacién con la aplicacién de lenguajes de progra-
macién como C y Java, lenguajes que no fueron disefiados para la manipulacién de datos alma-
cenados en una base de datos. Como resultado, SQL se utiliza en conjunto con la aplicacién del
lenguaje para proporcionar un medio eficaz de acceder a los datos, razén por la cual se considera a
SQL como un sublenguaje.

La evolucién de SQIL

A principios de la década de 1970, después que se publicé el articulo de E. F. Codd, IBM comen-
76 a desarrollar un lenguaje y un sistema de base de datos que podria usarse para la aplicacién de
ese modelo. Cuando se definid por primera vez, el lenguaje fue denominado Lenguaje de consulta
estructurado (en inglés, SEQUEL, Structured English Query Language). Cuando se descubri6 que
SEQUEL era propiedad de una marca comercial de Hawker-Siddeley Aircraft Company en el Rei-
no Unido, el nombre se cambié a SQL. Cuando se pasé la voz de que IBM estaba desarrollando

16

Fundamentos de SQL

un sistema de base de datos relacional basado en SQL, otras compaififas comenzaron a desarrollar
sus propios productos basados en SQL. De hecho, Relational Software, Inc., ahora Oracle Corpo-
ration, lanzo el sistema de base de datos antes de que IBM lanzara el suyo al mercado. Conforme
mas proveedores lanzaron sus productos, SQL comenzé a surgir como el lenguaje estandar de base

de datos relacional.
En 1986, el American National Standards Institute (ANSI) dio a conocer el primer estandar
publicado para el lenguaje (SQL-86), el cual fue adoptado por la International Organization for
Standardization (ISO) en 1987. El estandar se actualizé en 1989, 1992, 2003, 2006, y el trabajo con-
tinda. Ha crecido con el tiempo (el estandar original estaba muy por debajo de 1 000 paginas, mien-
tras que la version de SQL:2006 tiene mds de 3 700 pdginas). El estdndar se escribid en partes para
permitir la publicacién programada de revisiones y facilitar el trabajo paralelo por diferentes comi-
tés. La tabla 1-1 proporciona una descripcion general de las partes y el estado actual de cada una.

Partes | Tema Estado
1 SQL/Framework Completado en 1999; revisado en el 2003, correcciones publicadas en
el 2007
2 SQL/Foundation Completado en 1986, revisado en 1999 y 2003, correcciones
publicadas en el 2007
3 SQL/CL Completado en 1995, revisado en 1999 y en el 2003, correcciones
publicadas en el 2005
4 SQL/PSM Completado en 1996, revisado en 1999 y en el 2003, correcciones
publicadas en el 2007
5 SQL/Bindings Establecido como una parte separada en 1999, fusionado de nuevo en
la parte 2 en el 2003; actualmente no existe la parte 5
6 SQL/Transaction Proyecto cancelado; actualmente no existe la parte 6
7 SQL/Temporal Retirado; actualmente no existe la parte 7
8 SQL/Objects and | Fusionado en la parte 2; no existe la parte 8
Extended Objects
9 SQL/MED Comenzado después de 1999, completado en el 2003, correcciones
publicadas en el 2005
10 SQL/OLB Completado como el esténdar ANSI en 1998, version ISO completada
en 1999, revisién en el 2003, correcciones publicadas en el 2007
11 SQL/Schemata Extraido de una parte separada en el 2003, correcciones publicadas en
el 2007
12 SQL/Replication Proyecto empezado en el 2000, pero posteriormente abandonado;
actualmente no existe la parte 12
13 SQL/JRT Completado como el estandar ANSI en 1999, revisién completada en el
2003, correcciones publicadas en el 2005
14 SQL/XML Completado en el 2003, expandido en el 2006, correcciones
publicadas en el 2007

Tabla 1-1

Partes del esténdar SQL.

Capitulo 1: Introduccién a las bases de datos relacionalesy a SQL 17

Los proveedores RDBMS lanzaron productos al mercado antes que hubiera un estandar, y
muchas de las caracteristicas de esos productos se aplicaron bastante diferentes, asi que el estan-
dar no pudo acomodarlos a todos cuando se desarrollaron. A menudo se llaman proveedores por
extension. Esto explica por qué no hay un estandar para una base de datos. Y cuando cada versién
estandar de SQL se lanza, los proveedores RDBMS tienen que trabajar para incorporar el nuevo
estandar en sus productos. Por ejemplo, los procedimientos almacenados y activadores son nuevos
en el estandar SQL:1999, pero fueron implementados en RDBMS por muchos afios. SQL:1999
simplemente estandarizé el lenguaje utilizado para implementar funciones que ya existian.

NOTA

Aunque se analizardn los procedimientos almacenados en el capitulo 13y los activadores en
el capitulo 14, daré una definicién répida de cada uno. Un procedimiento almacenado es un
conjunto de instrucciones de SQL almacenadas como un objeto en el servidor de una base de
datos al que un cliente puede recurrir simplemente llamando al procedimiento. Un activador es
similar a un procedimiento almacenado en el sentido que es un conjunto de instrucciones de
SQL almacenadas como un objeto en el servidor de una base de datos. Sin embargo, en lugar
de que un cliente recurra al activador, éste es invocado autométicamente cuando se produce
un evento predefinido, tales como la insercién o la actualizacién de datos.

Objeto de modelo relacional

El lenguaje SQL se basa en el modelo relacional, y hasta SQL-92, también el estdndar SQL. Sin
embargo, comenzando con SQL:1999, el estandar SQL se extendié mds alld del modelo relacional
puro para incluir construcciones orientadas a objetos en el lenguaje. Estas construcciones se basan
en los conceptos inherentes de programacion orientada a objetos, una programacion metodold-
gica que define colecciones auténomas de estructura de datos y rutinas (llamadas objetos). En los
lenguajes orientados a objetos como Java y C++, los objetos interactiian entre si de manera que
permiten al lenguaje abordar problemas complejos que no serian faciles de resolver en lenguajes
tradicionales.

Con la llegada de la programacién orientada a objetos (junto con los avances tecnoldgicos en
el hardware y software y la creciente complejidad de aplicaciones) se hizo cada vez mas evidente
que un lenguaje puramente relacional era insuficiente para satisfacer las demandas del mundo real.
De preocupacion especifica fue el hecho que SQL no podia respaldar tipos de datos complejos y
definidos por el usuario ni la extensibilidad requerida para aplicaciones mas complejas.

Impulsados por la competencia natural de la industria, los proveedores RDBMS se encargaron
de aumentar sus productos e incorporar la funcionalidad orientada a objetos en sus sistemas. El
estandar SQL:2006 sigue el ejemplo y extiende el modelo relacional con capacidades orientadas
a objetos, como métodos, encapsulacion, y tipos de datos complejos y definidos por el usuario, lo
que hace a SQL un lenguaje de base de datos relacional a objeto. Como se muestra en la tabla 1-1,
la parte 14 (SQL/XML) se ampli6 considerablemente y se reedité con SQL:2006, y todas las de-
mds partes se tomaron de SQL:2003.

La conformidad con SQL:2006

Una vez que SQL se estandarizd, se desprende que el estdndar también define lo que se tomé para
una aplicacién de SQL (un producto RDBMS) considerado en conformidad al estdndar. Por ejem-

18

Fundamentos de SQL

plo, el estindar SQL-92 proporciond tres niveles de conformidad: entrada, intermedio y pleno.
Los RDBMS mas populares alcanzaron sélo el nivel de entrada de conformidad. Debido a esto,
SQL:2006 tomé un enfoque diferente al establecer las normas de conformidad. Para que un pro-
ducto esté en conformidad con SQL:2006, debe apoyar el nivel de conformidad Core SQL. Core
SQL en el estandar SQL:2006 se define en conformidad a la parte 2 (SQL/Foundation) y la parte
11 (SQL/Schemata) del estandar.

Ademas del nivel de conformidad Core SQL, los proveedores demandan la conformidad en
cualquier parte cumpliendo con los requisitos minimos de conformidad por su parte.

NOTA

Puede encontrar informacién sobre el estandar SQL:2006 comprando una copia del
documento(s) esténdar apropiado publicado por ANSI e ISO. El esténdar se divide en nueve
documentos (una parte por documento). El primer documento (ANSI/ISO/IEC 9075-1:2003)
incluye la descripcién general de las nueve partes. El sufijo del nombre de cada documento
contiene el afio de publicacién, y las diferentes partes tienen distintos afios de publicacién de-
bido a que las partes fueron actualizadas y publicadas independientemente por distintos comi-
tés. Como puede ver en la tabla 1-1, la parte 1 fue publicada en el 2003 y, de hecho, sélo la
parte 14 lleva una fecha de publicacién del 2006 (todas las demés partes se publicaron en el
2003). Puede adquirir estos documentos en linea en ANSI Electronic Standards Store (http://
webstore.ansi.org/), NCITS Standards Store (http://www.techstreet.com/ncitsgate. html) o 1ISO
Store (http://www.iso.org/iso/store.htm). En el sitio de la ANSI observe que hay dos varian-
tes de cada documento con un contenido esencialmente idéntico, llamado INCITS/ISO/IEC
9075 e ISO/IEC 9075. Las variantes ISO/IEC cuestan entre 139 y 289 délares por documen-
to, mientras que las variantes INCITS/ISO/IEC cuestan entre 30 délares por documento. ISO
Store tiene el conjunto de documento disponible en un cémodo CD por 356 francos suizos
(alrededor de 350 délares). Obviamente, los precios estén sujetos a cambio en cualquier
momento. También estan disponibles las correcciones sin cargo exira, llamadas “Correcciones
técnicas”. Como se muestra en la tabla 1-1, se corrigieron tres partes publicadas en 2005, y
también se corrigieron las ofras seis partes publicadas en 2007.

Tipos de instrucciones de SQL

Aunque SQL se considera un sublenguaje debido a su naturaleza de no procesamiento, aun asi es
un lenguaje completo que le permite crear y mantener objetos en una base de datos, asegurar esos
objetos y manipular la informacién dentro de los objetos. Un método comin usado para categori-
zar las instrucciones SQL es dividirlas de acuerdo con las funciones que realizan. Basado en este
método, SQL se separa en tres tipos de instrucciones:

Lenguaje de definicion de datos (DDL, Data Definition Language) Las instrucciones
DDL se usan para crear, modificar o borrar objetos en una base de datos como tablas, vistas,
esquemas, dominios, activadores, y almacenar procedimientos. Las palabras clave en SQL
mds frecuentemente asociadas con las instrucciones DDL son CREATE, ALTER y DROP. Por
ejemplo, se usa la instruccion CREATE TABLE para crear una tabla, la instruccion ALTER
TABLE para modificar las caracteristicas de una tabla, y la instruccion DROP TABLE para
borrar la definicion de la tabla de la base de datos.

http://webstore.ansi.org/
http://www.techstreet.com/ncitsgate.html
http://www.iso.org/iso/store.htm

Capitulo 1: Introduccién a las bases de datos relacionalesy a SQL 19

Lenguaje de control de datos (DCL, Data Control Language) Las instrucciones DCL per-
miten controlar quién o qué (un usuario en una base de datos puede ser una persona o un pro-
grama de aplicacion) tiene acceso a objetos especificos en la base de datos. Con DCL, puede
otorgar o restringir el acceso usando las instrucciones GRANT o REVOKE, los dos comandos
principales en DCL. Las instrucciones DCL también permiten controlar el tipo de acceso que
cada usuario tiene a los objetos de una base de datos. Por ejemplo, puede determinar cudles
usuarios pueden ver un conjunto de datos especifico y cudles usuarios pueden manipular esos
datos.

Lenguaje de manipulacion de datos (DML, Data Manipulation Language) Las instruc-
ciones DML se usan para recuperar, agregar, modificar o borrar datos almacenados en los
objetos de una base de datos. Las palabras clave asociadas con las instrucciones DML son
SELECT, INSERT, UPDATE y DELETE, las cuales representan los tipos de instrucciones que
probablemente son mds usadas. Por ejemplo, puede usar la instrucciéon SELECT para recupe-
rar datos de una tabla y la instrucciéon INSERT para agregar datos a una tabla.

La mayoria de las instrucciones SQL que se utilizan caen perfectamente en una de estas cate-
gorias, y estas instrucciones se analizardn durante el resto del libro.

NOTA

Hay varias formas de clasificar las instrucciones ademés de la manera en que se clasifican en
lat lista anterior. Por ejemplo, se pueden clasificar de acuerdo a cémo se ejecutan o si pueden
o no ser incrustadas en un lenguaje de programacién esténdar. El estandar SQL proporciona
diez categorias amplias basadas en funciones. Sin embargo, se usa el método anterior ya que
se utiliza cominmente en la documentacién relacionada con SQL, y porque es una manera
simple de proporcionar una buena visién general de la funciones inherentes a SQL.

. . .,
Ti POs de ejecucion

Ademds de definir cémo se usa el lenguaje, el estandar SQL proporciona detalles de cémo las
instrucciones SQL son ejecutadas. Este método de ejecucién, conocido como estilos de union, no
s6lo afecta la naturaleza de la ejecucion, sino también determina cudles instrucciones, como mi-
nimo, deben ser soportadas por un estilo de unién particular. El estdndar define cuatro métodos de
ejecucion:

Invocacion directa Mediante el uso de este método, puede comunicarse directamente desde
una aplicacién de usuario, como iSQL*Plus en Oracle o Management Studio en Microsoft
SQL Server, en la base de datos. (La aplicacién de usuario y la base de datos pueden estar en
la misma computadora, pero a menudo no lo estan.) Simplemente introduzca su consulta en

la ventana de la aplicacion y ejecute la instrucciéon SQL. Los resultados de su consulta se le
devolveran tan rapido como el poder del procesador y las limitaciones de la base de datos lo
permitan. Esta es una forma rdpida de comprobar datos, verificar conexiones y ver los objetos
en una base de datos. Sin embargo, las directrices del estdndar SQL sobre la invocacién directa
son bastante minimas; por lo tanto, los métodos utilizados y los estdndares SQL respaldados
pueden variar ampliamente de un producto a otro.

20 Fundamentos de SQL

SQL incrustado En este método, las instrucciones SQL estan codificadas (incrustadas)
directamente en el lenguaje de programacion anfitrién. Por ejemplo, las instrucciones SQL
se pueden incrustar en el cddigo C de la aplicacion. Antes que el c6digo se compile, un pre-
procesador analiza las instrucciones SQL y las desglosa desde el c6digo C. El codigo SQL se
convierte en una forma que RDBMS puede entender, y el cédigo C restante se compila como
lo harfa normalmente.

Unién de médulo Este método permite crear bloques de instrucciones SQL (mddulos) que
estan separados del lenguaje de programacién anfitrién. Una vez que el médulo es creado, es
una combinacién entre una aplicacién y un vinculador. Un mddulo contiene, entre otras cosas,
procedimientos, y son los procedimientos los que contienen las instrucciones SQL reales.

Interfaz convocatoria a nivel (CLI, Call-level interface) Una CLI permite invocar ins-
trucciones SQL a través de una interfaz mediante la aprobacién de instrucciones SQL como
valores argumentativos para las subrutinas. Las instrucciones no estdn precompiladas como en
el SQL incrustado y la Unién de mddulo. En lugar de eso, son ejecutadas directamente por los
RDBMS.

La invocacién directa, aunque no es el método utilizado mds cominmente, es el que serd usa-
do principalmente para los ejemplos y ejercicios en este libro, ya que apoya la presentacion de las
consultas ad hoc en la base de datos y genera resultados inmediatos. Sin embargo, SQL incrustado
es actualmente el método utilizado mds comtinmente en las aplicaciones de negocios. Se analizarad
este método, asi como el unién de médulo y CLI, con mayor detalle en el capitulo 17.

Pregunta al experto

P: Seafirma que, para que un RDBMS esté en conformidad con el estandar SQL:2006,
debe cumplir con Core SQL. ;Hay algin requisito adicional que un producto debe cum-
plir?

R: si. Ademas de Core SQL, un RDBMS debe respaldar a ambos el SQL incrustado o la unién
de médulo. La mayoria de los productos respaldan sé6lo al SQL incrustado, algunos respaldan
a ambos. El estandar SQL no requiere productos RDBMS para respaldar la invocacién directa
o CLI, aunque las mayoria lo hace.

P: ¢ Cuales son las diez categorias usadas por el estandar SQL:2006 para clasificar las ins-
trucciones SQL?

R: Elestandar SQL clasifica las instrucciones en las siguientes categorias: esquema, datos,
cambio de datos, operacion, conexidn, control, sesién, diagndsticos, dindmico e instrucciéon
incrustada de excepcion. Tenga en cuenta que estas clasificaciones no son mds que una
herramienta que puede utilizar para comprender mejor el alcance del lenguaje y los conceptos
basicos. En udltima instancia, son las instrucciones SQL (y lo que pueden hacer) lo que es im-
portante.

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL

2]

Utilice un sistema de gestién de base de datos relacional

A lo largo de este capitulo, al examinar el modelo relacional y SQL, se mencionaron a menu-
do los RDBMS y la forma en que utilizan el estindar SQL como base de sus productos. Un
sistema de gestion de base de datos relacional es un programa o conjunto de programas que
almacenan, administran, recuperan, modifican y manipulan informacién en una o mas bases de
datos relacionales. Oracle, Microsoft SQL Server, IBM’s DB2 y el producto de prueba MySQL
son todos ejemplos de RDBMS. Estos productos, como otros RDBMS, permiten interactuar
con la informacién almacenada en el sistema. Aunque no es necesario que un RDBMS se base
en SQL, la mayoria de los productos en el mercado estan basados en SQL y tratan de ajustarse
al estandar SQL. Como minimo, estos productos demandan el nivel de entrada de conformidad
con el estandar SQL-92, y ahora se trabaja para Core SQL en conformidad con SQL:2006.

Ademas del cumplimiento con los estandares SQL, la mayoria de los RDBMS apoyan
otras caracteristicas, como instrucciones SQL adicionales, productos basados en herramientas
administrativas, y aplicaciones de interfaz grafica de usuario (GUI) que permiten la consulta y
manipulacién de informacion, la gestién de objetos en una base de datos, y la administracién
del sistema y su estructura. Los tipos de funcionalidad aplicados y los métodos utilizados para
proporcionar la funcionalidad pueden variar ampliamente de un producto a otro. Conforme las
bases de datos crecen, se vuelven mds complicadas y se distribuyen en mds areas, los productos
RDBMS utilizados para la gestion de las bases de datos se hacen mas complejos y robustos,
satisfaciendo las demandas del mercado, asi como aplicacién de nuevas y mds sofisticadas tec-
nologias.

El esténdar SQL frente a las implementaciones
de producto

El centro de cualquier RDBMS basado en SQL es, por supuesto, el propio SQL. Sin embargo, el
lenguaje utilizado no es SQL puro. Cada producto extiende su lenguaje con el fin de implementar
las caracteristicas definidas por el proveedor y mejorar la funcionalidad basada en SQL. Ademas,
una serie de productos RDBMS lo fabricaron para el mercado antes de que hubiera un estdndar. En
consecuencia, cada proveedor respalda una variacion ligeramente diferente de SQL, lo que signi-
fica que el lenguaje utilizado en cada producto tiene una aplicacién especifica. Por ejemplo, SQL
Server utiliza Transact-SQL, que incluye tanto a SQL como a las extensiones del proveedor para
proporcionar las instrucciones de procedimiento necesarias para los activadores y los procedimien-
tos almacenados. Por otro lado, Oracle proporciona instrucciones de procedimiento en un compo-
nente de producto separado llamado PL/SQL. Como resultado, las instrucciones SQL que se pro-
porcionan en el libro pueden ser ligeramente diferentes en la aplicacién del producto que utiliza.

A lo largo del libro se utilizara SQL puro en la mayoria de los ejemplos y ejercicios. Sin em-
bargo, me doy cuenta de que, como un programador principiante de SQL, su interés principal es la
aplicacién de SQL en el mundo real. Por esa razén, a veces usaré SQL Server (con Transact-SQL)
u Oracle (con PL/SQL) para demostrar o aclarar un concepto particular que no puede explicarse
totalmente por medio de SQL puro tnicamente.

22 Fundamentos de SQL

Una de las ventajas de utilizar un producto como Oracle o SQL Server es que ambos respal-
dan la invocacién directa a través de una aplicacion GUI de usuario. SQL Server usa la interfaz
Management Studio, que se muestra en la figura 1-7. La interfaz GUI hace posible crear una
consulta especifica en SQL, presentarla a DBMS para la transformacién y ver los resultados, lo
que le permite aplicar lo que se aprende en el libro en un entorno real de SQL. Oracle tiene varias
soluciones para un GUI de usuario, incluyendo el interfaz basado en la web iSQL* Plus, mostrado
en la figura 1-8.

Ademads de las interfaces GUI, la mayoria de los productos incluyen una interfaz de linea de
comandos que se utiliza en las terminales mas antiguas que no tienen capacidad grafica. Estas in-
terfaces también son ttiles para la ejecucion de instrucciones SQL y por las conexiones de acceso
telefénico donde las interfaces graficas son demasiado lentas. En la figura 1-9 se muestra la inter-
faz de linea de comandos por el cual MySQL se ejecuta en Microsoft Windows.

crosoft SQL Server Management Studio x.l.g]jj
fe Edt View Query Project Took Wndow Communty Help
Dnevouey [BBRBIRSHS BERYEF
| B W 98 | nwenTory -l Peecute v B TR B4 DT W O QED

I8

EE

DI6000\SQL200...5QLQueryL.sql* | Summary | = »Xx]
SELECT * FROM COMPACT DISCS; =
= [DIB0O0SQL200S (SQL Server 9.0.1399 - DIsC
E 3 Databates
B (3 System Databases
[Database Snapshots L
& | J INVENTORY
& 3 Database Diagrams _lll
B [3 Tables 4 | L
= 3 System Tables [Resuls | %y M |
% O dboARTIST_CDS I‘J e HE COITIE ILABEL = STOCKl
= O dboARTISTS ‘—loowml ! BEL |
@ [dbo.CD_LABELS 1 j1o1 | Fomous Blue Raincoat 827 13
% 0 dbo.COMPACT_DISC_TYPES 28 102 Blue 828 42
@ O dbo.COMPACT_DISCS 3 |03 Court and Spark 829 2
O dbo.MUSIC_TYPES |4 | 104 Past Light 230 17
& 2 Views 50 | 1w0s Kok 831 [
B 3 Synonyms JE R That Christmas Feeling 832 3
& C3 Programmabity 7 107 Patsy Cline- 12 Greatest Hits 832 a2
15 [Service Broker E 108 Carreras Domingo Pavaratt in Concert 833 27
G Storage 8 |ws After the Rain: The Soft Sounds of Erik Satie 833 2
@ta ;g;;ﬂmw 10| 1o Out of Africe 832 29
® [Server Objects L m Leonard Cahen The Best Of 834 12
& 23 Replcation 12 | 112 Fundamental B35 4
5 (3 Management as | 3 Bob Seger and the Siver Bullet Band Grestest Hits | 835 16
& 3 Notfication Services 14 |14 Blues on the Bayou 83z a7
& [SQL Server Agent (36 115 Orlando 836 5
‘| |] /2 Query executed successtully |DIE000iSaL2005 (90RTM) [DI6000VANdY (52) INVENTORY (000000 [15rows |
Ready n3 col1 ch1 ws

Figura 1-7 Uso de SQL Server Management Studio.

Capitulo 1: Introduccién a las bases de datos relacionales y a SQL

23

) 5QL*Plus Release 10.1.0.2 - Mozilla Firefox

Fle Edt Vew Hstory Bookmarks Toos Help

@ @ U @ [0 mwocahostsseoisapushvorispace.x Bl [
ORACLE Sy @ O =
‘Q &) 8 (7)
JbQL*PlUS Logout Preferences Help
{ History |
Connected as INVENTORY@orcl
Workspace
Enter SQL, PL/SQL and SQL*Plus (Clear)
[SELECT * FROM COMPACT_DISCS;
_Execute) (Load Script) [Save Script) (Cancel)
COMPACT_DISC_ID CD_TITLE LABEL_ID IN_STOCK
101 Famous Blue Raincoat 827 13
102 Blue 828 42
103 Court and Spark 829 22
104 Past Light 830 17
105 Kojiki 831 6
106 That Christmas Feeling 832 8
107 Patsy Chine: 12 Grealest Hits 83z a2
108 Carreras Domingo Pavarotti in Concert 833 27
109 After the Rain: The Soft Sounds of Erik Satie 833 21
110 Out of Africa 832 29
111 Leonard Cohen The Best Of 834 12
112 Fundamental 835 34
113 Bob Seger and the Silver Bullet Band Greatest Hits 835 16
114 Blues on the Bayou 832 27
115 Orlando 836 B =
15 rows selected
r ;[
| Done P

Figura 1-8 Uso de Oracle iSQL*Plus.

El uso de estos productos no implica que se apoye a alguno de ellos por encima de cualquier
otro producto comercial (como Sybase o Informix) o los productos de prueba (como PostgreSQL),
y de hecho, le animamos a utilizar cualquier RDBMS que tenga disponible, suponiendo que da
soporte a gran parte de la funcionalidad que se analiza en este libro. Sin embargo, se eligen SQL
Server y Oracle para la mayoria de los ejemplos en el libro, ya que se demostrard cémo se apli-
ca SQL en el mundo real y como SQL puede diferir de una aplicacién especifica de una version

del lenguaje, y esos dos productos suministran el medio para llevarlo a cabo. Tenga en cuenta

que, para que pueda tener una plena comprensiéon de SQL y pueda utilizarlo en varios productos
RDBMS, necesitard entender tanto el estindar SQL como el lenguaje que se aplica a los productos

que van a utilizar.

24 Fundamentos de SQL

mysql> use inventory
Database changed
mysql> SELECT = FROM COMPACT_DISCS;

R e e T L b
B ettt +

| COMPACT_DISC_ID | CD_TITLE

D | IN_STOCK |

- o
ettt +

| 101 | Famous Blue Raincoat

[13 |

I 102 | Blue

8 | 42 1|

| 103 | Court and Spark

9 1 22 |

I 104 | Past Light

0 | 17 1

I 105 | Kojiki

11 6 |

I 106 | That Christmas Feeling

2 | 8 1

I 187 | Patsy Cline: 12 Greatest Hits

2 | 32 |

| 108 | Carreras Domingo Pavarotti in Concert

3 | 27 |

I 109 | After the Rain: The Soft Sounds of Erik Satie
3 | 21 |

I 110 | Out of Africa

2 | 29 1

I 111 | Leonard Cohen The Best Of

4 1 12 |

I 112 | Fundamental

S | 34 |

| 113 | Bob Seger and the Silver Bullet Band Greatest Hits
5 1 16 |

| 114 | Blues on the Bayou

2 1 27 1

I 115 | Orlando

6 | 51

o e
e m e ———— +

15 rouws in set (0.00 sec)

mysql>

mysel>

mysql>

mysql>

mysql>

82

82

83

83

83

83

83

83

83

83

83

83

83

83

Figura 1-9 Uso de la interfaz de linea de comandos MySQL.

Capitulo 1: Introduccién a las bases de datos relacionalesy a SQL 25

GUYEAR] Conexién a una base de datos

Aunque este libro se centra principalmente en SQL puro, para probar los ejemplos y hacer la ma-
yoria de los ejercicios, necesitard acceder a un RDBMS para ejecutar las instrucciones SQL. Como
resultado, una de las primeras cosas que debe hacer es asegurarse que pueda acceder a un entorno
SQL. Este ejercicio le ayudara a hacerlo; sin embargo, a diferencia de la mayoria de los otros
ejercicios en el libro, éste requerird un mayor esfuerzo de su parte para buscar recursos fuera de la
obra para establecerse con un RDBMS que le permita invocar las instrucciones SQL directamente.
Con este fin, el ejercicio intenta que empiece, pero debe utilizar su propia iniciativa para garantizar
que tiene un entorno en el que se sienta cémodo trabajando.

Paso a paso

Identifique el RDBMS que va a utilizar para los ejercicios del libro. Quizds haya un sistema
con el cual ya estd familiarizado o uno que esté disponible en su entorno de trabajo. Si no tiene
ninguno disponible en su trabajo y no estd listo para comprar un producto, revise en linea para
ver cudl estd disponible. La mayoria de los proveedores RDBMS ofrecen una versién gratuita
bdsica de uso restringido de sus productos, a menudo denominada “Express Edition” (la edicién
sencilla); otros ofrecen una version de prueba que puede usarse gratis por un periodo limitado.
Por ejemplo, puede descargar Oracle Express Edition para Linux o Windows en http://www.
microsoft.com/sql/editions/express/. (Necesitard una conexién a Internet de alta velocidad para
descargar archivos de gran tamafio.)

Si prefiere un producto de prueba, MySQL es una opcioén popular. De hecho, tanto Yahoo como
Google utilizan MySQL ampliamente en una configuracién conocida como LAMP (Linux,
Apache, MySQL y PHP). Puede descargar MySQL Community Server gratis de http://dev.
mysql.com/downloads/mysql. Por otro lado, MySQL Enterprise Server es una edicion con una
tarifa respaldada por el proveedor.

Antes que se decida por un producto en particular, haga las investigaciones necesarias para ase-
gurarse de que admite la invocacién directa, preferiblemente a través de una aplicaciéon GUI, y
pueda ejecutarse en su computadora. También compruebe qué tanto del estdndar SQL:2006 res-
palda y revise los acuerdos de licencia para asegurarse de que estd en el cumplimiento. Si un sis-
tema estd disponible en su trabajo, asegurese de hablar con los administradores de base de datos
y de red para determinar qué servidor puede usar, si puede y como debe descargar una copia, y
c6mo hacer la conexién con el servidor SQL. A menudo se necesita una cuenta para conectarse a
la RDBMS, por lo que si éste es el caso, averigiie qué nombre de usuario y contrasefia debe usar.

Una vez que establezca cudl RDBMS usard, instdlelo en su equipo. Si se conecta a un sistema a
través de la red, tendrd que instalar sélo las herramientas de clientes en su equipo local.

Abra el cliente GUI que le permita invocar directamente las instrucciones SQL. Cuando abra el
GUI, es posible que se le pida un nombre de usuario y contrasefia. Cuando y si se le pide puede
variar dependiendo del producto que utiliza, si se conecta a través de la red, si el RDBMS se
configura como un sistema auténomo, y otras variables especificas del producto. Ademads, un
producto como SQL Server ofrece seguridad integrada con el sistema operativo, por lo que es

posible que sélo se le pida un nombre de servidor.
(continda)

http://www.

microsoft.com/sql/editions/express/
http://dev.

mysql.com/downloads/mysql
http://www.

microsoft.com/sql/editions/express/

26

Fundamentos de SQL

4, Ejecute la instruccién SELECT en la aplicacion de entrada de la ventana. Me doy cuenta que
aun no se cubren las instrucciones SELECT, pero la sintaxis bdsica es relativamente facil:

SELECT * FROM <tabla>

El marcador de posicién <tabla> debe sustituirse con el nombre de una tabla en una base de da-
tos existente.

El propdsito de este ejercicio es simplemente comprobar que tiene conectividad con los datos
almacenados en el RDBMS. La mayoria de los productos incluyen informacién de muestra, y
esa informacidn es con la que intentara conectarse. Compruebe la documentacion del producto
o consulte con el administrador de bases de datos para verificar si existe una base de datos que
pueda acceder.

Si trabaja en Oracle y los esquemas de muestra estan instalados, puede ejecutar las siguientes
instrucciones:

SELECT * FROM scott.emp;

Para ejecutar las instrucciones, escribalas en la ventana de entrada de iSQL*Plus y luego dé un
clic en EXECUTE.

Si trabaja en SQL Server con la informacién muestra instalada, puede ejecutar la siguiente ins-
truccion:

USE pubs

SELECT * FROM employee
Para ejecutar la instruccion, escribala en la ventana de entrada de SQL Server Management Stu-
dio y luego dé un clic en EXECUTE.

Si trabaja en el interfaz de linea de comandos MySQL, simplemente escriba la instruccién SQL
y oprima ENTER.

Una vez que ejecute la instruccién, los resultados de la consulta apareceran en la ventana de sa-
lida. En este momento, no se preocupe por el significado de cada palabra en la instruccién SQL
o con los resultados de la consulta. Su tnica preocupacion es asegurarse que todo funcione. Si
no puede ejecutar la instruccidn, consulte con el administrador de bases de datos o la documen-
tacién del producto.

5. Cierre la aplicacion GUI sin guardar la consulta.

Resumen de Pruebe esto

Como se dijo al principio del ejercicio, es diferente de la mayoria de los demds en el libro debido
a que estd bdsicamente por su propia cuenta para establecer la conectividad con el RDBMS. De
nuevo, esto se debe a que SQL es un lenguaje estdndar, independiente de las implementaciones
RDBMS, y las cuestiones especificas de los proveedores estdn, en su mayor parte, mds alld del
alcance de este libro. Ademads, los métodos utilizados para conectarse a una base de datos, las he-
rramientas disponibles para hacer esas conexiones y la forma en la que un RDBMS estd configu-
rado varia de un producto a otro, de un entorno a otro e incluso de un sistema operativo a otro. Sin
embargo, el tiempo que tome ahora para investigar qué producto utilizar y para asegurarse de que
puede conectar la informacion existente en una base de datos serd de valor incalculable conforme
aplique informacién analizada en el resto del libro.

Capitulo 1: Introduccién a las bases de datos relacionalesy a SQL 27

7 Aot Canitulo T

1.
2‘

3.

4.
S.

6.
7‘

8.
9.

10

11.
12.

13.

14.
15‘

(Qué es una base de datos?

(Cudl de los siguientes objetos conforma una relacion?

A Tipos de datos

B Tuplas

C Atributos

D Formas

Un(a) es un conjunto de datos cuyos valores conforman una instancia de cada uno de

los atributos definidos para esa relacion.
(Cudles son las diferencias entre la primera forma normal y la segunda forma normal?

Una relacion estd en la tercera forma normal si estd en la segunda forma normal y si cumple
con las demads directrices de esa forma. ;Cudles son esas directrices?

(Cudles son los tres principales tipos de relaciones soportados por una base de datos relacional?

En el modelo de datos, hay dos relaciones asociadas cada una entre si por una relacion varias a
varias. ,Como se implementa fisicamente esta relacién en una base de datos relacional?

(Como se diferencia SQL de los lenguajes de programacién como C, COBOL y Java?

(,Qué factores contribuyeron a que el estindar SQL:2006 incorporara capacidades orientadas a
objetos?

(Qué nivel de conformidad debe soportar un RDBMS para poder cumplir con SQL:2006?
A Entrada

B Core

C Pleno

D Intermedio

(Cudles son las diferencias entre las instrucciones DDL y DML?

(Qué método de ejecucion de instrucciones SQL usaria si deseara comunicarse directamente
con una base de datos SQL desde una aplicacién de usuario?

(Cudles son los cuatro métodos que soporta el estaindar SQL:2006 para la ejecucién de las ins-
trucciones SQL?

(,Qué es un sistema de gestién de base de datos relacional?
(Cudl es un ejemplo de un RDBMS?

Capitulo 2

Trabajo con el entorno
SQL

30

Fundamentos de SQL

Habilidades y conceptos clave

Entienda el entorno SQL

Entienda los catdlogos SQL

Nombrado de objetos en un entorno SQL
Creacion de un esquema

Creacion de una base de datos

En el capitulo 1 se analiz6 la teoria relacional, SQL, y los sistemas de gestion de base de datos
relacional (RDBMS). En este capitulo deseo llevar este andlisis un paso mds alld e introducir
el entorno SQL, como se define en el estindar SQL:2006. El entorno SQL proporciona la estruc-
tura en la que se ejecuta SQL. Dentro de esta estructura puede utilizar las instrucciones SQL para
definir los objetos en una base de datos y almacenar informacién en dichos objetos. Sin embargo,
antes de comenzar a escribir instrucciones SQL debe tener un entendimiento basico de los fun-
damentos sobre los cuales el entorno SQL se construye para que pueda aplicar esta informacién
en todo el resto del libro. De hecho, puede resultar util hacer referencia a este capitulo a menudo
como ayuda para adquirir una comprensién conceptual del entorno SQL y cémo se relaciona con
los elementos de SQL acerca de los cuales aprenderd en los siguientes capitulos.

Entienda el entorno SQL

El entorno SQL es, simplemente, la suma de todas las partes que conforman ese entorno. Cada
parte, o componente, trabaja en conjunto con otros componentes para respaldar las operaciones de
SQL tales como la creacién y modificacion de objetos, almacenamiento y consulta de informacion,
o modificacién y eliminacién de datos. En conjunto, estos componentes forman un modelo en el
que un RDBMS puede basarse. Esto no significa, sin embargo, que los proveedores de RDBMS se
adhieren estrictamente a este modelo; cudles componentes implementan, y cémo lo hacen se deja,
en su mayor parte, a la discrecion de esos proveedores. Aun asi, deseo darle una visién general de
la forma en que el entorno SQL se define, en términos de los distintos componentes, tal como se
describen en el estandar SQL:2006.

El entorno SQL se compone de seis tipos de componentes, como se muestra en la figura 2-1.
Los clientes SQL y los servidores SQL son parte de la aplicacién de SQL y son, por lo tanto, sub-
tipos de ese componente.

Observe que sélo hay un agente SQL y una aplicacién de SQL, pero hay varios componentes
de otros tipos, tales como catdlogos y sitios. De acuerdo con SQL:2006, debe haber exactamente
un agente SQL y una aplicacién de SQL y cero o mds médulos de cliente SQL, identificador de
autorizacion y catdlogos. El estandar no especifica cudntos sitios respalda, pero implica varios
S1t10S.

Capitulo 2: Trabajo con el entorno SQL 31

<«— [Cliente SQL | «— [Servidor SQL |

Implementacion SQL

A/y Servidor SQL

4 [servidor sqQL

Entorno SQL

[Médulo de cliente SQL| [Médulo de cliente SQL| [Médulo de cliente SQL|

|Identificador de autorizaci6n| |Identificador de autorizaci6n| |Identificador de autorizacion

|Mapeo de usuario | |Mapeo de usuario| |Mapeo de usuario | |Mapeo de usuario|

|Mapeo de ruta | |Mapeo de ruta| |Mapeo de ruta|

| Catélogo| | Catalogo| | Catélogo| [Catalogo]

| sitio | [sitio | |sitio | | sitio |

Figura 2-1 Componentes del entorno SQL.

Cada tipo de componente realiza una funcién especifica dentro del entorno SQL. La tabla 2-1
describe los ocho tipos.

En su mayor parte, es necesario que tenga sélo una comprensién bdsica de los componentes
que forman el entorno SQL (en términos de principios de programacién de SQL). Sin embargo,
uno de estos componentes (el catdlogo) desempefia un papel mas critico que los otros; respecto a
esto es lo que aprendera en este libro. Por lo tanto, se cubrira este tema con mds detalle y se expli-
card cémo se relaciona con la gestién de datos y los objetos que sostienen dichos datos.

Tipo de
componente

Descripcion

Agente SQL

Cualquier estructura que haga que las instrucciones SQL se jecuten. El agente
SQL estd ligado al cliente SQL dentro de la implementacién de SQL.

Aplicacién de SQL

Un procesador que ejecuta las instrucciones SQL en funcién de las necesidades del
agente SQL. La aplicacién de SQL incluye un cliente SQL y uno o mds servidores
SQL. El cliente SQL establece conexiones SQL con los servidores SQL y mantiene
los datos relativos a las interacciones con el agente SQL y los servidores SQL. Un
servidor SQL gestiona la sesién SQL que tiene lugar durante la conexién SQL y
ejecutard instrucciones SQUL recibidas del cliente SQL.

Tabla 2-1 Tipos de componentes respaldados en un entorno SQL.

32

Fundamentos de SQL

Tipo de componente

Descripcion

Médulo de cliente SQL

Una coleccién de instrucciones SQL que se escriben por separado de su
lenguaije de programacién de aplicacién pero que pueden ser llamados dentro
de ese lenguaje. Un médulo de cliente SQL contiene cero o mds procedimientos
invocados externamente; cada procedimiento consiste en una Gnica instruccién
SQL. Un médulo de cliente SQL reside dentro del entorno SQL y se procesa

por la aplicacién SQL, a diferencia de SQL incrustado, el cual se escribe
dentro de la aplicacién de lenguaje de programacién y precompila antes de
que el lenguaje de programacién se elabore. Los médulos de cliente SQL se
analizardn con mayor detalle en el capitulo 17.

Identificador de
autorizacién

Un identificador representa a un usuario o un rol al que se le concede
privilegios de acceso a objetos o informacién dentro del entorno SQL. Un
usuario es una cuenta individual de seguridad que puede representar a un
individuo, una aplicacién o un servicio del sistema. Un rol es un conjunto de

rivilegios predefinidos que se asignan a un usuario o a otro rol. Se analizardn
E)s identificadores autorizados, usuarios y roles en el capitulo 6.

Mapeo de usuario

Un mapeo de usuario equipara a un identificador de autorizacién con un
descriptor de servidor exterior.

Mapeo de rutas

Un mapeo de rutas equipara a una ruta invocada en SQL con un descriptor de
servidor exterior.

Catélogo

Un grupo de esquemas reunidos en un nombre definido. Cada catdlogo
contiene un esquema de informacién, que incluye los descriptores de una
serie de objetos de esquema. El propio catélogo proporciona una estructura
jerdrquica para organizar los datos dentro de los esquemas. (Un esquema
es bésicamente un contenedor de objetos como tablas, vistas y dominios, los
cudles se analizarén con mayor detalle en la siguiente seccién, “Entienda los

catélogos SQL.”)

Sitio

Un grupo de tablas base que contienen datos SQL, tal como lo describe el
contenido de los esquemas. Se puede pensar en estos datos como “la base de
datos”, pero tenga en cuenta que el esténdar SQL no incluye una definicién del
término “base de datos”, ya que tiene muchos significados diferentes.

Tabla 2-1 Tipos de componentes respaldados en un entorno SQL (continuacién).

Entienda los catdlogos SQL

En la seccidén anterior, “Entienda el entorno SQL”, se expuso que un entorno SQL es la suma de
todas las partes que lo componen. Se puede utilizar esa misma logica para describir un catdlogo,
en el sentido de que un catdlogo es una coleccién de esquemas, y esos esquemas, en conjunto, de-
finen un nombre dentro del entorno SQL.

Capitulo 2: Trabajo con el entorno SQL 33

NOTA

Un espacio de nombre es una estructura de nombres que identifica los componentes relaciona-
dos en un determinado entorno. Un nombre es a menudo representado por una configuracién
de un érbol invertido para representar la relacién jerarquica de obijetos. Por ejemplo, suponga
que su nombre incluye dos objetos: OBJETO_1 y OBJETO_2. Si el nombre es NOMBRE_1, los
nombres completos de los objetos son NOMBRE_1.OBJETO_1 y NOMBRE_1.0OBJETO_2 (o al-

gunos como nomenclatura de configuracién), lo que indica que comparten el mismo nombre.

Otra manera de ver a un catdlogo es como una estructura jerarquica con el catdlogo como el
objeto primario y los esquemas como los objetos secundarios, como se muestra en la figura 2-2.
En la parte superior de la jerarquia estd el entorno SQL, que puede contener cero o mas catdlogos
(aunque un entorno con cero catdlogos no es bueno, ya que en el catdlogo es donde se encuentran
las definiciones de la informacién y los datos SQL). Los esquemas se localizan en el tercer nivel,
debajo del catdlogo, y los objetos de esquema estan en el cuarto nivel.

Entorno SQL

Catalogo 1
Catalogo 2

Catalogo 3

Los datos
SQL se almacenan
en las tablas base.

|Esquema de informaci6n|

Esquema 2

Tablas base |
: - Los objetos de
T Vistas | esquema son
Dominios | propiedad del identificador

Tipos de usuarios definidos |
i

de autorizacion.

Limitaciones |

T
Médulos de servidores SQL | Objetos de esquema
T

|
|
|
|
|
|
| Activadores |
|
|
|
|
|

Rutas invocadas SQL

T
Conjunto de caracteres
T

Transliteraciones

|
|
Cotejos |
|
|

T
Generadores de secuencia

Figura 2-2 Los componentes de un catélogo.

34

Fundamentos de SQL

Puede comparar las relaciones entre los objetos en un catdlogo a las relaciones entre los archi-
vos y directorios en el sistema operativo de su equipo. El catdlogo se representa por un directorio
raiz; los esquemas, por subdirectorios, y los objetos de esquema, por archivos dentro de subdirec-
torios.

Al igual que la estructura jerarquica de un sistema de archivo, la estructura de un catdlogo es
logica por naturaleza; esto es, un sistema de archivos se presenta en una forma jerarquica (al igual
que la de Windows Explorer), pero eso no significa que los archivos son almacenados jerarquica-
mente en el disco duro. En el mismo sentido, el catdlogo de jerarquia no es mas que una represen-
tacion de la relacion entre objetos en el entorno SQL, por lo que no implica ninguna contencién fi-
sica o0 una organizaciéon. Como se implementan estos objetos realmente con relacion a la estructura
del catdlogo, y cudles se implementan, se deja a la discrecion de los proveedores de RDBMS. De
hecho, el estandar SQL:2006 no define un lenguaje para la creacion o eliminacion de catalogos;
esto también se deja a los proveedores, e incluso pocos sistemas respaldan a los catdlogos.

Esquemas

Cada catdlogo contiene uno o mds esquemas. Un esquema es un conjunto de objetos relacionados
que se retinen bajo un nombre comun. El esquema actiia como un contenedor de esos objetos, los
que a su vez almacenan los datos SQL o realizan otras funciones con datos relacionados. Cada
esquema, los objetos contenidos en el esquema y los datos SQL dentro de esos objetos son propie-
dad del identificador de autorizacién asociado con ese esquema.

A diferencia de los catdlogos, los esquemas son ampliamente implementados en los productos
RDBMS. Sin embargo, como con los catdlogos, SQL deja la mayor parte de los detalles de imple-
mentacion a los proveedores, aun cuando el estdndar proporciona un lenguaje para la creacion
y eliminacién de esquemas. Para crear un esquema se usa la instruccion CREATE SCHEMA, y
para eliminar un esquema se usa la instrucciéon DROP SCHEMA. La creacién y eliminacién de
esquemas se analiza con mayor detalle en la seccién “Creacién de un esquema”.

El tratamiento de los esquemas en un RDBMS puede variar ampliamente del estandar, y por
lo tanto es importante que lea cuidadosamente la documentacion del producto si desea crear un
esquema en el entorno SQL. Por ejemplo, la arquitectura de la base de datos en Oracle combina
el concepto de un esquema y la propiedad del identificador de autorizacién (cuando se crea a un
usuario en Oracle, también estd implicita la creacion de un esquema para ese usuario). Mientras
que Oracle 11g contiene la instruccion CREATE SCHEMA de compatibilidad con el estindar
SQL, simplemente permite ejecutar un lote especifico de instrucciones SQL para crear tablas y
vistas y la concesion de privilegios dentro de un esquema que ya existe (es decir, uno que ya fue
implicitamente creado usando la instruccién CREATE USER).

Esquema de informacién

Cada catdlogo contiene un esquema especial llamado INFORMATION_SCHEMA. Este esquema

contiene las definiciones de una serie de objetos de esquema, la mayoria de vista. Una vista es una
tabla virtual que permite observar los datos reunidos de tablas reales. Mediante el uso de esas vis-

tas, puede mostrar las definiciones de los objetos en ese catdlogo como si se tratara de datos SQL.

No puede cambiar ninguno de los datos (si lo hiciera cambiarfa las definiciones objeto), pero pue-
de mostrar la informacién simplemente consultando la vista correspondiente.

Capitulo 2: Trabajo con el entorno SQL

35

Como en la mayoria de caracteristicas de SQL, la aplicacién del esquema de informacién y
qué funciones respalda varfa de un producto a otro, aunque estas implementaciones son general-
mente bastante sencillas. Por ejemplo, SQL Server 2008 incluye una vista del esquema de infor-
macion llamado INFORMATION_SCHEMA.COLUMNS. Si consulta esta vista, los resultados in-
cluirdn una lista que contiene informacion acerca de cada columna accesible para el usuario actual
dentro de la actual base de datos. Los resultados incluyen tanto la informacién como el nombre de
la columna, el tipo de datos asignados a esa columna y el propietario (identificador de autoriza-
cién) a quien pertenece esa columna.

Objetos de esquema

En la parte inferior del nivel del catdlogo jerdrquico se ubican los objetos de esquema. Los objetos
de esquema son un conjunto de componentes relacionados que estdn contenidos dentro de un es-
quema. Este es el nivel en el que se almacenan los datos SQL y, en consecuencia, el nivel que més
preocupa a los programadores de SQL. Mediante el uso de SQL, serd capaz de definir los objetos
de SQL, modificar esas definiciones, y almacenar y manipular los datos de SQL dentro de los ob-
jetos. De hecho, mucho de lo que se hard en este libro de aqui en adelante tiene un impacto directo
o estd conectado directamente con los objetos de esquema.

El estandar SQL:2006 define 12 tipos de objetos de esquema. Estos objetos, descritos en la
tabla 2-2, proporcionan las bases para el entorno SQL y la estructura de la forma en que se al-
macenan los datos dentro de ese entorno. Se discutird sobre estos objetos con mayor detalle mas
adelante en el libro; como resultado de ello, se incluyen referencias, en su caso, a las disposiciones
aplicables a los capitulos.

Esquema de objeto | Descripcién

Tabla base La unidad bésica de gestién de datos en el entorno SQL. Una tabla se compone

de columnas y filas y es andloga a una relacién (con sus atributos y tuplas) en
una teoria relacional. Cada columna se asocia con un tipo de datos y mantiene
los valores que estén de algin modo relacionados entre si. Por ejemplo, una
tabla de clientes contiene columnas que tienen informacién acerca de esos
clientes, como sus nombres y direcciones. (Ver el capitulo 3.)

Vista Una tabla virtual que se crea cuando se invoca la vista (al llamar su nombre). La

tabla no existe realmente (sélo la instruccién SQL que define la tabla se almacena
en la base de datos). Cuando se invoca esa instruccién, la vista toma los datos de
las tablas base y muestra los resultados como si los viera de una tabla base de
consulta. (Ver el capitulo 5.)

Dominio Un objeto definido por un usuario que puede especificarse en lugar de un tipo de

datos en el momento de especificar una columna (una parte del proceso de crear
o dlterar una definicién de tabla). (Ver el capitulo 4.)

Tabla 2-2 Tipos de objetos que se definen en cada esquema.

36 Fundamentos de SQL

Esquema de objeto

Descripcion

Tipo definido por el
usuario (UDT)

Un objeto definido por el usuario se puede especificar en lugar de un tipo de
datos cuando se define una columna. SQL respalda dos tipos de UDT: distinto
y estructurado. Los tipos distintos se basan en lit:s tipos de datos en SQL y sus
valores definidos. Los tipos estructurados se componen de valores de atributos,
cada uno de los cuales se basan en el tipo de datos de SQL. (Ver el capitulo 3.)

Restriccién

Una restriccién definida en una tabla, columna o dominio que limita el tipo de
datos que se inserta en el objeto de aplicacién. Por ejemplo, se puede crear
una restriccién en una columna que restrinja los valores que se insertan en esa
columna a un rango especifico o una lista de nomeros. (Ver el capitulo 4.)

Médulo de servidor
SQL

Un médulo que contiene rutinas invocadas en SQL. Un médulo es un objeto que
contiene instrucciones SQL, rutas y procedimientos. Una ruta invocada en SQL

es una funcién o procedimiento que se invoca desde SQL. Ambas funciones

y procedimientos son tipos de instrucciones de SQL que pueden manejar
parémetros (valores pasados a una instruccién cuando se invoca esa instruccién).
Una funcién puede recibir pardmetros de entrada y devolver un valor basado en
la expresién incluida en la instruccién de funcién. Un procedimiento puede recibir
y devolver parémetros de entrada y salida. (Ver el capitulo 13.)

Activadores

Un obijeto asociado con una tabla base que define una accién que debe tomarse
cuando un evento se produce en relacién con esa tabla. La accién que causa la
activacién del cxcﬁvc&for (ejecucién) puede ser un insertar en, eliminar de, o la
actualizacién de una tabla base. Por ejemplo, la eliminacién de una fila en una
tabla puede causar la activacién de un activador que |uego borra los datos de
ofra tabla. (Ver el capitulo 14.)

Rutina invocada por
SQL

Una funcién o procedimiento que se invoca desde SQL. Una ruta invocada en
SQL puede estar en un esquema de objeto o incrustado en un médulo, que
también es un objeto de esquema. (Ver el capitulo 13.)

Conjunto de
caracteres

Una coleccién de atributos de caracteres que definen cémo se representan.

Un conjunto de caracteres tiene tres atributos: el repertorio, la forma de uso y

el cotejo predeterminado. El repertorio determina qué caracteres se expresan

(por ejemplo, A, B, C, y asi sucesivamente). La forma de uso determina cémo se
representan los caracteres como cadenas de hardware y software (por ejemplo, A
viene antes que B, B viene antes que C). El cotejo predeterminado determina cémo
esas cadenas se comparan unas con ofras.

Cotejo

Un conjunto de reglas que controlan cémo las cadenas de caracteres se comparan
unas con otras dentro de un repertorio en particular. Esta informacién se usa para
ordenar los caracteres (por ejemplo, A viene antes que B, B viene antes que C).
Un cotejo predeterminado se define por cada conjunto de caracteres.

Transliteracién

Una operacién que mapea caracteres de un conjunto de caracteres a otro
corzjunto de caracteres. Las transliteraciones incluyen operaciones tales como la
traduccién de caracteres de mayusculas a mindsculas o de un alfabeto en ofro.

Generador de
secuencia

Un mecanismo para generar valores sucesivos de datos numéricos (enteros), uno
a la vez. El generador de secuencia mantiene un valor de base actual, que se usa
como la base para generar el siguiente valor secuencial.

Tabla 2-2 Tipos de objetos que se definen en cada esquema (continuacién).

Capitulo 2: Trabajo con el entorno SQL 37

Como se comento, se analizardn la mayoria de los temas de la tabla con mayor detalle mas
adelante en el libro. Sin embargo, los dltimos tres temas, los cuales estan relacionados con los con-
juntos de caracteres, se tratan brevemente. Los conjuntos de caracteres, cotejos y transliteraciones
respaldados por los RDBMS pueden variar de un producto a otro, y también la implementacién de
esas caracteristicas. A lo largo de este libro, todos los ejemplos y proyectos que se dardn cuentan
con cualquier conjunto de caracteres predeterminados para el producto que utiliza. Si se quiere
cambiar ese conjunto de caracteres, ya sea en un nivel predeterminado o en la base de datos o en
la tabla nivel, primero debe revisar cuidadosamente la documentacién del producto para averiguar
qué se respalda y como se implementan esas caracteristicas.

Pregunta al experto

P: Se describe un dominio como un objeto definido por el usuario que se basa en un tipo de
datos pero puede incluir un valor predeterminado y una restriccion. ;Cémo difiere este
tipo de dominio de un dominio como el que se describié en el modelo relacional?

R: En muchos casos los dos son lo mismo, y para todos los efectos practicos se puede pensar en
un dominio de SQL como contraparte a un dominio en el modelo relacional. Hay una sutil
diferencia, no obstante [un dominio en el modelo relacional es meramente una descripcién de
los datos que se incluyen en un atributo (columna) asociado con ese dominio en particular].
Por otro lado, un dominio de SQL restringe los datos que se pueden insertar en una columna.
Un dominio de SQL hace esto a través del uso de restricciones, las cuales son reglas de vali-
dacidén que son parte del sistema de integridad de los datos. La idea principal a tener en cuenta
es que un dominio en el modelo relacional es un concepto 16gico, mientras que un dominio de
SQL es un concepto fisico.

P: Cuando se hablé acerca de objetos de esquema, se mencionaron las tablas base. ;Respal-
da SQL cualquier otro tipo de tablas?

R: Elestindar SQL:2006 respalda cuatro tipos de tablas: tablas base, tablas transitorias, tablas
derivadas y tablas vistas. La tabla base es un tipo de tabla cuyos datos se almacenan en alguna
parte. En otras palabras, los datos de SQL se almacenan en una tabla base. Una tabla transito-
ria es una tabla nombrada que implicitamente se crea durante la evaluacidn de una expresion
de consulta o la ejecucion de un activador. Una tabla derivada es aquella que contiene los re-
sultados de una consulta (el conjunto de datos especificados en la consulta). Una tabla vista es
otro nombre que se le da a una vista, la cual es una tabla virtual cuya definicion se almacena,
pero cuyos datos se derivan de tablas base en el momento en que se llama la vista.

5Qué es una base de datos?

Como habra notado, en ninguna parte de la estructura del entorno de SQL o de un catdlogo se hace
mencién de una base de datos. La razén es que en ninguna parte del estindar SQL se define el
término “base de datos”. De hecho, la inica mencion de una base de datos, en términos de como

38

Fundamentos de SQL

podria encajar en la estructura del entorno de SQL, es que pueda considerar a los sitios como la
base de datos, aunque esto se ofrece como una sugerencia mas que como una definicién absoluta.
Si bien el estdndar utiliza la palabra para referirse a SQL como el lenguaje de una base de datos,
en realidad nunca se define el término.

Este enfoque puede estar bien para el estandar, pero en el mundo real puede ser dificil para un
RDBMS crear un entorno SQL sin crear algtn tipo de componentes que los usuarios puedan sefia-
lar y decir: “Si, es la base de datos.” Y, de hecho, la mayoria de los productos permiten crear, alte-
rar y eliminar objetos que se llaman bases de datos. En SQL Server, por ejemplo, una instancia del
software de DBMS puede gestionar cualquier nimero de bases de datos, siendo cada base de datos
una coleccidn logica de base de datos objetos que el disefiador escoge para administrar juntos.
Sybase, MySQL y DB2 de IBM tienen arquitecturas similares. SQL Server proporciona una con-
sola de administracién llamada Microsoft SQL Server Management Studio para ver y manipular
la base de datos objetos. El panel Object Explorer a lo largo del margen izquierdo proporciona
una estructura de directorio jerarquica que incluye una base de datos nodo, con cada base de datos
mostrada debajo, y los objetos tales como tablas figuran abajo de cada base de datos. La figura 2-3
muestra el SQL Server Management Studio con la base de datos INVENTARIO expandida hacia
abajo de las columnas de la tabla CDS_ARTISTA.

K. Microsoft SQL Server Management Studio —lolx|
Be Edt Vew Ioos Wndow Communty Hep

Queowy BBBHD SHIBPABE T,

b hblad Summary| 3 - %
connect- | % m A ¥ (lERER-Sd ™1 |

 DIS00ONSQLI005 (SQL Server 9.0.13%9 - DIEC

" S v s ! Columns

% [Database Snapshots ARTIST_COS\Columns 2 Item(s)
=) NVENTORY
i [Database Dagrams
= (3 Tables Name 1
s [System Tables ¥ ARTIST_ID {PK, FK, I, not nul)
= 1 dbo ARTIST_CDS T COMPACT_DISC_ID (PK, F, int, not nuf)

= 0
5 [Keys
3 [Constrants
=1 [Triggers
% [Indexes
7 [Statwtics
4 3 dboARTISTS
3 dbo.CD_LABELS
oo COMPACT_DISC_TYPES
OMPACT_DISCS
5 3 dbo.MUSIC_TYPES
3 23 Views
[Synofyms
7 03 Programmablty
% [‘Service Broker
% 1 Storage
3 Securty
® 3 Securty
= 3 Server Objects
2 [Rephcation
[Management

% [Motfication Services
i SQL Server Agent

Figura 2-3 Microsoft SQL Server Management Studio con la base de datos INVENTARIO expandida.

Capitulo 2: Trabajo con el entorno SQL 39

[Bordesgibeveper =Iojxl
Fde Ede Yww Havgate Bun Debug Sowce Mogratun Tools Help

FoEG oc XOm O-0- - fix
AgConoectns. | [AR (= T

CL B
0y Con

orvs | Induxes | SOL

i
Swddus 5

i

@ ColumnMName | Duts Type|§ Nufable [Dats Dewont |§ COLUMNID @ Prmary ey B COMMENTS
ARTIST_ID {BER No nul) 1 1 foll)
COMPACT_DISC_ID NUMBER No {nuy 2 2 frel)

| 0|
TABLE INVENTORY ARTIST_CDSELecal - bventary Editing

Figura 2-4 Oracle SQL Developer con el esquema INVENTARIO expandido.

El DBMS Oracle tiene una arquitectura diferente. Cada instancia del software de DBMS ad-
ministra s6lo una base de datos. Sin embargo, el usuario de cada base de datos obtiene un esquema
distinto para almacenar una base de datos objetos que pertenece a ese usuario. Por lo tanto, en
Oracle un esquema es muy similar a lo que SQL Server llama una base de datos. Oracle tiene una
herramienta llamada SQL Developer que es funcionalmente similar al SQL Server Management
Studio. La figura 2-4 muestra SQL Developer con el esquema INVENTARIO expandido hacia
abajo de las columnas en la tabla CDS_ARTISTA. Oracle fue el primer RDBMS comercialmente
disponible, y como fue creado mucho antes de que existiera un estdndar SQL, no debe ser sorpresa
que sea arquitectéonicamente diferente.

En el capitulo 1 se expuso que una base de datos es una coleccién de datos organizados en un
formato estructurado que se define por los metadatos que describen esa estructura. En ambos, SQL
Server y Oracle, se puede observar cémo se aplica esta definicion. Los dos sistemas (y cualquier
RDBMS con el que trabaje) retinen los datos en un formato estructurado y definen esos datos a
través del uso de esquemas, los cuales contienen los metadatos. Esta definicién también se puede
aplicar al estdndar SQL y a la construccién de su entorno y a los catdlogos. Los datos de SQL se
almacenan en un formato organizado dentro de tablas base. Estas tablas base figuran dentro de
un esquema, que define esas tablas, y de este modo define los datos. Asi que aunque el estandar
SQL:2006 no define en realidad el término “base de datos”, no obstante apoya su concepto, al
igual que los productos RDBMS que aplican SQL.

40 Fundamentos de SQL

Nombrado de objetos en un entorno SQL

Hasta este punto en el libro se ha proporcionado gran cantidad de informacién conceptual y ante-
cedentes. La razon de esto es que quiero que haya un fundamento basico en SQL antes de empezar
a escribir instrucciones SQL. Creo que con esta informacion estard en mejores condiciones de
comprender la 16gica detrds del cdigo SQL que creard y la razén para crearlo, y no cabe duda de
que estd mds que listo para comenzar a escribir esas instrucciones.

Sin embargo, antes de empezar a entrar de lleno a SQL, hay un tema mds que se necesita cu-
brir brevemente: los identificadores de objeto. Un identificador es un nombre dado a un objeto de
SQL. El nombre puede ser de hasta (pero no incluir) 128 caracteres, y debe seguir los convenios
definidos. Un identificador se puede asignar a cualquier objeto que se crea con instrucciones SQL,
tales como dominios, tablas, columnas, vistas o esquemas. El estdndar SQL:2006 define dos tipos
de identificadores: identificadores regulares e identificadores delimitados.

Los identificadores regulares son bastante restrictivos y deben seguir convenios especificos:

Los nombres no se distinguen entre maytsculas y mindsculas. Por ejemplo, Nombres_Artista
es lo mismo que NOMBRES_ARTISTA y nombres_artista.

Sélo se permiten letras, digitos y guiones. Por ejemplo, se pueden crear identificadores tales
como Primer_Nombre, lerNombre o PRIMER_NOMBRE. Observe que el guién bajo es el
Unico cardcter valido que se usa como separador entre palabras. Los espacios no son acepta-
bles ni tampoco guiones (los guiones se interpretan como operaciones de sustraccion).

No se puede utilizar palabras clave reservadas en SQL.

NOTA

Una palabra clave es una palabra que es parte del léxico de SQL. Hay dos tipos de palabras
clave en SQL: reservadas y no reservadas. Como el nombre sugiere, las palabras clave reser-
vadas no se pueden usar para cualquier propésito, ya que estén destinadas a utilizarse dentro
de una instruccién SQL. Las palabras no reservadas no tienen dichas restricciones. Para un
listado completo de palabras clave de SQL, vea el apéndice B.

SQL no distingue mayusculas y minudsculas, por lo que respecta a los identificadores regulares.
Todos los nombres se cambian a mayusculas cuando se almacenan en SQL, que es la razén por la
que lerNombre y IERNOMBRE se leen como valores idénticos. Como ya se menciond, el caso de
falta de distincidn a utilizar mayusculas y minudsculas es el comportamiento predefinido en la ma-
yoria de los RDBMS, y mientras que la predefinicion se puede modificar en algunos productos, se
recomienda que no se cambie, ya que no seria coherente con el estindar SQL y daria lugar a proble-
mas de compatibilidad en caso de que utilice otros productos para acceder a sus datos.

Los identificadores delimitados no son tan restrictivos como los identificadores regulares,
pero aun deben seguir convenios especificos:

El identificador debe estar incluido en un conjunto de comillas dobles, como el identificador
“NombresArtista”.

Las comillas no se almacenan en la base de datos, pero todos los demds caracteres se almace-
nan como aparecen en la instruccién SQL.

Capitulo 2: Trabajo con el entorno SQL 41

Los nombres son sensibles a maytsculas y mintdsculas. Por ejemplo, “Nombres_Artista” no es
lo mismo que “nombres_artista” o “NOMBRES_ARTISTA”, pero “NOMBRES_ARTISTA”
es 1o mismo que NOMBRES_ARTISTA y Nombres_Artista (porque los identificadores regu-
lares se cambian a mayusculas).

La mayoria de los caracteres estdn permitidos, incluyendo espacios.

Se pueden utilizar palabras clave reservadas a SQL.

Cuando se decide cdmo nombrar los objetos SQL, hay una serie de sistemas que se pueden
seguir. La primera eleccién que tendra que hacer es si desea utilizar los identificadores regulares
o delimitados. También decidira otras cuestiones, tales como utilizar maytsculas o mindsculas, y
el uso del guidén bajo, y si los identificadores estardn en singular o plural. Por ejemplo, se puede
nombrar una tabla como TitulosDiscoCompacto, titulos_disco_compacto, TITULOS_DISCO_
COMPACTO, “Titulos Disco Compacto”, o alguna otra forma de ese nombre. La parte importante
para recordar es que debe elegir un nombre convencional y adherirse a €l a lo largo de la codifica-
cion para una base de datos en particular. También debe tomar en cuenta el RDBMS que utilizara.
Versiones anteriores del estindar SQL s6lo permitian letras mayusculas en los nombres de objetos
(como consecuencia de los sistemas centrales que usaban una coleccion de caracteres llamados
EBCDIC, que en los primeros dias s6lo contenian letras maytsculas). Como resultado, muchos de
los productos RDBMS mads antiguos, incluyendo Oracle y DB2, automaticamente convertian los
nombres de minudsculas a mayusculas. Por lo tanto, se podia crear una tabla llamada TitulosDis-
coCompacto, pero aparecia en el catdlogo como TITULOSDISCOCOMPACTO, que obviamente
no es un nombre facil de usar. Por cierto, MySQL sigue la sensibilidad a mayusculas y mintsculas
del sistema operativo, asi que en Windows no es sensible a mayusculas y minudsculas, pero Linux y
Unix son sensibles a mayusculas y mindsculas. Y finalmente, tenga en cuenta la extensién maxima
del identificador en el producto RDBMS que utilice. Mientras que SQL Server permite 128 carac-
teres para los nombres, Oracle admite hasta 30 caracteres (8 para los nombres de base de datos), y
muchos otros tienen una extensién maxima que es inferior a 128.

NOTA

Para los ejemplos y proyectos en este libro, se usan identificadores regulares con letras ma-
yUsculas y los guiones bajos se utilizan para separar las palabras (por ejemplo, TITULOS_DIS-
CO_COMPACTO). Se hace esto porque dichos identificadores son compatibles con (y forman
nombres de objeto féciles de utilizar) todos los productos RDBMS. Sin embargo, reconozco
que a los usuarios de SQL Server les agrada en particular utilizar identificadores con mays-
culas y mindsculas.

Nombres calificados

Todos los identificadores de esquema de objeto se califican por la forma légica en la que encajan
en la estructura jerarquica del entorno SQL. Un nombre completo calificado incluye el nombre del
catdlogo, el nombre del esquema y el nombre del objeto de esquema, cada uno separado por un
punto. Por ejemplo, suponga que tiene una tabla llamada CD_ARTISTAS. La tabla estd en el es-
quema DISCOS_COMPACTOS, que estd en el catilogo MUSICA. El nombre completo calificado
para esa tabla seria MUSICA.DISCOS_COMPACTOS.CD_ARTISTAS.

La forma en que se desempefian esos convenios de nomenclatura en diferentes productos
RDBMS depende de cémo ese producto aplica la estructura del entorno SQL. Por ejemplo, un

42

Fundamentos de SQL

nombre completo calificado en SQL Server se basa en el nombre del servidor, nombre de la base
de datos, nombre del propietario y nombre del objeto. En este caso, una tabla llamada ARTISTAS
puede tener el nombre completo calificado de SERVIDOR01.BD_MUSICA.PBD.ARTISTAS,
donde SERVIDORO1 es el nombre del servidor, BD_MUSICA es el nombre de la base de datos, y
PBD (que se refiere al propietario de la base de datos) es el nombre del propietario del objeto. Para
determinar cémo se manejan los nombres completos calificados para un RDBMS en particular,
verifique la documentacién del producto.

Creacién de un esquema

Ahora que tiene una comprensién fundamental de cémo se utilizan los identificadores para nom-
brar los objetos SQL, esta listo para empezar a escribir instrucciones SQL. Se empezard con la
instruccién CREATE SCHEMA, ya que los esquemas estdn en la parte superior de la jerarquia de
SQL, en términos de los objetos que el estdndar SQL:2006 le permite crear. (Recuerde, el estandar
SQL no proporciona ninguna clase de instruccién como CREATE CATALOG o CREATE DATA-
BASE. Se deja a los proveedores de RDBMS determinar como y si se aplica a estos objetos.) Y
como ya se menciond, Oracle crea automaticamente un esquema para cada usuario; asi, mientras
tiene una instrucciéon CREATE SCHEMA, es s6lo por compatibilidad con el estaindar SQL. En la
siguiente seccién, “Creacion de una base de datos”, saldré del modo SQL y analizaré la creacion
de base de datos, ya que la mayoria de los productos RDBMS respaldan la creacién de objetos de
base de datos, y es probable que encuentre que desea crear una base de datos con el fin de probar
los ejemplos y proyectos en este libro.

El lugar para empezar con cualquier tipo de instruccion SQL es la sintaxis que define las
instrucciones. La siguiente sintaxis muestra los componentes basicos de la instruccién CREATE
SCHEMA:

CREATE SCHEMA <nombre de la clausula>
[<conjunto de caracteres o ruta> |
[<elementos del esquema> |

NOTA

Los corchetes angulados contienen informacién que sirve como un marcador de posicién
para un valor o una cléusula en relacién con esa informacién. Por ejemplo, <nombre de la
cléusula> es el marcador de posicién para palabras clave y valores relacionados con el nom-
bramiento del esquema. Por otro lado, las llaves significan que la cléusula es opcional. No es
necesario especificar un conjunto de caracteres, ruta o el elemento del esquema.

Echemos un vistazo a la sintaxis de la instruccion CREATE SCHEMA pieza por pieza. Las
palabras clave CREATE SCHEMA activan la aplicacién de SQL con el tipo de instruccion que se
ejecuta. Esto continda con el marcador de posiciéon <nombre de la clausula>, el cual puede incluir
un nombre para el esquema, un identificador de autorizacién (precedido por la palabra clave AU-
THORIZATION), o ambos. Como resultado, el nombre de la cldusula puede tener cualquiera de
las siguientes formas:

<nombre del esquema>
AUTHORIZATION <identificador de autorizacion>
<nombre del esquema> AUTHORIZATION <identificador de autorizacién>

Capitulo 2: Trabajo con el entorno SQL 43

El valor <identificador de autorizacidon> especifica quién es el propietario del esquema y sus
objetos. Si ninguno se especifica, el valor predetermina el del usuario actual. Si no se especifica el
valor <nombre del esquema>, se crea un nombre que se base en el identificador de autorizacién.

La siguiente cldusula, <conjunto de caracteres o ruta>, le permite definir un conjunto de ca-
racteres predeterminados, una ruta predeterminada, o ambos. El nombre del conjunto de caracteres
se precede por las palabras clave DEFAULT CHARACTER SET y especifican un conjunto de ca-
racteres predeterminados para el nuevo esquema. La ruta especifica una orden para buscar rutinas
invocadas por SQL (procedimientos y funciones) que se crean como parte de la instruccion CREA-
TE SCHEMA. (Las rutinas invocadas por SQL se analizan en el capitulo 13.)

La cldusula <elementos del esquema> se compone de varios tipos de instrucciones de SQL
que se pueden incluir en la instruccion CREATE SCHEMA. En su mayor parte, esta cldusula per-
mite crear objetos de esquema tales como tablas, vistas, dominios y activadores. La ventaja de esto
es que los objetos se afiaden correctamente al esquema cuando se crea, todo en un solo paso.

Ahora que ha visto la sintaxis para la instruccion CREATE SCHEMA, veamos un ejemplo. El
siguiente codigo crea un esquema llamado INVENTARIO. La instruccion también especifica un
nombre de identificador de autorizaciéon MNGR y un conjunto de caracteres llamado Latinol.

CREATE SCHEMA INVENTARIO AUTHORIZATION MNGR

DEFAULT CHARACTER SET Latinol

CREATE TABLE ARTISTAS

(ID ARTISTA INTEGER, NOMBRE ARTISTA CHARACTER (20));

Observe que el cédigo de ejemplo incluye la instruccién CREATE TABLE. Este es uno de los
elementos que se puede especificar como parte de la clausula <elementos del esquema>. Se pue-
den incluir tantas instrucciones como se quiera. Esta instruccion en particular crea tablas llamadas
ARTISTAS que contienen la columna de ID_ARTISTA y la columna NOMBRE_ARTISTA. (Se
analizard la instruccion CREATE TABLE con mayor detalle en el capitulo 3.)

Ademas de definir la instruccion CREATE SCHEMA, SQL:2006 también define la instruc-
cion DROP SCHEMA, como se muestra en la siguiente sintaxis:

DROP SCHEMA <nombre del esquema>
CASCADE | RESTRICT

La primera linea es bastante sencilla: el esquema nombrado serd eliminado del sistema. La
segunda linea tiene dos opciones: CASCADE y RESTRICT.

NOTA

El simbolo de barra vertical (|) se puede leer como “0”, lo que significa que se debe utilizar la
opcién CASCADE o la opcién RESTRICT, pero no ambas.

Si se especifica la opcion CASCADE, todos los objetos de esquema y los datos de SQL den-
tro de esos objetos se eliminan del sistema. Si se usa la opciéon RESTRICT, el esquema se elimina
s6lo si no existen objetos de esquema. Este método se utiliza como proteccién contra la elimina-
cion de cualquier objeto que no se desea borrar. Es una forma de comprobar que los objetos que se
eliminan son los que se desean borrar antes de que realmente se elimine el esquema.

44

Fundamentos de SQL

Ahora veamos un ejemplo de la instruccion DROP SCHEMA. El siguiente c6digo elimina el
esquema INVENTARIO:

DROP SCHEMA INVENTARIO CASCADE;

Observe que se utiliza la opcion CASCADE, lo que significa que todos los objetos de esque-
ma y los datos de SQL se eliminaran.

Creacién de una base de datos

A pesar del hecho de que el estdindar SQL no define qué es una base de datos, y mucho menos
proporciona una instruccién para crear cualquier tipo de base de datos objeto, hay una gran posibi-
lidad de que trabaje con un RDBMS que no sélo respalde la creacién de una base de datos objeto,
sino que también utilice a ese objeto como base para su estructura jerarquica en la gestion de datos
objetos. Por consiguiente, se puede encontrar que, con el fin de trabajar a través de los ejemplos y
proyectos de este libro, deseard crear una base de datos de prueba para tener un entorno en el cual
pueda crear, modificar o eliminar los datos objetos o los datos segin sea necesario, sin correr el
riesgo de la pérdida de las definiciones de datos o informacion de la base de datos actual. (Ideal-
mente, se trabaja con un RDBMS que estd limpio de instalaciones, sin ningin tipo de base de da-
tos existentes, excepto el sistema preinstalado y base de datos de prueba.)

Si ya ha trabajado con un RDBMS, puede ser que esté familiarizado con la forma en que los
objetos de base de datos estdn organizados dentro de un sistema. Por ejemplo, si echa un vistazo
de nuevo a la figura 2-3, puede ver que SQL Server organiza las bases de datos del servidor en
una estructura légica debajo del nodo Bases de datos. Cada nodo Bases de datos (por ejemplo, IN-
VENTARIO) contiene nodos secundarios que representan los diferentes tipos de objetos asociados
con esa base de datos en particular. Como se puede ver, la base de datos INVENTARIO actual-
mente enumera ocho categorias de objetos: diagramas de base de datos, tablas, vistas, sinénimos,
programacion, agente de servicio, almacenamiento y seguridad. Y debajo de la tabla CDS_ARTIS-
TA, las categorias son columnas, claves, restricciones, desencadenadores, indices y estadisticas.
Para una definicién de cémo SQL Server define cada uno de esos tipos de objetos, tiene que exa-
minar la documentacién del producto, que debe hacer para cualquier RDBMS. Compare y contras-
te con las categorias de objetos de Oracle mostradas en la figura 2-4.

La mayoria de los productos que respaldan objetos de base de datos también apoyan el len-
guaje para crear esos objetos. Por ejemplo, Oracle, MySQL y SQL Server incluyen la instruccién
CREATE DATABASE en los lenguajes basados en SQL. Sin embargo, qué pardmetros se pueden
definir cuando se construyen esas instrucciones, qué permisos se necesitan con el fin de ejecutar
esas instrucciones y como un sistema implementa los objetos de base de datos varia de un pro-
ducto a otro. Afortunadamente, la mayoria de los productos utilizan la misma sintaxis bdsica para
crear una base de datos objeto:

CREATE DATABASE <nombre de la base de datos>
<parametros adicionales>

Antes de crear una base de datos en cualquier sistema, asegtrese de leer primero la documen-
tacion del producto, y si es apropiado, consulte con el administrador de base de datos para tener la
certeza que es seguro agregar una base de datos objeto en el entorno de SQL. Una vez que se crea
la base de datos, se pueden crear esquemas, tablas, vistas y otros objetos dentro de esa base de da-
tos, y desde alli llenar las tablas con los datos necesarios.

45

Capitulo 2: Trabajo con el entorno SQL

GESTEPRL o creacidn de una base

de datos y un esquema

En “Pruebe esto 1-2: Conexién a una base de datos” se estableci6 la forma de acceder a un
RDBMS. En ese proyecto se usé una aplicacién de usuario que permite invocar directamente ins-
trucciones SQL. Se utilizara esa aplicacion para este proyecto (y el resto de los proyectos en el li-
bro) para crear una base de datos y un esquema, o cualquiera de esas funciones que el sistema res-
palda. Una vez que se crea la base de datos, se trabajard dentro del contexto de esa base de datos
para futuros ejemplos y proyectos. Si el sistema respalda la creacion de esquemas pero no la crea-
cion de base de datos, debe trabajar dentro del contexto de ese esquema para los otros proyectos.

Paso a paso

Abra la aplicacion de cliente que le permita invocar directamente las instrucciones SQL. Si es
aplicable, consulte con el administrador de base de datos para asegurarse de que estd entrando
con las autorizaciones necesarias para crear una base de datos y un esquema. Puede que necesi-
te permisos especiales para crear esos objetos. También verifique si hay algunos pardmetros que
debe incluir cuando se crea la base de datos (por ejemplo, el tamafio del archivo de registro),
restricciones en el nombre que utilizard o restricciones de cualquier otro tipo. Asegurese de
comprobar la documentacién del producto antes de seguir adelante.

Cree una base de datos llamada INVENTARIO (si el RDBMS respalda esta funcionalidad, en
Oracle se crea un nombre de usuario llamado INVENTARIO, que implicitamente crea un es-
quema con el mismo nombre). Dependiendo del producto que se use, se ejecutard una instruc-
cion que sea similar a la siguiente:

CREATE DATABASE INVENTARIO;

Si se requiere incluir pardmetros adicionales en la instruccidn, lo mds probable es que se inclu-
yan en las lineas siguientes a la cldusula CREATE DATABASE. Una vez que se ejecute la ins-
truccién, debe recibir algin tipo de mensaje que indique que la instruccién se ejecutd con éxito.

Conexion a la nueva base de datos. El método para hacer esto varia de un producto a otro. En
Oracle se puede conectar a la base de datos introduciendo la informacién de inicio de sesién en
cualquiera de las muchas herramientas tales como SQL*Plus, iSQL*Plus y SQL Developer. En
SQL Server, es simplemente cuestion de seleccionar la base de datos apropiada de la lista de
conexion desplegable de las bases de datos en la barra de herramientas del SQL Server Mana-
gement Studio, o se puede ejecutar la siguiente instruccion (MySQL utiliza la misma sintaxis):

USE Inventario

Cree un esquema llamado CD_INVENTARIO (si el RDBMS respalda esta funcionalidad). Cree
un esquema bajo su actual identificador de autorizacién. No incluya ninguno de los elementos
del esquema en este momento. En la mayoria de los casos, se ejecutard una instruccién que sea
similar a la siguiente:

CREATE SCHEMA CD INVENTARIO; (continda)

46 Fundamentos de SQL

Resumen de Pruebe esto

Los ejercicios paso a paso de este tipo pueden ser complicados porque dependen de la forma en
que los productos RDBMS implementan diversas caracteristicas. Como resultado, debe confiar en
gran medida en la documentacién del producto (que debe utilizar de todos modos) y, en su caso, a
los administradores de base de datos. Sin embargo, ahora que consigui6 pasar por este ejercicio y
se cred la base de datos necesaria y/o el esquema del entorno, debe estar listo para continuar con
los ejemplos y proyectos del resto del libro. Ya que se han sentado las bases, estara listo para crear,
alterar, suprimir los objetos de datos, e insertar, modificar y borrar los datos almacenados en esos
objetos.

Y Autoexamen Capitulo 2

1
2

(Cudles son las diferencias entre un agente SQL y una implementacién de SQL?

(Qué componente del entorno SQL representa a un usuario o rol que concede privilegios espe-
cificos para acceder a los objetos y datos?

A Catélogo

B Identificador de autorizacién
C Moddulo de cliente SQL

D Agente SQL

3. Un(a) es una coleccién de esquemas que forman un nombre dentro del entorno
SQL.

4. ;Qué es un esquema?

b

(Qué instruccion se utiliza para agregar un esquema en el entorno SQL?
A ADD SCHEMA

B INSERT SCHEMA

C CREATE SCHEMA

6. ;Cuil es el nombre del esquema que contiene las definiciones para los objetos de esquema en
un catdalogo?

7. ;Cuiles son los 11 tipos de objetos de esquema que pueden estar contenidos en un esquema?

8. (Qué es una vista?

Capitulo 2: Trabajo con el entorno SQL 47

9. ;Cudles objetos de esquema proporcionan la unidad bésica de gestién de datos en el entorno
SQL?

A Vistas

B Dominios

C Tablas base

D Conjunto de caracteres
10. ;Cémo define el estandar SQL:2006 a una base de datos?
11. Un(a) es el nombre dado a un objeto SQL.

12. ;Cémo se distingue un identificador regular de un identificador delimitado en una instruccién
SQL?

13. ;Qué tipo de identificador permite que se utilicen espacios como parte del nombre de un objeto?

14. El entorno SQL incluye un catdlogo llamado INVENTARIO. En ese catdlogo estd el esquema
Ilamado DISCOS_COMPACTOS, y en ese esquema se encuentra una tabla denominada AR-
TISTAS. ;Cudl es el nombre cualificado de esa tabla?

15. ;Cudles son las tres formas que puede tomar el componente <cldusula de nombre> de una ins-
truccion CREATE SCHEMA?

16. ;Cuiles son las diferencias entre la opcion CASCADE y la opciéon RESTRICT en la instruc-
cién DROP SCHEMA?

17. Dentro de la jerarquia del entorno SQL, ;c6mo esta relacionado un dominio con un catélogo?

18. ;Qué tipo de identificador permite utilizar una palabra clave reservada?

Capitulo 3

Creacion y modificacion
de tablas

50

Fundamentos de SQL

Habilidades y conceptos clave

Creacion de tablas en SQL

Especificacion de los tipos de datos en una columna

Creacion de tipos definidos por el usuario

Especificacion de los valores predeterminados en una columna
Modificacién de tablas en SQL

Eliminacion de tablas en SQL

En el entorno SQL, las tablas son la unidad basica de gestién de datos. La mayoria de la pro-
gramacion que se hace en SQL se relaciona directa o indirectamente con esas tablas. Como
resultado, antes de insertar la informacién en la base de datos o modificar esa informacion, las
tablas apropiadas deben haberse creado o debe crearlas. El estdndar SQL:2006 proporciona tres
instrucciones que permiten definir, cambiar o eliminar las definiciones de las tablas en el entorno
SQL. Se puede utilizar la instruccion CREATE TABLE para afiadir una tabla, la instruccién AL-
TER TABLE para modificar esa definicion, o la instrucciéon DROP TABLE para eliminar la tabla
y sus datos de la base de datos. De esas tres instrucciones, la instruccion CREATE TABLE tiene la
sintaxis mds compleja. No sdlo es esto por los distintos tipos de tablas respaldadas por SQL, sino
también porque la definicion de la tabla puede incluir muchos elementos. Sin embargo, a pesar de
esas complejidades, la creacidon de una tabla es un proceso bastante sencillo, una vez que se com-
prende la sintaxis bdsica.

Creacién de tablas en SQL

Como puede que recuerde del capitulo 2, SQL respalda tres tipos de tablas: tablas base, tablas de-
rivadas y tablas vistas. La mayoria de las tablas base son objetos de esquema que tienen los datos
de SQL. Las tablas derivadas son los resultados que se observan cuando se solicitan (consultan)
datos de una base de datos. Las tablas vistas son otro nombre para las vistas, que se analizardn en
el capitulo 5. Se puede pensar en las tablas vistas como un tipo de nombre derivado de una tabla,
con una definicién de la vista almacenado en el esquema.

En este capitulo se trabajard con tablas base. De hecho, la mayoria de lo que estard trabajando
directamente a lo largo de este libro (como también a lo largo de su carrera como programador)
son tablas base; sin embargo, no todas las tablas base son lo mismo. Algunas son persistentes (per-
manentes) y otras son temporales. Algunas estdn en objetos de esquema y otras estdn contenidas
en modulos. Todos los médulos de tablas base son también tablas temporales. SQL respalda cuatro
tipos de tablas base:

Tablas base persistentes Un objeto de esquema nombrado definido por la definicién de una
tabla en la instruccion CREATE TABLE. Las tablas base persistentes tienen los datos de SQL

Capitulo 3: Creacién y modificacién de tablas 31

que se almacenan en la base de datos. Este es el tipo mds comtn de tabla base y es a menudo a
lo que se refiere la gente cuando menciona tablas base o tablas. Una tabla base persistente exis-
te desde que la definicion de tabla existe, y se puede llamar desde cualquier sesién de SQL.

Tablas temporales globales Un objeto de esquema nombrado definido por una definicién de
tabla en la instrucciéon CREATE GLOBAL TEMPORARY TABLE. Aunque la definicién

de la tabla es parte del esquema, la tabla actual existe sélo cuando se hace referencia dentro
del contexto de la sesién SQL en la cual se cred. Cuando la sesién termina, la tabla ya no exis-
te. No se puede acceder a una tabla temporal global creada en una sesion desde otra sesion de
SQL. Los contenidos son distintos en cada sesion de SQL.

Tablas temporales locales creadas Un objeto de esquema nombrado definido por una defi-
nicién de tabla en la instruccion CREATE LOCAL TEMPORARY TABLE. Al igual que una
tabla temporal global, sélo se puede hacer referencia a una tabla temporal local creada dentro
del contexto de la sesion de SQL en la cual se cred, y no se puede acceder desde otra sesion
de SQL. Sin embargo, se puede acceder a una tabla global desde cualquier lugar dentro de una
sesion asociada de SQL, mientras que en una tabla temporal local sélo se podrd acceder dentro
del médulo asociado. Los contenidos son distintos dentro de ese médulo.

Tablas temporales locales declaradas Una tabla declarada como parte de un procedimiento
en un modulo. La definicién de la tabla no se incluye en el esquema y no existe hasta que ese
procedimiento se ejecuta. Al igual que otras tablas temporales, s6lo se hace referencia a una
tabla temporal local declarada dentro del contexto de la sesion SQL en la cual se creo.

NOTA

Una sesién SQL se refiere a la conexién entre un usuario y un agente SQL. Durante esta co-
nexién, una secuencia de instrucciones SQL consecutivas se invocan por ese usuario y luego se
ejecutan. Un médulo es un objeto que contiene instrucciones SQL, rutas o procedimientos. Los
médulos se analizarén en el capitulo 13y en el capitulo 17.

Como puede ver, se puede utilizar una forma de la instruccion CREATE TABLE para crear
todos los tipos de tablas, excepto las tablas temporales locales declaradas. A lo largo del resto del
capitulo, se analizardn en primer lugar las tablas temporales locales persistentes, aunque se tocara
el tema de las tablas temporales en los capitulos subsecuentes. Mientras tanto, veamos la sintaxis
en la instruccion CREATE TABLE:

CREATE [{GLOBAL | LOCAL} TEMPORARY] TABLE <nombre de la tablas
(<elemento de la tabla> [{, <elemento de la tabla> }...])
[ON COMMIT { PRESERVE | DELETE } ROWS]

NOTA

Las llaves se usan para agrupar elementos. Por ejemplo, en la primera linea de la sintaxis, las
palabras clave GLOBAL | LOCAL se agrupan juntas. Los corchetes indican que primero debe
decidir cémo manejar los contenidos dentro de los corchetes y luego determinar cémo encajan
en la cléusula. En la primera linea, debe utilizar ya sea GLOBAL o LOCAL junto con TEMPO-
RARY. Sin embargo, toda la cldusula es opcional. Los tres puntos (en la segunda linea) indican
que puede repetir la cléusula tantas veces como sea necesario. En este caso, puede afiadir
tantas cldusulas <elemento de la tabla> como la definicién requiera.

52

Fundamentos de SQL

La sintaxis que se muestra proporciona sélo los fundamentos de la instruccion CREATE
TABLE, que es en realidad mucho mas compleja. (La sintaxis y sus explicaciones toman alrededor
de 38 pdginas del estandar SQL:2006.) Aun asi, la sintaxis proporcionada aqui es un fundamento
suficiente para crear la mayoria de las tablas que es probable que utilice.

En la primera linea de la sintaxis se designa si la tabla es temporal y se proporciona un nom-
bre a la tabla; por lo tanto, tiene tres opciones:

CREATE TABLE <nombre de la tabla>
CREATE GLOBAL TEMPORARY TABLE <nombre de la tabla>
CREATE LOCAL TEMPORARY TABLE <nombre de la tabla>

Dependiendo del RDBMS en que trabaje, puede que tenga que calificar el nombre de la tabla in-
cluyendo un nombre de esquema, identificador autorizado, o el nombre de la base de datos (por
ejemplo, INVENTARIO.ARTISTAS).

NOTA

Hay una serie de variaciones especificas en la aplicacién con respecto a las tablas temporales
que vale la pena mencionar. Oracle (desde 11g) no tiene una opcién LOCAL para crear una
tabla temporal; los datos en una tabla temporal se privan de la sesién expresada. IBM DB2
UDB desde 9.1 utiliza el comando, DECLARE GLOBAL TEMPORARY TABLE, para la creacién
de una tabla temporal global; no parece haber ninguna designacién para crear/declarar
una tabla temporal local. En SQL Server (desde 2008), las tablas temporales se crean con el
comando tipico CREATE TABLE, pero los nombres de las tablas temporales locales llevan un
prefijo con un signo numérico Unico (#nombre_tabla), y los nombres de las tablas temporales
globales llevan un prefijo con un signo numérico doble (##nombre_tabla).

La segunda linea de la sintaxis permite especificar las partes que componen la tabla, tales
como columnas. (Se retomard esto en un momento.) La tercera linea de la sintaxis aplica sélo si se
crea una tabla temporal. La cldusula permite especificar si la tabla se debe vaciar o no cuando la
instruccién COMMIT se ejecuta. La instruccion COMMIT se usa en una transaccion al hacer cam-
bios en la base de datos. Se analizaran las transacciones en el capitulo 16.

Se puede pensar de las cldusulas <elemento de la tabla> como el punto central de la instruc-
cion CREATE TABLE. Es aqui donde se definen las columnas, limitaciones y otros elementos
especificos de la tabla que se crea. Se pueden definir una o mas cldusulas <elemento de la tabla>.
Si se define mas de una, se deben separar por comas. De los elementos que puede crear, nos cen-
traremos principalmente en las columnas (en este capitulo) y las restricciones (en el capitulo 4).
Echemos un vistazo mds de cerca a la sintaxis que se utiliza para definir una columna:

<nombre de columna> { <tipo de datos> | <dominio> }
[<cléausula predeterminada>] [<restriccidén de columna>] [COLLATE
<nombre de cotejo>]

En la primera linea de la sintaxis debe proporcionar el nombre de la columna y declarar el tipo
de datos o el dominio definido por el usuario. Se analizaran los tipos de datos en la seccién “Espe-
cificacién de los tipos de datos en una columna”, mds adelante en este capitulo, y los dominios en
el capitulo 4.

Capitulo 3: Creacién y modificacién de tablas 53

En la segunda linea de la sintaxis se tiene la opcién de proporcionar un valor predeterminado
(ver la seccion “Especificacion de los valores predeterminados en una columna”), las restricciones
de la columna (ver el capitulo 4) o el cotejo (ver el capitulo 2).

En su forma mads basica, la instruccion CREATE TABLE podria verse como la siguiente ins-
truccion:

CREATE TABLE ARTISTAS
(ID _ARTISTA INTEGER,
NOMBRE ARTISTA CHARACTER (60));

En esta instruccion se cred una tabla llamada ARTISTAS, una columna llamada ID_ARTISTA y
una columna llamada NOMBRE_ARTISTA. La columna ID_ARTISTA se asocia con el tipo de
dato INTEGER, y la columna NOMBREA_ARTISTA se asocia con el tipo de datos CHARAC-
TER. Observe que las definiciones de las dos columnas se separan por una coma. También observe
que se colocaron las definiciones de las dos columnas en lineas separadas y se alinearon los tipos
de datos agregando espacios extra (todo esto es para mejorar la legibilidad, pero aparte de eso es
innecesario) (cuando se procesan las instrucciones SQL, los espacios extra y las lineas nuevas
simplemente se ignoran). Si se ejecuta la instrucciéon CREATE TABLE, la tabla serd similar a la
mostrada en la figura 3-1.

NOTA

Las filas de datos mostradas no estardn en una tabla hasta que se afiadan esos datos. Las filas
se muestran simplemente para darle una idea del tipo de tabla que esta instruccién podria
crear.

Antes de ir mas lejos con la discusién de la creacion de una tabla, echemos un vistazo mas de
cerca a los tipos de datos, que juegan un rol integral en la definicién de cualquier columna.

ID_ARTISTA: | NOMBRE_ARTISTA:
INTEGER CHARACTER(60)
10001 Jennifer Warnes
10002 Joni Mitchell
10003 William Ackerman
10004 Kitaro

10005 Bing Crosby
10006 Patsy Cline

10007 Jose Carreras
10008 Placido Domingo
10009 Luciano Pavarotti

Figura 3-1 Las columnas ID_ARTISTA y NOMBRE_ARTISTA de la tabla ARTISTAS.

34

Fundamentos de SQL

Pregunta al experto

P:

Cuando se analizaron los diversos tipos de tablas respaldadas por SQL, se hablé breve-
mente de las tablas temporales. ;Cual es el propdsito de las tablas temporales?

R: Las tablas temporales proporcionan una forma de almacenar resultados temporales dentro del

contexto de su sesién. Puede encontrar que necesita un lugar para almacenar los datos con el
fin de tomar un cierto curso de accién. Puede crear explicitamente una tabla base persistente,
almacenar datos en ella y después eliminar la tabla cuando termine, pero la tabla temporal
permite hacer lo mismo sin tener que destruir explicitamente la tabla cada vez que la use. En
otras palabras, una tabla temporal es una herramienta util cuando se requiere almacenar datos
por sélo un periodo especifico. Por ejemplo, suponga que tiene una aplicacién que permita
generar un informe trimestral basado en el inventario al final del periodo que se examina. La
aplicacién necesitara reunir la informacién en una coleccidn significativa para generar el re-
porte. Sin embargo, una vez que el reporte se genera, la aplicacién ya no necesita almacenar
esa informacioén; por lo tanto, la tabla se puede eliminar. Una de las ventajas de utilizar una
tabla temporal es que, debido a que es tnica en una sesion, la tabla no interactia con otros
usuarios o sesiones. Como resultado, el RDBMS no tiene que tomar medidas especiales para
bloquear los datos para evitar que otros usuarios apliquen actualizaciones conflictivas a las ta-
blas temporales, y evitar el bloqueo puede resultar en un mejor rendimiento.

Especificacién de los tipos de datos

en una columna

Cada vez que se define una columna en la instruccién CREATE TABLE, al menos debe proporcio-
nar un nombre para la columna y un tipo de dato asociado o un dominio. El tipo de datos o domi-

nio (que se analiza en el capitulo 4) limita los valores que pueden introducirse en esa columna. Por
ejemplo, algunos tipos de datos limitan los valores de una columna a niimeros, mientras otros tipos
de datos permiten que se introduzca cualquier cardcter. SQL respalda tres formas de tipos de datos:

Predefinido Los tipos de datos predefinidos son los mds comunes. Cada tipo de datos pre-
definido es un elemento nombrado (utilizando una palabra clave en SQL) que limita valores a
las restricciones definidas por esa base de datos. SQL incluye cinco formas de tipos de datos
predefinidos: cadena, numérico, fecha y hora, intervalo y booleano.

Construido Los tipos de datos construidos también se denominan elementos, pero tienden a
ser mds complejos que los tipos de datos predefinidos ya que pueden contener multiples valo-
res. Los tipos construidos permiten construir estructuras mas complicadas que la mayoria de
los tipos de datos tradicionales. Una discusion detallada de estos tipos estd fuera del alcance de
este libro, pero se mencionan para que sepa que existen.

Capitulo 3: Creacién y modificacién de tablas

35

Definido por el usuario Los tipos de datos definidos por el usuario se basan en los tipos
predefinidos o definiciones de atributos, y se agregan como objetos de esquema al entorno
SQL. SQL respalda dos formas de tipos de datos definidos por el usuario: distinto y estructu-
rado. El tipo distinto se basa en el tipo de dato predefinido, y el tipo estructurado se basa en las
definiciones de atributo. Se analizardn los tipos definidos por el usuario en la seccién “Crea-
cion de tipos definidos por el usuario”, mas adelante en este capitulo.

A pesar de que todas las implementaciones de SQL soportan los tipos de datos, qué tipos de
datos soportan varian de un producto a otro. Sin embargo, como un programador principiante de
SQL, encontrard que la mayoria de las aplicaciones respaldan la forma bdasica (mas tradicional) de
tipos de datos, que son los que se usaran en los ejemplos y ejercicios a lo largo del libro. Estos ti-
pos de datos mas tradicionales, algunas veces conocidos como tipos primitivos, son parte de los ti-
pos de datos predefinidos de SQL, que se describen en la seccién siguiente. No trate de memorizar
cada uno de estos tipos, pero comience a familiarizarse con las diferencias entre ellos. Encontrara
que, cuando empiece a utilizar tipos de datos especificos, se sentird mas comodo con éstos. Mien-
tras tanto, remitase a las secciones siguientes tanto como sea necesario siempre que trabaje con
definicion de tablas o datos SQL.

Tipos de datos de cadena

Los tipos de datos de cadena se componen por tipos que permiten valores basados en los conjuntos
de caracteres o en bits de datos. Los valores permitidos por los tipos en cadena pueden ser de lon-
gitud fija o variable, dependiendo del tipo especifico. SQL define cuatro formas de tipos de datos
en cadena:

Cadenas de caracteres Los valores permitidos se deben extraer de un conjunto de carac-
teres, ya sea de un conjunto predeterminado o de un conjunto definido en el momento que
la columna se define. Los tipos de datos en la cadena de caracteres incluyen CHARACTER,
CHARACTER VARYING y CHARACTER LARGE OBJECT.

Cadenas de caracter nacional Los valores permitidos son similares a los de las cadenas de
caracteres, salvo que el conjunto de caracteres asociados con estos tipos de datos se definen
por la aplicacién. Como resultado, cuando una cadena de caracter nacional se especifica, los
valores asociados con ese tipo de datos deben basarse en el conjunto de caracteres especificado
por el sistema de gestion de base de datos relacional (RDBMS) para las cadenas de caracter
nacional. Estas son ttiles para almacenar cadenas de caracteres en varios lenguajes en la mis-
ma base de datos. Los tipos de datos en la cadena de caracter nacional incluyen NATIONAL
CHARACTER, NATIONAL CHARACTER VARYING y NATIONAL CHARACTER LAR-
GE OBJECT.

Cadenas de bits Los valores permitidos se basan en bits de datos (digitos binarios), en lugar
de conjuntos de caracteres o cotejos, lo que significa que estos tipos de datos permiten sélo
valores de 0 o 1. SQL respalda dos formas de tipos de datos de cadena de bits: BIT y BIT VA-
RYING.

Cadenas binarias Los valores permitidos son similares a las cadenas de bits, excepto que
se basan en bytes (denominado como octefos en SQL:2006), en lugar de bits. Como resultado,
ningln conjunto de caracteres o cotejos se relacionan con ellas. (Un byte es igual a 8 bis, la

56 Fundamentos de SQL

razon por la cual el estandar SQL utiliza el término octeto.) SQL sélo respalda un tipo de datos

en una cadena binaria: BINARY LARGE OBJECT. Este tipo es ttil para almacenar datos bi-
narios puros tales como clips de sonido o iméagenes en la base de datos.

Ahora que tiene una descripcion general de las formas de tipos de datos en cadena, echemos
un vistazo mds de cerca a cada uno. La tabla 3-1 describe cada uno de estos tipos de datos y pro-
porciona un ejemplo de una definicién de columna que utilice el tipo especifico.

Tipo de dato | Descripcién/ejemplo

CHARACTER Especifica el nimero exacto de caracteres (que debe ser de un conjunto de caracteres)
que se almacenaré por cada valor. Por ejemplo, si se define el némero de caracteres
como 10, pero el valor contiene sélo seis caracteres, los cuatro caracteres restantes
serdn espacios. El tipo de dato puede abreviarse como CHAR.

Ejemplo: NOMBRE ARTISTA CHAR (60)

CHARACTER Especifica el mayor nimero de caracteres (que debe ser de un conjunto de caracteres)

VARYING que se incluyen en un valor. El nimero de caracteres almacenados es exactamente el
mismo nomero que el valor introducido; por lo tanto, no se agregan espacios al valor.
El tipo de dato puede abreviarse como CHAR VARYING o VARCHAR.

Ejemplo: NOMBRE ARTISTA VARCHAR (60)

CHARACTER Almacena grandes grupos de caracteres, hasta la cantidad especificada. El némero

LARGE OBJECT | de caracteres almacenados es exactamente el mismo nimero que el valor introducido;
por lo tanto, no se agregan espacios al valor. El tipo de dato puede abreviarse como
CLOB.

Ejemplo: BIO_ ARTISTA CLOB (200K)

NATIONAL Funciona igual que el tipo de dato CHARACTER, excepto que se basa en una

CHARACTER aplicacién definida de un conjunto de caracteres. El tipo de dato puede abreviarse
como NATIONAL CHAR y NCHAR.

Ejemplo: NOMBRE ARTISTA NCHAR (60)

NATIONAL Funciona igual jue el tipo de dato CHARACTER VARYING, excepto que se basa en

CHARACTER una aplicacién definida de un conjunto de caracteres. El tipo de dato puede abreviarse

VARYING como NATIONAL CHAR VARYING o NCHAR VARYING.

Ejemplo: NOMBRE ARTISTA NCHAR VARYING (60)

NATIONAL Funciona igual que el tipo de dato CHARACTER LARGE OBJECT, excepto que se

CHARACTER basa en una aplicacién definida de un conjunto de caracteres. El tipo de dato puede

LARGE OBJECT | abreviarse como NCHAR LARGE OBJECT o NCLOB.

Ejemplo: BIO_ ARTISTA NCLOB (200K)

BIT Especifica el nimero exacto de bits que pueden almacenarse para cada cardcter. Por
ejemplo, si se define el nimero de bits como 2, pero el valor contiene sélo 1 bit, el bit
restante serd un espacio. Si el nimero de bits no se especifica, 1 bit se almacena.
Ejemplo: EN_EXISTENCIA BIT

Tabla 3-1 Tipos de datos en cadena con ejemplos de definiciones de columna.

Capitulo 3: Creacién y modificacién de tablas 37

Tipo de dato | Descripcién/ejemplo

BIT VARYING Especifica el mayor nimero de bits que pueden incluirse en un valor. El nimero de bits
almacenados es exactamente el mismo ndmero que el valor inrroducido; por lo tanto,
no se agregan espacios al valor.
Ejemplo: EN_EXISTENCIA BIT VARYING (2)

BINARY LARGE | Almacena grandes grupos de bytes hasta la cantidad especificada. El ndmero de

OBJECT bytes almacenados es exactamente el mismo ndmero que el valor introducido; por lo
tanto, no se agregan espacios al valor. El tipo de dato también puede remitirse como
BLOB.
Ejemplo: IMG_ARTISTA BLOB (1M)

XML El lenguaje de marcado extensible (XML) es un lenguaje de marcado para fines

generales utilizado para describir documentos en un formato que es conveniente para
la visualizacién de pdginas web y para intercambiar datos entre diferentes partes.
Las especificaciones para almacenar datos XML en bases de datos SQL se afiaden al
esténdar SQL en SQL:2003 y se abordan en el capitulo 18.
Ejemplo: BIO_ARTISTA

XML{DOCUMENT(UNTYPED))

Tabla 3-1 Tipos de datos en cadena con un ejemplo de definiciones de columna (continuacién).

Tipos de datos numéricos

Como probablemente podra suponer por el nombre, los valores especificados por los tipos de datos
numéricos son nimeros. Todos los tipos de datos numéricos tienen una precision, y algunos tienen
una escala. La precision se refiere al nimero de digitos (dentro de un valor numérico especifico)
que se pueden almacenar. La escala se refiere al nimero de digitos en la parte fraccional de ese
valor (los digitos a la derecha del punto decimal). Por ejemplo, el nimero 435.27 tiene una pre-
cisién de 5 y una escala de 2. La escala no puede ser un nimero negativo o ser mas larga que la
precision. Una escala de 0 indica que el nimero es un nimero entero y no contiene ningtin compo-
nente fraccional. SQL define dos formas de tipos de datos numéricos:

Numéricos exactos Los valores permitidos tienen precision y escala, que, para algunos tipos
de datos numéricos, se definen por la implementacién. Los tipos de datos numéricos exactos
incluyen NUMERIC, DECIMAL, INTEGER y SMALLINT.

Numéricos aproximados Los valores permitidos tienen precision pero no escala. Como re-
sultado, el punto decimal puede flotar. Un nimero de punto flotante es aquel que contiene un

punto decimal, pero el punto decimal se puede localizar en cualquier lugar dentro del ndimero,
por lo que se dice que un numérico aproximado no tiene escala. Los tipos de datos numéricos
aproximados incluyen REAL, DOUBLE PRECISION y FLOAT.

La tabla 3-2 describe cada uno de los tipos de datos numéricos y proporciona un ejemplo de
una definicién de columna que utiliza un tipo especifico.

58 Fundamentos de SQL

Tipo de dato | Descripcién/ejemplo

NUMERIC Especifica la precisién y la escala de un valor numérico. Se puede especificar sélo la

precisién y utilizar la escala definida (predeterminada) por r; aplicacién, o se puede
especificar la precisién y la escala. Si no se especifica ni la precisién ni la escala, la
aplicacién proporcionaré los valores predeterminados para amboas.

Ejemplo: TASA ARTISTAS NUMERIC(5S,2)

DECIMAL Especifica valores similares al del tipo de datos NUMERIC. Sin embargo, si la precisién
definida por la aplicacién es superior a la precisién especificada, los valores con la
precisién superior se aceptardn, pero la escala siempre seré la que se especifique.

Ejemplo: REGALIAS_ARTISTAS DECIMAL (5, 2)

INTEGER Especifica un valor con una precisién definida por la aplicacién y una escala de 0, lo
que significa que sélo se aceptan enteros y no se especifica ningin parémetro con este
tipo de datos. El tipo de dato puede abreviarse como INT.

Ejemplo: ID ARTISTA INT

SMALLINT Especifica un valor similar al del tipo de datos INTEGER. Sin embargo, la precisién
definida por la aplicacién debe ser menor que la precisién de INTEGER.
Ejemplo: ID_ARTISTA SMALLINT

FLOAT Especifica la precisién de un valor numérico, pero no la escala.
Ejemplo: REGALTAS ARTISTAS FLOAT (6)

REAL Especifica un valor con una precisién definida por la aplicacién, pero sin una escala.
La precisién debe ser menor a la precisién definida por un tipo de datos DOUBLE
PRECISION.
Ejemplo: REGALIAS ARTISTAS REAL

DOUBLE Especifica un valor con una precisién definida por la aplicacién, pero sin una escala.

PRECISION La precisién debe ser surerior a la precisién definida por el tipo de datos REAL. La
implicacién es que el valor de la precisién debe ser doble que en el tipo de datos REAL,

pero cada implementacién define doble de diferentes maneras.
Ejemplo: REGALIAS ARTISTAS DOUBLE PRECISION

Tabla 3-2 Tipos de datos numéricos con un ejemplo de definiciones de columna.

Tipos de datos de fecha y hora

Como su nombre lo indica, los tipos de datos de fecha y hora se refieren a las formas de segui-
miento de fechas y horas. SQL define tres formas de tipos de datos de fecha y hora (DATE, TIME
y TIMESTAMP) y las variaciones en estos tipos. Estas variaciones estadn relacionadas con el Tiem-
po Universal Coordinado (UTC), que solia llamarse el Tiempo Medio de Greenwich (GMT), y las
distintas zonas horarias. La tabla 3-3 describe cada uno de los tipos de datos de fecha y hora en

el estdndar SQL:2006 y proporciona un ejemplo de una definicién de columna que utiliza un tipo
especifico.

Capitulo 3: Creacién y modificacién de tablas 59

Tipo de dato

Descripcién/ejemplo

DATE

Especifica el afio, mes y dia del valor de una fecha. El afio tiene cuatro digitos y
respalda valores desde 0001 hasta 9999; el mes tiene dos digitos y respalda valores
desde 01 hasta 12, y el dia tiene dos digitos y respalda valores desde 01 hasta 31.
Ejemplo: FECHA CONTRATACION DATE

TIME

Especifica la hora, minuto y segundo del valor de una hora. La hora tiene dos digitos
y respalda valores desde 00 hasta 23; el minuto tiene dos digitos y respalda valores
desde 00 hasta 59, y el segundo tiene, al menos, dos digitos y respalda valores
desde 00 hasta 61.999 (para dar cabida al salto de segundos). El tipo de datos no
incluye digitos Fracciondci)s a menos que se especifiquen. Por ejemplo, TIME(3) daria
tres digitos fraccionales. El tipo de dato también se puede denominar como TIME
WITHOUT TIME ZONE.

Ejemplo: HORA_EVENTO TIME (2)

TIME WITH
TIME ZONE

Especifica la misma informacién que el tipo de datos TIME salvo que el valor también
incluye informacién especifica del UTC y las zonas horarias. Los valores agregados al
tipo de datos tienen un rango desde -11:59 a +12:00.

Ejemplo: HORA EVENTO TIME WITH TIME ZONE (2)

TIMESTAMP

Combina los valores de TIME y DATE. La Gnica diferencia es que con el tipo de datos
TIME, el nGmero predeterminado de digitos fraccionarios es O, pero con el tipo de
datos TIMESTAMP, el nimero predeterminado es 6. Se puede especificar un nimero
diferente de digitos fraccionarios incluyendo un parémetro, tal como TIMESTAMP(4).
El tipo de datos se puede también denominar como TIMESTAMP WITHOUT TIME
ZONE.

Ejemplo: FECHA_ COMPRA TIMESTAMP (3)

TIMESTAMP
WITH TIME
ZONE

Especifica la misma informacién que el tipo de datos TIMESTAMP, salvo que el valor
también incluye informacién especifica del UTC y las zonas horarias. Los valores
afiadidos al tipo de datos tienen un rango desde —11:59 a +12:00.

E]emp|o: FECHA COMPRA TIMESTAMP WITH TIME ZONE (2)

Tabla 3-3 Tipos de datos de fecha y hora con un ejemplo de definiciones de columna.

Encontrara variaciones de implementacién considerables para los tipos de datos de fecha
y hora, ya que en un principio las bases de datos no las tenian en absoluto. Esto parece extrafio
hasta que se da cuenta que se construyeron por informdticos que no sabian cuantas aplicaciones
comerciales se basan en fechas y horas. Conforme los usuarios de negocios solicitaron las capa-
cidades de fecha y hora, los proveedores comerciales de RDBMS de hoy en dia (mucho antes de
que hubiera un estandar SQL) se apresuraron a ofrecer las nuevas caracteristicas y, por lo tanto, se
implementaron en formas muy diferentes. Por ejemplo, el tipo de datos DATE de Oracle siempre
incluye un componente de hora, y SQL Server utiliza un tipo de datos TIMESTAMP para un fin
completamente diferente, con un tipo de datos llamado DATETIME que funciona como el tipo
de datos TIMESTAMP de SQL:2006. Por lo tanto, como siempre, consulte la documentacién del

proveedor.

60

Fundamentos de SQL

Tipo de datos de intervalo

El tipo de datos de intervalo estd estrechamente relacionado con los tipos de datos de fecha y hora.
El valor de un tipo de datos de intervalo representa la diferencia entre dos valores de fecha y hora.
SQL respalda dos tipos de intervalos:

Intervalos de afio-mes El tipo de datos de intervalo especifica intervalos entre afios, meses,
o ambos. Se pueden utilizar sélo los campos de ANO y MES en un intervalo de afio-mes.

Intervalos de dia-hora El tipo de datos de intervalo especifica intervalos entre cualquiera de
los siguientes valores: dias, horas, minutos o segundos. Se pueden utilizar s6lo los campos de
DAY, HOUR, MINUTE y SECOND en un intervalo de dia-tiempo.

No se puede mezclar un tipo de intervalo con los demds. Por ejemplo, no se puede definir un
tipo datos de intervalo que utilice el campo YEAR y el campo HOUR.

El tipo de datos de intervalo utiliza la palabra clave INTERVAL seguido por una cldusula de
<calificador de intervalo>. La cldusula es una serie de reglas complejas que describen cémo se
puede definir el tipo de datos de INTERVAL para expresar la participacion de los intervalos de
afios, meses, dias, horas, minutos o segundos. Ademas, el campo principal (la primera palabra) en
la clausula se puede definir con una precision (p). La precision es el niimero de digitos que se uti-
lizan en el campo principal. Si la precision no se especifica, la precision predeterminada es 2. Para
los intervalos de afio-mes, se puede especificar uno de los siguientes tipos de datos de intervalo:

INTERVAL YEAR

INTERVAL YEAR(p)

INTERVAL MONTH

INTERVAL MONTH(p)

INTERVAL YEAR TO MONTH

INTERVAL YEAR(p) TO MONTH

Hay muchas mds opciones para los intervalos dia-hora, ya que hay méds campos de donde
escoger. Por ejemplo, se pueden especificar cualesquiera de los siguientes tipos de intervalos utili-
zando el campo DAY como campo principal o independientemente del campo:

INTERVAL DAY

INTERVAL DAY (p)

INTERVAL DAY TO HOUR

INTERVAL DAY (p) TO HOUR

INTERVAL DAY TO MINUTE

INTERVAL DAY (p) TO MINUTE

INTERVAL DAY TO SECOND

INTERVAL DAY (p) TO SECOND

INTERVAL DAY TO SECOND(x)

INTERVAL DAY (p) TO SECOND(x)

Capitulo 3: Creacién y modificacién de tablas 61

Cuando el campo de rastreo (la dltima palabra) es SECOND, se puede especificar una preci-
sion adicional (x), que define el nimero de digitos después del punto decimal. Como se puede ob-
servar de estos ejemplos, hay muchos mas tipos de datos de intervalos de dia-hora que se pueden
definir. Sin embargo, tenga en cuenta que el campo principal debe tener siempre una unidad de
tiempo superior que el campo de rastreo. Por ejemplo, el campo YEAR es mayor que MONTH, y
HOUR es mayor que MINUTE.

Si fuera a utilizarse un tipo de datos de intervalo en una definicién de columna, se veria algo
como lo siguiente:

RANGO FECHA INTERVAL YEAR(4) TO MONTH

En este ejemplo, un valor en esa columna incluirfa cuatro digitos para el afio, un guién, y luego
dos digitos para el mes, tal como 1999-08. Si la precision no se especifica para el afio, el rango de
afio puede incluir s6lo dos digitos (00 hasta 99).

Tipo de datos booleanos

El tipo de datos booleano (a diferencia de los tipos de datos de intervalo) es muy sencillo y facil de
aplicar. El tipo de dato respalda una construccién de verdadero/falso que permite sélo tres valores:
verdadero, falso o desconocido. Un valor nulo se evalia como desconocido. (En SQL, un valor
nulo se utiliza para indicar que un valor no estd definido o no se conoce. Se analizaran los valores
nulos en el capitulo 4.)

Los valores en el tipo de datos booleano se pueden utilizar en consultas de SQL y expresiones
con fines de comparacidn. (Se analizardn las comparaciones en el capitulo 9.) Las comparaciones
en el tipo de datos booleano siguen una légica especifica:

Verdadero es mayor que falso.
Una comparacién con un valor desconocido (nulo) devolverd un resultado desconocido.

Un valor desconocido se puede asignar a una columna sélo si admite valores nulos.

Para utilizar el tipo de datos booleano, debe utilizar la palabra clave BOOLEAN sin parame-
tros, como se muestra en el siguiente ejemplo:

ARTISTAS CON_AGENTE BOOLEAN

La columna ARTISTAS_CON_AGENTE s6lo aceptara valores de verdadero, falso y desconocido.

NOTA

El tipo de datos booleano se basa en un tipo especifico de légica del ordenador conocido
como booleana (nombrado por el matemdtico del siglo xix George Boole), que evalta las
condiciones de verdadero o falso en una operacién o expresién determinada. Muchos len-
guajes de programacién respaldan la légica booleana mediante el uso de operadores légicos
como AND, OR y NOT, por ejemplo, “ARTICULO_A IS NOT FALSE” o “ARTICULO_A AND
ARTICULO_B OR ARTICULO_C IS TRUE”. En SQL, la légica booleana se aphca mediante el
uso de operadores de comparacién para equiparar valores dentro de varios tipos de datos.
Estos operadores se analizarén en el capitulo 9.

62 Fundamentos de SQL

Pregunta al experto

P: ¢ Como se pueden comparar los tipos de datos predefinidos en SQL con los tipos de datos
que se encuentran en otros lenguajes de programacion?

R: Ensu mayor parte, es poco probable que los tipos de datos de dos diferentes lenguajes sean
los mismos. Un conjunto de tipos de datos en un lenguaje pueden variar en estructura y se-
mantica de un conjunto de tipos de datos en otro lenguaje. Estas diferencias, a menudo llama-
das desajuste de impedancia, pueden conducir a la pérdida de informacién cuando una apli-
cacion toma datos de una base de datos de SQL. De hecho, a menudo es una buena idea saber
qué lenguaje se usard para las aplicaciones cuando se disefia la base de datos. En algunos
casos, el disefio de la base de datos puede afectar el lenguaje de aplicacién que mas facilmente
se utiliza para manipular los datos en una base de datos de SQL. Sin embargo, SQL incluye
una expresion de conversion de datos llamada CAST. La expresiéon CAST permite convertir
datos de un tipo de datos a otro tipo de datos, permitiendo al lenguaje anfitrién acceder valores
que no podrian manejarse en su forma original. La expresién CAST se analizard a mayor deta-
lle en el capitulo 10.

P: .Se pueden asignar los tipos de datos de SQL a objetos que no sean columnas?

R: Cada valor de datos de SQL, o literal, pertenece a un tipo de datos. Por ejemplo, los tipos
de datos se pueden asignar a los pardmetros de los procedimientos invocados externamente.
Los procedimientos invocados externamente son procedimientos que estan contenidos den-
tro de un médulo de clientes de SQL. Un procedimiento es una instruccién SQL (o series de
instrucciones) que pueden convocarse desde otro elemento en el cdigo, que en el caso de
procedimientos invocados externamente es un cédigo externo. Un pardmetro, que es el literal
que pertenece a un tipo de datos, es un valor que se pasa al procedimiento y se utiliza cuando
el procedimiento se procesa. El pardmetro actda como un marcador de posicién para ese valor.
Los médulos de clientes SQL se analizan en el capitulo 17.

Utilice tipos de datos SQIL

Ahora que ha echado un vistazo a los diferentes tipos de datos predefinidos, veamos la instruccién
CREATE TABLE, que define a una tabla con columnas que usan diferentes tipos de datos. En el
siguiente ejemplo, la instruccidn crea una tabla llamada ARTISTAS que incluye cuatro columnas:

CREATE TABLE ARTISTAS

(ID ARTISTA INT,
NOMBRE ARTISTA VARCHAR (60) ,
FDN_ARTISTA DATE,

POSTER_EN_ EXISTENCIA BOOLEAN) ;

Capitulo 3: Creacién y modificacién de tablas 63

ID_ARTISTA:| NOMBRE_ARTISTA: FDN_ARTISTA: POSTER_EN_EXISTENCIA:
INT VARCHAR(60) DATE BOOLEAN

10001 Jennifer Warnes 1947-03-03 Falso

10002 Joni Mitchell 1943-11-07 Desconocido

10005 Bing Crosby 1904-05-02 Verdadero

10006 Patsy Cline 1932-09-08 Verdadero

10008 Placido Domingo 1941-01-21 Falso

10009 Luciano Pavarotti 1935-10-12 Desconocido

Figura 3-2 La tabla ARTISTAS definida con diferentes tipos de datos.

Como puede ver, la columna ID_ARTISTA tiene un tipo de datos numérico, la columna
NOMBRE_ARTISTA tiene un tipo de datos de cadena, la columna FDN_ARTISTA tiene un tipo
de datos de fecha y hora, y la columna POSTER_EN_EXISTENCIA tiene un tipo de datos boolea-
no. La figura 3-2 muestra como puede verse esta tabla.

Creacién de tipos definidos por el usuario

En el capitulo 1 se menciond que el estaindar SQL:2006 incorporé algunos de los principios de
programacion orientados a objetos (OOP) a su lenguaje. Un ejemplo de esto es el tipo definido
por el usuario, a veces denominado como el tipo de datos definido por el usuario. El tipo definido
por el usuario es una forma de tipo de datos (almacenada como un objeto de esquema) que estd en
parte definida por el programador y en parte basada en uno o mds tipos de datos. SQL apoya dos
formas de tipos definidos por el usuario:

Tipos estructurados Estos tipos se forman por uno o mds atributos, cada uno de los cuales
estd basado en otro tipo de datos, incluyendo tipos predefinidos, tipos construidos, y otros
tipos estructurados. Ademads de asociarse con un tipo de datos, cada atributo puede incluir una
clausula predeterminada y puede especificar un cotejo. Un tipo estructurado puede incluir
métodos en su definicion. Un método es un tipo de funcién que se asocia con un tipo definido
por el usuario. Una funcion es el nombre de una operacion que realiza tareas predefinidas que
no se podrian realizar normalmente mediante el uso de sélo instrucciones SQL. Es un tipo de
ruta que toma parametros de entrada (que a menudo son opcionales) y devuelve un valor tnico
basado en esos pardmetros.

Tipos distintos Estos tipos se basan simplemente en tipos de datos predefinidos, y cualquier
tipo de parametro se define para ese tipo de datos si los pardmetros son necesarios o deseados.

Fundamentos de SQL

SQL proporciona la instruccion CREATE TYPE para definir los tipos definidos por el usua-
rio. Sin embargo, el lenguaje utilizado para crear un tipo definido por el usuario puede variar de un
producto a otro. Las caracteristicas que se respaldan en el tipo definido por el usuario también va-
rian ampliamente. Por ejemplo, SQL Server 2000 no respalda la instruccion CREATE TYPE, pero
SQL Server 2005 si lo hace.

A pesar de las diferencias y limitaciones en las aplicaciones de los productos, se trata por lo
menos de proporcionar un ejemplo de cémo la instruccion CREATE TYPE se utiliza para crear
un tipo diferente. En la siguiente instruccién se cre6 un tipo definido por el usuario que se basa en
el tipo de datos NUMERIC:

CREATE TYPE SALARIO AS NUMERIC (8,2)
FINAL;

Este sencillo ejemplo es bastante claro: la creacién de un tipo llamado SALARIO con un tipo
de datos NUMERIC(8,2). Sin embargo, la palabra clave FINAL es probablemente nueva. Cuando
se especifica FINAL, le dice a SQL que no se definen subtipos para este tipo. La alternativa es
especificar NOT FINAL, lo que significa que se pueden definir los subtipos para este tipo. Una
vez creado el tipo, se puede utilizar en la definicién de una columna como si fuera un tipo de datos
predefinido:

CREATE TABLE EMPLEADO
(ID_EMPLEADO INTEGER,
SALARIO_EMPLEADO SALARIO) ;

Cualquier valor que se agregue a la columna SALARIO_EMPLEADO se ajustard a las espe-
cificaciones del tipo de datos NUMERIC con una precision de 8 y una escala de 2. Como resulta-
do, el valor puede ser cualquiera desde “999999.99 hasta 999999.99. La mejor parte es que se pue-
de utilizar el tipo definido por el usuario SALARIO en cualquier otro tipo de tablas que requieren
valores similares.

NOTA

Como se observa, los tipos numéricos permiten nimeros negativos, asi como el nimero cero
y nimeros positivos. Si no se desean nimeros negativos (que seria evidentemente el caso del
salario de alguien), el tipo de datos por si solo no haria el trabajo, pero se puede utilizar la

restriccién CHECK para ese fin. Las restricciones CHECK se analizarén en el capitulo 4.

Especificacién de los valores
predeterminados en una columna

Otra caracteristica valiosa que SQL respalda es la habilidad de especificar un valor predeterminado
para una columna cuando se utilice la instrucciéon CREATE TABLE para crear una tabla. La sin-
taxis para la definicién de una columna con un valor predeterminado tendria este aspecto:

<nombre de columna> <tipo de datos> DEFAULT <valor predeterminado>

Capitulo 3: Creacién y modificacién de tablas 63

Los marcadores de posicién <nombre de columna> y <tipo de datos>, con los cuales ahora
debe estar familiarizado, son seguidos por la palabra clave DEFAULT. Después de la palabra clave
DEFAULT, debe especificarse un valor para el marcador de posicién <valor predeterminado>. Este
valor puede ser un literal, que es un valor de datos de SQL (tal como la cadena ‘A determinar’ o
el nimero 0); una funcién de valor de fecha y hora, que es una funcién que permite realizar ope-
raciones relacionadas con fechas y tiempo (discutidas en el capitulo 10), o una funcién de usuario
relacionada con una sesion, que es una funcién que devuelve la informacién relacionada con el
usuario (discutida en el capitulo 10).

Cualquier tipo de valor utilizado para el marcador de posicién <valor predeterminado> debe
ajustarse a los requisitos de informacién del tipo de datos especificados en la definicién de una
columna. Por ejemplo, si se define una columna con un tipo de datos INT o un tipo de datos
CHAR(4), no se puede especificar un valor predeterminado ‘Desconocido’. En el primer caso, INT
requiere un valor numérico, y en el segundo caso, CHAR(4) requiere que el valor contenga no mas
de cuatro caracteres.

En el siguiente ejemplo se utiliza la instruccion CREATE TABLE para definir a una tabla lla-
mada ARTISTAS, que contiene tres columnas:

CREATE TABLE ARTISTAS
(ID _ARTISTA INT,
NOMBRE ARTISTA VARCHAR (60) ,
LUGAR_DE NACIMIENTO VARCHAR(60) DEFAULT 'Desconocido') ;

Observe que la columna LUGAR_DE_NACIMIENTO incluye el valor predeterminado ‘Des-
conocido’. El valor es aceptable, ya que se ajusta a los requisitos del tipo de datos VARCHAR(60).
También observe que el valor predeterminado se encierra en comillas simples. Debe utilizar comi-
Ilas simples para valores de cadena de caracteres. La figura 3-3 muestra cémo puede verse la tabla
si se llena con filas de datos.

Si se insertan nuevas filas en esta tabla y no se sabe el lugar de nacimiento de un artista, el sis-
tema automadticamente insertard el valor ‘Desconocido’.

ID_ARTISTA: | NOMBRE_ARTISTA: | LUGAR_DE_NACIMIENTO:

INT VARCHAR(60) VARCHAR(60)

10001 Jennifer Warnes Desconocido

10002 Joni Mitchell Fort MacLeod, Alberta, Canada
10005 Bing Crosby Tacoma, Washington, Estados Unidos
10006 Patsy Cline Winchester, Virginia, Estados Unidos
10008 Placido Domingo Madrid, Espana

10009 Luciano Pavarotti Desconocido

Figura 3-3 Un valor predeterminado ‘Desconocido’ para la columna LUGAR_DE_NACIMIENTO.

66 Fundamentos de SQL

USR] Creacién de tablas en SQL

Probablemente notard que se ha utilizado informacién relacionada con CD para los ejemplos que
se han mostrado hasta ahora. Se tratard este tema a lo largo del libro cuando se comience a cons-
truir la base de datos que registre el inventario de CD de una empresa pequefia. En este ejercicio
se crean tres tablas que estan relacionadas con la base de datos INVENTARIO, que se creé en el
capitulo 2, Pruebe esto 2-1. Antes de empezar, eche un vistazo al modelo de datos simple (figura
3-4) que muestra las tres tablas que se crean. Cada tabla se representa por un rectangulo, con el
nombre de la tabla en la parte superior del rectingulo y el nombre de las columnas, junto con los
tipos de datos, que figuran dentro del rectangulo.

Se utilizara el modelo de datos a lo largo del libro (mientras evoluciona para convertirse en
una estructura mas compleja) para definir los objetos en la base de datos. También puede descargar
el archivo Try_This_03.txt, que contiene instrucciones SQL utilizadas en este ejercicio (en inglés).

Paso a paso

1. Abra la aplicacion de clientes de su RDBMS y conecte la base de datos INVENTARIO. Todos
los objetos se crean dentro de esa base de datos. (Si el RDBMS no respalda la creacién de una
base de datos y en su lugar crea el esquema INVENTARIO_CD, debe crear todos los objetos
dentro de ese esquema.)

2, La primera tabla que se crea es la tabla DISCOS_COMPACTOS. Observe que incluye tres
columnas, dos de las cuales tienen un tipo de datos INT y una que tiene un tipo de datos VAR-
CHAR(60). Esta tabla tiene informacién acerca de los discos compactos en el inventario. La co-
lumna ID_DISCO_COMPACTO contiene nimeros que identifican dinicamente a cada CD. La
columna TITULO_CD contiene los nombres actuales de los CD. La columna ID_DISQUERA
contiene nimeros que identifican a las compaiifas que editan los CD. Introduzca la siguiente
instruccién SQL en la ventana de entrada de la aplicacion clientes:

CREATE TABLE DISCOS_COMPACTOS

(ID DISCO COMPACTO INT,
TITULO_CD VARCHAR (60) ,
ID DISQUERA INT) ;

3. Verifique que se introdujo la informacion correcta y ejecute la instruccién. Debe recibir un
mensaje de confirmacién de que la instruccidn se ejecutd exitosamente.

DISCOS_COMPACTOS DISQUERAS_CD TIPOS_MUSICA
ID_DISCO_COMPACTO: INT ID_DISQUERA: INT ID_TIPO: INT

TITULO_CD: VARCHAR(60) NOMBRE_COMPANIA: VARCHAR(60) NOMBRE_TIPO: VARCHAR(20)
ID_DISQUERA: INT

Figura 3-4 Modelo de datos simple de la base de datos INVENTARIO.

Capitulo 3: Creacién y modificacién de tablas 67

4, La préxima tabla que se crea es la tabla DISQUERAS_CD. La tabla incluye la columna ID_
DISQUERA, que identifica inicamente a cada compaiiia que edita los CD, y la columna NOM-
BRE_COMPANIA, que enumera los nombres actuales de las compaiifas. Introduzca y ejecute
el siguiente codigo:

CREATE TABLE DISQUERAS CD
(ID_DISQUERA INT,
NOMBRE COMPANTA VARCHAR (60)) ;

5. La dltima tabla que se crea es la tabla TIPOS_MUSICA. La tabla incluye la columna ID_TIPO,
que identifica unicamente cada categoria de musica, y la columna NOMBRE_TIPO, que enu-
mera los nombres actuales de las categorias de musica (por ejemplo, blues o jazz). Introduzca y
ejecute el siguiente c6digo:

CREATE TABLE TIPOS MUSICA
(ID_TIPO INT,
NOMBRE TIPO VARCHAR (20)) ;

6. Cierre la aplicacion clientes.

Resumen de Pruebe esto

La base de datos ahora contiene tres tablas nuevas. Estas tablas sirven como base para otros ejerci-
cios del libro. A medida que progrese mediante estos ejercicios, podra modificar esas tablas, crear
tablas adicionales, insertar datos en las tablas, y después hacer consultas y manipular esos datos.
Para cuando complete todos los ejercicios, creard y completard una pequeiia base de datos que al-
macene datos sobre un inventario de discos compactos.

Modificacién de tablas en SQL

Tomando lo que aprendi6 acerca de la creacion de tablas, puede utilizar la instruccion AL-
TER TABLE para modificar las definiciones de tablas base almacenadas en la base de datos
(como objetos de esquema). En su forma mas bésica, la sintaxis para la instruccion ALTER
TABLE se representa:

ALTER TABLE <nombre de la tabla>
ADD [COLUMN] <definicidén de columnas>
| ALTER [COLUMN] <nombre de columnas>
{ SET DEFAULT <valor predeterminado> | DROP DEFAULT }
| DROP [COLUMN] <nombre columna> { CASCADE | RESTRICT }

La instruccién permite tomar tres diferentes acciones: afiadir columnas, modificar co-
lumnas o eliminar columnas.

68

Fundamentos de SQL

NOTA

La instruccién ALTER TABLE también permite afiadir o eliminar limitaciones en una tabla.

Una limitacién en una tabla es una regla que restringe qué datos se introducen en la tabla. La
limitacién forma parte de la definicién decio tabla, pero no forma parte de cualquiera de las
definiciones de una columna especifica. Las limitaciones se discuten con detalle en el capitulo 4.

El marcador de posicién <definicién de columna> en la cldusula ADD [COLUMN] es similar
a la seccién de definicion de columna de la instruccion CREATE TABLE. Se proporciona un nom-
bre de columna y un tipo de datos o dominio. También se tiene la opcion de afiadir una cldusula
predeterminada, una limitacién de columna o un cotejo. Por ejemplo, se puede utilizar la siguiente
instruccién para modificar la tabla ARTISTAS de modo que incluya la columna FDN_ARTISTA:

ALTER TABLE ARTISTAS
ADD COLUMN FDN ARTISTA DATE;

A diferencia de la clausula ADD [COLUMN], la clausula ALTER [COLUMN] se limita a
dos acciones: establecer una predeterminacion o eliminar una predeterminacion (aunque existen
aplicaciones de productos que permiten cambiar otras propiedades, tal como el tipo de datos o la
precision y la escala). Por ejemplo, suponga que la tabla ARTISTS incluye la columna LUGAR _
DE_NACIMIENTO, pero no se define ninguna predeterminacion para esa columna. Puede agregar
una predeterminacién utilizando la siguiente instruccién:

ALTER TABLE ARTISTAS
ALTER COLUMN LUGAR DE NACIMIENTO SET DEFAULT 'Desconocido’;

También puede eliminar la predeterminacién utilizando la siguiente instruccién:

ALTER TABLE ARTISTAS
ALTER COLUMN LUGAR DE NACIMIENTO DROP DEFAULT;

La cldusula final en la sintaxis (DROP[COLUMN]) proporciona dos opciones para eliminar
una columna y los datos de la tabla: las palabras clave CASCADE y RESTRICT. Es posible que
recuerde estas palabras clave de la discusion sobre la instruccion DROP SCHEMA en el capitulo 2.
Si se especifica la opcién CASCADE, la columna y los datos dentro de la columna se eliminan inde-
pendientemente de si otros objetos hacen referencia a esa columna. Todas las vistas, restricciones,
rutas o activadores que hacen referencia a la columna también se eliminan. Si se utiliza la opcién
RESTRICT, la columna se elimina sélo si no hay vistas, restricciones, rutas o activadores que hagan
referencia a la columna. Por ejemplo, la siguiente instruccion elimina la columna LUGAR_DE_NA-
CIMIENTO y los datos almacenados en la columna, independientemente de las dependencias:

ALTER TABLE ARTISTAS
DROP COLUMN LUGAR DE NACIMIENTO CASCADE;

En general, es practico conocer la instruccion ALTER TABLE, ya que las definiciones de las
tablas cambian invariablemente, asi como los tipos de datos almacenados en esas tablas. Sin em-
bargo, esta instruccién, como la mayoria de las instrucciones de SQL, puede variar ampliamente
de una aplicacién a otra en términos de cémo los detalles de una instruccién se aplican. Por ejem-
plo, SQL Server no respalda las palabras clave CASCADE y RESTRICT. En Oracle, CASCADE
debe escribirse como CASCADE CONTRAINTS, y RESTRICT (que es el comportamiento pre-
determinado) no se respalda explicitamente. Como siempre, asegtrese de comprobar la documen-
tacién del producto.

Capitulo 3: Creacién y modificacién de tablas

69

Eliminacién de tablas en SQL

Como puede imaginar, el proceso de eliminacién de una tabla y sus datos almacenados es muy
sencillo. La siguiente sintaxis muestra lo facil que resulta este proceso:

DROP TABLE <nombre de la tabla>{ CASCADE | RESTRICT }

La unica decisién que necesita tomar cuando se elimina una tabla es si debe escoger la opcién
CASCADE o RESTRICT. Como en los anteriores ejemplos de sintaxis, las dos opciones determi-
nan si debe eliminar la tabla y sus datos aun cuando la tabla hace referencia a otros objetos. Si se
utiliza CASCADE, Ia tabla y sus datos se eliminan, junto con todas las vistas, restricciones, rutas

o activadores que hacen referencia a la tabla. Si se utiliza RESTRICT, la tabla se elimina sélo si

no existen dichas dependencias. (Como con la cldusula DROP COLUMN, SQL Server no respalda

CASCADE o RESTRICT, y Oracle permite slo CASCADE CONTRAINTS.) Por ejemplo, la

siguiente instruccidén elimina la tabla ARTISTAS y los datos almacenados en la columna, indepen-

dientemente de las dependencias:

DROP TABLE ARTISTAS CASCADE;

Pregunta al experto

P: (Como se pueden eliminar los datos en una tabla, pero no la propia definicion de la
tabla?

R: En lugar de usar la instruccion DROP TABLE, tiene que utilizar la instruccién DELETE. La
instruccién DELETE elimina todas las filas de una tabla o elimina sélo filas especificas, tal
como se defina en la instruccién. Esto no es lo mismo que la instruccion DROP TABLE, que
elimina la definicién de la tabla y los datos. Se analizard la instruccién DELETE con mads de-
talle en el capitulo 8. Muchas aplicaciones de productos también proporcionan la instruccién
TRUNCATE, que suministra una forma rdpida y eficaz para borrar todos los datos de una ta-
bla. Sin embargo, la instruccion TRUNCATE no se incluye en el estindar SQL:2006.

P: se expuso que cuando un valor predeterminado se define por una columna, el valor se
inserta automaticamente en la columna cuando se agrega una fila a la tabla, pero no se

especifica un valor para esa columna en particular. ;Qué pasa si la definicion de columna

no incluye una predeterminacion y se trata de insertar esa fila?

R: Laaccion tomada depende de si se permiten valores nulos dentro de la columna. Un valor nulo
significa que el valor no se conoce. Esto no es lo mismo que cero, en blanco o predeterminado.

Si un valor nulo se presenta, entonces los datos no estin disponibles. Por predeterminacion,
todas las columnas permiten valores nulos, aunque se puede ignorar dicha predeterminacién
(discutido en el capitulo 4). Si trata de insertar una fila sin definir un valor especifico, un valor
nulo se inserta en esa columna si la columna permite valores nulos. Si la columna no permite
valores nulos, no podrd insertar una fila sin definir un valor especifico para esa columna.

(continda)

70 Fundamentos de SQL

P: A menudo se escucha el término “indices” en relacién con la creacién de tablas SQL.
. Como se crean los indices?

R: Curiosamente, el estdndar SQL:2006 no respalda la creaciéon y mantenimiento de indices y
tampoco proporciona una definicién o los menciona de ninguna otra forma. Para los que no
estén familiarizados con ellos, un indice es un conjunto de valores y referencias de bisqueda
(en una tabla auxiliar) que corresponden a las filas de una tabla. Los indices aceleran las con-
sultas y mejoran el rendimiento, haciendo el acceso a los datos mucho mads eficiente, al igual
que utilizar el indice de un libro ayuda a encontrar las cosas mds rdpidamente que la bisqueda
secuencial de paginas. Como resultado, casi todos los RDBMS respaldan alguna forma de
indexacioén y, de hecho, son una parte importante de ese producto. Sin embargo, el método
utilizado para aplicar la indexacion es muy variable; por lo tanto, cada producto proporciona
su propio sistema para crear y mantener los indices. Por ejemplo, la instruccién CREATE IN-
DEX esté disponible en la mayoria de los productos; sin embargo, la sintaxis para la instruc-
cién puede variar considerablemente. Como siempre, asegurese de revisar la documentacién
del producto.

Modifique y elimine tablas en SQL

A lo largo del ciclo de vida de casi cualquier base de datos, la probabilidad de que los requeri-
mientos del negocio cambien y la modificacién de las bases de datos es casi una conclusion inevi-
table. Como resultado, no cabe duda que se pasara por situaciones en que las definiciones de tablas
se modifican o eliminan. En este ejercicio se creard una tabla, se eliminard, se volvera a crear, y
luego cambiara por la eliminacién de una columna. En el momento en que termine, se afladird una
tabla mas a la base de datos INVENTARIO y utilizara esa tabla en el tdltimo ejercicio. Puede des-
cargar el archivo Try_This_03.txt, que contiene las instrucciones SQL utilizadas en este ejercicio
(en inglés).

Paso a paso
1. Abra la aplicacion de cliente del RDBMS y conéctese a la base de datos INVENTARIO (o el
esquema INVENTARIO_CD).

2. Cree una tabla llamada TIPOS_DISCO_COMPACTO. La tabla incluye la columna ID_DIS-
CO_COMPACTO y la columna ID_TIPO. Ambas columnas se asignardn a un tipo de datos
INT. Introduzca y ejecute el siguiente c6digo:

CREATE TABLE TIPOS DISCO_COMPACTO
(ID DISCO COMPACTO INT,
ID TIPO INT) ;

3. Ahora elimine la tabla de la base de datos. Introduzca y ejecute el siguiente c6digo:

DROP TABLE TIPOS DISCO_ COMPACTO CASCADE;

Capitulo 3: Creacién y modificacién de tablas 71

4., Ahora se volverd a crear la tabla que se hizo en el paso 2, s6lo que esta vez se incluird una ter-
cera columna llamada TITULO_CD con un tipo de datos VARCHAR(60). Introduzca y ejecute
el siguiente codigo:

CREATE TABLE TIPOS DISCO COMPACTO
(ID_DISCO COMPACTO INT,
TITULO CD VARCHAR (60) ,
ID TIPO INT) ;

5. El siguiente paso es eliminar la columna TITULO_CD. Introduzca y ejecute el siguiente c6-
digo:

ALTER TABLE TIPOS DISCO_ COMPACTO
DROP COLUMN TITULO CD CASCADE ;

6. La tabla TIPOS_DISCO_COMPACTO debe ahora contener sé6lo las columnas ID_DISCO _
COMPACTO y la columna ID_TIPO. Cierre la aplicacién clientes.

Resumen de Pruebe esto

La base de datos INVENTARIO ahora debe contener cuatro tablas: DISCOS_COMPACTOS,
DISQUERAS_CD, TIPOS_MUSICA y TIPOS_DISCO_COMPACTO. La tabla TIPOS_DIS-
CO_COMPACTO, que se acaba de crear, contiene dos columnas, ID_DISCO_COMPACTO y
ID_TTPO, ambas definidas con un tipo de datos INT. Estos ejercicios continuardn la construccién
de esta base de datos agregando tablas nuevas y modificando las existentes.

v Autoexamen Capitulo 3

1. ;Qué tipos de tablas base se pueden crear utilizando una instruccién CREATE TABLE?
A Tablas base persistentes
B Tablas base temporales globales
C Tablas temporales locales creadas
D Tablas temporales locales declaradas
2, ;Cuidl es la principal diferencia entre una tabla temporal global y una tabla temporal local creada?

3. Estd creando una tabla llamada AGENTES. La tabla incluye la columna ID_AGENTE, que
tiene un tipo de datos INT, y la columna NOMBRE_AGENTE, que tiene un tipo de datos
CHAR(60). ;Qué instrucciéon SQL utilizaria?

4, ;Cuailes son los tres tipos de datos que soporta SQL?

5. ;(Cudles son los cuatro tipos de datos de cadena?

72

Fundamentos de SQL

6. Un(a) es un tipo de datos que permite valores que se basan en bits de datos, en lu-
gar de conjuntos de caracteres o cotejos. Este tipo de datos permite sélo valores de Oy 1.

N

(Cuadl es la precision y la escala del nimero 5293.472?

8. (Cuiles son las diferencias entre los tipos de datos numéricos exactos y los tipos de datos nu-
méricos aproximados?

9. ;Cudles tipos de datos son tipos de datos numéricos exactos?
A DOUBLE PRECISION

B DECIMAL
C REAL
D SMALLINT
10. Un tipo de datos especifica los valores de una fecha por aio, mes y dia.

11. ;Cudles son las dos formas de tipos de datos de intervalo que soporta SQL?

12. ;Qué tipo de datos debe utilizarse para soportar una construccion verdadero/falso que pueda ser
utilizada para comparar valores?

13

Esta creando un tipo definido por el usuario distinto llamado CIUDAD. El tipo de usuario se
basa en el tipo de datos CHAR(40). ;Qué instruccién SQL utilizar{a?

14. Se crea una tabla llamada CLIENTES. La tabla incluye la columna NOMBRE_CLIENTE y la
columna CIUDAD_CLIENTE. Ambas columnas tienen un tipo de datos VARCHAR(60). La
columna CIUDAD_CLIENTE también tiene el valor predeterminado Seattle. ;Qué instruccion
SQL utilizaria?

15. ;Qué instruccién SQL deberd utilizarse para eliminar una columna de una tabla existente?

16. ;Qué instruccion SQL deberd utilizarse para eliminar la definicién de una tabla y todos los da-
tos de SQL de una base de datos?

Una base de datos incluye una tabla llamada CANTANTES_OPERA. Se quiere agregar una
columna llamada NACIONALIDAD a esa tabla. La columna debe tener el tipo de datos VAR-
CHAR(40). ;Qué instruccién SQL utilizaria?

18. Se desea eliminar la definicién de la tabla CANTANTES_OPERA de la base de datos. También
se quieren eliminar todos los datos y cualquier dependencia de la tabla. ;Qué instruccién SQL
utilizarfa?

17

Capitulo 4

Implementacion de
la integridad de datos

74 Fundamentos de SQL

Habilidades y conceptos clave

Entienda las restricciones de integridad
Utilice restricciones NOT NULL
Afnada restricciones UNIQUE

Anada restricciones PRIMARY KEY
Aifiada restricciones FOREIGN KEY
Defina restricciones CHECK

Una base de datos SQL debe hacer més que sélo almacenar datos. Se debe asegurar que el alma-
cenamiento de los datos es el correcto. Si la integridad de los datos se compromete, los datos
pueden ser inexactos o inconsistentes, poniendo en cuestionamiento la fiabilidad de la base de
datos. Con el fin de asegurar la integridad de los datos, SQL proporciona una serie de restricciones
de integridad, reglas que se aplican a la base de datos para restringir los valores que se pueden co-
locar en esas tablas. Se pueden aplicar restricciones a columnas individuales, a tablas individuales
o a multiples tablas. En este capitulo se discute cada tipo de restriccion y se explica como se pue-
den aplicar a la base de datos SQL.

Entienda las restricciones de integridad

Las restricciones de integridad de SQL, a las que se les conoce simplemente como restricciones,
pueden dividirse en tres categorias:

Restricciones relacionadas con tablas Un tipo de restriccién que se precisa dentro de la
definicion de una tabla. Las restricciones definidas a nivel de tabla pueden aplicar a una o0 méas
columnas.

Afirmaciones Un tipo de restriccion que se precisa dentro de una definicién de afirmacion (se-
parado de la definicién de una tabla). Una afirmacion puede relacionarse con una o mds tablas.

Restricciones de dominio Un tipo de restriccidon que se precisa dentro de una definicién de
dominio (separado de la definicién de una tabla). Una restriccion de dominio se asocia con
cualquier columna que se define dentro del dominio especifico.

De estas tres categorias de restricciones, las restricciones relacionadas con tablas son las mas
comunes e incluyen el mayor nimero de opciones de restriccion. Las restricciones relacionadas
con tablas se dividen en dos subcategorias: restricciones de tabla y restricciones de columna. Las
restricciones en ambas subcategorias se precisan en la definicidn de la tabla. Una restriccién de
columna se incluye con la definicién de la columna, y una restriccién de tabla se incluye como un
elemento de la tabla, similar a la manera en que las columnas se definen como elementos de la ta-
bla. (En el capitulo 3 se analizaron los elementos de tablas y las definiciones de columnas.) Tanto

Capitulo 4: Implementacién de la integridad de datos 75

las restricciones de columna como las restricciones de tabla soportan una serie de diferentes tipos
de restricciones. Este no es el caso para las restricciones de afirmacién y dominio, que se limitan
s6lo a un tipo de restriccion. La figura 4-1 proporciona una descripcion general de los tipos de res-
tricciones que se pueden crear.

En la parte superior de la ilustracién se pueden observar las tres categorias de restricciones.
Debajo de la categoria de restricciones relacionadas con tablas estan las subcategorias restriccio-
nes de columna y restricciones de tabla, cada una de las cuales contienen tipos especificos de res-
tricciones. Por ejemplo, las restricciones de tabla pueden incluir restricciones unicas (restricciones
UNIQUE y de PRIMARY KEY), referenciales (restricciones FOREIGN KEY) y CHECK, mien-
tras que las restricciones de columna pueden incluir la restriccion NOT NULL, asi como restric-
ciones unicas, referenciales y CHECK. Sin embargo, las de dominios y afirmaciones s6lo soportan
las restricciones CHECK.

NOTA

En algunos lugares, el esténdar SQL:2006 utiliza el término “restriccién de tabla” para refe-
rirse a ambos tipos de restricciones relacionadas con tablas. Utilizaré el término “relacionado
con tablas” para evitar confusién.

Como se muestra en la figura 4-1 existen cinco diferentes tipos de restricciones: NOT NULL,
UNIQUE, PRIMARY KEY, FOREIGN KEY y CHECK. En SQL, las restricciones UNIQUE y
PRIMARY KEY se consideran restricciones Unicas, y las restricciones de FOREIGN KEY se con-
sideran como restricciones referenciales. El resto del capitulo se dedica a explicar lo que significan
cada una de estas restricciones y como aplicarlas.

Restricciones de integridad

Restricciones de dominio Restricciones relacionadas con tablas Afirmaciones
(dentro de definiciones de dominio) (dentro de definiciones de tabla) (dentro de definiciones de afirmacion)
CHECK CHECK
’ Restricciones de columna ’ ’ Restricciones de tabla ’

NOT NULL Unicas Referencial CHECK Unicas Referencial CHECK
UNIQUE FOREIGN KEY UNIQUE

FOREIGN KEY
PRIMARY KEY PRIMARY KEY|

Figura 4-1 Tipos de restricciones de integridad de SQL.

76 Fundamentos de SQL

Utilice restricciones NOT NULL

En el capitulo 3 se dijo que nulo significa que un valor no estd definido o no se conoce. Esto no
es lo mismo que cero, en blanco, una cadena vacia o un valor predeterminado. En lugar de ello,
indica que un valor de dato estd ausente. Se puede pensar en un valor nulo como una marca. (Una
marca es un caracter, niimero o bit que indica un cierto hecho sobre una columna. La marca sirve
como un marcador que designa una condicién particular o la existencia de algo.) En el caso nulo,
si una columna no proporciona ningin valor, se coloca la marca, indicando que el valor es des-
conocido, o nulo. Cada columna tiene una caracteristica de nulo que indica si la columna acepta
valores nulos. Por predeterminacion, todas las columnas aceptan valores nulos. Sin embargo, se
puede anular la caracteristica de nulo predeterminada utilizando una restriccion NOT NULL, que
indica que la columna no acepta valores nulos.

NOTA

Algunos RDBMS permiten modificar la caracteristica de nulo predeferminada de cualquier
columna nueva que se crea. Ademds, algunos sistemas respaldan una restriccién NULL, que se
utiliza para designar que una columna acepta valores nulos.

La restriccién NOT NULL sélo puede utilizarse como una restriccién de columna. No se so-
porta para restricciones de tablas, afirmaciones o restricciones de dominio. La aplicacién de una
restriccion NOT NULL es un proceso muy sencillo. Simplemente utilice la siguiente sintaxis
cuando se crea una definicién de columna:

<nombre de columna> { <tipo de datos> | <dominio> } NOT NULL

Por ejemplo, suponga que quiere crear una tabla llamada ARTISTAS_DISCO_COMPACTO
que requiere tres columnas: ID_ARTISTA, NOMBRE_ARTISTA y LUGAR_DE_NACIMIENTO.
Quiere asegurarse de que cualquier fila que se agregue a la tabla incluya un valor para la columna
ID_ARTISTA y un valor para la columna NOMBRE_ARTISTA. Para hacer esto, debe afadir una
restriccion NOT NULL en ambas definiciones de columna, como se muestra en la siguiente ins-

truccion de SQL:

CREATE TABLE ARTISTAS DISCO_COMPACTO

(ID ARTISTA INT NOT NULL,
NOMBRE ARTISTA VARCHAR (60) NOT NULL,

LUGAR_DE_NACIMIENTO VARCHAR (60)) ;

Observe que la columna LUGAR_DE_NACIMIENTO no incluye una restriccion NOT
NULL. Como resultado, si no se suministra un valor para esa columna (cuando se inserta una fila),
un valor nulo se insertard. (La marca se coloca.) La figura 4-2 muestra el aspecto que puede tener
la tabla si se insertan filas que no contienen valores para la columna LUGAR_DE_NACIMIENTO.

Como puede verse, las columnas ID_ARTISTA, NOMBRE_ARTISTA no contienen (y no
pueden contener) valores nulos. La columna LUGAR_DE_NACIMIENTO, por otro lado, contiene
dos valores nulos.

Capitulo 4: Implementacién de la integridad de datos 77

ID_ARTISTA: | NOMBRE_ARTISTA: | LUGAR_DE_NACIMIENTO:

INT: VARCHAR(60) VARCHAR(60)

10001 Jennifer Warnes NULL

10002 Joni Mitchell Fort MacLeod, Alberta, Canada
10005 Bing Crosby Tacoma, Washington, Estados Unidos
10006 Patsy Cline Winchester, Virginia, Estados Unidos
10008 Placido Domingo Madrid, Espana

10009 Luciano Pavarotti | NULL

Figura 4-2 Valores nulos que aparecen en la columna LUGAR_DE_NACIMIENTO en la tabla ARTISTAS_
DISCO_COMPACTO.

Afada restricciones UNIQUE

Si se remite de nuevo a la figura 4-1, notard que tanto las restricciones de columna como las res-
tricciones de tabla respaldan restricciones unicas. También se observa que hay dos tipos de restric-
ciones dnicas: UNIQUE y de PRIMARY KEY. Esta seccién se enfoca en la restriccion UNIQUE.
La restriccion de PRIMARY KEY se analizard en la seccion “Anada restricciones PRIMARY
KEY”, mds adelante en este capitulo.

La restriccion UNIQUE permite exigir que una columna o conjunto de columnas contengan
valores Unicos, valores significativos que sean diferentes de todas las demds filas en la misma
tabla. Por ejemplo, eche un vistazo a la figura 4-3, que muestra la tabla CD_INVENTARIO. La
tabla contiene tres columnas: NOMBRE_ARTISTA, NOMBRE_CD y DERECHOSDEAUTOR.

NOMBRE_ARTISTA: NOMBRE_CD: ANO_DERECHOSDEAUTOR:
VARCHAR(40) VARCHAR(60) INT

Jennifer Warnes Famous Blue Raincoat 1991

Joni Mitchell Blue 1971

William Ackerman Past Light 1983

Kitaro Kojiki 1990

Bing Crosby That Christmas Feeling 1993

Patsy Cline Patsy Cline: 12 Greatest Hits | 1988

Figura 4-3 Tabla CD_INVENTARIO con las columnas NOMBRE_ARTISTA, NOMBRE_CD y ANO_
DERECHOSDEAUTOR.

78

Fundamentos de SQL

Puede decidir que desea que los valores en la columna NOMBRE_CD sean tinicos, de modo
que no haya dos nombres iguales de CD. Si se aplica una restriccion UNIQUE a la columna, no
serd posible insertar una fila que contenga un valor de NOMBRE_CD que ya exista en la tabla.
Suponga que ahora se da cuenta que hacer los valores NOMBRE_CD tnicos no es una buena idea,
ya que es posible para mas de un CD compartir el mismo nombre. Decide adoptar otro enfoque
y utilizar una restriccién UNIQUE en las columnas NOMBRE_ARTISTA y NOMBRE_CD. De
esa manera, ningiin par NOMBRE_ARTISTA/NOMBRE_CD se puede repetir. Se puede repetir
el valor NOMBRE_ARTISTA o el valor NOMBRE_CD, pero no se puede repetir la misma com-
binacién de los dos. Por ejemplo, la tabla ya contiene la fila con el valor NOMBRE_ARTISTA de
Joni Mitchell y el valor NOMBRE_CD de Blue. Si una restriccion UNIQUE se aplica a estas dos
columnas, no se podra afiadir otra fila que contenga ambos valores.

NOTA

Cabe sefialar que las tablas utilizadas para ilustrar los conceptos en este capitulo no son ne-
cesariamente buenos disefios. Por ejemplo, los nombres de las personas y cosas rara vez son
buenas opciones para identificar Gnicamente las filas de los datos porque son bastante largos
(comparado con nimeros), tienden a cambiar, y son propensos a problemas con valores dupli-
cados. Sin embargo, estas tablas se escogieron ya que ilustran bien los conceptos.

Ahora que se tiene un entendimiento basico de cémo las restricciones UNIQUE se aplican,
echemos un vistazo a la sintaxis que se utiliza para crearlas. Recuerde que se dijo que se puede
crear una restriccion UNIQUE que sea una restricciéon de columna o una restriccion de tabla. Para
crear una restriccién de columna, afiddala como parte de la definicién de una columna, como se
muestra en la siguiente sintaxis:

<nombre de columna> { <tipo de datos> | <dominio> } UNIQUE

Si se quiere afadir una restriccién tnica como una restriccién de tabla, se debe agregar como
un elemento de definicién de tabla, como se muestra en la siguiente sintaxis:

[CONSTRAINT <nombre de la restriccion>]
UNIQUE (<nombre de columna> [{, <nombre de columna>}...])

Como se puede observar, aplicar una restriccion UNIQUE como una restriccion de columna es un
poco mds simple que aplicarla como una restriccién de tabla. Sin embargo, si se aplica la restric-
cién al nivel de columna, se puede aplicar s6lo a una columna. A pesar de si se utiliza una restric-
cién de columna o de tabla, se pueden definir tantas restricciones UNIQUE como sean necesarias
en una sola definicién de tabla.

Ahora volvamos a la tabla de la figura 4-3 que se usard para crear ejemplos de cédigos para
aplicar restricciones UNIQUE. En el primer ejemplo, se aplicé una restriccion UNIQUE a la co-
lumna NOMBRE_CD:

CREATE TABLE CD_INVENTARIO

(NOMBRE_ARTISTA VARCHAR (40) ,
NOMBRE CD VARCHAR (60) UNIQUE,
DERECHOSDEAUTOR INT) ;

Capitulo 4: Implementacién de la integridad de datos 79

También se pueden aplicar restricciones UNIQUE a otras columnas, pero no tendrian el mismo
efecto que la combinacién de dos columnas en una restriccién de tabla, como se muestra en el si-
guiente ejemplo:
CREATE TABLE CD INVENTARIO
(NOMBRE ARTISTA VARCHAR (40),

NOMBRE_CD VARCHAR (60) ,

DERECHOSDEAUTOR INT,
CONSTRAINT UN ARTISTA CD UNIQUE (NOMBRE ARTISTA, NOMBRE CD)) ;

Las columnas NOMBRE_ARTISTA y NOMBRE_CD ahora deben contener combinaciones tni-
cas de valores con el fin de que una fila se afiada a la tabla CD_INVENTARIO.

Hasta ahora se ha dicho que una restriccion UNIQUE evita la duplicacién de valores que se
introducen en una columna o columnas definidas con esa restriccion. Sin embargo, hay una ex-
cepcidn para esto (el valor nulo). Una restriccion UNIQUE permite multiples valores nulos en una
columna. Como con otras columnas, los valores nulos se permiten por predeterminacién. Sin em-
bargo, se puede anular la predeterminacién utilizando una restriccion NOT NULL conjuntamente
con una restriccion UNIQUE. Por ejemplo, se puede afiadir una restriccion NOT NULL a la defi-
nicion de columna NOMBRE_CD:

CREATE TABLE CD INVENTARIO
(NOMBRE ARTISTA VARCHAR (40),

NOMBRE_CD VARCHAR (60) NOT NULL UNIQUE,
DERECHOSDEAUTOR INT) ;

También se puede afiadir una restriccion NOT NULL a la definicién de una columna que hace
referencia a una restriccién de tabla:
CREATE TABLE CD_ INVENTARIO
(NOMBRE_ARTISTA VARCHAR (40),
NOMBRE_CD VARCHAR (60) NOT NULL,

DERECHOSDEAUTOR INT,
CONSTRAINT UN_ARTISTA CD UNIQUE (NOMBRE CD));

En cada caso, tanto la restriccion NOT NULL como Ia restriccion UNIQUE se aplican en la
columna NOMBRE_CD, lo que significa que los valores NOMBRE_CD deben ser tinicos y sin
valores nulos.

Afada restricciones PRIMARY KEY

Como se menciond en la seccion “Anada restricciones UNIQUE”, una restriccion PRIMARY
KEY, como una restriccién UNIQUE, es un tipo de restriccion tinica de SQL. Ambos tipos de
restricciones permiten sélo valores en columnas especificas, ambos tipos pueden aplicarse a una o
mds columnas, y ambos tipos se pueden definir como restricciones de columna o restricciones de
tabla. Sin embargo, las restricciones PRIMARY KEY tienen dos restricciones que aplican sélo a
éstas:

Una columna que se define con una restriccion PRIMARY KEY no puede contener valores
nulos. No importa si la definicién de columna especifica NOT NULL (la columna no puede
contener valores nulos, ya que es una restriccion PRIMARY KEY).

Sélo una restriccion PRIMARY KEY puede definirse para cada tabla.

80

Fundamentos de SQL

El motivo de estas restricciones es el rol que una restriccion de clave primaria (identificador
unico) juega en la tabla. Como podria recordar del capitulo 1, cada fila en una tabla debe ser tnica.
Esto es importante, ya que SQL no puede diferenciar entre dos filas que son completamente idén-
ticas; por lo tanto, no se puede actualizar o eliminar una fila duplicada sin hacer lo mismo con la
otra. La clave primaria para una tabla se escoge por el disefiador de la base de datos de claves de
candidato disponibles. Una clave de candidato es un conjunto de una o mas columnas que identifi-
can de forma exclusiva a cada fila. Por ejemplo, en la figura 4-4, la tnica clave de candidato razo-
nable en la tabla CD_ARTISTAS es la columna ID_ARTISTA. Cada valor en la columna es tnico.
De esa manera, aun si los valores NOMBRE_ARTISTA y AGENCIAS se duplican, la fila sigue
siendo unica ya que el valor ID_ARTISTA siempre es tnico.

La singularidad de una clave de candidato se puede ejecutar con una restriccion UNIQUE o
con una restriccion PRIMARY KEY. Sin embargo, cada tabla debe incluir una clave primaria aun
si no se define ninguna restriccion UNIQUE. Esto se considera como una de las mejores practicas
en la industria, ya que una clave primaria no puede aceptar valores nulos, lo que la hace la medida
definitiva por la cual la singularidad de una fila se puede asegurar. Las claves primarias también
son ttiles cuando una tabla hace referencia de otra a través del uso de claves foraneas. (Ver la
seccion “Afiada restricciones FOREIGN KEY” mds adelante en este capitulo.) Ademads, algunos
RDBMS requieren la definicién de claves primarias en determinadas circunstancias, como cuando
una columna de tabla se incluye en un indice de texto completo.

Para definir una clave primaria, se debe utilizar una restriccion de PRIMARY KEY para espe-
cificar qué columna o columnas servirdn como la clave primaria de una tabla. El proceso de defi-
nicién de una restriccion de PRIMARY KEY es muy similar a la de la definicién de la restriccién

Clave de

candidato
ID_ARTISTA:| NOMBRE_ARTISTA: | ID_AGENCIA:
INT VARCHAR(60) INT
10001 Jennifer Warnes | 2305
10002 Joni Mitchell 2306
10003 William Ackerman| 2306
10004 Kitaro 2345
10005 Bing Crosby 2367
10006 Patsy Cline 2049
10007 Jose Carreras 2876
10008 Placido Domingo | 2305
10009 Luciano Pavarotti | 2345

Figura 4-4 La clave de candidato en la tabla CD_ARTISTAS.

Capitulo 4: Implementacién de la integridad de datos 81

UNIQUE. Si se quiere afiadir una restricciéon PRIMARY KEY a una definicién de columna, utilice
la siguiente sintaxis:

<nombre de columna> { <tipo de datos> | <dominio> } PRIMARY KEY

Si se quiere afiadir una restriccion PRIMARY KEY como una restriccion de tabla, se debe agregar
como un elemento de tabla en la definicién de la tabla, como se muestra en la siguiente sintaxis:

[CONSTRAINT <nombre de la restriccion>]
PRIMARY KEY (<nombre de columna> [{, <nombre de columna> }...])

Como con la restriccion UNIQUE, se puede utilizar una restriccién de columna para definir
una clave primaria si se incluye sélo una columna en la definicién. Por ejemplo, si se define una
restriccion de PRIMARY KEY para la tabla mostrada en la figura 4-4, se utiliza la siguiente ins-
truccién SQL:

CREATE TABLE CD_ARTISTAS

(ID ARTISTA INT PRIMARY KEY,
NOMBRE_ARTISTA VARCHAR(60),
ID AGENCIA INT) ;

Si se quiere aplicar la restriccién a varias columnas (o si simplemente se quiere mantener
como una definicién separada, entonces se debe utilizar la restriccién de tabla:

CREATE TABLE CD_ARTISTAS

(ID_ARTISTA INT,
NOMBRE ARTISTA VARCHAR(60),
ID_ AGENCIA INT,

CONSTRAINT PK ID ARTISTA PRIMARY KEY (ID ARTISTA, NOMBRE ARTISTA));

Este método crea una clave primaria en las columnas ID_ARTISTA y NOMBRE_ARTISTA, de
modo que los valores combinados de ambas columnas deben ser inicos, aunque puede existir
duplicacion dentro de una columna individual. Un experimentado disefiador de bases de datos
seflalard rapidamente que ésta es una superclave, lo que significa que tiene mas columnas que el
minimo necesario para formar una clave primaria. Y esto es cierto (ID_ARTISTA por si misma es
unica, y realmente no es necesario afiadirle NOMBRE_ARTISTA con el fin de formar una clave
primaria, y si se quiere estar seguro de que los valores duplicados de ID_ARTISTA no se incluyen
en la tabla, lo que significa que se debe tener una clave primaria con sélo un ID_ARTISTA en
ella). Se hace aqui para ilustrar que una clave primaria puede contener miltiples columnas y para
definir una forma que una restriccién de tabla debe utilizar.

Puede encontrar que desea definir tanto una restriccion PRIMARY KEY como una restriccion
UNIQUE en una tabla. Para hacerlo, simplemente defina las restricciones como normalmente lo
hace. Por ejemplo, la siguiente instruccién de SQL define una restriccion PRIMARY KEY en la
columna ID_ARTISTA y una restriccién UNIQUE en la columna NOMBRE_ARTISTA:

CREATE TABLE CD_ARTISTAS

(ID_ARTISTA INT PRIMARY KEY,
NOMBRE ARTISTA VARCHAR (60),
ID_AGENCIA INT,

CONSTRAINT UN_NOMBRE ARTISTA UNIQUE (NOMBRE ARTISTA));

82

Fundamentos de SQL

Se alcanza el mismo resultado con el siguiente cédigo:

CREATE TABLE CD_ ARTISTAS

(ID_ARTISTA INT,
NOMBRE ARTISTA VARCHAR(60) UNIQUE,
ID AGENCIA INT,

CONSTRAINT PK ID ARTISTA PRIMARY KEY (ID ARTISTA));

NOTA

Se utiliza una restriccién UNIQUE en estas instrucciones de SQL sélo como una forma de
demostrar cémo se puede usar la restriccién en una tabla con una clave primaria. Lo mds
probable es que no se quiera utilizar una restriccién UNIQUE para la columna NOMBRE _
ARTISTA, ya que es posible para dos artistas compartir el mismo nombre. (Por ejemplo, dos
diferentes artistas de blues, ambos de los cuales vivieron en la primera parte del siglo pasado,
con el nombre de Sonny Boy Williamson.)

Pregunta al experto

P: ;Pueden las columnas en una tabla pertenecer tanto a una restriccion UNIQUE como a
una restriccion PRIMARY KEY?

R: Si, siempre y cuando no sean exactamente las mismas columnas. Por ejemplo, suponga que
tiene una tabla que incluye tres columnas: ID_ARTISTA, NOMBRE_ARTISTA y LUGAR_
DE_NACIMIENTO. Se puede definir una restriccion PRIMARY KEY que incluya las co-
lumnas ID_ARTISTA y NOMBRE_ARTISTA, que garantice pares de valores tinicos en esas
dos columnas, pero los valores dentro de columnas individuales pueden atin estar duplicados.
Sin embargo, se puede entonces definir una restriccion UNIQUE que incluya sélo la columna
NOMBRE_ARTISTA para garantizar que esos valores también son tnicos. (Ciertamente este
no es el mejor disefio, pero ilustra el punto.) También se puede crear una restriccion UNIQUE
que incluya las columnas NOMBRE_ARTISTA y LUGAR_DE_NACIMIENTO para garan-
tizar pares de valores tinicos en esas dos columnas. Lo tnico que se puede hacer es crear una
construccién UNIQUE que incluya exactamente las mismas columnas como en la restriccion
PRIMARY KEY y viceversa.

P: se expuso que una columna que se incluye en una restriccion PRIMARY KEY no acepta
valores nulos. ;Qué sucede si esa columna se configura también con una restriccion NOT
NULL?

R: Nada diferente sucede. La tabla se crea de la misma forma. Una definicién de columna que in-
cluye una PRIMARY KEY estd diciendo lo mismo que una definicién de columna que incluye
NOT NULL PRIMARY KEY. De hecho, antes de SQL-92, las palabras clave NOT NULL se
requerian en todas las columnas incluidas en una restriccion PRIMARY KEY.

Capitulo 4: Implementacién de la integridad de datos 83

Cabe mencionar lo mismo para las restricciones UNIQUE. No fue sino hasta SQL-92 que

se permitieron los valores nulos en columnas incluidas en una restriccion UNIQUE, que las
diferenciaban claramente de las restricciones PRIMARY KEY. También desconfie de las dife-
rentes implementaciones entre los proveedores. Por ejemplo, Oracle afiade automaticamente
restricciones NOT NULL a columnas incluidas en una restriccion PRIMARY KEY, mientras
que SQL Server (o por lo menos algunas versiones) expone un error si se intenta crear una
restriccion de PRIMARY KEY utilizando columnas que no tienen especificada una restriccion
NOT NULL.

Afada restricciones FOREIGN KEY

Hasta este punto, los tipos de restricciones que se analizaron tienen que ver principalmente con la
garantia de la integridad de los datos dentro de una tabla. La restriccion NOT NULL evita el uso
de valores nulos dentro de una columna, y las restricciones UNIQUE y PRIMARY KEY garanti-
zan la singularidad de los valores dentro de una columna o conjunto de columnas. Sin embargo,

la restriccion FOREIGN KEY es diferente en el sentido de que se ocupa de cémo los datos en una
tabla hacen referencia a los datos en otra tabla, que es la razén por la que se conoce como una res-
triccion referencial (en relacién con otra tabla). (De hecho, hay una excepcién, llamada relacion
recursiva, donde la clave fordnea hace referencia a otra fila en la misma tabla, pero por el momen-
to se ignorard este caso especial para centrarse en los fundamentos.)

Posiblemente recuerde del capitulo 1 que las tablas en una base de datos relacional estdn uni-
das entre si de una manera significativa con el fin de garantizar la integridad de los datos. Esta aso-
ciacién entre tablas forma una relacién que proporciona una integridad referencial entre las tablas.
La integridad referencial evita la manipulacién de los datos en una tabla que afecte negativamente
los datos en otra tabla. Echemos un vistazo a un ejemplo que ilustra este punto. La figura 4-5
muestra dos tablas (TITULOS_CD y EDITORES_CD) que estan definidas con una clave primaria.

TITULOS_CD EDITORES_CD
ID_TITULO_CD: | TITULO_CD: ID_EDITOR: ID_EDITOR: NOMBRE_COMPANIA:
INT VARCHAR(60) INT INT VARCHAR(60)
11001 Famous Blue Raincoat 5422 5403 MCA Records
11002 Blue 5402 5402 Reprise Records
11003 Past Light 5412 5409 Geffen
11004 Kojiki 5409 5412 Windham Hill Records
11005 That Christmas Feeling 5403 5422 Private Music
11006 Patsy Cline: 12 Greatest Hits | 5403

Figura 4-5 Relacién entre las tablas TITULOS_CD y EDITORES_CD.

84

Fundamentos de SQL

La columna ID_TITULO_CD en la tabla TITULOS_CD se configuré con una restriccion PRIMA-
RY KEY, asi como la columna ID_EDITOR en la tabla EDITORES_CD. Ambas columnas estan
sombreadas en la ilustracion.

Observe que la tabla TITULOS_CD contiene una columna llamada ID_EDITOR. Esta co-
lumna incluye valores de la columna ID_EDITOR de la tabla EDITORES_CD. De hecho, los
valores de ID_EDITOR en la tabla TITULOS_CD incluyen sélo valores que vienen de la columna
ID_EDITOR en la tabla EDITORES_CD. No sera posible insertar una fila en TITULOS_CD si el
valor ID_EDITOR no figura en la tabla EDITORES_CD. Al mismo tiempo, si se modifica o eli-
mina el valor ID_EDITOR en la tabla EDITORES_CD, se puede predecir el resultado de la accién
si esos mismos valores existen en la tabla TITULOS_CD. Bajo ninguna circunstancia se querra
eliminar a un editor y dejar los valores ID_EDITOR en la tabla TITTULOS_CD que hacen refe-
rencia a un editor que ya no existe. Estos resultados se pueden lograr utilizando una restriccién de
FOREIGN KEY. Una restriccion FOREIGN KEY aplica la integridad referencial entre dos tablas
para garantizar que no se tome ninguna accién en cualquiera de las tablas que afecte negativamen-
te los datos protegidos por la restriccion.

En las tablas mostradas en la figura 4-5, la restriccion FOREIGN KEY debe configurarse en
la columna ID_EDITOR de la tabla TITULOS_CD. La restriccion FOREIGN KEY restringe los
valores en esa columna de los valores de un clave de candidato (a menudo la clave primaria) en
la tabla relacionada. S6lo se permiten los valores de datos vélidos en la columna o columnas FO-
REIGN KEY.

NOTA

La tabla que contiene la clave forénea es la tabla de referencia. La tabla a la que se hace refe-
rencia en la clave fordénea es la tabla referenciada. Asimismo, la columna o columnas que com-
ponen la clave fordnea en la tabla referenciada hacen referencia a éstas como columnas referen-
ciadas. Al hacer referencia a las columnas por la clave fordnea, éstas son columnas referenciadas.

Cuando se crea una restriccion FOREIGN KEY, se deben seguir varias directrices:

Las columnas referenciadas se deben definir con una restriccion UNIQUE o una PRIMARY
KEY. Como podra adivinar, la de clave primaria es la mas utilizada por las columnas referen-
ciadas.

Una restriccion FOREIGN KEY se puede crear como una restriccion de tabla o una restriccion
de columna. Si se crea la clave fordnea como una restriccién de columna, se puede incluir s6lo
una columna. Si se crea la clave fordnea como una restriccién de tabla, se pueden incluir una o
mds columnas.

La clave foranea en la tabla de referencia debe incluir el mismo nimero de columnas que sean
referenciadas, y las columnas de referencia deben cada una configurarse con los mismos tipos
de datos que su contraparte de referencia. Sin embargo, las columnas de referencia no deben
tener necesariamente los mismos nombres que las columnas referenciadas.

Si no se especifican las columnas referenciadas cuando se define una restriccion FOREIGN
KEY, entonces las columnas definidas en la clave primaria de la tabla referenciada se utilizan
como columnas referenciadas.

Capitulo 4: Implementacién de la integridad de datos 85

Estas directrices estardn mds claras cuando explique cémo implementar una clave foranea.
En primer lugar, echemos un vistazo a la sintaxis bésica utilizada para crear esa restriccion. Si se
quiere afiadir una restriccion FOREIGN KEY como una restriccién de columna, se debe agregar la
restriccion a la definicién de una columna, como se muestra en la siguiente sintaxis:

<nombre de columna> { <tipo de datos> | <dominio> } [NOT NULL]
REFERENCES <tabla referenciada> [(<columnas referenciadas>)]
[MATCH {FULL | PARTIAL | SIMPLE }]

[< accidn referencial desencadenada > |

Si desea afadir una restriccion FOREIGN KEY como restriccion de tabla debe agregarla como
elemento de tabla en la definicién, como en la siguiente sintaxis:

[CONSTRAINT <nombre de la restriccion>]

FOREIGN KEY (<columna referenciada> [{, <columna referenciada>}...])
REFERENCES <tabla referida> [(columnas de referencia>)]

[MATCH { FULL | PARTIAL | SIMPLE }]

[< accion referencial desencadenada > |

Como puede observarse, la restriccion FOREIGN KEY es un poco mas compleja que la sin-
taxis de la restriccion que se habia analizado hasta ahora. Sin embargo, crear la restriccién basica
FOREIGN KEY es un proceso relativamente simple. Echemos un vistazo a uno primero, para lue-
go continuar con los elementos del lenguaje més complejos.

En el siguiente ejemplo se utiliza la instrucciéon CREATE TABLE para crear la tabla TITU-
LOS_CD (mostrada en la figura 4-5) y definir una restriccién de columna:

CREATE TABLE TITULOS CD
(ID TITULO CD INT,
TITULO_CD VARCHAR (60) ,
ID EDITOR INT REFERENCES EDITORES CD);

Esta instruccion define la restriccion FOREIGN KEY en la columna ID_EDITOR. Observe
que, con el fin de afiadir una restricciéon de columna, todo lo que se tiene que hacer es agregar
la palabra clave REFERENCES y el nombre de la tabla referenciada. También note que la clave
foranea contiene el mismo nimero de columnas que la clave primaria en la tabla referenciada, y
las columnas referenciadas y de referencia son del mismo tipo de datos. Recuerde: si no se hace
referencia de la clave primaria en la tabla referenciada, se debe también incluir el nombre de la co-
lumna o columnas (por ejemplo, REFERENCES EDITORES_CD (ID_EDITOR)).

NOTA

Antes de poder crear una clave fordnea en una tabla, la tabla referenciada ya debe existir y
se debe definir una restriccién UNIQUE o PRIMARY KEY para esa tabla.

86

Fundamentos de SQL

En el siguiente ejemplo se crea una clave fordnea, que es una restriccion de tabla. A diferencia
del ejemplo anterior, se incluye el nombre de una columna referenciada en esta definicion de res-
triccion, aun cuando no es necesario:

CREATE TABLE TITULOS_ CD
(ID_TITULO CD INT,
TITULO_CD VARCHAR (60) ,
ID_EDITOR INT,
CONSTRAINT FK_ID EDITOR FOREIGN KEY (ID_EDITOR)
REFERENCES EDITORES CD (ID EDITOR)) ;

Las tdltimas dos lineas del c6digo son la definicién de restriccién. El nombre de la restriccion,
FK_ID_EDITOR, viene después de la palabra clave CONSTRAINT. Los nombres de las restric-
ciones no son necesarios porque el RDBMS asigna un nombre generado por el sistema si no se
proporciona uno. Sin embargo, es una buena practica suministrar uno propio, ya que los nombres
de las restricciones a menudo muestran mensajes de error cuando una instruccién SQL intenta
violar una restriccién, y los nombres suministrados serdn faciles de reconocer de aquellos propor-
cionados por el DBMS. Después del nombre de la restriccidn, las palabras clave FOREIGN KEY
indican el tipo de restriccion, que es seguido por el nombre de la columna de referencia, ID_EDI-
TOR. Este es el nombre de la columna en la que la restriccién tendra lugar. Si hubiera varios nom-
bres de columnas, deben separarse por comas. El nombre de la columna de referencia es entonces
seguido por la palabra clave REFERENCES, que es seguido por el nombre de la tabla referencia-
da, EDITORES_CD. El nombre de la columna referenciada viene después del nombre de la tabla
referenciada.

Eso es todo lo que hay que hacer. Una vez que la restriccion se define, no podra poner valo-
res en la columna ID_EDITOR de la tabla TITULOS_CD a menos que esos valores ya existan en
la clave primaria de la tabla EDITORES_CD. Debe observar, sin embargo, que los valores en la
clave fordnea no tienen que ser tnicos, como deben ser en la clave primaria EDITORES_CD. Los
valores en la clave fordnea pueden repetirse cualquier nimero de veces, a menos que se restrinja la
columna por una restriccion tnica.

Antes de pasar a discutir los otros elementos de la sintaxis de FOREIGN KEY, echemos un
vistazo répido a la clave fordnea que incluye varias columnas. En la figura 4-6 hay dos tablas: AR-
TISTAS_INTERPRETES y TIPOS_MUSICA_ARTISTAS.

La clave primaria en la tabla ARTISTAS_INTERPRETES se define en las columnas NOM-
BRE_ARTISTA y FDN_ARTISTA. La siguiente instruccién de SQL crea la tabla TIPOS_MUSI-
CA_ARTISTAS, que incluye una clave fordnea formada por las columnas NOMBRE_ARTISTA y
FDN:

CREATE TABLE TIPOS MUSICA ARTISTAS
(NOMBRE ARTISTA VARCHAR(60),

FDN DATE,
ID TIPO INT,
CONSTRAINT FK ARTISTAS CD FOREIGN KEY (NOMBRE ARTISTA, FDN)

REFERENCES ARTISTAS INTERPRETES (NOMBRE ARTISTA, FDN ARTISTA));

Capitulo 4:

Implementacién de la integridad de datos

87

ARTISTAS_INTERPRETES

TIPOS_MUSICA_ARTISTAS

NOMBRE_ARTISTA: | FDN_ARTISTA:| LUGAR_DE_NACIMIENTO: PSTR_IN_STK:| INOMBRE_ARTISTA:| FDN: ID_TIPE:
VARCHAR(60) DATE VARCHAR(60) BOOLEAN VARCHAR(60) DATE INT
Jennifer Warnes | 1947-03-03 | Desconocido Falso Jennifer Warnes | 1947-03-03 |10
Joni Mitchell 1943-11-0 7 | Fort MacLeod, Alberta, Canada Desconocido || Jennifer Warnes 1947-03-03 |06
Bing Crosby 1904-05-02 | Tacoma, Washington, U.S.A. Verdadero Joni Mitchell 1943-11-07 |10
Patsy Cline 1932-09-08 | Winchester, Virginia, U.S.A. Verdadero Joni Mitchell 1943-11-07 |05
Placido Domingo | 1941-01-21 | Madrid, Espaia Falso Joni Mitchell 1943-11-07 |12
Luciano Pavarotti | 1935-10-12 | Desconocido Desconocido Bing Crosby 1904-05-02 |05
Bing Crosby 1904-05-02 |13
Patsy Cline 1932-09-08 |02
Patsy Cline 1932-09-08 |10
Placido Domingo | 1941-01-21 |19
Luciano Pavarotti | 1935-10-12 (19

Figura 4-6 Una clave forénea formada por varias columnas.

En esta instruccién hay dos columnas de referencia (NOMBRE_ARTISTA y FDN) y dos

columnas referenciadas (NOMBRE_ARTISTA y FDN_ARTISTA). Las columnas NOMBRE_AR-

TISTA en las dos tablas tienen el mismo tipo de datos, y la columna FDN tiene el mismo tipo de

datos que la columna FDN_ARTISTA. Como se puede observar, una de las columnas de referencia

(FDN) tiene un nombre diferente que su contraparte de referencia (FDN_ARTISTA).

Pregunta al experto

P:

En la figura 4-6 y en los ejemplos anteriores, se creé una restriccion FOREIGN KEY en

las columnas NOMBRE_ARTISTA y FDN en la tabla TIPOS_MUSICA_ARTISTAS.
. Cual podria ser la clave primaria para esta tabla?

Recuerde que una clave primaria debe identificar de manera exclusiva cada fila en una tabla.

Sin embargo, ya que los pares de valores en las columnas NOMBRE_ARTISTA y FDN se
pueden repetir (lo que significa que también pueden repetirse en las columnas individuales),
esas dos columnas no se pueden utilizar como una clave primaria para esta tabla. Por otro
lado, la columna ID_TIPO también puede repetir valores; por lo tanto, esa columna no se pue-
de utilizar. Ademads, probablemente no desee combinar la columna ID_TIPO con una de las

(continda)

88

Fundamentos de SQL

otras dos columnas porque es posible que se repitan filas (por ejemplo, dos artistas con el mis-
mo nombre interpretando el mismo tipo de musica, tal como los dos musicos de blues llama-
dos Sonny Boy Williamson, o dos artistas con la misma fecha de nacimiento interpretando el
mismo tipo de musica). Como resultado, la mejor solucién (ademds de afiadir otra columna a
la tabla) es mover las tres columnas a una clave primaria. Juntas, las tres columnas identifican
de forma exclusiva cada fila, ya que es poco probable que alguien comparta el mismo nombre,
fecha de nacimiento y tipo de musica (aunque cualquier cosa es posible, razon por la cual, en
ultima instancia, afiadir otra columna que garantice que los datos son tinicos es la mejor mane-
ra de hacerse).

La cldusula MATCH

Ahora que tiene una comprensién de cémo definir una restriccién bdsica de clave fordnea, eche-
mos un vistazo de otra linea de sintaxis de FOREIGN KEY:

[MATCH { FULL | PARTIAL | SIMPLE }]

Se puede decir por los paréntesis que se trata de una cldusula opcional. Y de hecho, muy
pocos proveedores de productos respaldan actualmente esta cldusula (no se respalda por SQL
Server 2005, Oracle 11g o MySQL 5.0, por ejemplo), por lo que verd que no se utiliza mucho. Sin
embargo, se describe en el estdndar SQL, lo que significa que se espera que mds proveedores de
productos la respalden en el futuro. Su propdsito es permitirle decidir cémo tratar los valores nulos
en las columnas de clave fordnea con respecto a los valores que permiten que se inserten en las
columnas de referencia. Si las columnas no permiten valores nulos, entonces la cldusula MATCH
no se aplica. Se tienen tres opciones que se pueden utilizar en la clausula MATCH:

Si se especifica MATCH FULL, todas las columnas de referencia deben tener un valor nulo o
ninguna de esas columnas puede tener un valor nulo.

Si se especifica MATCH PARTIAL y una o mds columnas de referencia pueden tener valores
nulos siempre y cuando el resto de las columnas de referencia tengan valores que igualen a las
columnas de referencia correspondientes.

Si se especifica MATCH SIMPLE y una o mas columnas de referencia tienen valores nulos,
entonces el resto de las columnas de referencia pueden tener valores que no estian contenidos
en las columnas de referencia correspondientes. La opciéon SIMPLE estd implicita si no se in-
cluye la cldusula MATCH en la definicién de la restriccién de FOREIGN KEY.

La mejor manera de ilustrar cada una de esas opciones MATCH es mediante ejemplos de
datos validos e invélidos que pueden insertarse en las columnas de referencia. Volviendo al ejem-
plo mostrado en la figura 4-6, se puede observar que una clave fordnea en la tabla TIPOS_MUSI-
CA_ARTISTAS se forma por dos columnas de referencia: NOMBRE_ARTISTA y FDN. La tabla
4-1 proporciona ejemplos de datos que se pueden o no insertar en las columnas de clave foranea.
Los ejemplos se basan en los datos de las columnas de clave primaria de la tabla ARTISTAS_IN-
TERPRETES.

89

Capitulo 4: Implementacién de la integridad de datos

Opcién MATCH | Ejemplos de datos validos Ejemplos de datos invalidos
FULL Joni Mitchell, 1943-11-07 NULL, 1943-11-07

NULL, NULL Joni Mitchell, NULL

Joni Mitchell, 1802-08-03

PARTIAL Patsy Cline, 1932-09-08 NULL, 1802-08-03

NULL, 1932-09-08 Henryk Gérecki, NULL

Patsy Cline, NULL Patsy Cline, 1947-03-03

NULL, NULL
SIMPLE Bing Crosby, 1904-05-02 Bing Crosby, 1802-08-03

NULL, 1904-05-02 Bing Crosby, 1947-03-03

Bing Crosby, NULL Henryk Gérecki, 1947-03-03

NULL, 1802-08-03

Henryk Gérecki, NULL

NULL, NULL

Tabla 4-1 Ejemplos vélidos e invélidos de las opciones de una cldusula MATCH.

NOTA

Probablemente no desea permitir que haya valores nulos en las columnas de referencia en la
tabla TIPOS_MUSICA_ARTISTAS, particularmente en la columna NOMBRE_ARTISTA. Y si cual-
quiera de esas columnas se utiliza en la clave primaria, no seria posible permitir valores nulos.
Sin embargo, con el fin de demostrar cémo trabajan las opciones MATCH, asumamos que se
permiten los valores nulos.

Si decide utilizar una clausula MATCH, simplemente afiddala al final de la definicién de la
restriccion FOREIGN KEY, como se muestra en la siguiente instruccién de SQL (asumiendo que
la aplicacién de SQL la respalda):

CREATE TABLE TIPOS MUSICA ARTISTAS
(NOMBRE_ ARTISTA VARCHAR(60),
FDN DATE,
ID TIPO INT,
CONSTRAINT FK_ARTISTAS CD FOREIGN KEY (NOMBRE ARTISTA, FDN)
REFERENCES ARTISTAS INTERPRETES MATCH FULL) ;

Para insertar datos en las columnas de referencia (NOMBRE_ARTISTA y FDN), ambos valores
tienen que ser nulos o deben ser valores de datos vélidos de las columnas referenciadas en la tabla
ARTISTAS_INTERPRETES.

La cldusula <accién referencial desencadenada>

La cldusula final en la sintaxis de la restriccion FOREIGN KEY es la cldusula opcional <accion
referencial desencadenada>. La cldusula permite definir qué tipos de acciones se deben tomar
cuando se intenta actualizar o eliminar datos desde columnas referenciadas (si ese intento causa
una violacién de los datos en las columnas de referencia). Por ejemplo, suponga que trata de elimi-
nar datos de una tabla con clave primaria. Si esa clave primaria hace referencia a una clave foranea

90

Fundamentos de SQL

y si los datos a eliminar se almacenan en una clave foranea, entonces eliminar los datos desde una
clave primaria causaria una violacion a la restriccion FOREIGN KEY. Los datos en las columnas
de referencia siempre deben incluirse en las columnas referenciadas.

El punto que debe recordarse acerca de la clausula <accién referencial desencadenada> es que
se incluye en la definicién de la tabla de referencia (a través de una clave foranea) una accién que
se debe tomar como resultado de algo que se realiza a la tabla referenciada. Esto se puede aclarar
echando un vistazo a la sintaxis para la clausula de <accion referencial desencadenada>:

ON UPDATE <accion referencial> [ON DELETE <accion referencial> |

| ON DELETE <accién referencial> [ON UPDATE < accién referencial> |
<accion referencial>::=

CASCADE | SET NULL | SET DEFAULT | RESTRICT | NO ACTION

NOTA

El simbolo ::= (dos puntos consecutivos y un signo de igual) se utiliza en el esténdar SQL:2006
para separar a un marcador de posicién de las llaves de la definicién. En la sintaxis anterior
se define el marcador de posicién <accién referencial>. El marcador de posicién se utiliza en
el cédigo que precede a la definicién. Se tomard entonces la definicién (las cinco palabras
clave) y se usardn en lugar del marcador de posicién <accién referencial> como se utiliza en

las cldusulas ON UPDATE y ON DELETE.

Como se observa de la sintaxis, se puede definir una cldusula ON UPDATE, y una cldusula
ON DELETE, o ambas, y se pueden definir en cualquier orden. Para cada una de estas cldusulas se
puede escoger una de cinco acciones referenciales:

Si se utiliza CASCADE y los datos se actualizan o eliminan en las columnas referenciadas, los
datos en las columnas de referencia se actualizan o eliminan.

Si se utiliza SET NULL y los datos se actualizan o eliminan en las columnas referenciadas, los
valores en las columnas de referencia correspondientes se establecen como nulos. Los valores
nulos tienen que respaldarse en las columnas de referencia para que esta opcion funcione.

Si se utiliza SET DEFAULT vy los datos se actualizan o eliminan en las columnas referencia-
das, los valores en las columnas de referencia correspondientes se establecen a sus valores
predeterminados. Se deben asignar valores predeterminados a las columnas de referencia para
que esta opcion funcione.

Si se utiliza RESTRICT y se tratan de actualizar o eliminar datos en las columnas referencia-
das que causan una violacién de clave fordnea, se previene la ejecucion de esta accion. Los
datos en las columnas de referencia nunca pueden violar la restriccion FOREIGN KEY, ni
siquiera temporalmente.

Si se utiliza NO ACTION y se tratan de actualizar o eliminar datos en las columnas referencia-
das que causan una violacién de clave fordnea, se previene la ejecucién de esta accién. Sin em-
bargo, las violaciones de datos pueden ocurrir temporalmente bajo ciertas condiciones durante
la ejecucién de una instruccion SQL, pero los datos en la clave fordnea nunca se violan en su
estado final (al final de la ejecucion). La opcién NO ACTION es predeterminada y se utiliza
tanto para actualizar como para eliminar, si no se especifica una accién referencial desencade-
nada.

Capitulo 4: Implementacién de la integridad de datos 91

Si decide utilizar la cldusula <accién referencial desencadenada>, simplemente afiddala al
final de la definicion de la restriccion de FOREIGN KEY, como se muestra en la siguiente instruc-
cién SQL:

CREATE TABLE TIPOS MUSICA ARTISTAS
(NOMBRE_ARTISTA VARCHAR(60),

FDN DATE,
ID TIPO INT,
CONSTRAINT FK ARTISTAS CD FOREIGN KEY (NOMBRE ARTISTA, FDN)

REFERENCES ARTISTAS INTERPRETES ON UPDATE CASCADE ON DELETE CASCADE) ;

Si actualiza o elimina datos de las columnas referenciadas en ARTISTAS_INTERPRETES, esos
cambios se haran en las columnas de referencia en la tabla TIPOS_MUSICA_ARTISTAS.

Afada restricciones NOT NULL,

Unicas y referenciales

En el capitulo 3, Pruebe esto 3-1 y 3-2, se crearon varias tablas que se agregaron a la base de datos
INVENTARIO (o el esquema CD_INVENTARIO). En este ejercicio se afadirdn una serie de
restricciones a las tablas y se creardn nuevas tablas que también se definirdn con restricciones. Sin
embargo, en lugar de utilizar la instruccion ALTER TABLE para modificar las tablas que ya se
crearon, se volverdn a crear esas tablas. La ventaja de esto es que podrd observar la definicion de
la tabla por completo en lo que se refiere a la actualizacién del modelo de datos, mostrado en la
figura 4-7.

El modelo de datos incorpora un par de elementos mds, que se han visto antes. Incorpora ta-
blas, columnas dentro de esas tablas, tipos de datos para esas columnas, restricciones y relaciones
entre tablas. Ya debe estar familiarizado con la forma en que se representan las tablas, columnas y
tipos de datos, asi que echemos un vistazo a las restricciones y relaciones:

Las columnas incluidas en la clave primaria estdn en la seccién superior de la tabla, y las otras
columnas se encuentran en la seccién inferior. Por ejemplo, en la tabla DISCOS_COMPAC-
TOS, la columna ID_DISCO_COMPACTO es la clave primaria. En algunos casos, como en la
tabla TIPOS_DISCOS_COMPACTOS, todas las columnas se incluyen en la clave primaria.

Cada clave fordnea se representa por [FK].

Las predeterminaciones, las restricciones UNIQUE vy las restricciones NOT NULL se identifi-
can con cada columna aplicable.

Las relaciones, tal como las claves fordneas las definen, se representan por lineas que conectan
la clave fordnea en una tabla a la clave de candidato (suele ser la clave primaria) en otra tabla.

Encontrara ttil este modelo de datos no sélo en este ejercicio, sino para otros ejercicios en el
libro, los cuales contindan aprovechando o utilizando la base de datos INVENTARIO. Puede tam-
bién descargar el archivo Try_This_04.txt, que contiene las instrucciones SQL utilizadas en este
ejercicio (en inglé€s).

(continda)

92 Fundamentos de SQL

CDS_ARTISTA ARTISTAS

ID_DISCO_COMPACTO INT [FK]

ID_ARTISTA INT [FK] —» | ID_ARTISTA INT

NOMBRE_ARTISTA VARCHAR(60) NOT NULL
LUGAR_DE_NACIMIENTO VARCHAR(60)
DEFAULT 'Desconocido’ NOT NULL

DISCOS_COMPACTOS TIPOS_DISCO_COMPACTO TIPOS_MUSICA
ID_DISCO_COMPACTO INT —ID_DISCO_COMPACTO INT [FK] _|—> ID_TIPO INT

ID_TIPO_MUSICA INT [FK]

TITULO_CD VARCHAR(60) NOT NULL
ID_DISQUERA INT NOT NULL [FK]

NOMBRE_TIPO VARCHAR(20)
NOT NULL UNIQUE

DISQUERAS_CD

ID_DISQUERA INT

NOMBRE_COMPANIA VARCHAR(60)
DEFAULT 'Independiente’
NOT NULL

Figura 4-7 Modelo de datos para la base de datos INVENTARIO.

NOTA

Los modelos de datos son muy variados. El modelo que aqui se utiliza es especifico para las
necesidades del libro. Encontraré en el mundo real que los modelos son diferentes de lo que
se ve aqui. Por ejemplo, las relaciones entre tablas se representan de manera diferente, y la
informacién de la definicién de columna podria no ser tan extensa.

Paso a paso

1. Abra la aplicacion de clientes de su RDBMS y conecte la base de datos INVENTARIO.

2. Primero necesita eliminar las cuatro tablas (DISCOS_COMPACTOS, TIPOS_DISCO_COM-
PACTO, TIPOS_MUSICA y DISQUERAS_CD) que ya se crearon. Introduzca y ejecute las

siguientes instrucciones:

DROP TABLE DISCOS_ COMPACTOS
DROP TABLE TIPOS DISCO_COMPACTO
DROP TABLE TIPOS MUSICA

DROP TABLE DISQUERAS CD

CASCADE;
CASCADE;
CASCADE;
CASCADE;

Capitulo 4: Implementacién de la integridad de datos 93

NOTA

Si cred la tabla ARTISTAS o la tabla CD_ARTISTA cuando probé con ejemplos o experimenté
con las instrucciones CREATE TABLE, asegrese de eliminar ésas también.

NOTA

SQL Server no soporta la opcién CASCADE, y en Oracle se debe escribir como CASCADE
CONSTRAINTS.

Ahora puede volver a crear estas tablas y crear otras nuevas. Debe crear las tablas en el orden
indicado en este ejercicio, ya que las tablas referidas en las claves fordneas tienen que existir
(con las claves primarias creadas) antes de que pueda crear las claves fordneas. Asegurese de
hacer referencia al modelo de datos de la figura 4-7 para obtener mds detalles acerca de cada
una de las tablas que se crean.

La primera tabla que se crea es la tabla TIPOS_MUSICA. Contiene dos columnas: ID_TIPO y
NOMBRE_TIPO. Se configura la columna ID_TIPO como la clave primaria, y se configura la
restricciéon UNIQUE vy la restriccion NOT NULL en la columna NOMBRE_TIPO. Introduzca y
ejecute la siguiente instruccién SQL:

CREATE TABLE TIPOS MUSICA

(ID_TIPO INT,
NOMBRE TIPO VARCHAR (20 NOT NULL,
CONSTRAINT UN_NOMBRE TIPO UNIQUE (NOMBRE TIPO),
CONSTRAINT PK TIPOS MUSICA PRIMARY KEY (ID TIPO));

La siguiente tabla que se crea es la tabla DISQUERAS_CD. La tabla incluye la columna ID_
DISQUERA, que se define como la clave primaria, y la columna NOMBRE_COMPANIA, que
se define con un valor predeterminado y una restriccion NOT NULL. Introduzca y ejecute la
siguiente instruccién SQL:

CREATE TABLE DISQUERAS CD

(ID_DISQUERA INT,
NOMBRE_COMPAﬁIA VARCHAR (60) DEFAULT 'Independiente' NOT NULL,
CONSTRAINT PK DISQUERAS CD PRIMARY KEY (ID DISQUERA)) ;

Ahora que se cred la tabla DISQUERAS_CD, se puede crear la tabla DISCOS_COMPACTOS.
La tabla DISCOS_COMPACTOS contiene una clave foranea que hace referencia a la tabla
DISQUERAS_CD. Esta es la razén por la que se creé primero la tabla DISQUERAS_CD. In-
troduzca y ejecute la siguiente instruccién SQL:

CREATE TABLE DISCOS_COMPACTOS
(ID_DISCO COMPACTO INT,
TITULO_CD VARCHAR (60) NOT NULL,
ID DISQUERA INT NOT NULL,
CONSTRAINT PK_DISCOS_COMPACTOS PRIMARY KEY (ID_DISCO_COMPACTO),
CONSTRAINT FK_ID DISQUERA FOREIGN KEY (ID DISQUERA) REFERENCES
DISQUERAS CD) ;

(continda)

94 Fundamentos de SQL

6. La siguiente tabla, TIPOS_DISCO_COMPACTO, incluye dos claves fordneas, junto con su
clave primaria. Las claves fordneas hacen referencia a las tablas DISCOS_COMPACTO y TI-
POS_MUSICA, las cuales ya se habian creado. Introduzca y ejecute la siguiente instruccion
SQL:

CREATE TABLE TIPOS DISCO COMPACTO
(ID_DISCO_COMPACTO INT,
ID TIPO MUSICA INT,
CONSTRAINT PK_TIPOS DISCO_COMPACTO
PRIMARY KEY (ID _DISCO_COMPACTO, ID TIPO MUSICA),
CONSTRAINT FK_ID_DISCO_COMPACTO 01
FOREIGN KEY (ID DISCO COMPACTO) REFERENCES DISCOS COMPACTOS,
CONSTRAINT FK_ID TIPO MUSICA
FOREIGN KEY (ID TIPO MUSICA) REFERENCES TIPOS MUSICA) ;

7. Ahora ya se puede crear la tabla ARTISTAS. Introduzca y ejecute la siguiente instruccién SQL:

CREATE TABLE ARTISTAS

(ID_ARTISTA INT,
NOMBRE ARTISTA VARCHAR (60) NOT NULL,
LUGAR _DE NACIMIENTO VARCHAR (60) DEFAULT 'Desconocido' NOT NULL,
CONSTRAINT PK ARTISTAS PRIMARY KEY (ID ARTISTA)) ;

8. La dltima tabla que se crea (al menos por ahora) es la tabla CDS_ARTISTA. Introduzca y eje-
cute la siguiente instruccién SQL:

CREATE TABLE CDS_ARTISTA
(ID_ARTISTA INT,

ID DISCO_COMPACTO INT,

CONSTRAINT PK CDS ARTISTA PRIMARY KEY (ID ARTISTA, ID DISCO
COMPACTO),

CONSTRAINT FK ID ARTISTA FOREIGN KEY (ID ARTISTA) REFERENCES
ARTISTAS,

CONSTRAINT FK ID DISCO_ COMPACTO 02 FOREIGN KEY (ID DISCO COMPACTO)

REFERENCES DISCOS COMPACTOS) ;

9. Cierre la aplicacién de cliente.

Resumen de Pruebe esto

La base de datos cuenta ahora con seis tablas, cada una configurada con los valores predetermi-
nados y las restricciones necesarias. En este ejercicio, se seguird un orden especifico para crear
las tablas con el fin de aplicar mas facilmente las claves fordneas. Sin embargo, se pudieron haber
creado las tablas en cualquier orden, sin las claves fordneas (a menos que las tablas referenciadas
ya se hayan creado) y luego agregarse en la clave fordnea, pero esto agrega pasos extra. De hecho,
se hubieran podido modificar las tablas que existian antes de este ejercicio (en lugar de eliminar-
las y después volver a crearlas), siempre y cuando se crearan las claves primarias (o restricciones
UNIQUE) en las tablas referenciadas antes de crear las claves fordneas en las tablas de referencia.
Independientemente del enfoque que tome, el resultado final debe ser que ahora la base de datos
cuenta con las tablas necesarias para empezar a pasar a otros componentes de SQL.

Capitulo 4: Implementacién de la integridad de datos 95

Defina restricciones CHECK

Anteriormente en este capitulo, en la seccién “Entienda las restricciones de integridad”, se anali-
zaron varias categorias de restricciones y los tipos de restricciones que se soportan. (Remitase a la
figura 4-1 para una descripcion general de esas categorias.) Un tipo de restriccion (la restriccion
CHECK) se puede definir como restricciones de tabla, restricciones de columna, restricciones de
dominio, o en afirmaciones. Una restriccion CHECK permite especificar qué valores se pueden in-
cluir en una columna. Se puede definir un rango de valores (por ejemplo, entre 10 y 100), una lista
de valores (por ejemplo, blues, jazz, pop, country), o una serie de otras condiciones que restringen
exactamente qué valores se permiten en una columna.

Las restricciones CHECK son las més flexibles de todas las restricciones y suelen ser las mas
complicadas. A pesar de esto, la sintaxis basica para una restriccion CHECK es relativamente sen-
cilla. Para crear una restriccion CHECK de columna, utilice la siguiente sintaxis en la definicién
de columna:

<nombre de columna> { <tipo de datos> | <dominio> } CHECK (<condici6n de bisqueda>)
Para crear una restriccion CHECK de tabla, utilice la siguiente sintaxis en la definicién de la tabla:

[CONSTRAINT <nombre de restriccion> | CHECK (<condicién de busqueda>)

Se analizardn las restricciones de dominio y afirmaciones después en esta seccion.

Como se puede observar por la sintaxis, una restriccion CHECK es relativamente sencilla. Sin
embargo, los valores utilizados para la cldusula <condicién de bisqueda> pueden ser muy amplios
y, por consiguiente, bastante complejos. El concepto principal es que la <condicién de busqueda>
se pruebe (se puede decir “compruebe”) para cualquier instrucciéon SQL que intente modificar los
datos en una columna cubierta por la restriccion de CHECK, y si se evalia como TRUE, la ins-
truccién SQL se completa; si se evalia como FALSE, la instruccion SQL se suspende y despliega
un mensaje de error. La mejor manera de aprender acerca de la cldusula es examinar los ejemplos.
Sin embargo, la mayoria de los componentes de la <condicién de bisqueda> se basan en el uso de
predicados con el fin de crear la condicién de bisqueda. Un predicado es una expresion que opera
en valores. Por ejemplo, un predicado se puede utilizar para comparar valores (por ejemplo,
COLUMNA_1 > 10). El simbolo mayor que (>) es un predicado de comparacion, a menudo
denominado como operador de comparacion. En este caso, el predicado verifica que cualquier va-
lor insertado en la COLUMNA_1 sea mayor que 10.

Muchos de los componentes de la <condicién de biisqueda> también se basan en el uso de
subconsultas. Una subconsulta es una expresion que se utiliza como un componente dentro de otra
expresion. Las subconsultas se usan cuando una expresion debe acceder o calcular varias capas de
datos, tal como tener que buscar una segunda tabla para proporcionar datos para una primera tabla.

Tanto los predicados como las subconsultas son temas bastante complicados que van mds alld
del alcance de un andlisis acerca de las restricciones CHECK, y de hecho, cada uno de los temas
se tratan por separado en su propio capitulo. (Vea el capitulo 9 para informacion acerca de predi-
cados y el capitulo 12 para informacion acerca de subconsultas.) A pesar del hecho de que ambos
temas se analizan después en el libro, quiero proporcionar al menos unos ejemplos de las restric-
ciones CHECK para dar una idea de como se implementan en el entorno SQL.

El primer ejemplo que se verd es una restriccion CHECK que define valores minimos y méxi-
mos que se pueden insertar en una columna. La siguiente definicion de tabla en este ejemplo crea

96

Fundamentos de SQL

tres columnas y una restriccion CHECK (como una restriccion de tabla) que restringe los valores
de una de las columnas a una serie de nimeros entre 0 y 30:

CREATE TABLE TITULOS_ CD
(ID DISCO_COMPACTO INT,

TITULO CD VARCHAR (60) NOT NULL,

EN EXISTENCIA INT NOT NULL,

CONSTRAINT CK EN EXISTENCIA CHECK (EN EXISTENCIA > 0 AND EN
EXISTENCIA < 30));

Si se trata de introducir un valor en la columna EN_EXISTENCIA distinto de 1 a 29, se reci-
be un error. Se pueden lograr los mismos resultados definiendo una restriccién de columna:

CREATE TABLE TITULOS_ CD
(ID DISCO COMPACTO INT,
TITULO_CD VARCHAR (60) NOT NULL,
EN_EXISTENCIA INT NOT NULL
CHECK (EN_EXISTENCIA > 0 AND EN EXISTENCIA < 30));

Echemos un vistazo mds de cerca a la cldusula <condicién de bisqueda> en la instruccién,
que en este caso es (EN_EXISTENCIA > 0 AND EN_EXISTENCIA < 30). La clausula primero
nos dice que cualquier valor introducido en la columna EN_EXISTENCIA debe ser mayor que 0
(EN_EXISTENCIA > 0). La palabra clave AND nos dice que las condiciones definidas en ambos
lados de AND deben aplicarse. Finalmente, la cldusula nos dice que el valor debe ser menor que
30 (EN_EXISTENCIA < 30). Debido a que se usa la palabra clave AND, el valor debe ser mayor
que 0 y menor que 30.

Otra manera en la que se puede utilizar una restricciéon CHECK es explicitamente listar los
valores que se pueden introducir en la columna. Esta es una opcién practica si se tiene un nimero
limitado de valores y no son susceptibles de cambio (o cambian con poca frecuencia). La siguiente
instruccién SQL crea una tabla que incluye una restriccion CHECK que define a qué década perte-
nece la musica:

CREATE TABLE TITULOS CD
(ID DISCO_COMPACTO INT,

TITULO_CD VARCHAR (60) NOT NULL,

ERA CHAR (5) ,

CONSTRAINT CK ERA CHECK (ERA IN ('1940s', '1950s',
'1960s', '1970s', '1980s', '1990s', '2000s')));

El valor introducido en la columna ERA debe ser una de las siete décadas representadas en la
condicion de busqueda. Si se trata de introducir un valor que no sea un valor nulo o uno de estos
siete, se recibird un error. Observe que se utiliza el operador IN para designar que los valores en
la columna ERA deben ser uno del conjunto de valores delimitados entre paréntesis después de la
palabra clave IN.

Si el nimero del paréntesis empieza a confundirlo, se puede separar el c6digo en lineas que
siguen a la incrustacién de esos paréntesis. Por ejemplo, la instruccién anterior se puede escribir
como sigue:

CREATE TABLE TITULOS CD
(

Capitulo 4: Implementacién de la integridad de datos

97

ID DISCO _COMPACTO INT,

TITULO_CD VARCHAR (60) NOT NULL,
ERA CHAR(5) ,

CONSTRAINT CK_ERA CHECK

ERA IN

(
'1940s', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'

)

)

Cada conjunto de paréntesis y su contenido se escriben a un nivel que corresponde al nivel de
incrustacion para esa cldusula en particular, al igual que un esquema. Utilizando este método nos
dice exactamente qué cldusulas se incluyen en qué conjunto de paréntesis, y la instruccion se eje-
cuta de la misma forma como si no se hubiera separado las lineas. El inconveniente es que ocupa
mucho espacio (que es la razén por la que no se utiliza este método en el libro), aunque podria ser
una herramienta util para esas instrucciones que son un poco mas complejas.

Ahora veamos otro ejemplo de una restriccion CHECK. Este ejemplo es similar al primero
que examinamos, s6lo que éste se refiere a valores entre determinados niimeros:

CREATE TABLE TITULOS_ CD
(ID DISCO_COMPACTO INT,
TITULO_CD VARCHAR (60) NOT NULL,
EN EXISTENCIA INT NOT NULL,
CONSTRAINT CK_EN EXISTENCIA CHECK
((EN_EXISTENCIA BETWEEN 0 AND 30) OR
(EN_EXISTENCIA BETWEEN 49 AND 60))) ;

En esta instruccioén se utiliza el operador BETWEEN para especificar un rango que incluye
los criterios de valoracion. Ya que se crean dos diferentes rangos, se encierra la especificacion de
cada rango en paréntesis: (EN_EXISTENCIA BETWEEN 0 AND 30) y (EN_EXISTENCIA
BETWEEN 49 AND 60). Estas dos especificaciones de rango se conectan por la palabra clave
OR, lo que indica que una o la otra condicién debe cumplirse. Como resultado, cualquier valor in-
troducido en la columna EN_EXISTENCIA debe ser de 0 a 30 o de 49 a 60.

Como se menciond antes, se aprenderd mds acerca de condiciones de bisqueda en el capitulo
9. En ese momento se verd cudn flexible es la restriccion CHECK. Y cuando se utiliza con sub-
consultas (vea capitulo 12), proporciona una herramienta poderosa para definir explicitamente qué
valores se permiten en una columna en particular.

Defina afirmaciones

Una afirmacion es simplemente un tipo de restriccion CHECK que se puede aplicar a varias tablas.

Por esta razén, una afirmacion se crea por separado de la definicién de una tabla. Desafortuna-
damente, la mayoria de los proveedores de productos, incluyendo Oracle 11g, SQL Server 2005
y MySQL 5.0, atn no respaldan las afirmaciones. Para crear una afirmacion, utilice la siguiente
sintaxis:

CREATE ASSERTION <nombre de la restriccion> CHECK <condiciones de bisqueda>

98

Fundamentos de SQL

Crear una afirmacién es muy similar a crear una restriccion CHECK. Después de la palabra
clave CHECK, se debe proporcionar la(s) condicién(es) de bisqueda necesaria(s). Ahora veamos
un ejemplo. Suponga que la tabla TITULOS_CD incluye una columna para el nimero de discos
compactos en existencia. Se desea que el total para esa tabla sea siempre inferior que el maximo
de inventario que desea llevar. En el siguiente ejemplo, se crea una afirmacién que totalice los va-
lores en la columna EN_EXISTENCIA y verifique que el total sea menor que 5 000:

CREATE ASSERTION LIMITE EN EXISTENCIA CHECK
((SELECT SUM (EN EXISTENCIA) FROM TITULOS CD) < 5000);

En esta instruccion se utiliza la subconsulta (SELECT SUM (EN_EXISTENCIA) FROM
TITULOS_CD) y se compara con 5 000. La subconsulta comienza con la palabra clave SELECT,
que se usa para consultar datos en una tabla. La funcién SUM suma los valores en la columna
EN_EXISTENCIA, y la palabra clave FROM especifica en qué tabla se encuentra la columna. Los
resultados de esta subconsulta se comparan (utilizando el operador de comparacién menor que) a
5 000. Si se intenta agregar un valor en la columna EN_EXISTENCIA que cause que el total sea
superior a 5 000, se recibira un error.

Creacién de dominios y restricciones de dominio

El dltimo tipo de restriccion CHECK es del tipo que se inserta en una definicién de dominio. En su
mayor parte, la definicién de restriccion es similar a lo que ha visto antes, excepto que ésta no se
vincula a una columna o tabla especifica. De hecho, las restricciones de dominio utilizan la palabra
clave VALUE cuando se refieren al valor en una columna definida con esa restriccion en particular.
Echemos un vistazo a la sintaxis para crear un dominio:

CREATE DOMAIN <nombre del dominio> [AS] <tipo de datos>
[DEFAULT <valor predeterminado>]
[CONSTRAINT <nombre de la restriccion>] CHECK (<condicién de busqueda>)

Ya debe estar familiarizado con la mayoria de los elementos en esta sintaxis. Se discutieron
los tipos de datos y las clausulas predeterminadas en el capitulo 3, y la definicion de la restriccion
es similar a lo que se ha visto hasta ahora en este capitulo.

En el siguiente ejemplo se crea un dominio que se basa en el tipo de datos INT y que requiere
que todos los valores sean entre 0 y 30:

CREATE DOMAIN CANTIDAD EN EXISTENCIA AS INT
CONSTRAINT CK CANTIDAD EN EXISTENCIA CHECK (VALUE BETWEEN 0 AND 30);

El tnico elemento realmente nuevo aqui (distinto de la cldusula CREATE DOMALIN) es la pa-
labra clave VALUE, la cual, como se dijo, se refiere al valor de la columna definida con el dominio
CANTIDAD_EN_EXISTENCIA. Como resultado, si se trata de insertar un valor (en una de esas
columnas) que no sea entre 0 y 30, se recibird un error.

Capitulo 4: Implementacién de la integridad de datos 99

SRR Y] ARada una restriccion CHECK

En este ejercicio, que es relativamente corto, se utiliza la instrucciéon ALTER TABLE para modi-
ficar la tabla DISCOS_COMPACTOS. Se afiade una columna a la tabla y luego se define una res-
triccion CHECK que restrinja los valores que se pueden introducir en la columna. La columna adi-
cional y la restriccién no tienen un impacto en las otras tablas de la base de datos INVENTARIO o
en la relacion entre las tablas. Puede descargar el archivo Try_This_04.txt (en inglés), que contiene
las instrucciones SQL que se usan en este ejercicio.

Paso a paso

1. Abra la aplicacion de clientes de su RDBMS y conéctese a la base de datos INVENTARIO.

2. Se modifica la tabla DISCOS_COMPACTOS afiadiendo la columna EN_EXISTENCIA. Intro-
duzca y ejecute la siguiente instruccién SQL:

ALTER TABLE DISCOS_COMPACTOS
ADD COLUMN EN_ EXISTENCIA INT NOT NULL;

NOTA
Para Oracle y SQL Server, omita la palabra clave COLUMN.

3. Ahora que la columna existe, se puede agregar una restriccion CHECK a la definicién de la
tabla. Se puede introducir la restriccién como una restricciéon de columna, pero afiadiéndola por
separado como una restriccion de tabla le permitird hacer cada paso por separado para que pue-
da ver los resultados de sus acciones. La restriccion CHECK limita los valores que se pueden
introducir en la columna EN_EXISTENCIA. Cada valor debe ser mayor que 0, pero menor que
50. Introduzca y ejecute la siguiente instruccién SQL:

ALTER TABLE DISCOS_COMPACTOS
ADD CONSTRAINT CK EN EXISTENCIA CHECK (EN EXISTENCIA > 0 AND
EN EXISTENCIA < 50);

4, Cierre la aplicacion de cliente.

Resumen de Pruebe esto

La nueva columna, EN_EXISTENCIA, sigue el nimero de cada disco compacto que figura en la
tabla DISCOS_COMPACTOS. La restriccion CK_EN_EXISTENCIA restringe el nimero por fila
a una cantidad entre 0 y 50. Ahora que la tabla se ha actualizado, no se puede afadir ningtin valor
que viole la restriccion.

100 Fundamentos de SQL

8

°

10

11.
12.

13.

14

15.

(Cudles son las tres categorfas de las restricciones de integridad?

(Cudles son las diferencias entre una restricciéon de columna y una restriccién de tabla?
(,Qué tipos de restricciones se pueden incluir en una definicién de columna?

(Cudl es la diferencia entre una restriccion de tabla y una afirmacién?

(Qué significa un valor nulo?

(Cudl de los siguientes tipos de restricciones soporta restricciones NOT NULL?

A Restricciones de tabla

B Restricciones de columna

C Restricciones de dominio

D Afirmaciones

Se crea una tabla que incluye una columna que acepta valores nulos pero cuyos valores no nu-
los deben ser tnicos. ;Qué tipo de restriccion se debe utilizar?

Se crea una tabla que incluye la columna NOMBRE_TIPO. La columna se define con el tipo
de datos CHAR(10) y requiere una restriccion UNIQUE, que se define como una restriccién de
columna. ;Qué cédigo SQL se debe utilizar para la definicién de columna?

(Cudles dos restricciones se aplican a las restricciones PRIMARY KEY pero no aplican a las
restricciones UNIQUE?

Se crea una restriccion de PRIMARY KEY llamada PK_TIPOS_MUSICA_ARTISTA en la
tabla TIPOS_MUSICA_ARTISTA. La clave primaria incluye las columnas NOMBRE_ARTIS-
TA y FDN_ARTISTA. ;Qué cédigo SQL se debe utilizar para la restriccion de la tabla?

(Coémo difiere una restriccion referencial de una restriccién tnica?

Una restricciéon impone la integridad referencial entre dos tablas garan-
tizando que no se lleve a cabo ninguna accién en ninguna tabla que pueda afectar a los datos
protegidos por la restriccion.

Se crea una tabla que incluye la columna llamada ID_TIPO_NEGOCIO, con un tipo de datos
INT. La columna se define con una restriccion FOREIGN KEY que hace referencia a la clave
primaria en la tabla llamada TIPOS_NEGOCIO. La clave foranea se afiade como una restric-
cion de columna. ;Qué codigo SQL se debe usar para la definicién de columna?

(Cudles tres opciones se pueden utilizar en la clausula MATCH de una restriccion FOREIGN
KEY?

(Cudles son los dos tipos de acciones referenciales desencadenadas que se pueden definir en
una restriccion FOREIGN KEY?

Capitulo 4: Implementacién de la integridad de datos 101

16. Se crea una restriccion FOREIGN KEY y se desea que los valores en la columna de referencia
se actualicen si los valores en la columna referenciada se actualizan. ;Qué cldusula <accion re-
ferencial desencadenada> utilizaria?

A ON UPDATE RESTRICT

B ON UPDATE NO ACTION

C ON UPDATE CASCADE

D ON UPDATE SET DEFAULT

17. ;Qué sintaxis debe utilizar para una restriccion CHECK que se define como una restriccién de
tabla?

18. ;Qué tipo de restricciones se pueden definir dentro en una afirmacién?

19. Se crea una restriccion CHECK en la columna NUMERO_EN_EXISTENCIA. Se desea limitar
los valores que se pueden introducir en la columna en un rango de 11 a 29. ;Qué debe utilizar
para la clausula <condicién de bisqueda> de la restriccién?

Capitulo 5

Creacion de vistas
en SQL

104 Fundamentos de SQL

Habilidades y conceptos clave

Afiada vistas a la base de datos
Creacion de vistas actualizables

Eliminacion de vistas de la base de datos

Como aprendi6 en el capitulo 3, las tablas base persistentes almacenan los datos de SQL en su
base de datos. Sin embargo, esas tablas no son siempre una forma ttil si s6lo desea ver datos
especificos de una tabla o datos de varias tablas. Por esta razon, el estandar SQL:2006 respalda el
uso de tablas vistas, o vistas. Una vista es una tabla virtual cuya definicion existe como un objeto
de esquema. A diferencia de las tablas base persistentes, en la vista no hay datos almacenados.
De hecho, las tablas vistas en realidad no existen (s6lo existe la definicién que las define). Esta
definicion es la que permite seleccionar informacion especifica de una o mds tablas, basada en las
instrucciones de consulta en esa definicién. Una vez que se crea una vista, simplemente se invoca
llamandola por su nombre en una consulta como en una tabla base. Los datos entonces se presen-
tan como si se buscaran en una tabla base.

Afrada vistas a la base de datos

Antes de entrar demasiado profundo en las caracteristicas especificas de las vistas, quiero revisar
rapidamente algunos puntos que se discutieron en los capitulos 2 y 3. Una vista, como posible-
mente recuerde, es uno de los tres tipos de tablas respaldadas por SQL, junto con las tablas base y
las tablas derivadas. La mayoria de las tablas base son objetos de esquema y vienen en cuatro ti-
pos: tablas base persistentes, tablas temporales globales, tablas temporales locales creadas y tablas
temporales locales declaradas. De estos cuatro tipos, las tablas base persistentes son las que mane-
jan los datos reales de SQL. Las tablas derivadas, por otro lado, son simplemente el resultado que
se observa cuando se consultan datos de una base de datos. Por ejemplo, si se solicitan datos de la
tabla DISCOS_COMPACTOS, los resultados de la solicitud se despliegan en formato parecido a
una tabla, conocida como tabla derivada.

En algunos aspectos, una vista se encuentra entre una tabla base persistente y una tabla deriva-
da. Es como una tabla base persistente, ya que la definicién de la vista se almacena como un ob-
jeto de esquema utilizando un nombre tnico (dentro del esquema) que se puede acceder como
en una tabla base. Sin embargo, una vista es como una tabla derivada, ya que ningtn dato se al-
macena en asociacion con la vista. Tanto las tablas derivadas como las vistas son tipos de tablas
virtuales. Los datos se seleccionan de una o mas tablas base cuando se invoca la vista. De hecho,
se puede pensar en una vista como simplemente una tabla derivada nombrada, con la definicién de
la vista almacenada en el esquema. Los resultados de los datos que se ven cuando se llama a una
vista se almacenan en cualquier lugar, pero se derivan de tablas base existentes.

Las vistas pueden ser herramientas ttiles cuando se accede a los diferentes tipos de datos.
Una de las principales ventajas de utilizar las vistas es que se pueden definir consultas complejas

Capitulo 5: Creacién de vistas en SQL 105

y almacenarlas dentro de la definicién de la vista. En lugar de volver a crear las consultas cada

vez que se necesiten, puede simplemente invocar la vista. Ademads, las vistas pueden ser una ma-
nera practica de presentar informacién a los usuarios sin suministrar mds informacién que la que
necesitan o informacién que no deben ver. Por ejemplo, puede ser que desee que los usuarios de
su organizacién puedan acceder al registro de determinados empleados, pero puede que no quiera
que la informacién tal como los nimeros de seguro social o los sueldos estén disponibles para esos
usuarios, asi que se puede crear una vista que proporcione sélo la informacién que los usuarios
deben ver. Las vistas también se pueden utilizar para sintetizar estructuras complejas y presentar
informacién de una manera que sea mas facil de comprender para algunos usuarios, que en efecto
oculta la estructura fundamental y la complejidad de la base de datos de los usuarios.

Ahora que tiene una descripcion general de qué son las vistas, veamos algunos ejemplos que
ilustren cdmo se extraen los datos de tablas base en el tipo de tabla derivada que se presenta por la
definicién de la vista. El primer ejemplo que veremos, mostrado en la figura 5-1, se basa en la ta-
bla INVENTARIO_DISCO_COMPACTO, que incluye seis columnas. Suponga que desea ver solo
las columnas TITULO_CD, DERECHOSDEAUTOR y EN_EXISTENCIA. Se puede crear una
vista que extraiga estas tres columnas de la tabla y las organice como si los datos existieran en su
propia tabla, como se muestra en la figura 5-1. La vista DISCOS_COMPACTOS_EN_EXISTEN-
CIA contiene una consulta que define exactamente qué datos debe devolver la vista.

Se puede observar que los nombres de las columnas en la vista son diferentes de los nombres
de las columnas de la tabla INVENTARIO_DISCO_COMPACTO, aun cuando los datos dentro de
las columnas son los mismos. Esto se debe a que, si se desea, se puede asignar que los nombres
de las columnas de las vistas sean diferentes a los de la tabla original. Lo mismo ocurre con los ti-
pos de datos. Las columnas de la vista heredan los tipos de datos a partir de sus respectivas colum-
nas de la tabla. Por ejemplo, la columna DISCO_COMPACTO en la vista DISCOS_COMPAC-
TOS_EN_EXISTENCIA hered¢ el tipo de datos VARCHAR(60) de la columna TITULO_CD de
la tabla INVENTARIO_DISCO_COMPACTO. No se especifico el tipo de datos VARCHAR(60)
en ningln lugar dentro de la definicion de la vista.

Como se puede observar, una vista permite definir qué columnas se devuelven cuando se in-
voca la vista. La definicidn para la vista DISCOS_COMPACTOS_EN_EXISTENCIA especifica
tres columnas; sin embargo, se pudo haber especificado cualquiera de las columnas de la tabla
INVENTARIO_DISCO_COMPACTO. Ademas de las columnas, la definicién de una vista puede
especificar qué filas se devuelven. Por ejemplo, la figura 5-2 muestra la vista CDS_EN_EXIS-
TENCIA_1990S. Observe que contiene las mismas columnas que la vista DISCOS_COMPAC-
TOS_EN_EXISTENCIA (mostrada en la figura 5-1), pero tiene menos filas. En este caso, la
definicion de la vista no s6lo especifica las mismas tres columnas de la tabla INVENTARIO_DIS-
CO_COMPACTO, sino que también especifica que sélo las filas con valores entre 1990 y 1999
(inclusive) en la columna DERECHOSDEAUTOR se devuelven.

En los dos ejemplos anteriores se examinaron las vistas que se derivan de datos de sélo una
tabla; sin embargo, se pueden crear vistas basadas en varias tablas. Esto es particularmente util si
se quiere desplegar informacion relacionada que abarque mas de una tabla. Echemos un vistazo a
la figura 5-3, que incluye las tablas INVENTARIO_CD y DISQUERAS. La tabla INVENTARIO_
CD contiene un listado de los CD en el inventario, y la tabla DISQUERAS contiene un listado de
las compaiiias que editan CD. Se dard aqui una breve introduccién del acceso a multiples tablas,
ya que es una gran manera de demostrar qué tan bien pueden las vistas ocultar la complejidad de
una consulta. Este tema se trata en detalle en el capitulo 11.

106 Fundamentos de SQL

INVENTARIO_DISCO_COMPACTO

ID_DISCO_COMPACTO:| TITULO_CD: COPYRIGHT:| ID_DISQUERA: | ID_DISCO: | EN_EXISTENCIA:
INT VARCHAR(60) INT INT INT INT

99301 Famous Blue Raincoat 1991 5422 1299 6
99302 Blue 1971 5402 1232 26
99303 Court and Spark 1974 5270 1287 18
99304 Past Light 1983 5412 1292 2
99305 Kojiki 1990 5409 1255 5
99306 That Christmas Feeling 1993 5403 1216 3]
99307 Patsy Cline: 12 Greatest Hits 1988 5403 1210 25
99308 Carreras Domingo Pavarotti in Concert| 1990 5312 1276 22
99310 Henryk Gorecki: Symphony No. 3 1992 5270 1266 8

DISCOS_COMPACTOS _ / /

EN_EXISTENCIA

DISCO_COMPACTO COPYRIGHT | EN_EXISTENCIA

Famous Blue Raincoat 1991 6

Blue 1971 26

Court and Spark 1974 18

Past Light 1983 2

Kojiki 1990 5

That Christmas Feeling 1993 3

Patsy Cline: 12 Greatest Hits 1988 25

Carreras Domingo Pavarotti in Concert| 1990 22

Henryk Gorecki: Symphony No. 3 1992 8

Figura 5-1 La vista DISCOS_COMPACTOS_EN_EXISTENCIA, basada en la tabla INVENTARIO_DISCO_
COMPACTO.

Suponga que tiene usuarios que desean poder ver los nombres del CD y del editor, pero que
no les interesan los valores ID_DISCO_COMPACTO e ID_DISQUERA.Y ciertamente no les in-
teresa tener que ver en dos lugares diferentes para comparar los valores ID_DISQUERA con el
fin de igualar los CD con los nombres de la compaiifa. Una solucién es crear una vista que iguale
esta informacion, mientras que al mismo tiempo se despliegue sélo la informacién que les sea ttil.

Capitulo 5: Creacién de vistas en SQL

107

CDS_EN_EXISTENCIA_1990S

DISCO_COMPACTO COPYRIGHT [EN_EXISTENCIA
Famous Blue Raincoat 1991 6

Kojiki 1990 5

That Christmas Feeling 1993 3

Carreras Domingo Pavarotti in Concert 1990 22

Henryk Gorecki: Symphony No. 3 1992 8

Figura 5-2 Lo vista CDS_EN_EXISTENCIA_1990S, basada en la tabla INVENTARIO_DISCO

COMPACTO.

INVENTARIO_CD DISQUERAS
ID_DISCO_COMPACTO: | TITULO_CD: ID_DISQUERA: ID_DISQUERA: | NOMBRE_COMPANIA:
INT VARCHAR(60) INT INT VARCHAR(60)

11001 Famous Blue Raincoat 5422 5403 MCA Records

11002 Blue 5402 5402 Reprise Records
11003 Past Light 5412 5409 Geffen

11004 Kojiki 5409 5412 Windham Hill Records
11005 That Christmas Feeling 5403 5422 Private Music

11006 Patsy Cline: 12 Greatest Hits| 5403

EDITORES_DISCOS_

COMPACTOS
DISCO_COMPACTO EDITOR
Famous Blue Raincoat Private Music
Blue Reprise Records
Past Light Windham Hill Records
Kojiki Geffen
That Christmas Feeling MCA Records
Patsy Cline: 12 Greatest Hits MCA Records

Figura 5-3 Lo vista EDITORES_DISCOS_COMPACTOS, basada en las tablas DISQUERAS e
INVENTARIO_CD.

108

Fundamentos de SQL

En el caso de las tablas INVENTARIO_CD y DISQUERAS, se puede crear una vista (Ilamada
EDITORES_DISCO_COMPACTO en la figura 5-3) que vincule (una) los datos para los usuarios,
al tiempo que oculte la estructura fundamental y datos extrafios.

Una vista de este tipo es posible que tome ventaja de las relaciones entre tablas. En el caso
de las tablas INVENTARIO_CD y DISQUERAS, una clave fordnea se defini6 en la columna
ID_DISQUERA de la tabla INVENTARIO_CD que hace referencia a la columna ID_DISQUERA
de 1a tabla DISQUERAS. La consulta contenida en la definicién de la vista EDITORES_DIS-
CO_COMPACTO coincide con los valores en la columna ID_DISQUERA de la tabla INVENTA-
RIO_CD con los valores en la columna ID_DISQUERA de 1a tabla DISQUERAS. Para cada coin-
cidencia que se encuentra, se devuelve una fila. Por ejemplo, la fila Famous Blue Raincoat incluye
el valor ID_DISQUERA de 5422. En la tabla DISQUERAS se puede ver que ese valor coincide
con la fila Private Music. Como resultado, la vista contiene una fila con los valores Famous Blue
Raincoat y Private Music.

NOTA

No necesariamente se tiene que utilizar una relacién de clave forénea para unir las tablas. Se
pueden utilizar dos columnas de diferentes tablas que almacenen la misma informacién. Esto
podria significar utilizar todas las columnas en una clave fordnea (si la clave fordnea incluye
multiples columnas), usando sélo una de las columnas, o sin utilizar una clave forénea. Se
analizaré la unién de mdltiples tablas en el capitulo 11.

Ademas de unir informacién de tablas diferentes, también se pueden utilizar las vistas para
modificar los datos que se extraen de la columna de una tabla y se presentan en una columna de
vista. Esto permite tomar acciones como la realizacién de calculos, encontrar promedios, deter-
minar valores minimos y maximos, y completar un sinnimero de otras operaciones. Entonces se
pueden tomar los resultados de estas operaciones e incluirlas en una columna dentro de una vista.
En la figura 5-4, por ejemplo, la vista DESCUENTOS_CD deduce un 10 por ciento de descuento
del precio al menudeo y presenta el resultado en la columna PRECIO_DESCUENTO.

La vista DESCUENTOS_CD incluye tres columnas. La columna DISCO_COMPACTO ex-
trae los datos directamente de la columna TITULO_CD. Las columnas PRECIO_MENUDEO y
PRECIO_DESCUENTO en la vista extraen los datos de la columna PRECIO_MENUDEO en la
tabla INVENTARIO. La columna PRECIO_MENUDEO en la vista copia los valores justo como
son. Sin embargo, para la columna PRECIO_DESCUENTO, los valores extraidos de la columna
PRECIO_MENUDEDO en la tabla INVENTARIO se multiplican por 0.9.

Como puede observar, se pueden especificar varios tipos de operaciones en una vista y luego
simplemente invocar la vista cuando necesite la informacién. La mayor parte de lo que puede in-
cluirse en una consulta se puede incluir en una vista. De hecho, es la consulta, o la expresién de
consulta, la que constituye el nicleo de la vista. Sin embargo, antes de examinar las expresiones de
consulta, deseo en primer lugar analizar la sintaxis utilizada para la creacién de las vistas.

Definicién de vistas de SQL

El tipo mds simple de vista a crear es uno que hace referencia s6lo a una tabla y recupera los datos
de columnas dentro de una tabla sin modificar esos datos. Entre mas complicada es la vista, mas

Capitulo 5: Creacién de vistas en SQL

109

INVENTARIO

ID_DISCO_COMPACTO: | TITULO_CD: COPYRIGHT:| PRECIO_MENUDEO:| EN_EXISTENCIA:
INT VARCHAR(60) INT NUMERICO(5,2) INT

99301 Famous Blue Raincoat 1991 16.99 6

99302 Blue 1971 14.99 26

99303 Court and Spark 1974 14.99 18

99304 Past Light 1983 15.99 2

99305 Kojiki 1990 15.99 5

99306 That Christmas Feeling 1993 10.99 3

99307 Patsy Cline: 12 Greatest Hits | 1988 16.99 25

DESCUENTOS_CD

DISCO_COMPACTO PRECIO_MENUDEO | PRECIO_DESCUENTO
Famous Blue Raincoat 16.99 15.29

Blue 14.99 13.49

Court and Spark 14.99 13.49

Past Light 15.99 14.39

Kojiki 15.99 14.39

That Christmas Feeling 10.99 9.89

Patsy Cline: 12 Greatest Hits 16.99 15.29

Figura 5-4 La vista DESCUENTOS_CD, basada en la tabla INVENTARIO.

complicada es la expresion de consulta en la que se basa la vista. En su forma mads bdsica, la sin-
taxis para una vista es la siguiente:

CREATE VIEW <nombre de la vista> [(<nombres de las columnas de la vista>)]
AS <expresion de consulta>
[WITH CHECK OPTION]

Por ahora nos centraremos sélo en las primeras dos lineas de la sintaxis y se dejard WITH
CHECK OPTION para después, en la seccién “Creacién de vistas actualizables”. Como se mues-

110

Fundamentos de SQL

tra en la primera linea de la sintaxis, se debe proporcionar un nombre para la vista. Ademads, se
deben proporcionar los nombres para las columnas en las siguientes circunstancias:

Si alguno de los valores de columna se basa en algtin tipo de operacion que calcule el valor
que se insertard en la columna, en lugar de que el valor se copie directamente de la tabla. (Ver
la figura 5-4.)

Si los nombres de las columnas de la tabla se duplican, lo cual puede suceder cuando las tablas
se unen.

Incluso si no se requiere proporcionar los nombres de las columnas, se pueden proporcionar
si asi lo desea. Por ejemplo, puede encontrar que desea cambiar los nombres para que sean mas
l6gicos para usuarios en particular. Sin embargo, si proporciona los nombres de las columnas utili-
zando la sintaxis <nombres de las columnas de la vista>, se deben proporcionar los nombres para
todas las columnas.

NOTA

También hay una forma alternativa de proporcionar los nombres de las columnas utilizando la
palabra clave AS dentro de la expresién de consulta, que se analizard en el capitulo 7.

La segunda linea de la sintaxis incluye la palabra clave AS, que es requerida, y el marcador
de posicion <expresion de consulta>. El marcador de posicidon <expresion de consulta>, aunque
parece sencillo, puede implicar una estructura compleja de instrucciones de consulta que pueden
realizar una serie de operaciones, incluyendo la recuperacién de datos de varias tablas, el cilcu-
lo de datos, limitar el tipo de datos devueltos, y la realizacién virtual de cualquier otro tipo de
operacion respaldada por una expresion de consulta. Debido a la complejidad de las expresiones
de consulta, pasaré la mayoria de la segunda parte de este libro discutiendo diversas formas de
consulta de datos. Lo que implica, entonces, que serd muy dificil resumir un debate a fondo de las
expresiones de consulta dentro del tema de las vistas. A pesar de todo, quiero proporcionar una
serie de ejemplos que ilustren cémo se pueden crear vistas que realicen varias funciones. Con cada
ejemplo, se incluird una breve explicacion de la expresion de consulta utilizada en la definicién de
la vista. Esté al tanto, sin embargo, que se trataran los detalles de las expresiones de consulta con
mayor profundidad, mas adelante en el libro, empezando en el capitulo 7. También observe que las
tablas base utilizadas en estos ejemplos no se han creado en los ejercicios anteriores; por lo tanto,
si quiere probar los ejemplos, se tendrdn que crear primero las tablas base. Las figuras muestran la
informacidén que necesita para hacer esto.

El primer ejemplo que se considera se basa en la vista mostrada en la figura 5-1. La vista
DISCOS_COMPACTOS_EN_EXISTENCIA obtiene los datos de la tabla INVENTARIO_DIS-
CO_COMPACTO e incluye tres columnas de esa tabla. Para crear la vista, utilice la siguiente ins-
truccion CREATE VIEW:

CREATE VIEW DISCOS_ COMPACTOS EN EXISTENCIA
(DISCO_COMPACTO, DERECHOSDEAUTOR, EN EXISTENCIA) AS
SELECT TITULO CD, DERECHOSDEAUTOR, EN EXISTENCIA
FROM INVENTARIO DISCO_COMPACTO;

Esta vista es la mds simple de todos los tipos de vistas a crear. Se basa en una tabla y extrae
tres de las seis columnas de esa tabla. Tenga en cuenta que mientras SQL normalmente requiere

Capitulo 5: Creacién de vistas en SQL - 111

clausulas para estar en un orden particular, no hay restricciones en cuanto a espacios y saltos de
linea. Por ejemplo, cuando se crean las vistas, se prefiere poner la lista de nombres de columna
(cuando se presente) en una linea nueva y colocar la palabra clave AS al final de la linea que pre-
cede la expresion de consulta. Otros prefieren colocar la palabra clave AS en una linea, y aun otros
prefieren colocarla al comienzo de la primera linea de la expresion de consulta. El RDBMS no
tomara en cuenta la forma en que lo hace, pero la adopcion de un estilo y el adherirse a él hara que
SQL sea mas facil de leer, entender y mantener.

Analizando la instruccién un poco, la primera linea proporciona un nombre para la vista, DIS-
COS_COMPACTOS_EN_EXISTENCIA. La segunda linea proporciona un nombre para cada una
de las tres columnas: DISCO_COMPACTO, DERECHOSDEAUTOR y EN_EXISTENCIA, y ter-
mina con la palabra clave AS. Si se omitieran los nombres de las columnas, las columnas de la vista
tomarian los nombres de las columnas de la tabla. La tercera y cuarta lineas de la instruccién CREA-
TE VIEW contienen la expresion de consulta, que en este caso es la siguiente instrucciéon SELECT:

SELECT DISCO_COMPACTO, DERECHOSDEAUTOR, EN_ EXISTENCIA
FROM INVENTARIO DISCO_COMPACTO

La instruccion SELECT es una de las instrucciones mas comunes (si no [a instrucciéon mas comtn)
que utilizard como programador de SQL. También es una de las instrucciones mas extensas y
flexibles que usard, permitiendo formar consultas intrincadas que pueden devolver exactamente el
tipo de datos que se desee recuperar de la base de datos.

La instruccion SELECT utilizada en la definicion de la vista DISCOS_COMPACTOS_EN _
EXISTENCIA es la instruccién SELECT en su forma mds bésica. La instruccién se divide en dos
clausulas: la cldusula SELECT y la clausula FROM. La clausula SELECT identifica qué columnas
se devuelven (TITULO_CD, DERECHOSDEAUTOR y EN_EXISTENCIA), y la clausula FROM
identifica la tabla de la que se extraen los datos (INVENTARIO_DISCO_COMPACTO). Cuando
se invoca la vista DISCOS_COMPACTOS_EN_EXISTENCIA, se esta esencialmente invocando
la instrucciéon SELECT que se incrusta en la definicién de la vista, que a su vez toma los datos
de la(s) tabla(s) base aplicable(s).

En el siguiente ejemplo, basado en la vista de la figura 5-2, la instruccién CREATE VIEW es
casi la misma que la del ejemplo anterior, excepto que una cldusula adicional se agrega a la ins-
truccion:

CREATE VIEW CDS_EN_EXISTENCIA 1990S
(DISCO_COMPACTO, DERECHOSDEAUTOR, EN_EXISTENCIA) AS
SELECT TITULO CD, DERECHOSDEAUTOR, EN EXISTENCIA
FROM INVENTARIO DISCO_COMPACTO
WHERE DERECHOSDEAUTOR > 1989 Y DERECHOSDEAUTOR < 2000;

La cldusula WHERE define una condicién que debe cumplirse para que los datos sean de-
vueltos. Como en el ejemplo anterior, se extraen los datos de las columnas TITULO_CD, DERE-
CHOSDEAUTOR y EN_EXISTENCIA de la tabla INVENTARIO_DISCO_COMPACTO, s6lo
que esta vez se limitan los datos a las filas cuyos valores DERECHOSDEAUTOR son mayores
que 1989 pero menores que 2000 (DERECHOSDEAUTOR > 1989 Y DERECHOSDEAUTOR <
2000). Puede que reconozca los operadores de comparacién mayor que (>) y menor que (<) del
capitulo 4 del andlisis acerca de las restricciones CHECK. Se utilizan para limitar los valores que
se incluyen en la vista.

112

Fundamentos de SQL

NOTA

Los operadores utilizados en la cléusula WHERE (o cualquier condicién definida en la cléu-
sula) no tienen efecto en los datos almacenados en las tablas base. Sélo afectan a los datos
devueltos cuando se invoca la vista. Se analizardn estos tipos de operadores a mayor detalle
en el capitulo 9.

Se puede utilizar la clausula WHERE en la instruccién SELECT para definir una amplia
variedad de condiciones. Por ejemplo, la clausula WHERE se puede usar para ayudar a unir las
tablas, como se muestra en la siguiente instruccion CREATE VIEW:

CREATE VIEW EDITORES DISCO_COMPACTO
(DISCO_COMPACTO, EDITOR) AS B
SELECT INVENTARIO CD.TITULO CD, DISQUERAS.NOMBRE COMPANIA

FROM INVENTARIO CD, DISQUERAS
WHERE INVENTARIO CD.ID DISQUERA = DISQUERAS.ID DISQUERA;

Esta instruccion crea la vista que se observa en la figura 5-3. El nombre de la vista es EDITO-
RES_DISCO_COMPACTO e incluye las columnas DISCO_COMPACTO y EDITOR. La vista
extrae informacién de dos fuentes: la columna TITULO_CD en la tabla INVENTARIO_CD y la
columna NOMBRE_COMPANIA en la tabla DISQUERAS.

Primero echemos un vistazo a la clausula SELECT. Observe que el nombre de cada columna
se califica por el nombre de la tabla respectiva (por ejemplo, INVENTARIO_CD.TITULO_CD).
Cuando se unen dos o mas tablas, se deben calificar los nombres de las columnas si hay alguna
posibilidad de que los nombres de las columnas se puedan confundir, que seria el caso si se inclu-
yen columnas con el mismo nombre. Sin embargo, si no hay posibilidad de que los nombres de las
columnas se puedan confundir, entonces se pueden omitir los nombres de la tabla. Por ejemplo, la
clausula SELECT puede leerse como se muestra a continuacion:

SELECT TITULO CD, NOMBRE_COMPAﬁIA

A pesar de que los nombres calificados no siempre son necesarios, muchos programadores prefie-
ren utilizarlos en todos los casos, ya que es mas facil saber a qué tabla se hace referencia si alguna
vez necesita modificar la estructura de la base de datos o la definicion de la vista en un momento
posterior.

La siguiente cldusula en la instruccién SELECT es la clausula FROM. Cuando se unen las ta-
blas, se deben incluir los nombres de todas las tablas participantes, separadas por comas. Ademas
de la cuestion de los diversos nombres, la clausula FROM es similar a lo que se ha visto en otros
ejemplos.

La cldusula WHERE, que es la cldusula final en la instrucciéon SELECT, es la que une las
filas. La clausula WHERE es necesaria, ya que sin ella no habria forma de saber como igualar
los valores de las diferentes tablas. La clausula WHERE especifica coémo hacer esto. En la de-
finicion de la vista EDITORES_DISCO_COMPACTO, el valor en la columna ID_DISQUERA
de la tabla INVENTARIO_CD debe ser igual al valor en la columna ID_DISQUERA de Ia tabla
DISQUERAS para que una fila se devuelva. Por ejemplo, si se refiere de nuevo a la figura 5-3, ob-
servard que la fila Past Light en la tabla INVENTARIO_CD tiene un valor de 5412 en la columna
ID_DISQUERA, que corresponde a la fila Windham Hill Records en la tabla DISQUERAS. Ob-
serve que, una vez mas, los nombres de las columnas se califican por los nombres de la tabla, que
es esencial en este caso, ya que las columnas comparten el mismo nombre. Sin los nombres de la
tabla, SQL no sabria si se comparan valores por si mismos o con la otra tabla.

Capitulo 5: Creacién de vistas en SQL 113

También se puede expandir la clausula WHERE para mayor calidad de consulta. En el si-
guiente ejemplo, la clausula WHERE limita las filas devueltas a s6lo aquellas que contienen el
valor de 5403 en la columna ID_DISQUERA de la tabla INVENTARIO_CD:

CREATE VIEW EDITORES DISCO_COMPACTO
(DISCO COMPACTO, EDITOR) AS
SELECT INVENTARIO CD.TITULO CD, DISQUERAS.NOMBRE_COMPAﬁIA
FROM INVENTARIO CD, DISQUERAS
WHERE INVENTARIO_CD.ID DISQUERA DISQUERAS.ID_ DISQUERA
AND INVENTARIO CD.ID DISQUERA = 5403;

Entonces si se invocara la vista EDITORES_DISCO_COMPACTO, se verian sélo los CD que se
producen por MCA Records.

Ahora veamos otro ejemplo, que se basa en la vista de la figura 5-4. Del mismo modo que
los primeros dos ejemplos que se consideraron, esta vista obtiene los datos de s6lo una tabla. Sin
embargo, esta vista, de hecho, realiza calculos que devuelven datos que fueron modificados. La
instruccién CREATE VIEW tiene este aspecto:

CREATE VIEW DESCUENTOS_CD
(DISCO_COMPACTO, PRECIO MENUDEO, PRECIO DESCUENTO) AS
SELECT TITULO CD, PRECIO MENUDEO, PRECIO MENUDEO * 0.9
FROM INVENTARIO;

La vista DESCUENTOS_CD incluye tres columnas: DISCO_COMPACTO, PRECIO_ME-
NUDEO y PRECIO_DESCUENTO. La columna PRECIO_DESCUENTO contiene los valores
calculados. La cldusula SELECT identifica las columnas de la tabla que contienen los datos
fuente. Las dos primeras columnas se definen de la misma manera como se vio en los ejemplos
anteriores. Los datos se copian de las columnas TITULO_CD y PRECIO_MENUDEO en la tabla
INVENTARIO a las columnas DISCO_COMPACTO y PRECIO_MENUDEO de la vista DES-
CUENTOS_CD. Sin embargo, la definicion de la tercera columna (PRECIO_MENUDEO * 0.9)
es un poco diferente. Los valores se toman nuevamente de la columna PRECIO_MENUDEO,
s6lo que esta vez los valores se multiplican por 0.9 (90 por ciento) para llegar al precio de des-
cuento que aparece en la columna PRECIO_DESCUENTO de la vista.

También se puede afiadir la cldusula WHERE a la instruccion SELECT utilizada en la defini-
cién de la vista DESCUENTOS_CD:

CREATE VIEW DESCUENTOS CD
(DISCO COMPACTO, PRECIO MENUDEO, PRECIO DESCUENTO) AS
SELECT TITULO CD, PRECIO MENUDEO, PRECIO MENUDEO * 0.9
FROM INVENTARIO
WHERE EN_EXISTENCIA > 10;

La cldusula WHERE restringe la consulta a s6lo aquellas filas cuyo valor EN_EXISTENCIA
es mayor que 10. Observe que puede utilizar un operador de comparacién en una columna de tabla
(EN_EXISTENCIA) cuyos valores no son ni siquiera los devueltos por la vista.

Como se puede observar de todos estos ejemplos de definiciones de vista, hay muchas cosas
que se pueden hacer con las vistas como resultado de la flexibilidad y extensibilidad de la instruc-
cién SELECT.

114

Fundamentos de SQL

Mais adelante en el libro, cuando se familiarice mas con los distintos tipos de instrucciones SE-
LECT que puede crear y las operaciones que puede realizar, serd capaz de crear vistas que son
mucho mds complejas que las que se han considerado hasta ahora.

Creacién de vistas actualizables

En SQL, algunos tipos de vistas son actualizables. En otras palabras, se puede utilizar una vista
para modificar los datos (cambiar los datos existentes y/o insertar nuevas filas) en la tabla funda-
mental. Si una vista es actualizable depende de la instruccién SELECT que se define dentro de la
definicién de la vista. Normalmente, entre mas compleja es la instruccién, es menos probable que
la vista sea actualizable. No hay una sintaxis dentro de la instruccion CREATE VIEW que designe
explicitamente a una vista como actualizable. En cambio, se determina estrictamente por la natu-
raleza de la instrucciéon SELECT, que se debe adherir a los estdndares especificos para que la vista
sea actualizable.

Hasta este punto en el capitulo, se dijo que el marcador de posicion <expresion de consulta>
en la sintaxis CREATE VIEW estd compuesto de la instruccion SELECT. Para ser més preciso,
una expresion de consulta puede ser uno de los varios tipos de expresiones. La mds comiin de
éstas, y a la que se refiere este libro, es la especificacion de consulta. Una especificacion de con-
sulta es una expresion de SQL que comienza con la palabra clave SELECT e incluye una serie de
elementos que forman esa expresion, como se puede observar en los ejemplos de vistas que se exa-
minan. Una especificacion de consulta es actualizable si cumple con las numerosas directrices que
se exponen en el estdndar SQL:2006. En aras de la simplicidad, me refiero a la especificacion de
consulta como la instrucciéon SELECT, que a menudo es la forma en que se hace referencia en los
distintos tipos relacionados con SQL y la documentacién relacionada con productos.

Aparte de la cuestion de las especificaciones de consulta y la complejidad de los estandares
SQL, el punto que se intenta tratar es que las normas de sintaxis que determinan la actualizacién
de una vista no son simples, directrices claras, en particular teniendo en cuenta el hecho de que
atin se tiene que cubrir la instruccién SELECT en profundidad (que se hard al comienzo del capi-
tulo 7). Sin embargo, hay bases 16gicas que pueden deducirse de estas directrices:

Los datos sin una vista no pueden ser resumidos, agrupados o eliminados automéaticamente.
Por lo menos una columna de la tabla fuente debe ser actualizable.
Cada columna en la vista debe ser trazable exactamente a una columna fuente en una tabla.

Cada fila en la vista debe ser trazable exactamente a una fila fuente en una tabla. Sin embargo,
note que muchos proveedores de productos permiten modificaciones (pero no insertan) a las
vistas creadas a partir de varias tablas, siempre y cuando la actualizacion sélo haga referencia
a columnas que tracen a s6lo una tabla base.

En muchos casos se podra determinar la actualizacién de una vista simplemente aplicando
sentido comun. Veamos un ejemplo. Suponga que decide agregar informacion acerca de los em-
pleados a la base de datos, ya que quiere rastrear las comisiones ganadas de la venta de CD. Deci-
de crear la tabla COMISIONES_EMPLEADO, mostrada en la figura 5-5, que enumera la cantidad
total de comisiones por cada empleado hecha durante un periodo de 3 afios.

Capitulo 5: Creacién de vistas en SQL

115

COMISIONES_EMPLEADO

ID_EMPLEADO: | ANO_1999: ANO_2000: ANO_2001:
INT NUMERICO(7,2) | NUMERICO(7,2) NUMERICO(7,2)
99301 126.32 11.28 16.86

99302 16.27 90.20 198.14

99303 354.34 16.32 1237.56
99304 112.11 87.56 14.14

Figura 5-5 Ingresos anuales por comisién en la tabla COMISIONES_EMPLEADO.

Ahora suponga que quiere saber el promedio de la comisién por cada afio para todos los em-
pleados. Se puede crear una vista que determine el promedio por cada afio y muestre esos prome-
dios en tres columnas separadas. Para hacerlo se utiliza la siguiente instruccién CREATE VIEW:

CREATE VIEW COM EMP (PROM 1999, PROM 2000, PROM 2001) AS
SELECT PROM (ANO 1999), PROM(ANO 2000), PROM(ANO 2001)
FROM COMISIONES EMPLEADO;

Como se puede ver de la instruccion, la vista COM_EMP contiene tres columnas: PROM_
1999, PROM_2000 y PROM_2001. La cldusula SELECT extrae la informacion de las tres colum-
nas en la tabla COMISIONES_EMPLEADO (ANO_1999, ANO_2000 y ANO_2001) y utiliza
la funcién PROM para encontrar el promedio para todos los valores en cada columna, como se
muestra en la figura 5-6. Por ejemplo, la funcién PROM primero promedia los cuatro valores en
la columna ANO_1999 y luego introduce ese promedio en la columna PROM_1999 de la vista
COM_EMP.

Ahora suponga que desea actualizar los importes de la comision en la tabla COMISIONES _
EMPLEADO. No se podria hacer a través de la vista, ya que los valores en la vista se basan en
célculos realizados sobre los valores en la tabla. Por ejemplo, si se trata de actualizar los valores en
la columna PROM_1999, los RDBMS no sabrian como se afectan muchas de las filas o codmo se

distribuyen los valores dentro de esas filas. En otras palabras, la fila en la vista no se puede rastrear
de nuevo a exactamente la fila fuente.

COM_EMP

PROM_1999 | PROM_2000|PROM_2001

152.26 51.34 366.68

Figura 5-6 La vista COM_EMP, basada en el promedio trimestral de ingresos.

116 Fundamentos de SQL

COM_EMP

ID_EMPLEADO | ANO_1999 ANO_2000
99301 126.32 11.28
99302 16.27 90.20
99303 354.34 16.32
99304 112.11 87.56

Figura 5-7 Vista COM_EMP, basada en el primero y segundo trimestres de ingresos.

Se puede, sin embargo, crear una vista que simplemente extraiga informacién de la tabla CO-
MISIONES_EMPLEADO:

CREATE VIEW COM_EMP AS
SELECT ID_EMPLEADO, ANO 1999, aNo 2000
FROM COMISIONES EMPLEADO;

En esta instruccion se crea una vista que muestra solo tres de las cuatro columnas de la tabla.
No se realizan célculos y sélo se utiliza una tabla. La figura 5-7 muestra como se ve la vista.

Esta vista, a diferencia de la dltima, es actualizable. Se pueden modificar e insertar datos, ya
que €stos no se resumieron o agruparon; cada columna se puede rastrear exactamente a una colum-
na fuente en una tabla; cada fila se rastrea exactamente a una fila fuente en una tabla. Ademas,
ninguin dato se resume o se agrupa. Por supuesto, si se fueran a actualizar o insertar datos mediante
la vista, son los datos en la tabla fundamental los que en realidad se modifican. Eso significa
que cualquier modificacién de datos debe aun adherirse a las limitaciones que tienen lugar en la
tabla. Por ejemplo, no se podria insertar una fila a través de la vista COM_EMP si los valores
nulos no fueran permitidos en la columna ANO_2001 de la tabla. La vista no tendria la capacidad
de aceptar un valor para esa columna, y la tabla no permitiria insertar una fila sin suministrar ese
valor.

A menudo se puede determinar si una tabla es actualizable sélo observando el resultado de
cualquier intento de modificacién. Si su objetivo es crear vistas que permitan a los usuarios
actualizar datos en las tablas fundamentales, entonces debe considerar la complejidad de esas
vistas y las funciones que vayan a realizar. También considere que las limitaciones que tengan
lugar en las tablas fundamentales afectan la habilidad para modificar e insertar datos mediante
una vista.

Utilice la cldusula WITH CHECK OPTION

Ahora volvamos a la sintaxis de CREATE VIEW que ya se presentd en la seccion “Definicion de
las vistas de SQL”. La udltima linea de la sintaxis incluye la siguiente clausula:

[WITH CHECK OPTION]

Capitulo 5: Creacién de vistas en SQL 117

La cldausula WITH CHECK OPTION aplica a vistas actualizables que incluyen la clausula WHE-
RE en la instrucciéon SELECT. La mejor manera de ilustrar cémo funciona esto es por medio de un
ejemplo. Modifiquemos la definicién de la dltima vista que examinamos:

CREATE VIEW COM_EMP AS
SELECT ID EMPLEADO, ANO 1999, ANO 2000
FROM COMISIONES EMPLEADO
WHERE ANO 1999 > 100;

La cldusula WHERE especifica que sélo las filas ANO_1999 con valores mayores que 100 se
devuelven. Esto en si es bastante claro. Sin embargo, suponga que quiere actualizar esta vista es-
tableciendo un valor ANO_1999 que sea menor o igual que 100. Ya que la vista es actualizable, le
permitira hacer eso. Sin embargo, si se invoca la vista, la fila que se actualizé ya no seria visible ni
se podria actualizar mas.

Para evitar este problema se puede agregar la clausula WITH CHECK OPTION a la defini-
cion de la vista, como en el siguiente ejemplo:

CREATE VIEW COM_EMP AS
SELECT ID EMPLEADO, ANO 1999, ANO 2000
FROM COMISIONES EMPLEADO
WHERE ANO 1999 > 100
WITH CHECK OPTION;

Ahora si se trata de actualizar un valor ANO_1999 a una cantidad menor o igual que 100, se re-
cibe un mensaje de error diciendo que el cambio no se puede hacer. Como se observa, la clausula
WITH CHECK OPTION es una manera practica de garantizar que los usuarios no realicen actuali-
zaciones que les impida la utilizacién eficaz de las vistas que se crean.

Eliminacién de vistas de la base de datos

No cabe duda que se enfrentard a situaciones en las que desee quitar la definicién de una vista de
su base de datos. La sintaxis para hacerlo es bastante simple:

DROP VIEW <nombre de la vista>

Cuando se ejecuta la instruccion DROP VIEW, la definicion de la vista se quita; sin embargo,
ninguno de los datos fundamentales (que se almacenan en las tablas base) se afectan. Una vez que
la vista se elimina, se puede volver a crear la vista o crear una vista diferente con el mismo nom-
bre. Ahora veamos un ejemplo rdpido:

DROP VIEW COM_EMP;

Esta instruccion elimina la vista COM_EMP de la base de datos, pero deja los datos fundamenta-
les intactos.

118 Fundamentos de SQL

Pregunta al experto

P:

Se analizé la creacion y eliminacion de vistas, pero no se mencioné su modificacion.
¢Respalda SQL cualquier tipo de instruccion ALTER VIEW?

No, el estandar SQL:2006 no soporta la modificacién de las vistas. Sin embargo, algunos
RDBMS soportan la instruccion ALTER VIEW. Sin embargo, esté consciente de que la fun-
cionalidad respaldada por estas instrucciones puede variar de un producto a otro. Por ejemplo,
SQL Server y MySQL tienen las instrucciones ALTER VIEW, que son bastante robustas y
permiten cambiar muchos aspectos de la definicién de una vista, incluyendo la instruccién
SELECT. Por otra parte, la instruccion ALTER VIEW en Oracle se utiliza para recompilar
manualmente, a fin de evitar la sobrecarga en el tiempo de ejecucién o modificar algunas limi-
taciones que Oracle respalda en las vistas. De hecho, para modificar una vista en Oracle tiene
primero que eliminarse y después volver a crearse, como es el caso en el estdndar SQL. Sin
embargo, Oracle tiene la instruccion CREATE OR REPLACE VIEW que esencialmente per-
mite eliminar y volver a crear una vista en un solo paso.

En los ejemplos que se usaron para mostrar como se crean las vistas, se utilizaron una o
dos tablas para los datos fuente. ;Se pueden basar las vistas en mas de dos tablas?

Si, una vista puede basarse en tantas tablas como pueda ser I6gicamente consultada en la
instruccién SELECT. Por ejemplo, suponga que desea crear una vista en la base de datos
INVENTARIO. (La base de datos INVENTARIO es con la que se ha trabajado para los ejer-
cicios en el libro.) La vista muestra los nombres de los artistas junto con los titulos de CD. Sin
embargo, para hacer esto, la instrucciéon SELECT tiene que unir tres tablas. Tendrian que coin-
cidir los valores de ID_ARTISTA en la tabla ARTISTAS y la tabla CD_ARTISTA, y tendrian
que coincidir los valores ID_DISCO_COMPACTO en la tabla DISCOS_COMPACTOS y la
tabla CD_ARTISTA. El resultado seria una vista que muestra una lista de artistas y sus CD.
(En el capitulo 11 se analizard cémo se pueden unir estas tablas en la instruccién SELECT.)

En los ejemplos que se utilizaron para mostrar como se crean las vistas, todas las vistas
hacen referencia a tablas base. ;Se crean todas las vistas a partir de tablas base?

No, las vistas se pueden crear utilizando expresiones de consulta que extraen datos de otras
vistas. También es posible crear una vista que contenga sélo datos calculados y, por lo tanto,
no disponga de datos que dirijan a una tabla base.

Capitulo 5: Creacién de vistas en SQL - 119

Afada vistas a su base de datos

En este ejercicio se creardn dos vistas en la base de datos INVENTARIO. Las vistas se basan en
las tablas que se crearon en los ejercicios anteriores. La primera vista se basa en una sola tabla,
y la segunda vista en dos tablas. La segunda vista se creard dos veces. Se creard una vez, luego
se eliminard la definicion de la vista de la base de datos, y a continuacién se volvera a crear una
version modificada de la vista. Se puede descargar el archivo Try_This_05.txt, que contiene las
instrucciones SQL utilizadas en este ejercicio (en inglés).

Paso a paso

1.
2‘

Abra la aplicacién de cliente de su RDBMS y conéctese a la base de datos INVENTARIO.

La primera vista que se crea se llama CD_EN_EXISTENCIA. La vista se basa en las colum-
nas TITULO_CD y EN_EXISTENCIA en la tabla DISCOS_COMPACTOS. Se desea que la
vista incluya s6lo las filas cuyos valores en la columna EN_EXISTENCIA sean mayores que
10. La vista utilizard los mismos nombres de columna que la tabla e incluira la clausula WITH
CHECK OPTION para evitar que los valores inferiores o iguales a 10 se afiadan a la columna
EN_EXISTENCIA. Introduzca y ejecute la siguiente instruccién SQL:

CREATE VIEW CDS_EN EXISTENCIA AS
SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE EN_EXISTENCIA > 10 WITH CHECK OPTION;

Después se crea la vista llamada EDITORES_CD, que contiene las columnas TITULO_CD y
EDITOR. La vista se basa en la columna TITULO_CD de la tabla DISCOS_COMPACTOS y
en la columna NOMBRE_COMPANIA de la tabla DISQUERAS_CD. Tendra que utilizar la
clausula WHERE para que coincidan las filas en las dos tablas. La clausula WHERE también
va a limitar las filas incluidas en la vista a aquellas cuyo valor ID_DISQUERA en la tabla DIS-
QUERAS_CD sea 5403 o 5402. Introduzca y ejecute la siguiente instruccién SQL:

CREATE VIEW EDITORES_CD
(TITULO CD, EDITOR) AS
SELECT DISCOS COMPACTOS.TITULO CD, DISQUERAS CD.NOMBRE COMPANIA
FROM DISCOS COMPACTOS, DISQUERAS CD
WHERE DISCOS_COMPACTOS.ID DISQUERA = DISQUERAS_CD.ID_DISQUERA
AND DISQUERAS_CD.ID DISQUERA = 5403 OR DISQUERAS_CD.ID_DISQUERA =
5402;

Decide que no desea limitar las filas a valores especificos en la columna ID_DISQUERA, as{
que debe eliminar la definicién de la vista de la base de datos y volver a crear la vista sin las
restricciones en los valores. Introduzca y ejecute la siguiente instruccién SQL:

DROP VIEW EDITORES CD;

(continda)

120 Fundamentos de SQL

5. Ahora se puede volver a crear la vista EDITORES_CD. Introduzca y ejecute la siguiente ins-
truccion SQL:

CREATE VIEW EDITORES_ CD
(TITULO CD, EDITOR) AS
SELECT DISCOS_ COMPACTOS.TITULO_CD, DISQUERAS CD. NOMBRE_COMPAFIIA
FROM DISCOS COMPACTOS, DISQUERAS CD
WHERE DISCOS_COMPACTOS.ID DISQUERA = DISQUERAS CD.ID_ DISQUERA;

6. Cierre la aplicacion de cliente.

Resumen de Pruebe esto

Ademds de las seis tablas creadas en los ejercicios anteriores, la base de datos ahora incluye

las vistas CD_EN_EXISTENCIA y EDITORES_CD. Mis adelante en el libro, se utilizardn

estas vistas para consultar datos de las tablas base y actualizar esos datos. Una vez que tenga una
mejor comprension de cémo crear las instrucciones SELECT, serd capaz de definir vistas que
son alin mds amplias y proporcionan un mayor nivel de detalle que las vistas que se crearon hasta
ahora.

v Autoexamen Capitulo 5

1. ;Cuidles son las dos ventajas de utilizar vistas?

. (Cudles son los tres tipos de tablas almacenadas, soportadas por SQL?

2

3. ;Qué sucede si no se asignan nombres de columna a una vista?
4, ;C6émo se asignan los tipos de datos a las columnas de una vista?
5

. (En qué circunstancias se deben proporcionar nombres a las columnas de una vista en una defi-
nicién de vista?

6. Se crea la vista llamada EMP_CUMPLEANOS. La vista se basa en las columnas EMP_NOM-
BRE y CUMPLEANOS de la tabla EMPLEADOS. Los nombres de columna de la vista serdn
los mismos que los nombres de columna de la tabla. ;Qué codigo SQL se utilizarfa para crear la
vista?

7. Se crea una vista basada en la tabla DISCOS_COMPACTOS en la base de datos INVENTA-
RIO. Se desea que la vista incluya s6lo las filas cuyo valor en la columna ID_DISQUERA sea
546. ;Qué clausula (ademads de las clausulas SELECT y FROM) debera incluirse en la instruc-
ciéon SELECT para la vista?

8. Se crea una vista que hace referencia a las tablas EMPLEADOS y TITULO_TRABAIJO. Los
datos en las dos tablas coinciden a través de la columna ID_TITULO_TRABAJO en cada tabla.
(Como se debe escribir la clausula WHERE en la instruccién SELECT de la vista?

Capitulo 5: Creacién de vistas en SQL 121

9.

100
11.

12.

13.
14.

15.

16.

17.

Se crea una vista que hace referencia a las tablas EMPLEADOS y TITULO_TRABAJO. Los
datos en las dos tablas coinciden por la columna ID_TITULO_TRABAIJO en cada tabla. Se de-
sea que la vista muestre sélo las filas cuyo valor en la columna ID_TITULO_TRABAIJO de la
tabla TITULO_TRABAJO sea 109. ;Cémo se debe escribir la cldusula WHERE en la instruc-
cién SELECT de la vista?

(Qué es una especificacion de consulta?

(Qué directrices deben seguirse si desea crear una vista actualizable?

A Los datos dentro de la vista no se pueden resumir, agrupar o eliminar automaticamente.
B Por lo menos una columna en la tabla fuente debe ser actualizable.

€ Cada columna en la vista debe rastrearse exactamente a una columna fuente en una tabla.
D Cada fila en la vista debe rastrearse exactamente a una fila fuente en una tabla.

Se crea la siguiente vista basada en la tabla DISCOS_COMPACTOS en la base de datos IN-
VENTARIO:

CREATE VIEW PROMEDIO_ EN EXISTENCIA AS
SELECT PROM (EN_ EXISTENCIA)
FROM DISCOS_ COMPACTOS;

(Coémo se insertan datos a través de esta vista?
(A qué tipo de vista aplica la clausula WITH CHECK OPTION?
Se crea la siguiente definicion de vista:
CREATE VIEW COM EMP AS
SELECT ID EMPLEADO, ANO 1999, ANO 2000

FROM COMISION_EMPLEADO
WHERE ANO 1999 > 100;

Se quiere utilizar la vista para actualizar los datos. ;Qué sucede si se cambia el valor ANO_
1999 a una cantidad inferior o igual que 100?

Se desea modificar la definicién de la vista COM_EMP en la base de datos. ;Como se modifica
esa definicién?

Se desea eliminar la definicién de la vista EMP_CUMPLEANOS de la base de datos. (Qué ins-
truccion SQL debera utilizarse?

(Qué les sucede a los datos de SQL cuando se elimina una vista de la base de datos?

Capitulo 6

Gestion de seguridad
en la base de datos

124 Fundamentos de SQL

Habilidades y conceptos clave

Entienda el modelo de seguridad de SQL
Creacion y eliminacion de roles
Otorgue y revoque privilegios

Otorgue y revoque roles

U n componente critico de cualquier base de datos es la habilidad para proteger los datos contra
accesos no autorizados y ataques maliciosos. Una base de datos debe garantizar que los usua-
rios no autorizados no puedan ver o cambiar datos que no deban ver o cambiar. Al mismo tiempo,
a los usuarios autorizados no se les debe impedir acceder a cualquier informacién que esta dispo-
nible para ellos. El equilibrio ideal es dar con exactitud a cada uno de los usuarios de base de datos
los privilegios que necesitan para hacer su trabajo, nada mas y nada menos. Con el fin de respaldar
estas capacidades, SQL define un modelo de seguridad que permite determinar qué usuarios pue-
den acceder a datos especificos y lo que pueden hacer con esos datos. La parte esencial de este
modelo es el identificador de autorizacién. Un identificador de autorizacion, como se aprendi6 en
el capitulo 2, es un objeto en el entorno SQL que representa a un usuario o grupo de usuarios a los
que se les otorgan privilegios especificos para acceder a objetos y datos dentro del entorno SQL.
Los privilegios a los objetos de esquema se les conceden a los identificadores de autorizacion. El
tipo de privilegio otorgado determina el tipo de acceso. En este capitulo se examina el modelo de
seguridad de SQL, cémo utiliza a los identificadores de autorizacién y cémo configura los privile-
gios sobre objetos en la base de datos SQL.

Entienda el modelo de seguridad de SQL

Los identificadores de autorizacidn proporcionan la base para la seguridad en la base de datos. Se
permite acceder a todos los objetos a través de estos identificadores. Si el identificador de autori-
zacién no tiene los privilegios apropiados para acceder a un objeto especifico, como una tabla, los
datos dentro de esa tabla no estan disponibles para ese usuario. Ademads, cada identificador de au-
torizacién se puede configurar con diferentes tipos de privilegios. Por ejemplo, puede permitir que
algunos identificadores de autorizacién consulten los datos dentro de una tabla especifica, mientras
que permita a otros identificadores de autorizacién tanto ver como modificar esos datos.

SQL respalda dos tipos de identificadores de autorizacién: identificadores de usuario (o usua-
rios) y nombres de rol (o roles). Un identificador de usuario es una cuenta de seguridad individual
que puede representar a una persona, una aplicacién o un servicio del sistema (de los cuales todos
se consideran como usuarios de la base de datos). El estindar SQL no especifica cémo una apli-
cacién de SQL puede crear a un identificador de usuario. El identificador puede estar vinculado al
sistema operativo en el que se ejecuta el sistema de gestion de base de datos relacional (RDBMS),
o puede estar creado explicitamente en el entorno RDBMS.

Capitulo 6: Gestién de seguridad en la base de datos 125

Un nombre de rol es un conjunto de privilegios definidos que se pueden asignar a un usuario o
a otro rol. Si a un nombre de rol se le concede acceder a un objeto de esquema, entonces todos los
identificadores de usuario y los nombres de rol que se asignaron al nombre del rol especifico se les
concede acceder a ese objeto siempre y cuando el nombre de rol sea el del identificador de autori-
zacion actual. Por ejemplo, en la figura 6-1 el nombre de rol DEPTO_MRKT se asigné al nombre
de rol DEPTO_ACCT y los cuatro identificadores de usuario: Ethan, Max, Linda y Emma. Si el
nombre de rol DEPTO_ACCT es el identificador de autorizacién actual y se le concedié acceder
a la tabla INTERPRETES, el nombre de rol DEPTO_ACCT y los cuatro identificadores de usua-
rio tienen acceso a la tabla INTERPRETES. Observe que, a diferencia de un identificador de
usuario, SQL s7 especifica como crear un nombre de rol, que se analizara en la seccion “Creacion
y eliminacién de roles”, mas adelante en este capitulo.

Los nombres de rol se utilizan comtiinmente como un mecanismo para la concesién de un con-
junto uniforme de privilegios a los identificadores de autorizacién que deben tener los mismos pri-
vilegios, como las personas que trabajan en el mismo departamento. También tienen la ventaja de
la existencia independiente de los identificadores de usuario, lo que significa que se pueden crear
antes que los identificadores de usuario, y persisten incluso después de que los identificadores de
usuario suprimen las referencias. Esto es muy ttil a la hora de administrar los privilegios para un
trabajo fluido.

Ademas de los identificadores de usuario y los nombres de rol, SQL respalda a un identifica-
dor de autorizacion especial incorporado llamado PUBLIC, que incluye a todos los que utilizan la
base de datos. Al igual que con cualquier otro identificador de autorizacién, se pueden conceder
privilegios de acceso a la cuenta PUBLIC. Por ejemplo, suponga que quiere que todos los clientes
potenciales puedan ver su lista de CD.

INTERPRETES
ID_INTERPRETES:| NOMBRE_COMPLETO:
INT VARCHAR(60)
10001 Jennifer Warnes Nombre de rol
(DEPTO_ACCT)
10002 Joni Mitchell
10005 Bing Crosby
| Identificador de autorizacion
10006 Patsy Cline I (Nombre de rol DEPTO_MRKT)
Identificador de
10008 Placido Domingo usuario (Emma)
10009 Luciano Pavarotti

Identificador de
usuario (Linda)

Identificador de
usuario (Ethan)

Identificador de
usuario (Max)

Figura 6-1 Rol DEPTO_MRKT asignado a cuatro identificadores de usuario y a un rol.

126

Fundamentos de SQL

Puede conceder los privilegios necesarios a la cuenta PUBLIC para las tablas y columnas corres-
pondientes. Evidentemente, la cuenta PUBLIC debe utilizarse con sumo cuidado, ya que puede
abrir la oportunidad para personas con malas intenciones. De hecho, muchas organizaciones prohi-
bieron su uso por completo.

Sesiones SQL

Cada sesién SQL se asocia con un identificador de usuario y un nombre de rol. Una sesion SQL es
la conexidn entre algun tipo de aplicacién de cliente y la base de datos. La sesién proporciona el
contexto en el que el identificador de autorizacién ejecuta las instrucciones SQL durante una sola
conexion. A través de esta conexion, la sesiéon SQL mantiene la asociacion con el par identificador
de usuario / nombre de rol.

Echemos un vistazo a la figura 6-2, que muestra al par identificador de usuario/nombre de
rol asociado con una sesién. Cuando una sesién se establece por primera vez, el identificador de
usuario es siempre el identificador de usuario de la sesion SQL, que es un tipo especial de identi-
ficador de usuario que permanece asociado con la sesidn a través de la conexion. Corresponde a la
aplicacién SQL determinar cdmo una cuenta especifica se convierte en el identificador de usuario
de la sesién SQL, aunque puede ser una cuenta de usuario del sistema operativo o una cuenta espe-
cifica para el RDBMS. Cualquier método que se utilice para asociar una cuenta con el identifica-
dor de usuario de la sesién SQL, esta cuenta es la que actia como identificador de usuario actual.

Como también se puede observar en la figura 6-2, el nombre de rol es un valor nulo. El nom-
bre de rol es siempre nulo cuando una sesién se establece por primera vez. En otras palabras, cada
vez que la base de datos de SQL inicie y establezca una sesion, el identificador de usuario inicial
siempre serd el identificador de usuario de la sesién SQL y el nombre de rol siempre serd un valor
nulo.

Sesion SQL

Identificador
de usuario

l l

Nombre de rol

- . Par de
Identificador de usuario . e
P Nulo identificador
de la sesion SQL L
inicial

Implementacion
definida

Figura 6-2 Sesién SQL con un identificador de usuario y un nombre de rol.

Capitulo 6: Gestién de seguridad en la base de datos 127

En cualquier momento durante una conexion, la sesién se asocia con un par identificador de
usuario/nombre de rol; sin embargo, no es siempre el mismo par a lo largo del periodo de la se-
sion. Por ejemplo, las instrucciones SQL incrustadas, los médulos de clientes SQL y las rutinas
invocadas SQL pueden especificar un identificador de autorizacion. Si se especifica un identifi-
cador nuevo, se convierte en el identificador de autorizacidn actual hasta que la transaccién se
complete, y el acceso a los objetos se concede sobre la base del par actual identificador de usuario/
nombre de rol.

Para cualquier par actual de identificador de usuario/nombre de rol, uno de los dos valores
casi siempre es nulo. En otras palabras, si se especifica un identificador de autorizacién, entonces
el nombre de rol debe ser nulo; si un nombre de rol se especifica, entonces el identificador de
usuario debe ser nulo. Cualquier valor que no sea nulo es el identificador de autorizacién.

Cuando mas de un par identificador de usuario/nombre del rol se utiliza durante una sesion, se
crea una pila de autorizacién que refleja al identificador de usuario actual. El par en la parte supe-
rior de la pila es el identificador de autorizacion actual. La figura 6-3 muestra un ejemplo de una
pila de autorizacion que se puede crear durante una sesion.

En este ejemplo, el par identificador de usuario/nombre del rol inicial estd en la parte inferior
de la pila. Como cabria esperar, el identificador de usuario es el identificador de usuario de la se-
sion SQL y el nombre de rol es un valor nulo. Acceder a un objeto de base de datos se basa en los
privilegios concedidos al identificador de usuario de la sesiéon SQL cuando es actual.

Durante la sesién, una instruccién SQL incrustada especifica un identificador de autorizacién
Usario_App, que es un identificador de usuario. Cuando la instruccién incrustada se ejecuta,
el Usario_App se convierte en el identificador de autorizacion actual y los privilegios de acceso
se basan en esa cuenta.

Suponga una de las instrucciones SQL incrustadas, luego llame una rutina SQL invocada
que especifique una autorizaciéon de ROL_RUTINA, que es un nombre de rol. ROL_RUTINA se
convierte en el identificador de autorizacion actual y esta en la parte superior de la pila de auto-
rizacién. Una vez que se ejecuta la ruta, el identificador de autorizacién actual revierte al Usua-

Nombre
de rol
actual

Identificador
de autorizacion
actual

Identificador
de usuario
actual

Nulo ROL_RUTINA e
invocada
) SQL
Nulo
Usuario_App incrustado

Identificador de
Identificador

usuario de la Nulo e
sesion SQL par inicial
Identificadores Nombres de rol
de usuario

Figura 6-3 Pila de autorizacién creada durante una sesién SQL.

128

Fundamentos de SQL

rio_App, hasta que las instrucciones incrustadas se ejecuten, con lo que después el identificador de
autorizacion se revierte al identificador de usuario de la sesiéon SQL.

Observe que en cada par identificador de usuario/nombre de rol mostrado en la figura 6-3 hay
exactamente un valor nulo. El otro valor, el que no es nulo, es el identificador de autorizacion.

Pregunta al experto

P: se expuso que el identificador de autorizacion actual puede cambiar. ;Como se puede

determinar la autorizacion del usuario actual y el nombre de rol en cualquier momento
durante una sesiéon?

« SQL soporta varios valores especiales que permiten determinar los valores actuales de varios

tipos de usuarios. Los valores especiales actian como marcadores de posicion para el valor

de usuario relacionado actual. Se pueden utilizar estos valores especiales en expresiones para
devolver el valor del tipo especifico de usuario. Por ejemplo, se puede utilizar el valor especial
USUARIO_ACTUAL para devolver el valor del identificador de usuario actual. SQL respalda
cinco de estos valores especiales: USUARIO_ACTUAL, USUARIO, ROL_ACTUAL, USUA-
RIO_SESION y USUARIO_SISTEMA. Los valores USUARIO_ACTUAL y USUARIO
significan lo mismo y devuelven un valor igual al del identificador de usuario actual. E1 ROL_
ACTUAL devuelve el nombre de rol actual, y USUARIO_SESION devuelve el identificador
de usuario de la sesiéon SQL. Si el identificador de usuario de la sesién SQL es el identifica-
dor de usuario actual, entonces USUARIO_ACTUAL, USUARIO y USUARIO_SESION tie-
nen el mismo valor, que puede ocurrir si el par identificador inicial es el tnico par identifica-
dor de usuario/nombre de rol activo (el par en la parte superior de la pila de autorizacién). La
ultima funcién, USUARIO_SISTEMA, devuelve el sistema operativo del usuario que invocé
el médulo SQL. A medida que avancemos mds en este capitulo, se verd como los valores es-
peciales USUARIO_ACTUAL y ROL_ACTUAL se utilizan para reconocer al identificador de
autenticacion actual en el momento de crear los roles y conceder privilegios. (Ver las seccio-
nes “Creacién y eliminacion de roles”, “Otorgue y revoque privilegios” y “Otorgue y revoque
roles”.) Ademds, se encuentra mds informacidn sobre valores especiales en el capitulo 10.

Acceda a objetos de base de datos

Ahora que tiene una mejor comprension de lo que es un identificador de autorizacién (junto con
los identificadores de usuario y los nombres de rol), echemos un vistazo de lo que puede hacer con
estos identificadores. Acceder a los datos en una base de datos se basa en la posibilidad de acceder
a los objetos que contienen los datos. Por ejemplo, puede conceder a algunos usuarios el acceso a
un conjunto especifico de tablas, mientras que otros usuarios pueden acceder sélo a columnas es-
pecificas dentro de una tabla. SQL permite definir los privilegios de acceso a los siguientes objetos
de esquema:

Tablas base
Vistas

129

Capitulo 6: Gestién de seguridad en la base de datos

Columnas

Dominios

Conjunto de caracteres

Cotejos

Traducciones

Tipos de usuarios definidos

Secuencias

Activadores
Rutas invocadas SQL

Para cada tipo de objeto se pueden asignar determinados tipos de privilegios que varian se-
gtin el tipo de objeto. Estos privilegios asignados se asocian con identificadores de autorizacién
especificos. En otras palabras, se pueden asignar uno o mas de los privilegios de un objeto a uno o
mds identificadores de autorizacion. Por ejemplo, se puede asignar el privilegio SELECT para una
tabla para el identificador de autorizacion PUBLIC. Esto permite a todos los usuarios de la base de
datos ver los contenidos de esa tabla.

SQL define nueve tipos de privilegios que se pueden asignar a un objeto de esquema. La tabla
6-1 describe cada uno de estos privilegios y enumera los tipos de objetos a los cuales se puede
asignar el privilegio.

Los privilegios se conceden en las bases de datos objetos utilizando la instruccion GRANT
para especificar los objetos asi como los identificadores de autorizacién que adquieren los privile-

Privilegio | Descripcién Objetos
SELECT Permite que identificadores de autorizacién especificos consulten datos | Tablas
en el objeto. Por ejemplo, si al UsuarioA se le concede el privilegio Vistas
SELECT en la tabla CD_ARTISTAS, el usuario puede ver los datos de Columnas
esa tabla. Mé .
étodos (en tipos
estructurados)
INSERT Permite que identificadores de autorizacién especificos inserten datos | Tablas
en el objeto. Por ejemplo, si al UsuarioA se le concede el privilegio Vistas
INSERT en la tabla CD_ARTISTAS, el usuario puede afiadir datos a Columnas
esa tabla.
UPDATE Permite que identificadores de autorizacién especificos actualicen Tablas
datos en el objeto. Por ejemplo, si al UsuarioA se le concede el Vistas
privilegio UPDATE en la tabla CD_ARTISTAS, el usuario puede Columnas
modificar datos a esa tabla. Sin embargo, este privilegio no le permite
al usuario cambiar la definicién de la tabla.
DELETE Permite que identificadores de autorizacién especificos eliminen datos | Tablas
del objeto. Por ejemplo, si al UsuarioA se le concede el privilegio Vistas
DELETE en la tabla CD_ARTISTAS, el usuario puede eliminar datos
de esa tabla. Sin embargo, este privilegio no le permite al usuario
eliminar la definicién de la tabla de |c:iqse de datos.
Tabla 6-1 Privilegios de seguridad asignados a objetos de base de datos.

130 Fundamentos de SQL

Privilegio | Descripcién Objetos

REFERENCES | Permite que identificadores de autorizacién especificos definan los Tablas
objetos (como limitaciones referenciales) que hacen referencia a la tabla | Vistas
configurada con el privilegio REFERENCES. Por ejemplo, si al UsuarioA | cqlumnas
se le concede el privilegio REFERENCES en la tqblo CD_ARTISTAS, el
usuario puede crear otros objetos que hagan referencia a la tabla CD_

ARTISTAS, como seria el caso con claves ?oréneas. (Note que el UsuarioA
también debe tener la autorizacién para crear otros objetos.)

TRIGGER Permite que identificadores de autorizacién especificos generen Tablas
activadores en la tabla. Por ejemplo, si al UsuarioA se le concede el
privilegio TRIGGER en la tabla CD_ARTISTAS, el usuario puede crear
ocﬁvcgores en esa tabla.

USAGE Permite que los identificadores de autorizacién especificos utilicen el Dominios
objeto en una definicién de columna. Por ejemplo, si al UsuarioA se le Conjunto de
concede el privilegio USAGE en el dominio DINERO, el usuario puede caracteres
incluir el dominio en la definicién de columna cuando se crea una tabla. Cotejos
(Note que el UsuarioA también debe tener la autorizacion para crear una | o4
tabla) raducciones

Tipos definidos
por el usuario
Secuencias

EXECUTE Permite que los identificadores de autorizacién especificos invoquen Rutinas
una rutina SQL invocada. Por ejemplo, si al UsuarioA se le concede invocadas SQL
el privilegio EXECUTE en el procedimiento almacenado LISTA_CD_

ACTUALIZADA, el usuario seria capaz de invocar ese procedimiento
almacenado.

UNDER Permite que los identificadores de autorizacién especificos definan un Tipos
subtipo jirecto en un tipo estructurado. Un subtipo directo es un tipo estructurados
estructurado que se asocia con ofro tipo estructurado como un objeto
secundario de ese tipo. Por ejemplo, si al UsuarioA se le concede el
privilegio UNDER en el fipo estructurado EMPLEADO, el usuario puede
definir subtipos directos tales como ADMINISTRADOR o SUPERVISOR.

Tabla 6-1 Privilegios de seguridad asignados a objetos de base de datos (continuacién).

gios. También se pueden revocar privilegios usando la instruccion REVOKE. Se entrard en mayor
detalle sobre ambas instrucciones a medida que avancemos por el capitulo. Sin embargo, antes de
discutir cémo conceder o revocar privilegios, primero deseo discutir cémo crear un nombre de rol.
(Recuerde, el estandar SQL no respalda la creacién de un identificador de usuario, sélo nombres
de rol. El proceso de creacion de identificadores de usuario es la aplicacion especifica.)

Creacién y eliminacién de roles

En su mayor parte, la creacién de un rol es un proceso muy sencillo. La instruccién incluye sélo
una cldusula obligatoria y una cldusula opcional, como se muestra en la siguiente sintaxis:

CREATE ROLE <nombre del rol>
[WITH ADMIN { CURRENT_USER | CURRENT_ROLE }]

Capitulo 6: Gestién de seguridad en la base de datos 131

Observe que la tnica parte requerida de la sintaxis es la cldusula CREATE ROLE, lo que sig-
nifica que todo lo que realmente se necesita hacer es especificar un nombre para el rol. La cldusula
WITH ADMIN es opcional y rara vez necesitara utilizarla. Es necesario sélo si el par identificador
de usuario/nombre de rol actual contiene valores no nulos. La cldusula permite disefiar tanto al
identificador de usuario actual (CURRENT_USER) o el nombre de rol actual (CURRENT_ROLE)
como el identificador de autenticacién permite asignar el rol a los identificadores de usuario o los
nombres de rol. Si la clausula WITH ADMIN no se especifica, al identificador de autenticacién ac-
tual, ya sea el identificador de usuario actual o el nombre de rol actual, se le permite asignar el rol.

NOTA

Probablemente encontraré que rara vez necesite utilizar la cldusula WITH ADMIN de la
instruccién CREATE ROLE, particularmente como programador principiante de SQL, y no es
ampliamente respaldado en los productos RDBMS. Como resultado, se mantiene una breve
discusién de la clausula.

Ahora veamos la creacién de un rol. En el siguiente ejemplo se utiliza la instruccién
CREATE ROLE para crear el rol CLIENTES:

CREATE ROLE CLIENTES;

Eso es todo lo que hay que hacer. Una vez que se crea el rol, se puede otorgar el rol a identifica-
dores de usuario u otros nombres de roles. Se analizard la concesion y revocacion de roles en la
seccion “Otorgue y revoque roles” después en este capitulo.

La eliminacion de un rol es tan facil como la creacién de uno. La sintaxis que se utiliza es la
siguiente:

DROP ROLE <nombre del rol>

En este caso, simplemente necesita identificar el nombre del rol, como en el siguiente ejemplo:

DROP ROLE CLIENTES;

El rol se elimina de la base de datos. Sin embargo, antes de eliminar un rol, asegtrese que se trata
del rol que ya no es necesario o que es el que particularmente quiere eliminar (por razones de se-
guridad).

Como se puede observar, la creacion y eliminacién de roles es un proceso muy sencillo, y
puede hacer la gestion de los usuarios mucho mas fécil. Los roles esencialmente permiten agrupar
los usuarios que requieren los mismos privilegios sobre los mismos objetos. Ahora echemos un
vistazo a la concesion y revocacion de privilegios para los identificadores de autenticacion, inclu-
yendo los identificadores de usuario y los nombres de rol.

NOTA

El respaldo para las instrucciones CREATE ROLE y DROP ROLE varia de una aplicacién a ofra.
Por ejemplo, Oracle y SQL Server (2005 y 2008) respaldan ambas instrucciones, pero no la
opcién WITH ADMIN. MySQL 5.0 no parece respaldar el concepto de roles.

Otorgue y revoque privilegios
Cuando se conceden privilegios en un objeto, se asocian uno o mas privilegios con uno o mas
identificadores de autorizacion. Este conjunto de privilegios e identificadores de autorizacion se

132

Fundamentos de SQL

asignan al objeto, que permite al identificador de autorizacién poder acceder al objeto segtin el tipo
de privilegios definidos. Para otorgar privilegios, se debe utilizar la instruccion GRANT, como se
muestra en la siguiente sintaxis:

GRANT { ALL PRIVILEGES | <lista de privilegios> }

ON <tipo de objeto> <nombre del objeto>

TO { PUBLIC | «lista de identificador de autorizacion>} [WITH GRANT OPTION]
[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

La instruccién, como se puede observar, incluye tres cldusulas requeridas —GRANT, ON y
TO— y dos cldusulas opcionales —WITH GRANT OPTION y GRANTED BY—. Se analizara
cada cldusula individualmente, excepto la clausula GRANTED BY. La clausula GRANTED BY es
similar a la clausula WITH ADMIN en la instruccion CREATE ROLE. Como esa cldusula, la clau-
sula GRANTED BY aplica sélo en esas situaciones donde el par identificador de usuario/nombre
de rol actual contiene valores no nulos, y no se implementa ampliamente en los RDBMS. Como
principiante en la programacion de SQL, no necesita inquietarse con la clausula GRANTED BY.

NOTA

Muchas aplicaciones de los proveedores contienen disposiciones para la asignacién de privi-
legios del sistema tales como iniciar y detener la base de datos de los identificadores de au-
torizacién utilizando la instruccion GRANT. Ya que la sintaxis de estas variantes es totalmente
especifica a implementacién, no se cubrird aqui.

Se deben tener los privilegios necesarios en un objeto para otorgar privilegios en ese objeto.
Si cre6 el objeto, entonces es el propietario, lo que significa que puede acceder por completo al
objeto. (Todos los privilegios se le otorgan, incluyendo la habilidad para asignar privilegios a otros
identificadores de autorizacion.)

Ahora echemos un vistazo a la cldusula GRANT. La cldusula incluye dos opciones: ALL
PRIVILEGES y el marcador de posicidn <lista de privilegios>. Si utiliza las palabras clave
ALL PRIVILEGES, se otorgan todos los privilegios disponibles a ese objeto de acuerdo con los
privilegios que se otorgan sobre el objeto. Por ejemplo, asuma por un momento que se crea una ta-
bla y es el propietario. Como resultado, autométicamente se le conceden los privilegios SELECT,
INSERT, UPDATE, DELETE, TRIGGER y REFERENCES. (Estos son los tinicos privilegios que
aplican a una tabla. Remitase a la tabla 6-1 para ver la lista de privilegios y de los objetos a los que
se aplican.) También se le concede de forma automatica la habilidad de asignar estos privilegios.
En esta situacion, si se utilizan las palabras clave ALL PRIVILEGES, se le otorgan estos seis pri-
vilegios a los identificadores de autorizacion en la instruccion GRANT.

Si decide no utilizar la opciéon ALL PRIVILEGES, debe entonces listar cada privilegio que
deberia aplicarse a los identificadores de usuario. Sin embargo, puede listar s6lo los privilegios
que se pueden aplicar al objeto especifico. Por ejemplo, no se puede listar el privilegio DELETE
si se otorga un privilegio en un dominio. También note que si se lista mds de un privilegio, debe
separar los nombres de los privilegios con comas.

La siguiente cldusula que veremos es la cldusula ON, que incluye dos marcadores de posicion:
<tipo de objeto> y <nombre del objeto>. El marcador de posicion <tipo de objeto> simplemente se

Capitulo 6: Gestién de seguridad en la base de datos 133

refiere al tipo de objeto en el que estd la concesion de permisos. SQL respalda los siguientes valo-
res para el marcador de posicion <tipo de objeto>:

TABLE (incluye vistas)
DOMAIN
COLLATION
CHARACTER SET
TRANSLATION
TYPE

SEQUENCE

Designacion especial para rutinas invocadas SQL

Se requiere un valor para la designacién <tipo de objeto>, a menos que el valor sea TABLE,
en cuyo caso se puede dejar fuera. Si se proporciona el nombre de un objeto sin especificar un
tipo, SQL asume que el valor del <tipo de objeto> es TABLE. Como se sefiala en la lista, la pala-
bra clave TABLE también incluye vistas. Y por supuesto, no todas las aplicaciones respaldan todos
los tipos de objetos incluidos en el estdndar SQL, y algunos incluyen tipos de objetos que el estan-
dar no cubre (lo cual conduce a la aplicacién especifica de las variaciones de SQL).

NOTA

En Oracle, la palabra clave TABLE se debe omitir. Por otra parte, en DB2 es opcional, pero
ampliamente recomendado por el proveedor. SQL Server no respalda ninguna de las pala-
bras clave de <tipo de objeto> del esténdar SQL en la instruccién GRANT, pero en lugar de
eso permite una clase de palabra clave seguida por un separador <::>; por lo tanto, en lugar
de TABLE, se puede escribir OBJECT:: (OBJECT es la palabra clave para las bases de datos
obijetos tales como tablas y vistas). Es evidente que la leccién aqui es que siempre consulte la
documentacién para la aplicacién especifica de SQL.

El marcador de posicién <nombre del objeto> en la cldusula ON se refiriere al nombre de un
objeto especifico. Siempre se requiere este valor.

La siguiente cldusula es la cldusula TO. Asi como la clausula GRANT, la cldusula TO tiene
dos opciones: PUBLIC y el marcador de posicion <lista de identificador de autorizacién>. Si se
utiliza PUBLIC, todos los usuarios de la base de datos pueden acceder al objeto. Si se utiliza la
opcidn <lista de identificador de autorizacién>, entonces se debe proporcionar el nombre de uno
o mas identificadores de autorizacion. Si se proporciona mds de uno, deben estar separados por
comas.

La ultima cldusula que se va a discutir es la clausula WITH GRANT OPTION. Esta cldusula
otorga a los identificadores de autorizacién el permiso para conceder cualquiera de los privilegios
que se les otorgan en la instruccién GRANT. Por ejemplo, suponga que al identificador de usua-
rio EmmaW se le otorga el privilegio SELECT en una de las tablas. Si se utiliza WITH GRANT
OPTION, EmmaW podra otorgar el privilegio SELECT a otro usuario. Si no se utiliza WITH
GRANT OPTION, EmmaW no podra otorgar el privilegio a otro usuario. Por cierto, la mayoria

134

Fundamentos de SQL

de los expertos en seguridad recomiendan que nunca se utilice esta opcidn, ya que rapidamente se
pierde el control sobre quién tiene qué privilegios.

Ahora que echamos un vistazo a la sintaxis, veamos algunos ejemplos. En el primer ejem-
plo, veamos la instruccion GRANT que otorga el privilegio SELECT al identificador de autoriza-
ciéon PUBLIC. El privilegio se otorga a la vista llamada CD_DISPONIBLES, que enumera los
CD que actualmente se tienen en existencia. Para otorgar el privilegio, utilice la siguiente instruc-
cion:

GRANT SELECT ON TABLE CD_DISPONIBLES TO PUBLIC;

El privilegio SELECT permite a todos los usuarios de la base de datos (PUBLIC) ver los da-
tos en la vista CD_DISPONIBLES. Sin embargo, ya que a PUBLIC no se le otorga ningtin otro
privilegio, los usuarios pueden ver los datos, pero no tomar ninguna acciéon. Ademds, ya que la
clausula WITH GRANT OPTION no se incluye en la instruccion, los usuarios no pueden asignar
el privilegio SELECT a ningtin otro usuario (que es un punto discutible en este caso porque todos
pueden ya acceder a la vista CD_DISPONIBLES).

Ahora veamos otro ejemplo. Esta vez se otorgan los privilegios SELECT, UPDATE e IN-
SERT a los roles VENTAS y CONTABILIDAD para que puedan acceder a la tabla INVENTA-
RIO_CD:

GRANT SELECT, UPDATE, INSERT
ON TABLE INVENTARIO CD
TO VENTAS, CONTABILIDAD WITH GRANT OPTION;

Observe que los privilegios se separan por comas, asi como los roles. Como resultado de esta ins-
truccion, los usuarios asociados con los roles VENTAS y CONTABILIDAD pueden ver, actualizar
e insertar informacion en la tabla CD_INVENTARIO. Ademds, estos usuarios pueden asignar
los privilegios SELECT, UPDATE e INSERT a otros usuarios que necesiten acceder a la tabla
CD_INVENTARIO.

El siguiente ejemplo que se examina tiene una ligera variacién de este dltimo. Todo es igual,
excepto que esta vez se especifica qué columna se puede actualizar:

GRANT SELECT, UPDATE (TITULO CD), INSERT
ON TABLE INVENTARIO CD
TO VENTAS, CONTABILIDAD WITH GRANT OPTION;

Observe que se puede afiadir un nombre de columna después de un privilegio especifico. Se pue-
den agregar nombres de columnas sélo a los privilegios SELECT, UPDATE e INSERT. Si se afiade
mads de un nombre de columna, se deben separar por comas.

La instruccion GRANT en este ejemplo atin permite a los usuarios de VENTAS y CONTABI-
LIDAD ver e insertar informacion en la tabla INVENTARIO_CD, pero sélo pueden actualizar va-
lores en la columna TITULO_CD. No pueden actualizar ningtin otro valor de columna en la tabla.
Ademads, aunque puede atn asignar privilegios a otros usuarios, s6lo pueden asignar el privilegio
UPDATE en la columna TITULO_CD.

Capitulo 6: Gestién de seguridad en la base de datos 135

Echemos un vistazo a un ejemplo mas que otorgue el privilegio SELECT al identificador de
autorizacién PUBLIC:

GRANT SELECT (TITULO CD, EN EXISTENCIA) ON INVENTARIO CD TO PUBLIC;

El identificador de autorizacién PUBLIC permite a todos los usuarios ver los datos en las colum-
nas TITULO_CD y EN_EXISTENCIA de la tabla INVENTARIO_CD, pero no pueden ver nin-

guna otra informacién de esa tabla y no pueden modificar los datos en modo alguno. Observe en
esta instruccion que la palabra clave TABLE no estd incluida. Como se dijo antes, TABLE no se

requiere.

La instruccién GRANT, cuando se utiliza conjuntamente con los privilegios disponibles y los
identificadores de autorizacion, proporciona una base sélida para la seguridad de la base de datos.
Sin embargo, cada aplicacién de SQL es diferente con respecto a cdmo se implementa y mantiene
la seguridad. Por lo tanto, cuando se trata de cuestiones de seguridad, es importante que trabaje en
estrecha colaboracién con los administradores de red y base de datos y lea cuidadosamente la do-
cumentacién del producto.

Revoque privilegios
Ahora que sabe cdmo conceder privilegios a los identificadores de autorizacion, es hora de apren-

der cémo revocar esos privilegios. La instruccion que se utiliza para revocar privilegios es la ins-
truccion REVOKE, como se muestra en la siguiente sintaxis:

REVOKE [GRANT OPTION FOR] {ALL PRIVILEGES | <lista de privilegios>}
ON <tipo de objeto> <nombre del objeto>

FROM { PUBLIC | <lista de identificador de autorizacion>

[GRANTED BY {CURRENT_USER | CURRENT_ROLE }]

{RESTRICT | CASCADE}

Probablemente reconozca muchos de los elementos de la sintaxis de la instruccion GRANT
o de otras instrucciones. De hecho, el inico componente nuevo, que no sea la palabra clave RE-
VOKE, es la cldusula GRANT OPTION FOR. Echemos un vistazo a la primera, ya que esta al
comienzo de la instruccién REVOKE. Esta cldusula aplica sélo cuando la clausula WITH GRANT
OPTION se utiliza en la instruccion GRANT. Si un privilegio se otorga con esta cldusula, se puede
utilizar la cldusula GRANT OPTION FOR para eliminar ese permiso en particular. En caso de ha-
cer uso de €sta, los privilegios se conservan, pero el usuario ya no puede otorgar esos privilegios a
otros usuarios. Sin embargo, muy pocos productos RDBMS respaldan esta clausula.

Olvide por un momento la cldusula GRANT OPTION FOR y veamos la cldusula REVOKE,
que se utiliza para revocar todos los privilegios de un objeto (ALL PRIVILEGES) o s6lo los privi-
legios definidos (<lista de privilegios>). Ambas opciones tienen el mismo significado que tuvieron
en la instruccion GRANT; puede utilizar ALL PRIVILEGES o puede listar cada privilegio separa-
do por una coma.

Las clausulas ON y GRANTED BY en la instruccion REVOKE son exactamente las mismas
que las cldusulas ON y GRANTED BY en la instrucciéon GRANT. Para la cldusula ON, se deben
especificar valores para los marcadores de posicion <tipo de objeto> y <nombre del objeto>;
sin embargo, si el valor del <tipo de objeto> es TABLE, entonces se puede dejar fuera (y como
antes, se debe omitir en Oracle y SQL Server). Para la cldusula GRANTED BY, asumiendo que

136

Fundamentos de SQL

el RDBMS o respalda (la mayoria no lo hace), puede escoger una de dos opciones (CURRENT _
USER o CURRENT_ROLE).

La clausula FROM en la instruccién REVOKE se puede comparar también a la instruccion
GRANT. La tnica diferencia es que en la instruccion GRANT se utiliza la palabra clave TO, pero
en la instruccion REVOKE se usa la palabra clave FROM. En ambos casos, se debe utilizar PU-
BLIC como identificador de autorizacion, o se deben enumerar los identificadores de usuario y los
nombres de rol.

Los tltimos elementos de la instruccion a analizar son las palabras clave RESTRICT y CAS-
CADE. Probablemente recuerde estas palabras clave de los capitulos 2, 3 y 4. Si se especifica
RESTRICT, el privilegio no se revoca si se pasa a otros usuarios (en otras palabras, si hay algtn
privilegio dependiente). (Esto significaria que WITH GRANT OPTION se utiliz6 en la instruccion
GRANT y que el identificador de autorizacion que otorgd el privilegio entonces concedio el pri-
vilegio a alguien mas.) Si se especifica CASCADE, el privilegio se revoca asi como cualquiera de
los privilegios que se pasan a otros usuarios.

NOTA

Las aplicaciones de los proveedores varian. En Oracle, CASCADE debe especificarse como
CASCADE CONSTRAINTS. En ambos, Oracle y SQL Server, no se puede especificar RES-
TRICT, sino que més bien es el comportamiento predeterminado cuando no se especifica CAS-

CADE. MySQL no permite que se especifique ninguno.

Ahora veamos algunos ejemplos de revocacién de privilegios. La siguiente instruccién revoca
el privilegio SELECT que se otorga al identificador de autorizacién PUBLIC en la vista CD_
DISPONIBLES:

REVOKE SELECT ON TABLE CD_DISPONIBLES FROM PUBLIC CASCADE;

Como se puede observar, esta instruccion es muy similar a la instruccion GRANT. Se deben iden-
tificar los privilegios, los identificadores de autorizacion y el objeto. Ademads, se debe especificar
RESTRICT o CASCADE.

El siguiente ejemplo se basa en privilegios que se otorgan a la tabla llamada INVENTARIO_
CD. A los roles VENTAS y CONTABILIDAD se les otorgan los siguientes privilegios en esta
tabla: GRANT, SELECT e INSERT. Para revocar esos privilegios, utilice la siguiente instruccién
REVOKE:

REVOKE SELECT, UPDATE, INSERT ON TABLE INVENTARIO CD
FROM VENTAS, CONTABILIDAD CASCADE;

Observe que solo tiene que especificar los privilegios que quiere revocar, el nombre de los
objetos y el nombre de los identificadores de autorizacién. Sin embargo, ya que se estdn revocando
todos los privilegios que se otorgaron, se puede simplificar la instruccion utilizando las palabras
clave ALL PRIVILEGES, como se muestra en el siguiente ejemplo:

REVOKE ALL PRIVILEGES ON TABLE INVENTARIO CD
FROM VENTAS, CONTABILIDAD CASCADE;

Capitulo 6: Gestién de seguridad en la base de datos 137

Si no desea revocar todos los privilegios, pero en vez de eso quiere revocar sélo los privilegios
UPDATE e INSERT, se pueden especificar solo estos privilegios, como se muestra en el siguiente
ejemplo:

REVOKE UPDATE, INSERT ON TABLE INVENTARIO CD
FROM VENTAS, CONTABILIDAD CASCADE;

También se puede elegir revocar privilegios para sélo uno de los nombres de rol, en lugar de am-
bos. Ademads, se puede utilizar la palabra clave RESTRICT en lugar de CASCADE.

Ahora suponga que se otorgan los mismos privilegios como en el ejemplo anterior, pero
ademds de ésos, se especifica WITH GRANT OPTION cuando se conceden los privilegios. Si se
quiere revocar sélo la habilidad de los roles Ventas y Contabilidad de otorgar privilegios a otros
usuarios, se puede utilizar la siguiente instruccién:

REVOKE GRANT OPTION FOR ALL PRIVILEGES ON INVENTARIO CD
FROM VENTAS, CONTABILIDAD CASCADE;

Esta instruccién revoca sélo la habilidad de conceder privilegios; los roles Ventas y Contabili-
dad atin pueden acceder a la tabla INVENTARIO_CD. Si se desea revocar todos los privilegios, se
tiene que ejecutar esta instruccion sin la clausula GRANT OPTION FOR. Observe en esta instruc-
cién que la palabra clave TABLE no se usa antes del nombre de la tabla. La instruccion REVOKE,
como la instruccién GRANT, no requiere la palabra clave TABLE cuando se especifica una tabla o
vista.

NOTA

Las diferencias de implementacién del proveedor indicadas con el uso de la palabra clave
TABLE en la instruccién GRANT (antferiormente en este capitulo) aplican de la misma forma a
la instruccién REVOKE. En general, los proveedores respaldan la sintaxis idéntica entre las ins-
trucciones GRANT y REVOKE, exceptuando que TO en la instruccién GRANT se convierte en
FROM en la instruccién REVOKE.

Otorgue y revoque roles

Ahora que sabe cdmo crear y eliminar roles y conceder y revocar privilegios, veamos la concesion
y revocacién de roles. Empezaremos con la concesién de roles. Para otorgar un rol, se debe utilizar
la instruccién GRANT para asignar uno o mas nombres de rol o uno o mds identificadores de au-
torizacién, como se muestra en la siguiente sintaxis:

GRANT <lista de nombres de rol>
TO { PUBLIC | «lista de identificador de autorizacién> }[WITH ADMIN OPTION]
[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]

Por ahora, la mayor parte de esta sintaxis debe lucir bastante familiar, excepto por algunas
variaciones. La cldusula GRANT permite especificar un listado de uno o mas nombres de rol. Si
se especifica mds de un nombre, se deben separar por comas. La cldusula TO permite especificar
uno o mds identificadores de autorizacién. Una vez mas, si hay mas de uno, se deben separar por
comas. También se puede especificar el identificador de autorizacién PUBLIC para otorgar un rol
a todos los usuarios de la base de datos. La clausula WITH ADMIN OPTION, que es opcional,

138

Fundamentos de SQL

permite a los identificadores de autorizacion otorgar un rol a otros usuarios. Y la clausula GRAN-
TED BY, que también es opcional (y s6lo se soporta en algunos productos RDBMS), se utiliza en
los casos raros cuando el par identificador de usuario/nombre de rol no contiene un valor nulo.

Echemos un vistazo a otro ejemplo. Suponga que tiene que crear un rol llamado ADMINIS-
TRADORES y desea asignar ese rol a un identificador de usuario llamado LindaN. Se utiliza la
siguiente sintaxis:

GRANT ADMINISTRADORES TO LindaN;

Ahora suponga que quiere darle a LindaN la habilidad de otorgar el rol ADMINISTRADORES a
otros usuarios. Para hacer esto, simplemente afiada la clausula WITH ADMIN OPTION, como en
el siguiente ejemplo:

GRANT ADMINISTRADORES TO LindaN WITH ADMIN OPTION;

También se pueden conceder miiltiples roles a multiples identificadores de usuario. Los identi-
ficadores de usuario pueden ser identificadores de usuarios u otros nombres de rol. En el siguiente
ejemplo se otorgan los roles ADMINISTRADORES y CONTABILIDAD al identificador de usua-
rio LindaN y el nombre de rol MARKETING:

GRANT ADMINISTRADORES, CONTABILIDAD TO LindaN, MARKETING WITH ADMIN
OPTION;

Ahora que sabe cémo otorgar roles a los identificadores de autorizacion, es hora de aprender
cOmo revocar esos roles.

Revoque roles

La revocacién de roles es muy similar a la revocacion de privilegios. La instruccién que se utiliza
para revocar privilegios es la instruccion REVOKE, como se muestra en la siguiente sintaxis:

REVOKE [ADMIN OPTION FOR] <lista de nombres de rol>
FROM { PUBLIC | <lista de identificador de autorizacién> }

[GRANTED BY { CURRENT_USER | CURRENT_ROLE }]
{ RESTRICT | CASCADE }

Como se puede observar, no hay nada nuevo en la sintaxis excepto por la cldusula ADMIN
OPTION FOR, que es similar a la clausula GRANT OPTION FOR utilizada cuando se revocan
privilegios. La cldusula permite revocar la habilidad de asignar roles a otros usuarios, sin revocar
el propio rol.

NOTA

Las mismas diferencias mencionadas para Oracle, SQL Server y MySQL en cuanto a la revo-
cacién de privilegios aplican al uso de la instruccién REVOKE.

Veamos un ejemplo de la revocacion de un rol. Suponga que otorga el rol ADMININSTRA-
DORES al identificador de autorizacién LindaN. Se puede revocar ese rol utilizando la siguiente
instrucciéon REVOKE:

REVOKE ADMINISTRADORES FROM LindaN CASCADE;

Capitulo 6: Gestién de seguridad en la base de datos 139

Si se otorgan los roles ADMINISTRADORES y CONTABILIDAD a LindaN y el rol MARKE-
TING, la instruccién REVOKE seria como la siguiente:

REVOKE ADMINISTRADORES, CONTABILIDAD FROM LindaN, MARKETING CASCADE;

Ahora que hemos visto cémo otorgar y revocar roles, se puede ver como esto es similar a la
concesion y revocacion de privilegios. Una vez mds, debo destacar que no todas las aplicaciones
son similares con respecto a cdmo otorgan y revocan privilegios y roles, asi que asegtirese de re-
visar la documentacion del producto y trabaje en estrecha colaboracién con el administrador de
bases de datos.

Mgl Gestién de roles y privilegios

En este ejercicio se creardn dos roles en la base de datos INVENTARIO, se otorgaran privilegios
al identificador de autorizacién PUBLIC y a uno de los roles que se crea, se concedera uno de los
roles al otro rol, y luego se revocardn todos los privilegios y roles. Finalmente, se eliminaran los
dos roles que se crearon. La habilidad de seguir todos los pasos en este ejercicio dependera del
tipo de instrucciones relacionadas con la seguridad respaldada en la aplicaciéon de SQL que esté
utilizando. Sin embargo, el ejercicio estd disefiado para que cualquiera de los roles que se creen o
cualquiera de los privilegios que se asignen sean eliminados al final del ejercicio. No se utilizardn
estos roles para ninguno de los siguientes ejercicios. Si por cualquier motivo este ejercicio afectara
la seguridad del sistema en el que esta trabajando, deberia discutir este ejercicio con el administra-
dor de la base de datos u omitirlo por completo. Puede descargar el archivo Try_This_06.txt, que
contiene las instrucciones SQL utilizadas en este ejercicio (en inglés).

Paso a paso

1. Abra la aplicacidn de cliente de su RDBMS y conéctese a la base de datos INVENTARIO.
2, Lo primero que se hace es crear el rol MRKT. Introduzca y ejecute la siguiente instruccién
SQL:
CREATE ROLE MRKT;
3. Después se crea el rol PERSONAL_VENTAS. Introduzca y ejecute la siguiente instruccién
SQL:
CREATE ROLE PERSONAL VENTAS;

4. Ahora se otorga el privilegio SELECT en la vista CD_EN_EXISTENCIA. El privilegio se
asigna al identificador de autorizacién PUBLIC. Introduzca y ejecute la siguiente instruccion
SQL:

GRANT SELECT ON CD EN EXISTENCIA TO PUBLIC;

5. El siguiente privilegio que se otorga es el rol PERSONAL_VENTAS que se cre6 en el paso 3.
Se otorgan los privilegios SELECT, INSERT y UPDATE en la tabla DISCOS_COMPACTOS.
Para el privilegio UPDATE se especifica la columna TITULO_CD. También se le permite al rol

(continda)

140 Fundamentos de SQL

6

10

STAFF_VENTAS otorgar estos privilegios a otros usuarios. Introduzca y ejecute la siguiente
instruccion SQL:

GRANT SELECT, INSERT, UPDATE (TITULO_CD) ON DISCOS COMPACTOS
TO PERSONAL VENTAS WITH GRANT OPTION;

Ahora se otorga el rol PERSONAL_VENTAS al rol MRKT. Introduzca y ejecute la siguiente
instruccion SQL:

GRANT PERSONAL VENTAS TO MRKT;

El siguiente paso es revocar el privilegio SELECT que se otorgé al identificador de autoriza-
ciéon PUBLIC. Introduzca y ejecute la siguiente instruccién SQL:

REVOKE SELECT ON CD_EN EXISTENCIA FROM PUBLIC CASCADE;

Ahora se revocan los privilegios que se concedieron al rol PERSONAL_VENTAS. Ya que se
revocan todos los privilegios, se puede utilizar la palabra clave ALL PRIVILEGES. También

debe asegurarse de revocar cualquier privilegio dependiente; por lo tanto, se utiliza la palabra
clave CASCADE. Introduzca y ejecute la siguiente instruccién SQL:

REVOKE ALL PRIVILEGES ON DISCOS COMPACTOS FROM PERSONAL VENTAS CASCADE;
Ahora se puede revocar el rol PERSONAL_VENTAS del rol MRKT. Introduzca y ejecute la
siguiente instruccién SQL:

REVOKE PERSONAL VENTAS FROM MRKT CASCADE;

El siguiente paso es eliminar el rol MRKT. Introduzca y ejecute la siguiente instruccién SQL:
DROP ROLE MRKT;

Finalmente, se requiere eliminar el rol PERSONAL_VENTAS. Introduzca y ejecute la siguien-
te instrucciéon SQL:

DROP ROLE PERSONAL VENTAS;

12. Cierre la aplicacién clientes.

Resumen de Pruebe esto

La base de datos INVENTARIO debe estar compuesta de la misma manera como antes de co-
menzar este ejercicio. Los permisos y roles concedidos se revocaron, y los roles que se crearon se
eliminaron. De esta manera, no tendrd que preocuparse por las consideraciones de seguridad para
otros ejercicios. Para el resto de los ejercicios en el libro, se continuara trabajando en el mismo
contexto de seguridad en el que se ha trabajado para este ejercicio y para todos los ejercicios ante-
riores al presente.

Capitulo 6: Gestién de seguridad en la base de datos 141

v Autoexamen Capitulo 6
1. ;Cuadl es la diferencia entre un identificador de usuario y un nombre de rol?

2. ;Cuil es el nombre del identificador de autorizacién especial que otorga el acceso a todos los
usuarios de la base de datos?

3. Cada se asocia con un identificador de usuario y un nombre de rol.
4. ;Con cudl de los siguientes se asocia una sesion SQL?

A Privilegio

B Identificador de autorizacion

C PUBLIC

D Nombre de rol

5. Cuando se establece por primera vez una sesion SQL, el identificador de usuario siempre es el

6. ;Cuil es el valor del nombre de rol actual cuando se establece por primera vez una sesion SQL?
7. [Qué es un identificador de autorizacion?
8. ;Cuiles son los dos tipos de identificadores de autorizacién que respalda SQL?

9. ;Qué privilegios se le deben otorgar a un objeto si desea permitir que un identificador de autori-
zacion consulte los datos de ese objeto?

10. Se establece una sesién SQL con la base de datos. El identificador de usuario actual es EthanW.
El nombre de rol actual es nulo. ;Cudl es el identificador de autorizacién actual?

11. ;En qué objetos de esquema se pueden definir privilegios de acceso?
12. ;En qué tipos de objetos de base de datos se puede asignar el privilegio DELETE?
A Tablas
B Vistas
C Columnas
D Dominios
13. (En qué tipos de objetos de base de datos se puede asignar el privilegio TRIGGER?
A Tablas
B Vistas
C Columnas
D Dominios

14. Se crea un rol llamado CONTABILIDAD. ;Qué instruccién SQL debera utilizarse?

142 Fundamentos de SQL

15. Se otorgan todos los privilegios de la vista NOMBRES_CD a todos los que utilizan la base de
datos. {Qué instruccién SQL deberd utilizarse?

16. Se otorga el privilegio SELECT al rol EMPLEADO_VENTAS a una tabla de la base de datos.
Se desea que el rol EMPLEADO_VENTAS sea capaz de asignar el privilegio SELECT a otros
usuarios. ;Qué cldusula deberd incluirse en la instruccion GRANT?

17. Se desea conceder el rol ACCT al usuario autorizado MaxN. No se quiere que el usuario pueda
otorgar el rol a otros usuarios. ;Qué instrucciéon SQL debera utilizarse para otorgar el rol?

Parte I I

Acceso y modificacion
de datos

Capitulo 7

Consulta de datos
de SQL

146 Fundamentos de SQL

Habilidades y conceptos clave

Utilice la instruccion SELECT para la recuperacion de datos
Utilice la clausula WHERE para definir condiciones de busqueda
Utilice la clausula GROUP BY para agrupar los resultados de una consulta

Utilice la cldusula HAVING para especificar un grupo de condiciones de
busqueda

Utilice la clausula ORDER BY para ordenar los resultados de una consulta

U na vez que se crearon los objetos en una base de datos y las tablas base estdn pobladas de
datos, se pueden presentar las consultas que permiten recuperar informacién especifica de la
base de datos. Estas consultas, que suelen adoptar la forma de instrucciones SELECT, pueden
variar en complejidad desde una simple instruccién que devuelve todas las columnas de una tabla
a una instruccién que una multiples tablas, calcule valores y defina condiciones de bisqueda que
restrinja exactamente qué filas de datos se deben devolver. La instruccion SELECT se compone de
una serie de cldusulas flexibles que juntas determinan qué datos se recuperardan. En este capitulo
aprenderd como utilizar cada una de estas cldusulas para realizar tareas basicas de recuperacion de
datos, definir condiciones de busqueda, agrupar los resultados de una consulta, especificar un gru-
po de condiciones de biisqueda y ordenar los resultados de una bisqueda.

Utilice la instruccién SELECT para la recuperacién
de datos

En el capitulo 5, cuando se analiz6 acerca de las vistas, se presento la instruccion SELECT. Como
podra recordar, la instruccién SELECT permite formar consultas intrincadas que pueden devolver
exactamente el tipo de datos que se desea recuperar. Es una de las instrucciones mas comunes que
utilizard como programador de SQL, y también es una de las instrucciones mas flexible y amplia
en el estandar SQL.

La instrucciéon SELECT es una expresion de consulta que comienza con la palabra clave
SELECT e incluye una serie de elementos que forman la expresion. La sintaxis bdsica para la ins-
truccién SELECT puede dividirse en varias cldusulas especificas, cada una de las cuales ayuda a
refinar la consulta para que solo se devuelvan los datos requeridos. La sintaxis para la instruccién
SELECT puede mostrarse como sigue:

SELECT [DISTINCT | ALL] { * | < seleccion de lista > }
FROM <tabla de referencia> [{, <tabla de referencia> }... |
[WHERE <condicién de bisqueda>]

[GROUP BY <especificacion de agrupacion> |

[HAVING <condicién de busqueda> |

[ORDER BY <condicién de orden> |

Capitulo 7: Consulta de datos de SQL 147

Como se puede observar, las tnicas clausulas requeridas son la clausula SELECT y la cldusu-
la FROM. Todas las demds cldusulas son opcionales.

Las cldusulas FROM, WHERE, GROUP BY y HAVING hacen referencia como expresiones
de tabla. Esta porcién de la instruccién SELECT siempre se evalta en el orden indicado en la sin-
taxis. El resultado de esa evaluacion es una tabla virtual que se utiliza en la evaluacién posterior.
En otras palabras, los resultados de la primera clausula evaluada se utilizan en la siguiente cldu-
sula. Los resultados de esa cldusula se utilizan en la siguiente cldusula, hasta que cada clausula
en la expresion de la tabla se evalda. Por ejemplo, la primera cldusula a evaluar en la instruccién
SELECT es la clausula FROM. Ya que esta cldusula es necesaria, siempre es la primera clausula
evaluada. Los resultados de la clausula FROM se utilizan en la clausula WHERE, si se especifica
la clausula WHERE. Si no se especifica la clausula, entonces los resultados de la clausula FROM
se utilizan en la siguiente cldusula especificada, ya sea la cldusula GROUP BY o la clausula HA-
VING. Una vez que se evalua la clausula final en la expresion de tabla, los resultados se utilizan en
la clausula SELECT. Después de evaluar la clausula SELECT, se evalda la clausula ORDER BY.

Para resumir todo esto, las cldusulas de la instruccién SELECT se aplican en el siguiente
orden:

Clausula FROM

Clausula WHERE (opcional)
Clausula GROUP BY (opcional)
Clausula HAVING (opcional)
Clausula SELECT

Clausula ORDER BY (opcional)

Es importante tener un entendimiento basico del orden de evaluacién al crear instrucciones
SELECT mads complejas, especialmente cuando se trabaja con uniones y subconsultas (discutidas
en los capitulos 11 y 12, respectivamente). Este entendimiento es también ttil cuando se analiza
cada cldusula individualmente, ya que explica como se relaciona una cldusula con otras cldusulas.
Como resultado, es una buena idea mantener este orden de evaluacién en mente a lo largo de este
capitulo y en los capitulos siguientes que se basan en diversos aspectos de la instruccién SELECT.

La cldusula SELECT y la cléusula FROM

Ahora que tiene una vision general basica de cémo la instruccién SELECT se ejecuta, echemos un
vistazo mas de cerca a la cldusula SELECT y la cldusula FROM, las dos cldusulas requeridas en la
instruccién. Se analizardn las otras cldusulas en secciones separadas durante el resto del capitulo.
Empecemos con la clausula SELECT. La cldusula SELECT incluye las palabras clave DIS-
TINCT y ALL. La palabra clave DISTINCT se utiliza si se desean eliminar filas duplicadas de los
resultados de la consulta, y la palabra clave ALL se utiliza si se quieren devolver todas las filas de
los resultados de una consulta. Por ejemplo, suponga que la base de datos incluye una tabla llama-
da CD_INTERPRETE. La tabla incluye las columnas NOMBRE_INTERPRETE y NOMBRE _
CD. Ya que un CD puede incluir mds de un intérprete, el nombre del CD puede aparecer mas de
una vez en la tabla. Ahora suponga que desea consultar la tabla s6lo por el nombre de los CD, pero

148

Fundamentos de SQL

no quiere los nombres repetidos. Puede utilizar la palabra clave DISTINCT para asegurar que la
consulta devuelva el nombre de cada CD sélo una vez, o puede utilizar la palabra clave ALL para
especificar que se devuelvan todas las filas, aun si hay filas duplicadas. Si no se especifica ninguna
de las palabras clave, se toma la palabra clave ALL.

Pregunta al experto

P:

Se afirma que se puede utilizar un asterisco para incluir todas las columnas en el resulta-
do de una consulta. ;Presenta esto algin problema si el nimero de columnas cambia?

R: Si, esto puede presentar un problema. De hecho, generalmente se recomienda que se utilice el

asterisco s6lo cuando se accede a una base de datos SQL a través de una invocacion directa.
Si se utiliza el asterisco en SQL incrustado y el nimero de columnas cambia, puede encontrar
que la aplicacién ya no responda correctamente, ya que el programa de aplicacion se codificd
para esperar una respuesta especifica. Si se utiliza un asterisco y se espera que columnas espe-
cificas se devuelvan, entonces puede encontrarse con una serie de sorpresas si la base de datos
ha cambiado. Por este motivo, se debe evitar el asterisco a menos que se invoque directamente
la instrucciéon SELECT. Sin embargo, en el caso de la invocacion directa, el asterisco es una
manera practica de devolver todas las columnas sin tener que especificar el nombre de cada
una. De hecho, muchos de los ejemplos en el capitulo utilizan el asterisco para evitar el tener
que repetir los nombres de las columnas innecesariamente.

Ademéds de las palabras clave DISTINCT y ALL, la cldusula SELECT incluye el asterisco
(*) y el marcador de posicion <seleccion de lista>. Se debe especificar una de estas opciones en la
cldusula. Si se especifica el asterisco, todas las columnas aplicables se incluyen en el resultado de
la consulta.

Si no se especifica el asterisco en la cldusula SELECT, se debe especificar cada columna tal
como se deriva del origen. El marcador de posicién <seleccion de lista> se puede desglosar en la
siguiente sintaxis:

<columna derivada> [[AS] <nombre de la columna> |
[{, <columna derivada> [[AS] <nombre de la columna>] }...]

Echemos un vistazo a la primera linea de la sintaxis. (La segunda linea no es mas que una re-
peticidn, tantas veces como sea necesario, de la primera linea.) El marcador de posicién <columna
derivada> en la mayoria de los casos se refiere al nombre de la columna en la tabla origen. Si mas
de una columna se especifica, entonces se deben separar por comas. Sin embargo, el marcador de
posicién <columna derivada> también puede referirse a una columna o conjunto de columnas que
son de alguna manera parte de una expresion. Por ejemplo, en el capitulo 5 se analiz6 la funcién
AVG, que saca el promedio de los valores en una columna especifica. El ejemplo que se muestra
en este capitulo utiliza la instruccién SELECT para consultar datos de la tabla COMISIONES _
EMPLEADO, que enumera la cantidad total de comisiones hechas por cada empleado durante un

Capitulo 7: Consulta de datos de SQL 149

periodo de tres afios. La instruccién SELECT promedia los valores en tres diferentes columnas,
como se muestra en la siguiente instruccion SELECT:

SELECT AVG (ANO 1999), AVG(ANO 2000), AVG(ANO 2001)
FROM COMISIONES EMPLEADO;

En este caso, hay tres expresiones que se utilizan para el marcador de posicién <columna deri-
vada>: AVG(ANO_1999), AVG(ANO_2000) y AVG(ANO_2001). Observe que la expresion
de cada columna derivada se separa por una coma, como seria el caso si cada valor fuera simple-
mente un nombre de columna. El siguiente ejemplo muestra la misma instruccién SELECT como
en el ejemplo anterior, excepto que se utilizan sélo los nombres de las columnas como columnas
derivadas:

SELECT ANO 1999, ANO 2000, ANO 2001
FROM COMISIONES EMPLEADO;

Si se fuera a ejecutar esta instrucciéon SELECT, la consulta devolveria todos los valores en las
tres columnas, en lugar de promediar esos valores.

La cldusula SELECT también permite proporcionar un nombre de columna para cada colum-
na derivada. Para hacer esto, se afiade la palabra clave AS y el nuevo nombre de columna después
de la columna derivada, como se muestra en el siguiente ejemplo:

SELECT AVG(AﬁO_l999) AS PROMEDIO 1999
FROM COMISIONES EMPLEADO;

En esta instrucciéon SELECT, el valor que se devuelve de la columna ANO_1999 se coloca en
la columna llamada PROMEDIO_1999. Este es el nombre de la columna que se devuelve como
parte de una tabla virtual en los resultados de la consulta. Si no se especifica la subcldusula AS, el
nombre de columna en la tabla virtual es el mismo que el nombre de columna en la tabla origen.
Si un nombre de columna no se puede heredar naturalmente (por ejemplo, cuando se agregan dos
valores de columna), se debe utilizar la subclausula AS.

Observe que en los ejemplos anteriores la cldusula FROM se utiliza para especificar la tabla
(COMISIONES_EMPLEADO) que contiene las columnas mencionadas en la clausula SELECT.
La clausula FROM incluye la palabra clave FROM y una o mds tablas de referencia. Si hay va-
rias tablas de referencia, deben separarse utilizando comas. En la mayoria de los casos, la tabla
de referencia es el nombre de una tabla o de tablas unidas, aunque puede también ser un tipo de
subconsultas. Se discutird la unién de tablas en el capitulo 11 y las subconsultas en el capitulo 12.
Para este capitulo, la cldusula FROM se utiliza principalmente para hacer referencia a nombres de
tablas, como se define la cldusula en los dos ejemplos anteriores (donde <tabla de referencia> es
igual a COMISIONES_EMPLEADO).

Juntas las cldusulas SELECT y FROM forman las bases para la instruccién SELECT, que
puede ser tan simple como consultar cada fila y cada columna de una tabla, como se muestra en el
siguiente ejemplo:

SELECT * FROM INTERPRETES;

En esta instruccion, se especifica que cada columna de la tabla INTERPRETES se debe devol-
ver. Ademds, cada fila serd devuelta, ya que no se especificaron otras cldusulas.

150 Fundamentos de SQL

ID_INTERPRETE: | NOMBRE_INTERPRETE: | LUGAR_DE_NACIMIENTO:

INT VARCHAR(60) VARCHAR(60)

2001 Jennifer Warnes Seattle, Washington, USA

2002 Joni Mitchell Fort MacLeod, Alberta, Canada
2003 William Ackerman Alemania

2004 Kitaro Toyohashi, Japon

2005 Bing Crosby Tacoma, Washington, Estados Unidos
2006 Patsy Cline Winchester, Virginia, Estados Unidos
2007 Jose Carreras Barcelona, Espana

2008 Luciano Pavarotti Modena, Italia

2009 Placido Domingo Madrid, Espaia

Figura 7-1

tabla INTERPRETES.

Las columnas ID_INTERPRETE, NOMBRE_INTERPRETE y LUGAR_DE_NACIMIENTO de la

Echemos un vistazo mds de cerca de esto. La tabla INTERPRETES incluye las columnas ID_IN-
TERPRETE, NOMBRE_INTERPRETE y LUGAR_DE_NACIMIENTO, como se muestra en la

figura 7-1.

Si se ejecuta la instruccién SELECT mostrada en el ejemplo anterior, los resultados de la con-
sulta serian similares a los siguientes:

ID INTERPRETE

NOMBRE INTERPRETE

Jennifer Warnes
Joni Mitchell
William Ackerman
Kitaro

Bing Crosby

Patsy Cline

Jose Carreras
Luciano Pavarotti
Placido Domingo

LUGAR_DE NACIMIENTO

Seattle, Washington, Estados Unidos
Fort MacLeod, Alberta, Canada
Alemania

Toyohashi, Japdn

Estados Unidos
Estados Unidos

Tacoma, Washington,
Winchester, Virginia,
Barcelona, Espafia
Modena, Italia
Madrid, Espafa

Observe que cada fila y cada columna se devuelven en los resultados de la consulta. Si utiliza
el asterisco en la clausula SELECT, no se tienen que especificar los nombres de columnas.

Ahora suponga que desea devolver sé6lo las columnas NOMBRE_INTERPRETE y LUGAR _
DE_NACIMIENTO. Se puede modificar la instruccién SELECT para verse como la siguiente:

SELECT NOMBRE INTERPRETE AS NAME, LUGAR DE NACIMIENTO

FROM INTERPRETES;

Capitulo 7: Consulta de datos de SQL 151

Los resultados de la consulta ahora contienen sélo dos columnas, como se muestran a conti-

nuacion:

NOMBRE LUGAR DE_NACIMIENTO

Jennifer Warnes Seattle, Washington, Estados Unidos
Joni Mitchell Fort MacLeod, Alberta, Canada
William Ackerman Alemania

Kitaro Toyohashi, Japdén

Bing Crosby Tacoma, Washington, Estados Unidos
Patsy Cline Winchester, Virginia, Estados Unidos
Jose Carreras Barcelona, Espafia

Luciano Pavarotti Modena, Italia

Placido Domingo Madrid, Espafia

Observe que el nombre de la primera columna es NOMBRE, en lugar de NOMBRE_IN-
TERPRETE. Esto es debido a que la subcldusula AS (especificada en NOMBRE) se define como
parte de la columna derivada NOMBRE_INTERPRETE. Si se fuera a especificar la palabra clave
DISTINCT en esta situacién particular, ain recibirfan el mismo nimero de filas, aunque podrian
no ser devueltas en el mismo orden en que estaban cuando no se utilizaba la palabra clave, depen-
diendo de la aplicacién SQL. La razén por la que la palabra clave DISTINCT no harfa ninguna di-
ferencia en los resultados de la consulta es porque no hay filas duplicadas en la tabla. Sin embargo,
utilizar la palabra clave DISTINCT puede afectar la ejecucion, particularmente si el RDBMS tiene
que ordenar a través de un gran nimero de filas, asi que asegurese de utilizar la palabra clave s6lo
cuando sea necesario.

Ahora veamos un ejemplo que utilice la palabra clave DISTINCT. Suponga que la base de

datos incluye una tabla que empareje a los intérpretes con los tipos de musica, como se muestra en
la figura 7-2.

NOMBRE_INTERPRETE: | TIPO_INTERPRETE:
VARCHAR(60) VARCHAR(10)
Jennifer Warnes Folk

Jennifer Warnes Pop

Joni Mitchell Pop

Joni Mitchell Folk

Joni Mitchell Jazz

William Ackerman New Age

Kitaro New Age

Kitaro International

Figura 7-2 Columnas NOMBRE_INTERPRETE y TIPO_INTERPRETE de la tabla TIPO_INTERPRETE.

152

Fundamentos de SQL

Si la instruccién SELECT incluye ambas (todas) columnas en la clausula SELECT, como se
muestra en el siguiente ejemplo, la consulta devolveria todas las filas:

SELECT * FROM TIPO_ INTERPRETE;

No importa si se especifica la palabra clave DISTINCT en este caso, ya que los resultados de
la consulta no incluyen filas duplicadas. Los resultados serian los mismos si se incluyera la palabra
clave ALL, en lugar de DISTINCT, o si no se especifican ninguno de los dos calificadores. En am-
bos casos, los resultados de la consulta incluyen la misma informacién que se muestra en la tabla
de la figura 7-2.

Ahora echemos un vistazo a la misma instruccién, sélo que esta vez se especifica la palabra
clave DISTINCT y s6lo una de las dos columnas:

SELECT DISTINCT NOMBRE INTERPRETE
FROM TIPO_INTERPRETE;

Observe que esta instruccion incluye sélo la columna NOMBRE_INTERPRETE, que incluye
valores duplicados. Mediante el uso de la palabra clave DISTINCT, los resultados de la consulta
incluirfan sélo un ejemplo de cada uno de los valores. Si se ejecuta la instrucciéon SELECT en el
ejemplo anterior, los resultados de la consulta serian similares a los siguientes:

NOMBRE INTERPRETE

Jennifer Warnes
Joni Mitchell
Kitaro

William Ackerman

Aunque hay siete filas en la tabla TIPO_INTERPRETE, sélo se devuelven cuatro filas, ya que
existen s6lo cuatro valores tnicos en la columna NOMBRE_INTERPRETE y los demds valores
son duplicados.

Como se puede observar, las cldusulas SELECT y FROM son bastante sencillas, al menos en
este nivel de codificacién. Una vez que lleguemos a estructuras mds complejas, encontrard que
ambas cldusulas pueden ser mas complicadas. Sin embargo, lo importante para recordar ahora es
que estas clausulas actian como base para el resto de la instruccién SELECT. En términos de eje-
cucion, la instruccién SELECT, para todos los efectos précticos, comienza con la clausula FROM
y termina con la clausula SELECT. (La cldusula ORDER BY se utiliza principalmente para mos-
trar los objetivos, y de hecho no afecta la informacién devuelta. La cldusula ORDER BY se discu-
te con mayor detalle en la seccién “Utilice la clausula ORDER BY para ordenar los resultados de
una consulta”, mds adelante en este capitulo.)

Utilice la clausula WHERE para definir
condiciones de busqueda

La siguiente cldusula en la instruccién SELECT es la clausula WHERE. La cldusula WHERE
toma los valores devueltos por la clausula FROM (en la tabla virtual) y aplica la condicién de
bisqueda que se define en la clausula WHERE. La clausula WHERE actia como filtro sobre los
resultados devueltos por la clausula FROM. Cada fila se evalda contra las condiciones de busque-

Capitulo 7: Consulta de datos de SQL 153

da. Las filas que se evalian como verdaderas se devuelven como parte del resultado de la consulta.
Aquellas que se evalian como desconocidas o falsas no se incluyen en los resultados.

Para una mejor comprensién de como se evalda cada fila, echemos un vistazo de cerca al mar-
cador de posicién <condicién de bisqueda>. La condicién de bisqueda se compone de uno o més
predicados que se utilizan para poner a prueba el contenido devuelto por la clausula FROM. Un
predicado es una expresion de SQL que define un hecho acerca de cualquier fila devuelta por la
instruccién SELECT. Ya se vieron ejemplos de predicados en los capitulos 4 y 5. Por ejemplo, un
ejemplo de definicion de una vista (en el capitulo 5) incluye la siguiente instrucciéon SELECT:

SELECT TITULO_CD, DERECHOSDEAUTOR, EN_ EXISTENCIA
FROM INVENTARIO DISCO_COMPACTO
WHERE DERECHOSDEAUTOR > 1989 Y DERECHOSDEAUTOR < 2000;

Esta instruccion consulta tres columnas en la tabla INVENTARIO_DISCO_COMPACTO.

La clausula SELECT especifica las columnas que se devuelven, y la clausula FROM especifica la
tabla origen. La cldusula WHERE determina qué filas (basado en la clausula FROM) se incluyen
en los resultados. En este caso, la cldusula WHERE contiene dos predicados que se conectan por
la palabra clave AND. El primer predicado (DERECHOSDEAUTOR > 1989) especifica que todas
las filas incluidas en los resultados de la consulta deben contener un valor mayor que 1989 en la
columna DERECHOSDEAUTOR. El segundo predicado (DERECHOSDEAUTOR < 2000) espe-
cifica que todas las filas incluidas en los resultados de la consulta deben contener un valor menor
que 2000 en la columna DERECHOSDEAUTOR.

Conforme se evaldan las filas, cada predicado se evaliia sobre una base individual para deter-
minar si la fila cumple con la condicién definida por ese predicado. Regresando al dltimo ejemplo,
el primer predicado establece la condicién de que los valores deben ser mayores que 1989. Si el
valor DERECHOSDEAUTOR para una fila en particular es mayor que 1989, la condicién se cum-
ple y el predicado evaltia como verdadero. Si el valor no es mayor que 1989, el predicado evalia
como falso. Si SQL no puede determinar si el valor cumple o no la condicién (como seria el caso
si el valor es nulo), el predicado evalia como desconocido.

Cada predicado evalda como verdadero, falso o desconocido. Si se incluye mds de un predi-
cado en la cldausula WHERE, éstos se unen por la palabra clave OR o por la palabra clave AND.

Si se utiliza OR, entonces al menos uno de los predicados de cualquier lado de OR debe evaluar
como verdadero para que la fila pase el filtro, y por lo tanto aparece en los resultados de la consul-
ta. Si se utiliza AND, entonces los predicados de cualquier lado deben evaluar como verdaderos
para que la fila pase el filtro. Por ejemplo, la cldusula WHERE en el tltimo ejemplo incluye dos
predicados que se conectan por la palabra clave AND. Esto significa que el primer predicado debe
evaluar como verdadero y el segundo predicado debe evaluar como verdadero. Si se utiliza OR en
lugar de AND, entonces sélo uno de los predicados debe evaluarse como verdadero, que carece un
poco de sentido en este caso, ya que todos los valores, excepto los valores nulos, estdn por encima
de 1989 o por debajo de 2000.

Por 1ltimo, la cldusula WHERE en su conjunto debe evaluar como verdadero a fin de que una
fila se incluya en los resultados de una consulta. Si la clausula WHERE incluye mas de un predica-
do, SQL sigue las directrices especificas para la forma en que una instruccién en conjunto se eva-
Ida. Empecemos viendo la palabra clave OR. La tabla 7-1 enumera la evaluacién de una condicién
de bisqueda si la palabra clave OR se utiliza para separar dos predicados. Para usar la tabla, em-

154 Fundamentos de SQL

Verdadero Falso Desconocido
Verdadero Verdadero Verdadero Verdadero
Falso Verdadero Falso Desconocido
Desconocido Verdadero Desconocido Desconocido

Tabla 7-1 Evaluacién de los predicados conectados por OR.

pareje una condicion de la columna de la izquierda a una condicidn en la fila superior. El resultado
(donde una fila y una columna se intersectan para formar una celda) muestra cémo la condicién de
busqueda se evalia sobre la base de como se evalia cada predicado.

Como muestra la tabla, si ambos predicados evaliian como verdadero, entonces la condicion
de busqueda evaliia como verdadero. Si ambos son falsos, entonces la condicion de bisqueda eva-
Ida como falso. Se proporciona una condicién para cada posible encuentro. Por ejemplo, suponga
que la instrucciéon SELECT incluye la siguiente clausula WHERE:

WHERE TIPO INTERPRETE = 'Folk' OR TIPO_ INTERPRETE = 'Jazz'

Ahora suponga que el primer predicado en este ejemplo (TIPO_INTERPRETE = ‘Folk’) eva-
Ida como verdadero y el segundo predicado (TIPO_INTERPRETE = ‘Jazz’) evaltia como falso.
Esto significa que la fila evaluada contiene el valor Folk en la columna TIPO_INTERPRETE, pero
no contiene el valor Jazz en esa columna. Ahora remitase a la tabla 7-1. Si selecciona Verdadero de
la primera columna, selecciona Falso de la fila superior, y luego empareja estos dos valores (bus-
cando donde se intersectan), se puede observar que la condicion de busqueda evaliia como verda-
dero; por lo tanto, la fila se incluye en los resultados de la consulta.

Se puede hacer 1o mismo con la palabra clave AND como se hizo con la palabra clave OR.

De nuevo, sélo tiene que coincidir cémo se evalia cada predicado para determinar si la condi-
cion de busqueda se evaluard como verdadera, falsa o desconocida. Recuerde que la condicion de
busqueda debe evaluar como verdadero para que la fila se incluya en los resultados de la consulta.
Como se puede observar, la palabra clave AND es mucho menos indulgente que la palabra clave
OR. La tnica manera para que la condicién de busqueda evaltiie como verdadero es que ambos pre-
dicados evaltiien como verdaderos.

Verdadero Falso Desconocido
Verdadero Verdadero Falso Desconocido
Falso Falso Falso Falso
Desconocido Desconocido Falso Desconocido

Tabla 7-2 Evaluacién de los predicados conectados por AND.

Capitulo 7: Consulta de datos de SQL 155

NOTA

La comparacién de los operadores y predicados en general se discute con mayor detalle en el
capitulo 9.

Si una condicién de biisqueda incluye mds de dos predicados, los predicados se evalian de
acuerdo con un orden escogido por el RDBMS, a menos que se utilicen paréntesis para separar las
combinaciones de predicados. Mientras que el estindar SQL no especifica el orden en que multi-
ples predicados se evaldan, la mayoria de los productos RDBMS evalian AND antes que OR. Por
ejemplo, se tiene la instruccién SELECT que incluye la siguiente clausula WHERE:

WHERE EN_ EXISTENCIA = 6 OR EN EXISTENCIA = 27 AND ID DISQUERA = 833 OR
ID DISQUERA = 829

Observe que hay cuatro predicados en esta cldusula y no hay paréntesis. Asumiendo que se evalia
AND antes que OR, la anterior cldusula WHERE se evaluaria como si se escribiera de esta manera:

WHERE EN EXISTENCIA = 6 OR (EN_EXISTENCIA = 27 AND ID DISQUERA = 833) OR
ID DISQUERA = 829

Con el fin de evaluar como verdadero, una fila debe contener uno de los siguientes valores o
conjunto de valores:

EN_EXISTENCIA valor de 6
EN_EXISTENCIA valor de 27 y ID_DISQUERA valor de 833
ID_DISQUERA valor de 829

Cuando se incluyen ambas palabras clave AND y OR en la misma cldusula WHERE, siempre
es una buena idea incluir paréntesis para asegurar que se reciba el filtrado intentado, teniendo en
cuenta que los predicados entre paréntesis se evalian siempre primero. Si los RDBMS hacen otras
suposiciones, o si los paréntesis se utilizan alrededor de otros conjuntos de predicados, los resul-
tados serdn diferentes de lo que se ha visto. Por ejemplo, suponga que utiliza los paréntesis de la
siguiente manera:

WHERE (EN_EXISTENCIA = 6 O EN EXISTENCIA = 27) AND (ID DISQUERA = 833 O
ID DISQUERA = 829)

Los predicados primero se evaldan dentro del contexto de los paréntesis y luego se comparan
con otros predicados en consecuencia. En este caso, una fila debe contener uno de los dos valores
EN_EXISTENCIA vy la fila debe contener uno de los dos valores ID_DISQUERA. Como resulta-
do, una fila debe contener uno de los siguientes conjuntos de valores para evaluar como verdadero:

Valor de EN_EXISTENCIA de 6 y valor de ID_DISQUERA de 833
Valor de EN_EXISTENCIA de 6 y valor de ID_DISQUERA de 829
Valor de EN_EXISTENCIA de 27 y valor de ID_DISQUERA de 833
Valor de EN_EXISTENCIA de 27 y valor de ID_DISQUERA de 829

156

Fundamentos de SQL

NOTA

SQL incluye tres operadores que se pueden utilizar si una condicién de bisqueda se vuelve
demasiado complicada. Estos operadores son IS TRUE, IS FALSE e IS UNKNOWN. Por ejem-
plo, se puede especificar la siguiente condicién de busqueda: (PRIMER_NOMBRE = ‘Joni’
AND APELLIDO = ‘Mitchell’) IS TRUE. Esto significa que el valor PRIMER_NOMBRE de la fila
devuelta debe ser Joni y el valor APELLIDO debe ser Mitchell. En otras palabras, deben eva-
luar como verdadero. Si se especifica IS FALSE en esta situacién, el par de predicado habria
resultado como falso, lo que significa que al menos uno de los dos predicados es falso (podria
no ser Joni o podria no ser Mitchell).

Otra palabra clave que puede resultar ttil es la palabra clave NOT, que puede utilizarse sola o
junto con las palabras clave AND y OR para especificar el inverso de un predicado. Por ejemplo,
la instruccién SELECT puede incluir la siguiente cldusula WHERE:

WHERE NOMBRE INTERPRETE = 'Joni Mitchell' OR NOT NOMBRE INTERPRETE =
'Kitaro!

En este caso, el valor NOMBRE_INTERPRETE puede ser Joni Mitchell o puede ser cual-
quier valor distinto de Kitaro. Por supuesto, Joni Mitchell no es igual que Kitaro, de modo que el
predicado es redundante y se obtiene el mismo resultado si se elimina. Ademads, se obtendria el
mismo resultado si se utiliza el operador de comparacién mayor o menor que (<>), por lo que la
clausula completa WHERE se puede reescribir de manera mds simple como:

WHERE NOMBRE INTERPRETE <> 'Kitaro'

Defina la cldusula WHERE

Ahora que tiene una visién general de cémo definir la clausula WHERE, pongamos juntas las
clausulas SELECT y FROM y veamos algunos ejemplos. Los ejemplos que veremos se basan en la
tabla INVENTARIO, mostrada en la figura 7-3. La tabla INVENTARIO contiene cinco columnas,
algunas de las cuales utilizaremos para definir nuestras condiciones de busqueda.

El primer ejemplo que veremos incluye la clausula WHERE, que define qué filas se pueden
devolver basadas en los valores EN_EXISTENCIA:

SELECT * FROM INVENTARIO
WHERE EN_ EXISTENCIA < 20;

Si ejecuta esta instruccion, los resultados serdn similares a los siguientes:

ID_DISCO_COMPACTO TITULO_CD DERECHOSDEAUTOR PRECIO_ MENUDEO EN_EXISTENCIA
99301 Famous Blue Raincoat 1991 16.99 6

99303 Court and Spark 1974 14.99 18

99304 Past Light 1983 15.99 2

99305 Kojiki 1990 15.99 5

99306 That Christmas Feeling 1993 10.99 3

Capitulo 7: Consulta de datos de SQL 157

ID_DISCO_COMPACTO: | TITULO_CD: DERECHOSDEAUTOR: | PRECIO_MENUDEO: | EN_EXISTENCIA:
INT VARCHAR(60) INT NUMERICO(5,2) INT

99301 Famous Blue Raincoat 1991 16.99 6

99302 Blue 1971 14.99 26

99303 Court and Spark 1974 14.99 18

99304 Past Light 1983 15.99 2

99305 Kojiki 1990 15.99 5

99306 That Christmas Feeling 1993 10.99 3

99307 Patsy Cline: 12 Greatest Hits 1988 16.99 25

Figura 7-3 Tabla INVENTARIO que contiene datos relacionados con el CD.

Como se puede observar, todas menos dos filas se incluyen en los resultados de la consulta. Las fi-
las no incluidas contienen valores EN_EXISTENCIA mayores que 20. En otras palabras, esas dos
filas evaliian como falso.

Ahora tomemos la misma instruccién SELECT y refinemos la cldusula WHERE atin mds. En
la nueva instruccion, la clausula WHERE incluye dos predicados que se conectan por la palabra
clave AND, como se muestra en el siguiente ejemplo:

SELECT * FROM INVENTARIO
WHERE EN_EXISTENCIA < 20 AND PRECIO MENUDEO < 15.00;

Cuando se ejecuta esta instruccion, se reciben los siguientes resultados:

ID DISCO_COMPACTO TITULO_CD DERECHOSDEAUTOR PRECIO_ MENUDEO EN_EXISTENCIA
99303 Court and Spark 1974 14.99 18
99306 That Christmas Feeling 1993 10.99 3

Observe que solo dos filas cumplen la condicion de bisqueda. En otras palabras, s6lo estas
dos filas tienen un valor EN_EXISTENCIA menor que 20 y un valor PRECIO_MENUDEO menor
que 15.00. Debido a que se utiliza la palabra clave AND, ambos predicados deben evaluar como
verdadero, que se aplica para estas dos filas.

Ahora hagamos una pequefia modificacion a la instruccién SELECT. En la cldusula WHERE,
se cambi0 la palabra clave AND por las palabras clave AND NOT, como se muestra en el siguiente
ejemplo:

SELECT * FROM INVENTARIO
WHERE EN_EXISTENCIA < 20 AND NOT PRECIO MENUDEO < 15.00;

158

Fundamentos de SQL

La palabra clave NOT cambia los resultados de la consulta. Como se puede observar, tres filas
se devuelven:

ID_DISCO_COMPACTO TITULO_CD DERECHOSDEAUTOR PRECIO_ MENUDEO EN_EXISTENCIA
99301 Famous Blue Raincoat 1991 16.99 6
99304 Past Light 1983 15.99 2
99305 Kojiki 1990 15.99 5

Cada una de las filas devueltas contiene un valor EN_EXISTENCIA menor que 20 y un valor
PRECIO_MENUDEO que no es menor que 15.00, o 15.00 o mayor.

Como siguiente paso veamos la misma instruccién SELECT, s6lo que en esta ocasién los dos
predicados se conectan por la palabra clave OR, como se muestra en el siguiente ejemplo:

SELECT * FROM INVENTARIO
WHERE EN_EXISTENCIA < 20 OR PRECIO MENUDEO < 15.00;

Los resultados de la consulta para esta instruccién incluyen muchas mads filas que cuando se
utiliz6 la palabra clave AND. Por su naturaleza, la palabra clave OR permite que existan mayores
oportunidades para que la busqueda de la cldusula evalie como verdadera. Como se puede obser-
var, ahora se devuelven seis filas:

ID DISCO_COMPACTO TITULO_CD DERECHOSDEAUTOR PRECIO_ MENUDEO EN_EXISTENCIA
99301 Famous Blue Raincoat 1991 16.99 6

99302 Blue 1971 14.99 26

99303 Court and Spark 1974 14.99 18

99304 Past Light 1983 15.99 2

99305 Kojiki 1990 15.99 5

99306 That Christmas Feeling 1993 10.99 3

Cada fila en los resultados de la bisqueda contiene un valor EN_EXISTENCIA menor que 20
o un valor PRECIO_MENUDEO menor que 15.00. Debido a que la palabra clave OR se utiliza,
s6lo uno de los predicados necesita evaluar como verdadero, aunque es aceptable si ambos predi-
cados evalian como verdadero.

En el siguiente ejemplo se afiade un predicado més que limita las filas devueltas a aquellas
con un valor EN_EXISTENCIA mayor que 5, puesto entre paréntesis para hacerlo claro:

SELECT * FROM INVENTARIO
WHERE (EN_EXISTENCIA < 20 AND EN EXISTENCIA > 5) OR PRECIO MENUDEO <
15.00;

Para devolver una fila, el valor EN_EXISTENCIA debe estar entre el rango de 5y 20 o el va-
lor PRECIO_MENUDEO debe ser menor que 15.00. Los resultados de la consulta de esta instruc-
cion SELECT serian como sigue:

ID DISCO_COMPACTO TITULO_CD DERECHOSDEAUTOR PRECIO_MENUDEO EN_EXISTENCIA
99301 Famous Blue Raincoat 1991 16.99 6

99302 Blue 1971 14.99 26

99303 Court and Spark 1974 14.99 18

99306 That Christmas Feeling 1993 10.99 3

Capitulo 7: Consulta de datos de SQL 159

Ahora hagamos un cambio més a la clausula WHERE. Suponga que desea que el valor EN_
EXISTENCIA sea menor que 20 y mayor que 5 o el valor EN_EXISTENCIA sea menor que 20 y
el valor PRECIO_MENUDEO sea menor que 15. Una forma de hacer esto es colocando paréntesis
en los tdltimos dos predicados:

SELECT * FROM INVENTARIO
WHERE EN_EXISTENCIA < 20 AND (EN_EXISTENCIA > 5 OR PRECIO_MENUDEO <
15.00) ;

Los resultados recibidos en esta ocasion son algo diferentes ya que la fila Blue ya no evaliia como

verdadero:

ID DISCO_COMPACTO TITULO_CD DERECHOSDEAUTOR PRECIO_MENUDEO EN_EXISTENCIA
99301 Famous Blue Raincoat 1991 16.99 6

99303 Court and Spark 1974 14.99 18

99306 That Christmas Feeling 1993 10.99 3

Con la combinacién de predicados se pueden crear muchas condiciones de busqueda que per-
mitan devolver exactamente los datos necesitados. La clave para escribir condiciones de bisqueda
eficaces es una comprension profunda de los predicados y los operadores utilizados para formar
esos predicados. El capitulo 9 muestra muchos de los operadores que se pueden utilizar y los tipos
de predicados que se pueden crear. Con esa informacién se pueden crear condiciones eficaces y
concisas de buisqueda.

Utilice la cléusula GROUP BY para agrupar

los resultados de una consulta

La siguiente cldusula en la instruccién SELECT es la clausula GROUP BY. La cldusula GROUP
BY tiene una funcién muy diferente de la clausula WHERE. Como su nombre lo indica, la cldusu-
la GROUP BY se utiliza para agrupar tipos de informacién con el fin de resumir datos relaciona-
dos. La clausula GROUP BY se puede incluir en la instruccién SELECT aun si la clausula WHE-
RE se utiliza o no.

Como se vio en la seccién “Utilice la instruccién SELECT para la recuperacién de datos”, la
sintaxis para la clausula GROUP BY, como aparece en la sintaxis de la instruccién SELECT, se ve
como se muestra a continuacion:

[GROUP BY <especificaciones de grupo>]

Sin embargo, el marcador de posicién <especificaciones de grupo> se puede dividir en ele-
mentos mds pequeflos:

<nombre de columna>[{,<nombre de columna> }...]
[{ ROLLUP | CUBE }(<nombre de columna> [{ , <nombre de columna> }... |)

En realidad, la sintaxis <especificaciones de grupo>, como algunas de las otras sintaxis en
este libro, es incluso mas compleja de la que se presenta aqui; sin embargo, para propdsitos de este
capitulo, esta sintaxis proveera los detalles necesarios para usar la clausula GROUP BY de manera
efectiva.

160

Fundamentos de SQL

Ahora veamos la sintaxis. La primera linea se explica por si sola. Se especifican uno o mas
nombres de columna que contengan valores que se agrupan juntos. Esto normalmente aplica a co-
lumnas que representan algunos tipos de categorias cuyos valores se repiten dentro de la tabla. Por
ejemplo, la base de datos puede incluir una tabla que enumere a los empleados en la organizacion.
Suponga que la tabla incluye el titulo del puesto para cada empleado. Posiblemente encuentre que
desea agrupar la informacién en la tabla por el titulo del puesto, con una fila en el conjunto de re-
sultados para cada valor del titulo del puesto, quiza para determinar ciertas cosas como el salario
promedio de cada puesto o el nimero de empleados que tiene cada titulo del puesto. Si se necesita
especificar mas de un nombre de columna, asegirese de separarlos con una coma seguida de cada
nombre (excepto el dltimo).

En relacion con la sintaxis, se puede especificar la segunda linea en lugar de la primera. En
este caso, se puede usar la palabra clave ROLLUP o CUBE, junto con el listado de los nombres
de columna, entre paréntesis. De nuevo, asegirese de separar los nombres de columna con comas.
Con respecto a las palabras clave ROLLUP y CUBE, la mejor manera de entender estos operado-
res es mediante el uso de ejemplos. De hecho, la mejor forma de entender totalmente la cldusula
GROUP BY es a través de ejemplos. Sin embargo, antes de entrar en esto, echemos un vistazo
a la tabla en la cual se basan los ejemplos. La figura 7-4 muestra la tabla EXISTENCIA_DIS-
CO_COMPACTO, que contiene una lista de CD, si son interpretados o instrumentales, el precio, y
cuantos de cada titulo hay actualmente en existencia.

Ahora podemos empezar con los ejemplos. En el primero que veremos se usard la cldusula
GROUP BY para agrupar filas basadas en la columna CATEGORIA de la tabla EXISTENCIA _
DISCO_COMPACTO, como se muestra en la siguiente instruccién SELECT:

SELECT CATEGORIA, SUM(A LA MANO) AS TOTAL A LA MANO
FROM EXISTENCIA DISCO COMPACTO
GROUP BY CATEGORIA;

Primero echemos un vistazo a la cldusula GROUP BY, que especifica qué filas se deben agru-
par basadas en la columna CATEGORIA. Si observa la figura 7-4, vera que la columna contiene
s6lo dos valores: Vocal o Instrumental. Como resultado, la instruccion SELECT sélo devuelve dos
columnas, una para Instrumental y otra para Vocal:

CATEGORIA TOTAL_A LA MANO
Instrumental 78
Vocal 217

Ahora veamos la clausula SELECT en el ejemplo anterior de la instruccion SELECT. Observe
que la lista seleccionada incluye la funcién SUM, que afiade informacién a la columna A_LA_
MANO. La columna resultante se llama TOTAL_A_LA_MANO. La otra columna incluida en la
lista seleccionada es la columna CATEGORIA. La lista seleccionada puede incluir sélo esas co-
lumnas que se especifican en la clausula GROUP BY o que de alguna manera se pueden resumir.

Lo que hace esta instruccién, entonces, es afiadir los valores totales A_LLA_MANO para cada
valor en la columna CATEGORIA. En este caso, hay un total de 217 CD en existencia que entran
en la categoria de interpretados, y 78 en existencia que entran en la categoria de instrumentales. Si
hubiera otra categoria, entonces apareceria otra fila para ésa también.

Capitulo 7: Consulta de datos de SQL

161

DISCO_COMPACTO: CATEGORIA: PRECIO: A_LA_MANO:
VARCHAR(60) VARCHAR(15) NUMERICO(5,2) |INT
Famous Blue Raincoat Vocal 16.99 13
Blue Vocal 14.99 42
Court and Spark Vocal 14.99 22
Past Light Instrumental 15.99 17
Kojiki Instrumental 15.99 6
That Christmas Feeling Vocal 14.99 8
Patsy Cline: 12 Greatest Hits Vocal 16.99 32
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
After the Rain: The Soft Sounds of Erik Satie Instrumental 16.99 21
Out of Africa Instrumental 16.99 29
Leonard Cohen The Best of Vocal 15.99 12
Fundamental Vocal 15.99 34
Blues on the Bayou Vocal 14.99 27
Orlando Instrumental 14.99 5

Figura 7-4 Informacién del CD en la tabla EXISTENCIA_DISCO_COMPACTO.

Pregunta al experto

P:
R:

. Existen consideraciones de ejecucion con respecto al uso de la clausula GROUP BY?

Si, el uso de GROUP BY puede causar problemas de ejecucién, ya que los RDBMS por lo
general deben realizar un ordenamiento adecuado con el fin de agrupar los grupos de filas,

y ordenar un gran nimero de filas (decenas de miles o mds) puede consumir considerables
recursos. Pero también esté consciente que la cldusula ORDER BY (presentada mas adelante
en este capitulo) y la palabra clave DISTINCT también suelen requerir ordenaciones, y por lo
tanto tienen consideraciones de ejecucion similares. Esto no significa que deba tener miedo
de utilizarlos, sino que debe esforzarse por aprender el impacto de ejecucién de las instruccio-
nes de SQL para ganar experiencia, y de esa manera estar mas capacitado al escribir instruc-
ciones que tengan una mejor ejecucion en la implementacién del proveedor. Por ejemplo, en
Oracle, la clausula GROUP BY que enumera todas las columnas en la clausula SELECT es
mds eficaz que utilizar la palabra clave DISTINCT, y sin embargo los resultados de la consulta
de los dos métodos son idénticos.

162

Fundamentos de SQL

Como se dijo anteriormente, se puede utilizar la clausula WHERE en la instruccién SELECT
que incluya la clausula GROUP BY. Por ejemplo, suponga que desea ver los totales s6lo de los
CD que se vendieron por menos de $16.00. Para hacer esto, simplemente modifique la instruccién
SELECT como se muestra a continuacion:

SELECT CATEGORIA, SUM(A LA MANO) AS TOTAL A LA MANO
FROM EXISTENCIA DISCO_COMPACTO

WHERE PRICE < 16.00

GROUP BY CATEGORIA;

Los resultados de la consulta de esta instruccién serian ligeramente diferentes si no se inclu-
yera la clausula WHERE:

CATEGORIA TOTAL A LA MANO
Instrumental 28
Vocal 172

Observe que como los CD que se venden por $16.00 o mds se excluyen, los resultados ahora
muestran s6lo 28 CD instrumental y 172 CD vocal.

En los dos ejemplos anteriores, la cliusula GROUP BY especifica sélo una columna. Sin
embargo, se pueden especificar columnas adicionales como sea necesario. Esto permite crear
subgrupos que agrupen datos en el &mbito de los grupos principales. Por ejemplo, suponga que
desea agrupar datos no sélo por los valores en la columna CATEGORIA, sino también de acuerdo
con los valores en la columna PRECIO. Para hacer esto, se debe incluir la columna PRECIO en la
lista de seleccidn, asi como en la clausula GROUP BY, como se muestra en la siguiente instruc-
cién SELECT:

SELECT CATEGORIA, PRECIO, SUM(A LA MANO) AS TOTAL A LA MANO
FROM EXISTENCIA DISCO_COMPACTO
GROUP BY CATEGORIA, PRECIO;

Ahora los resultados de la consulta incluyen seis filas, en lugar de dos:

CATEGORIA PRECIO TOTAL_A LA MANO
Instrumental 14.99 5
Vocal 14.99 99
Instrumental 15.99 23
Vocal 15.99 73
Instrumental 16.99 50
Vocal 16.99 45

Observe que para cada valor en CATEGORIA, hay tres filas, una para cada uno de los valores
PRECIO. Por ejemplo, en el grupo Vocal, hay 99 CD a 14.99, 73 CD a 15.99 y 45 CD a 16.99.
El nimero de filas depende de cudntos valores diferentes existan en las columnas especificadas en
la clausula GROUP BY. En este ejemplo, hay dos valores diferentes en la columna CATEGORIA
y tres valores diferentes en la columna PRECIO, lo que significa que seis (dos veces tres) filas se
devuelven.

Capitulo 7: Consulta de datos de SQL 163

NOTA

El orden en el que los resultados de la consulta se devuelven puede variar de una aplicacién

a otra. Por ejemplo, algunos productos pueden devolver todas las filas de instrumental juntas,
seguidas por todas las filas de los interpretados. Sin embargo, independientemente de cémo
aparece la informacién en la interfaz de usuario, los resultados finales deben ser los mismos.
También la mayoria de las aplicaciones permiten afiadir la cléusula ORDER BY (que se analiza
después en el capitulo) para ordenar las filas resumidas.

Ahora echemos un vistazo a los operadores ROLLUP y CUBE. Ambos operadores son simila-
res en funcionamiento, ya que devuelven datos adicionales en los resultados de la consulta cuando
se afiade la clausula GROUP BY. La principal diferencia entre los dos es que el operador CUBE
devuelve mas informacién que el operador ROLLUP. Empecemos con el ejemplo del operador
ROLLUP para que se pueda demostrar la diferencia.

En la siguiente instrucciéon SELECT, en la clausula GROUP BY aplica el operador ROLLUP
a las columnas CATEGORIA y PRECIO:

SELECT CATEGORIA, PRECIO, SUM(A LA MANO) AS TOTAL A LA MANO
FROM EXISTENCIA DISCO_COMPACTO
GROUP BY ROLLUP (CATEGORIA, PRECIO) ;

NOTA

Las implementaciones pueden variar con respecto a cémo soportan a los operadores ROLLUP
y CUBE. Por ejemplo, en SQL Server se debe afiadir WITH ROLLUP o WITH CUBE al final de

la cléusula GROUP BY, en lugar de definir la cléusula en la forma que la especifica el estandar
SQL:2006. Asegurese de verificar la documentacién del producto para determinar cémo se
respaldan estos operadores.

Ahora cuando se ejecute la instruccion SELECT, los resultados de la consulta incluyen una
fila adicional para cada valor en la columna CATEGORIA, ademds de una fila con el gran total al
final:

CATEGORIA PRECIO TOTAL A LA MANO
Instrumental 14.99 5

Instrumental 15.99 23

Instrumental 16.99 50

Instrumental NULL 78

Vocal 14.99 99

Vocal 15.99 73

Vocal 16.99 45

Vocal NULL 217

NULL NULL 295

Las dos filas adicionales de CATEGORIA proporcionan los totales para cada valor en la columna
CATEGORIA. En el ejemplo anterior, el grupo Instrumental incluye un total de 78 CD, y el grupo
Vocal incluye un total de 217 CD. Observe que la columna PRECIO incluye un valor nulo para
estas filas en particular. Un valor no se puede calcular para esta columna, ya que los tres subgrupos

164

Fundamentos de SQL

Uti

tilice la cléusula HAVING para especificar

(de la columna PRECIO) se representan aqui. La ultima fila (la fila con NULL para ambas co-
lumnas CATEGORIA y PRECIO) contiene el gran total de todos los CD incluidos por la consulta
(ambas categorias de grupos y los tres subgrupos de precios).

El operador CUBE devuelve los mismos datos que el operador ROLLUP y algunos otros. Ob-
serve que en la siguiente instrucciéon SELECT, simplemente se reemplaz6 la palabra clave CUBE
por ROLLUP:

SELECT CATEGORIA, PRECIO, SUM(A LA MANO) AS TOTAL A LA MANO
FROM EXISTENCIA DISCO_COMPACTO
GROUP BY CUBE (CATEGORIA, PRECIO) ;

Esta instruccién devuelve los siguientes resultados de la consulta:

CATEGORIA PRECIO TOTAL A LA MANO
Instrumental 14.99 5
Instrumental 15.99 23
Instrumental 16.99 50
Instrumental NULL 78
Vocal 14.99 99
Vocal 15.99 73
Vocal 16.99 45
Vocal NULL 217
NULL NULL 295
NULL 14.99 104
NULL 15.99 96
NULL 16.99 95

Se puede observar que tres filas adicionales se afiaden a los resultados de la consulta, una fila
para cada valor diferente en la columna PRECIO. A diferencia del operador ROLLUP, el operador
CUBE resume los valores para cada subgrupo. También observe que un valor nulo se muestra para
la columna CATEGORIA para esas filas. Esto es debido a que ambos valores (vocal e instrumen-
tal) se incluyen en el resumen de cada subgrupo.

Como se puede observar, la cliusula GROUP BY puede ser una herramienta muy ttil cuando
se trata de resumir datos, particularmente cuando se hace uso de las multliples funciones disponi-
bles en SQL, tales como SUM y AVG. En el capitulo 10 se analizan éstas y muchas otras funciones
que se pueden utilizar para hacer la instruccién SELECT mas robusta y aplicable a sus necesidades.

un grupo de condiciones de bisqueda

La cldusula HAVING es similar a la cldusula WHERE ya que define una condicién de bisqueda.
Sin embargo, a diferencia de la cldusula WHERE, la clausula HAVING se refiere a grupos, no a
filas individuales:

Si se especifica la clausula GROUP BY, la clausula HAVING se aplica a los grupos creados
por la clausula GROUP BY.

Capitulo 7: Consulta de datos de SQL 165

Si se especifica la clausula WHERE y no se especifica la clausula GROUP BY, la cldusula HA-
VING se aplica a la salida de la clausula WHERE y se trata esa salida como un grupo.

Si no se especifica la cldusula WHERE ni la clausula GROUP BY, la clausula HAVING se
aplica a la salida de la cldusula FROM Yy se trata esa salida como un grupo.

La mejor forma de entender la cldusula HAVING es recordando que las cldusulas en la ins-
trucciéon SELECT se procesan con un orden definido. La clausula WHERE s6lo puede recibir la
entrada de la cldusula FROM, pero la clausula HAVING puede recibir la entrada de las cldusulas
GROUP BY, WHERE o FROM. Esta es una sutil pero importante distincién, y la mejor manera de
ilustrarlo es viendo un par de ejemplos.

En el primer ejemplo, que se basa en la tabla EXISTENCIA_DISCO_COMPACTO en la
figura 7-4, se utiliza la clausula WHERE para especificar que los resultados de la consulta deben
incluir sélo filas cuyo valor A_LA_MANO es menor que 20, como se muestra en la siguiente ins-
truccién SELECT:

SELECT CATEGORIA, AVG(PRECIO) AS PROM PRECIO
FROM EXISTENCIA DISCO_COMPACTO

WHERE A LA MANO < 20

GROUP BY CATEGORIA;

La instruccién devuelve dos columnas: CATEGORIA y PROM_PRECIO, que es el promedio
de todos los precios para cada categoria. Los promedios incluyen sélo las columnas donde los
valores A_LA_MANO son menores que 20. Si se ejecuta esta instruccién, los resultados serian
similares a los siguientes:

CATEGORIA PROM_PRECIO

Instrumental 15.656666
Vocal 15.990000

Como era de esperarse, el resultado de la consulta devuelve dos filas (una para el grupo instru-
mental y una para el grupo vocal).

Si se fuera a utilizar la clausula HAVING, en lugar de la cldusula WHERE, para limitar los
valores a menos de 20, podria utilizar la siguiente instrucciéon SELECT:

SELECT CATEGORIA, AVG(PRECIO) AS PROM PRECIO
FROM EXISTENCIA DISCO_COMPACTO
GROUP BY CATEGORIA
HAVING A LA MANO < 20;

Sin embargo, si se trata de ejecutar esta instruccidn, se recibiria un error, ya que no se aplican
los valores individuales A_LA_MANO a los grupos. Para que una columna se incluya en la clau-
sula HAVING, debe ser un grupo de columnas o deben estar resumidas de alguna manera.

Ahora veamos otro ejemplo que utilice la clausula HAVING. En este caso, la cldusula incluye
una columna resumida:

SELECT PRECIO, CATEGORIA, SUM(A LA MANO) AS TOTAL_ A LA MANO
FROM EXTSTENCIA DISCO COMPACTO

GROUP BY PRECIO, CATEGORIA

HAVING SUM(A LA MANO) > 10;

166

Fundamentos de SQL

La clausula HAVING en esta instruccion funciona porque los valores A_LA_MANO se su-
man, lo que significa que pueden trabajar dentro de la estructura del grupo. Los resultados de la
consulta serian como se muestra a continuacion:

PRECIO CATEGORIA TOTAL_ A LA MANO
15.99 Instrumental 23
16.99 Instrumental 50
14.99 Vocal 99
15.99 Vocal 73
16.99 Vocal 45

La cldusula HAVING se aplica a los resultados después de haberse agrupado (en la cldusula
GROUP BY). Para cada grupo, los valores A_LA_MANO se afiaden juntos, pero s6lo se incluyen
los grupos con los valores TOTAL_A_LA_MANO de més de 10. Si no se incluye la cldusula HA-
VING, los resultados de la consulta se incluirfan en una fila adicional para el grupo de 14.99/Ins-
trumental.

En su mayor parte, probablemente encuentre que utilizard la clausula HAVING en conjunto
con la clausula GROUP BY. Mediante el uso de estos dos se pueden agrupar datos relevantes y fil-
trar los datos para refinar su bisqueda atin mas. La clausula HAVING también tiene la ventaja de
permitir el uso de funciones establecidas tales como AVG o SUM, que no se pueden utilizar en la
clausula WHERE a menos que se coloquen dentro de una subconsulta. Los puntos importantes que
deben tenerse en cuenta con la clausula HAVING es que es la dltima cldusula en la expresion de
tabla que debe aplicarse, y que se trata de datos agrupados en lugar de filas individuales.

Utilice la cldusula ORDER BY para ordenar
los resultados de una consulta

La clausula ORDER BY, cuando se usa en la instruccién SELECT, es la tltima cldusula proce-
sada. La clausula ORDER BY toma la salida de la clausula SELECT y ordena los resultados de

la consulta de acuerdo con las especificaciones dentro de la clausula ORDER BY. La cldusula no
agrupa las filas, como se agrupan por la clausula GROUP BY, ni filtra las filas, como se filtran por
la clausula WHERE o la clausula HAVING. Sin embargo, se puede especificar si las filas se orga-
nizan en un orden ascendente (utilizando la palabra clave ASC) o en orden descendente (usando la
palabra clave DESC).

Para utilizar la clausula ORDER BY, simplemente se especifica una o mas columnas y las
palabras clave opcionales ASC o DESC (una por columna). Si no se especifica la palabra clave, se
toma ASC. Las filas se organizan de acuerdo con la columna que especifique. Si se define mds de
una columna en la cldusula ORDER BY, las filas se organizan en el orden en que las columnas se
especifican.

Echemos un vistazo a algunos ejemplos para aclarar cémo funciona la clausula ORDER BY.
(Los ejemplos se basan en la tabla EXISTENCIA_DISCO_COMPACTO en la figura 7-4.) En el
primer ejemplo se ordenan las filas basadas en la columna PRECIO:

SELECT * FROM EXISTENCIA DISCO_COMPACTO

WHERE PRECIO < 16.00
ORDER BY PRECIO;

Capitulo 7: Consulta de datos de SQL

167

Observe que la columna PRECIO se especifica en la clausula ORDER BY. También observe
que si no se especifica la palabra clave ASC ni la palabra clave DESC, entonces se asume la pala-
bra clave ASC. Si se ejecuta esta consulta, se recibirdn resultados similares a los siguientes:

DISCO_COMPACTO

Blue

Court and Spark

That Christmas Feeling
Blues on the Bayou
Orlando

Carreras Domingo Pavarotti in Concert
Leonard Cohen The Best Of
Fundamental

Past Light

Kojiki

CATEGORIA

Vocal
Instrumental
Vocal
Vocal
Vocal
Instrumental
Instrumental

PRECIO

15.
15.
15.
15.
15.

A LA MANO

Las filas se enumeran de acuerdo con la columna PRECIO. Los valores en la columna PRE-
CIO aparecen en orden ascendente (del precio mas bajo al precio mas alto). Ya que la clausula
WHERE se especifica, ninguna fila con precios por encima de 15.99 se incluye en los resultados
de la consulta. Ya que se incluye sélo la columna PRECIO en ORDER BY, también el orden de las
filas que tienen el mismo precio es impredecible. Por ejemplo, las cinco filas con un PRECIO de
14.99, aparecen todas antes que aquellas con un PRECIO de 15.99, pero esas cinco filas pueden

aparecer en cualquier orden.

En el siguiente ejemplo, la instruccién SELECT es casi la misma que la dltima instruccion,

excepto que se especifica una columna adicional en la clausula ORDER BY:

SELECT * FROM EXISTENCIA DISCO_COMPACTO

WHERE PRECIO < 16.00
ORDER BY PRECIO, A LA MANO DESC;

En este caso, a la columna A_LA_MANO le sigue la palabra clave DESC, lo que significa
que las filas se enumeran en orden descendente. Sin embargo, ya que hay dos columnas, las filas
primero se ordenan por la columna PRECIO y luego por la columna A_LLA_MANO. Si se ejecuta
esta instruccion SELECT, se recibirdn los siguientes resultados:

DISCO_COMPACTO

Blue

Blues on the Bayou

Court and Spark

That Christmas Feeling
Orlando

Fundamental

Carreras Domingo Pavarotti in Concert
Past Light

Leonard Cohen The Best Of
Kojiki

CATEGORIA

Vocal
Instrumental
Vocal
Vocal
Instrumental
Vocal
Instrumental

PRECIO

A LA MANO

168

Fundamentos de SQL

Pregunta al experto

P: ¢ Como afecta la clausula ORDER BY los resultados de la consulta en SQL incrustado y

modulos de SQL?

« Se puede utilizar la cldusula ORDER BY sélo en invocacién directa y cuando se definen cur-
sores. (Se analizardn los cursores en el capitulo 15.) No se puede utilizar la clausula ORDER
BY en otras situaciones. Esto es debido a las limitaciones en los lenguajes de aplicacién (no
pueden manejar un nimero indeterminado de filas de un resultado de la consulta). Los len-
guajes de aplicacidn no saben qué hacer con este tipo de incertidumbre. Y ya que la cldusula
ORDER BY aplica sélo a los resultados de la consulta de mdltiples filas, la cldusula no es
aplicable a los entornos que requieren que las filas se devuelvan una a la vez. Sin embargo,
los cursores ofrecen una forma para que los lenguajes de aplicacién hagan frente a esa incer-
tidumbre, permitiendo que la clausula ORDER BY se utilice en definiciones de cursores. Los
cursores se analizan con mas detalle en el capitulo 15.

Como se puede observar, las filas se enumeran segtn el orden de los valores de PRECIO,
que es de forma ascendente. Ademas, los valores A_LA_MANO se enumeran con un orden des-
cendente para cada precio. Por lo tanto, para el conjunto de valores PRECIO de 14.99, las filas
comienzan con el valor de 42 en la columna A_LA_MANO y terminan con el valor de 5. Luego
brinca al siguiente grupo de valores PRECIO: 15.99. Una vez mas, el valor A_LA_MANO mas
grande para el rango de PRECIO de 15.99 aparece en primer lugar y la dltima fila contiene el valor
A_LA_MANO mais pequefio para el rango de PRECIO de 15.99.

Siempre que se utilice la clausula ORDER BY, debe estar consciente del orden en el que enu-
mera los nombres de columna dentro de la clausula. En el ejemplo anterior, la columna PRECIO
aparece en primer lugar; por lo tanto, las filas se ordenan primero por la columna PRECIO y luego
por la columna A_LA_MANO. Sin embargo, puede invertir los nombres de columna, como se
muestra en la siguiente instrucciéon SELECT:

SELECT * FROM EXISTENCIA DISCO_COMPACTO
WHERE PRECIO < 16.00
ORDER BY A LA MANO, PRECIO DESC;

Esta vez, la columna A_LA_MANO aparece en primer lugar y la columna PRECIO aparece
en segundo lugar, y a la columna PRECIO se le asigna la palabra clave DESC. Como resultado, las
filas se ordenan primero por la columna A_LA_MANO, como se muestra en los siguientes resulta-
dos de la consulta:

DISCO_COMPACTO CATEGORIA PRECIO A LA MANO
Orlando Instrumental 14.99 5
Kojiki Instrumental 15.99 6
That Christmas Feeling Vocal 14.99 8
Leonard Cohen The Best Of Vocal 15.99 12
Past Light Instrumental 15.99 17

Court and Spark Vocal 14.99 22

Capitulo 7: Consulta de datos de SQL 169

Carreras Domingo Pavarotti in Concert Vocal 15.99 27
Blues on the Bayou Vocal 14.99 27
Fundamental Vocal 15.99 34
Blue Vocal 14.99 42

Observe que los valores A_LA_MANO estan en orden ascendente. Las filas se ordenan se-
gtn el valor PRECIO. Sin embargo, ya que sé6lo hay dos filas que comparten los mismos valores
A_LA_MANO (27), éstas son las unicas filas que afecta la columna ORDER BY con respecto a la
columna PRECIO.

La cldusula ORDER BY es una herramienta conveniente para organizar los resultados de la
consulta, pero recuerde que no afecta qué datos se muestran. Sélo las otras clausulas pueden nom-
brar, filtrar y agrupar datos. La cldusula ORDER BY no es mds que un organizador para lo que ya
existe. Y de hecho, si bien no es una practica muy buena, se pueden incluir columnas en la clausu-
la ORDER BY que no estdn en la clausula SELECT, y de este modo clasificar las columnas que no
son visibles en los resultados de la consulta.

Consulte la base de datos inventario

Para los ejercicios de los capitulos anteriores se cre6 un niimero continuo de tablas base capaces
de almacenar datos. En este capitulo aprenderd cémo crear instrucciones SELECT que permitan
consultar datos en las tablas base. Como resultado, este ejercicio se centra en la creacion de ins-
trucciones SELECT que consulte datos en las tablas que se crearon. Sin embargo, antes de que
realmente pueda consultar estas tablas, los datos se deben almacenar dentro de éstas. Ya que no se
cubre la insercién de datos hasta el capitulo 8, se proporcionan las instrucciones necesarias para
insertar los datos en el archivo Try_This_07.txt (en inglés), que puede descargar del sitio web. El
archivo contiene una serie de instrucciones INSERT que permiten llenar las tablas, junto con las
instrucciones SELECT utilizadas en este ejercicio. También se pueden ver estas instrucciones en el
apéndice C.

Si observa el archivo Try_This_07.txt, encontrard una serie de instrucciones INSERT que se
agrupan de acuerdo con las tablas que se crearon en la base de datos INVENTARIO. Por ejemplo,
el primer conjunto de instrucciones INSERT son para la tabla DISQUERAS_CD, como se muestra
en las siguientes instrucciones:

--Inserta datos en la tabla DISQUERAS CD

INSERT INTO DISQUERAS CD VALUES (827, 'Private Music');

INSERT INTO DISQUERAS_ CD VALUES 828, 'Reprise Records');
INSERT INTO DISQUERAS CD VALUES 829, 'Asylum Records');
INSERT INTO DISQUERAS CD VALUES 830, 'Windham Hill Records');
INSERT INTO DISQUERAS CD VALUES 831, 'Geffen');

INSERT INTO DISQUERAS CD VALUES 832, 'MCA Records');

INSERT INTO DISQUERAS CD VALUES 833, 'Decca Record Company');
INSERT INTO DISQUERAS CD VALUES 834, 'CBS Records');

INSERT INTO DISQUERAS CD VALUES 835, 'Capitol Records');
INSERT INTO DISQUERAS CD VALUES (836, 'Sarabande Records');
--Fin de insercidén en la tabla DISQUERAS CD

170

Fundamentos de SQL

Tendra que copiar estas instrucciones en la aplicacion de cliente y ejecutarlas. Cada instruc-
cién INSERT afiade una fila de datos a la tabla aplicable. Por ejemplo, la primera instruccién
INSERT que aparece en el cddigo anterior afiade una fila de datos a la tabla DISQUERAS_CD.
Los valores que se afiaden son 827 (para la columna ID_DISQUERA) y Private Music (para la
columna NOMBRE_COMPANIA). De nuevo se presenta la instrucciéon INSERT con mas detalle
en el capitulo 8. Si se siente incomodo insertando estos datos antes de leer acerca de la instruccién
INSERT, le sugiero que revise la informacién del capitulo 8 antes de trabajar en este ejercicio y
luego vuelva aqui para realizar cada paso. Sin embargo, si decide hacer este ejercicio ahora, enton-
ces simplemente necesita ejecutar cada instruccién, como se describe en los siguientes pasos.

NOTA

Como probablemente ha notado, cada bloque de instrucciones INSERT comienza y termina
con una linea que empieza con guiones dobles (--). Los guiones dobles indican que la linea
de fexto que sigue es un comentario. La aplicacién de SQL simplemente omite estas lineas. Los
comentarios estdn sélo para proporcionar informacién a los programadores de SQL para que
puedan entender mejor el cédigo.

Paso a paso

h

1. Abra la aplicacion de clientes de su RDBMS y conecte la base de datos INVENTARIO.

2, Abra el archivo Try_This_07.txt y copie las instrucciones INSERT en la aplicacién de cliente.
La mayoria de las aplicaciones permiten ejecutar bloques de instrucciones en lugar de tener
que introducir los datos de una fila a la vez. Si la aplicacion soporta la ejecucion de miiltiples
instrucciones, ejecute las instrucciones una tabla a la vez copiando y pegando los bloques
de instrucciones en la aplicacion de clientes. Debe introducir los datos para cada tabla en el or-
den que los datos aparecen en el archivo Try_This_07.txt. Por ejemplo, debe insertar los valores
en la tabla DISQUERAS_CD antes que en la tabla DISCO_COMPACTO.

Para cada instruccion INSERT que ejecute, debe recibir un mensaje que reconozca que la fila se
insert6 en la tabla. Después de llenar cada tabla con los datos, estara listo para continuar con el
siguiente paso.

3. Ahora consulte todos los datos de la tabla ARTISTAS. Introduzca y ejecute la siguiente instruc-
cién SQL:
SELECT *
FROM ARTISTAS;

El resultado de su consulta debe incluir las columnas ID_ARTISTA, NOMBRE_ARTISTA y
LUGAR_DE_NACIMIENTO. Debe componerse de 18 filas de datos en todas.

Ahora debe crear una consulta que especifique qué columnas se incluyen en los resultados de
la consulta. Para la siguiente instruccién SELECT, consulte la tabla DISCO_COMPACTO,
pero devuelva sélo las columnas TITULO_CD y EN_EXISTENCIA. Introduzca y ejecute la
siguiente instruccién SQL:

SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_COMPACTOS;

Capitulo 7: Consulta de datos de SQL 171

Los resultados de la consulta deben incluir sélo las dos columnas que se especifican en la ins-
truccién SELECT. Ademas, la consulta debe devolver 15 filas de datos.

En el capitulo 5, Pruebe esto 5-1, se cre6 la vista CD_EN_EXISTENCIA. La vista devuelve los
mismos datos que se especifican en la instrucciéon SELECT en el paso 4, excepto que limita los
resultados de las filas con los valores EN_EXISTENCIA mayor que 10. Ahora puede consultar
esa vista. Introduzca y ejecute la siguiente instrucciéon SQL.:

SELECT *
FROM CD_EN EXISTENCIA;

Observe que la instruccion SELECT es la misma que si fuera para una tabla base persistente.
Puede incluso especificar los nombres de columna de la vista si se desea. (De hecho, debe ha-
cerlo si consulta la vista de cualquier otra manera que a través de la invocacion directa.) En la
dltima instrucciéon SELECT, la consulta devolvié 15 filas, pero esta consulta devuelve sélo 12
filas, ya que los valores EN_EXISTENCIA deben estar por arriba de 10. La parte agradable
sobre la vista es que ya estd configurada para devolver exactamente la informacion deseada, sin
tener que definir la clausula WHERE.

Ahora consulte la tabla DISCOS_COMPACTOS, pero refine la instruccién SELECT utilizando
la clausula WHERE. Introduzca y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN_ EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE EN_EXISTENCIA > 10 AND EN_ EXISTENCIA < 30;

Debido a que se afiade la clausula WHERE, los resultados de la consulta ahora incluyen sélo
nueve filas, y cada fila debe contener un valor EN_EXISTENCIA entre 10 y 30.

La siguiente instruccién SELECT que se crea agrupa la informacién en la tabla DISCOS_
COMPACTOS. Introduzca y ejecute la siguiente instrucciéon SQL:

SELECT ID DISQUERA, SUM(EN EXISTENCIA) AS TOTAL EN EXISTENCIA
FROM DISCOS_ COMPACTOS
GROUP BY ID DISQUERA;

Se devuelve una fila para cada valor diferente ID_DISQUERA, y para cada uno de estos valo-
res se devuelve el total para los valores EN_EXISTENCIA. Hay 10 filas. Observe que en los
resultados de la consulta, el nombre de la columna con los totales EN_EXISTENCIA es TO-
TAL_EN_EXISTENCIA. Cuando aprenda mds sobre la unién de tablas, serd capaz de agrupar
los datos basados en consultas mas complejas. La unidn de tablas se analiza en el capitulo 11.

Ahora se afiade la cldusula HAVING a la instruccién SELECT que se acaba de ejecutar. Intro-
duzca y ejecute la siguiente instruccién SQL:

SELECT ID DISQUERA, SUM(EN EXISTENCIA) AS TOTAL EN EXISTENCIA
FROM DISCOS COMPACTOS
GROUP BY ID_DISQUERA
HAVING SUM(EN EXISTENCIA) > 10;

(continda)

172 Fundamentos de SQL

La cldusula HAVING limita las filas que se devuelven a aquellas cuyos valores TOTAL_EN_
EXISTENCIA sean mayores que 10. Ahora sé6lo se devuelven ocho filas.

9. También se puede ejecutar la instruccién SELECT que ordene los datos devueltos por la con-
sulta. Introduzca y ejecute la siguiente instruccion SQL:

SELECT *

FROM DISCOS_COMPACTOS
WHERE EN_EXISTENCIA > 10
ORDER BY TITULO_CD DESC;

Los resultados de la consulta deben estar organizados de acuerdo con la columna TITULO_CD,
con las columnas enumeradas en orden descendente. Ya que se utiliza la clausula WHERE, sélo
12 filas se deben devolver.

10. Cierre la aplicacion clientes.

Resumen de Pruebe esto

En este ejercicio se insertaron datos en las tablas de la base de datos INVENTARIO. A continua-
cion se crearon instrucciones SELECT que permiten consultar los datos en esas tablas. Debe sen-
tirse libre de experimentar con las instrucciones SELECT y probar diferentes tipos de consultas. A
medida que se sienta mas comodo utilizando la instruccién SELECT y aprenda técnicas mds avan-
zadas para consultar datos, serd capaz de escribir instrucciones SELECT para acceder a miltiples
tablas, calcular datos y resumir informacién. Sin embargo, incluso las técnicas mds avanzadas se
basan en el fundamento bésico que ha demostrado en este ejercicio. Todo lo demds se basa en esto.

v Aot Canitulo 7

1. ;Cudles cldusulas en la instruccién SELECT son parte de la expresion de la tabla?

A SELECT
B FROM
C WHERE

D ORDERBY
2. ;En qué orden se aplican las cldusulas de la instruccién SELECT?

3. Se estd escribiendo la instruccion SELECT que recupera la columna TITULO_CD vy todas las
filas de la tabla INVENTARIO. ;Cuaél instruccion SELECT debe utilizarse?

4, Se estd escribiendo una instruccién SELECT que recupera la columna TITULO_CD vy todas las
filas de la tabla INVENTARIO. Desea que la columna en los resultados de la consulta sea 1la-
mada DISCO_COMPACTO. ;Cudl instruccién SELECT debera4 utilizarse?

Capitulo 7: Consulta de datos de SQL

5. ;Cuiles cldusulas se requieren en una instruccién SELECT?

A SELECT
B FROM
C WHERE

D GROUPBY

6. ;Cual palabra clave se debe anadir a la cldusula SELECT para asegurarse que cada fila de los
resultados de la consulta sea tinica?

A ALL

B ROLLUP
C DISTINCT
D CUBE

7. Se estd creando una instruccion SELECT para la tabla INVENTARIO y desea asegurarse que
sélo las filas con un valor PRECIO_MENUDEO menor a $16.00 sean incluidas en los resulta-
dos de la consulta. ;Qué clausula WHERE deber4 utilizarse?

8. Se estd creando una instruccién SELECT que incluye una cldusula WHERE. La cldusula WHE-
RE contiene dos predicados. Se desea que la condicién de uno de los predicados se cumpla,
pero no es necesario que ambas condiciones se cumplan. ;Qué palabra clave deberd utilizarse
para conectar los dos predicados?

9. (Cudl de las siguientes declaraciones puede evaluar una cldusula WHERE?
A Verdadero
B No
C Falso

D Desconocido

10. ;Cuadl cldusula permite agrupar valores en una columna especifica?
A ROLLUP

B HAVING

C ORDERBY

D GROUPBY

11

. (Cuadles dos operadores pueden utilizarse en una clausula GROUP BY para arrojar datos de re-
sumen adicionales en los resultados de una consulta?
A ROLLUP
B HAVING
C CUBE
D DISTINCT

174 Fundamentos de SQL

12.

13

14.

15.
16‘
17.

Se estd escribiendo la instrucciéon SELECT que recupera las columnas CATEGORIA y PRE-
CIO de la tabla EXISTENCIA_DISCO_COMPACTO. Quiere agrupar los datos primero por la
columna CATEGORIA y luego por la columna PRECIO. ;Cuadl instruccién SELECT debera
utilizarse?

Se esta escribiendo la instrucciéon SELECT que recupera las columnas CATEGORIA y PRE-
CIO de la tabla EXISTENCIA_DISCO_COMPACTO. Quiere agrupar los datos primero por la
columna CATEGORIA y luego por la columna PRECIO. A continuacién, desea filtrar cualquier
grupo que tenga un valor PRECIO superior a $15.99. ;Cual instruccién SELECT debera utili-
zarse?

Se crea una instrucciéon SELECT que incluye una cldusula SELECT, una cldusula FROM, una
clausula WHERE, una cldusula GROUP BY y una clausula HAVING. ;Desde cudl clausula re-
cibira resultados la clausula HAVING?

A SELECT
B FROM
C WHERE

D GROUPBY
(En qué aspecto la clausula HAVING es diferente de la clausula WHERE?
(De cudl cldusula recibe resultados la clausula ORDER BY?

(Cudl palabra clave deberd agregarse a una clausula ORDER BY para clasificar los datos en
orden descendente?

Capitulo 8

Modificar datos SQL

176 Fundamentos de SQL

Habilidades y conceptos clave

Insertar datos SQL
Actualizar datos SQL
Eliminar datos SQL

U na de las funciones principales de cualquier base de datos es la capacidad de manejar los da-
tos almacenados dentro de sus tablas. Los usuarios designados deben ser capaces de insertar,
actualizar y eliminar los datos segtin sea necesario para mantener el flujo de la base de datos y
asegurarse que sélo los datos adecuados estdn siendo almacenados. SQL proporciona tres instruc-
ciones para el manejo basico de datos: INSERT, UPDATE y DELETE. En este capitulo se exami-
nardn cada una de estas instrucciones y se demostrard como pueden ser utilizadas en un ambiente
SQL para modificar los datos de la base de datos.

Insertar datos SQL

En el capitulo 7, el ejercicio 7-1 contenia una breve introduccién acerca de la instrucciéon INSERT.
Como se puede ver en ese ejercicio, la instruccion INSERT permite agregar datos a las diferentes
tablas en una base de datos. Se presenta la sintaxis bdsica en esta seccién y una sintaxis alternativa
en la siguiente seccidn (“Insertar valores desde una instrucciéon SELECT”). La sintaxis de una ins-
truccién INSERT badsica es relativamente sencilla:

INSERT INTO <nombre de la tabla>
[(<nombre de la columna>) [{ , <nombre de la columna> }...])]
VALUES (<valor> [{ , <valor> }...])

En la sintaxis, s6lo son obligatorias la primera y la tltima lineas. La segunda linea es opcio-
nal. Tanto la primera como la segunda linea son parte de la clausula INSERT INTO. En esta clau-
sula se debe identificar el nombre de la tabla (o vista) en la cual se agregaran los datos. El nom-
bre de la tabla sigue a las palabras clave INSERT INTO. Entonces el usuario tiene la opcién de
identificar los nombres de la columna en la tabla que recibirdn los datos. Este es el propésito de la
segunda linea en la sintaxis. Es posible especificar una o més columnas, y todas ellas deberan estar
dentro de paréntesis. Si se especifican mds columnas, éstas deberdn estar separadas por comas.

NOTA

La mayoria de las implementaciones de SQL soportan las vistas INSERT INTO. Sin embargo,
existen restricciones. Por ejemplo, no es posible insertar INSERT INTO en una vista si existen
columnas de la tabla que no estdn incluidas en la vista y que no permiten valores nulos ni tienen
un valor por defecto definido. Adicionalmente, si la vista tiene mds de una tabla base, podria
no ser posible insertar INSERT INTO en lo absoluto, y si se pudiera, se le requeriria al usuario
nombrar columnas desde sélo una de las tablas base debido a que un INSERT sélo puede afec-
tar a una tabla base. Siempre revise la documentacién del fabricante para mayor informacién.

Capitulo 8: Modificar datos SQL 177

En la tercera linea de la sintaxis, que se refiere a la clausula VALUES, se deben especificar
uno o mas valores que serdn ingresados en la tabla. La lista de valores debera estar encerrada en
paréntesis y, si se especifica mas de uno, deberan estar separados utilizando comas. Asimismo, los
valores deben cumplir los siguientes requisitos:

Si los nombres de columna no se especifican en la clausula INSERT INTO, entonces debera
haber un valor por cada columna en la tabla y los valores deberan estar en el mismo orden en
el que estan definidos en la tabla.

Si los nombres de columna se especifican en la cldusula INSERT INTO, entonces debera
haber exactamente un valor por cada columna especificada y esos valores deberdn estar en el
mismo orden en el que estdn definidos en la cldusula INSERT INTO. Sin embargo, los nom-
bres y valores de columna no tienen que estar en el mismo orden que las columnas en la defi-
nicién de la tabla.

Se debe proporcionar un valor por cada columna en la tabla excepto para las columnas que
permiten valores nulos o que tienen un valor definido por defecto.

Cada valor con un caricter del tipo de datos de cadena debe estar encerrado en comillas senci-
llas.

Se puede utilizar la palabra clave NULL (o null) como el valor de los datos en la cldusula VA-
LUES para asignar un valor nulo a cualquier columna que permita valores nulos.

NOTA

Muchos programadores de SQL prefieren especificar los nombres de columna dentro de la
cléusula INSERT INTO, incluso si no es necesario, debido a que proporciona un método para
documentar cuéles columnas suponen recibir los datos. Esta prdctica también hace a la ins-
truccién INSERT menos propensa a errores y a otros problemas provocados al afiadir nuevas
columnas o al cambiar el orden de las columnas en algin momento futuro. Por estas razones,
muchas organizaciones requieren el uso de los nombres de columna en todas las instrucciones

INSERT.

Ahora veamos algunos ejemplos de la instruccion INSERT. Para estos ejemplos se utilizara la
tabla INVENTARIO_CD. La tabla estd basada en la siguiente definicion de tabla:

CREATE TABLE INVENTARIO CD

(NOMBRE_CD VARCHAR (60) NOT NULL,
TIPO MUSICA VARCHAR (15) ,
EDITOR VARCHAR (50) DEFAULT 'Independiente' NOT NULL,
EN_EXISTENCIA INT NOT NULL) ;

En el primer ejemplo se mostrardn los valores insertados en cada columna en la tabla INVEN-
TARIO_CD:

INSERT INTO INVENTARIO CD
VALUES ('Patsy Cline: 12 Greatest Hits', 'Country', 'MCA Records',6 32);

Observe que la clausula INSERT INTO incluye solamente el nombre de la tabla INVENTA-
RIO_CD, pero no especifica ninguna columna. En la cldusula VALUES se han especificado cuatro
valores. Los valores estdn separados por comas, y los valores con caracteres del tipo de datos de

178

Fundamentos de SQL

cadena estan encerrados en comillas sencillas. Si hacemos referencia a la definicion de tabla, se
verd que los valores especificados en la clausula VALUES se encuentran en el mismo orden que
las definiciones de columna.

Cuando se ejecuta la instrucciéon INSERT mostrada en el ejemplo, los datos son anadidos a la
tabla INVENTARIO_CD, como se muestra en la figura 8-1.

Si se intentara ejecutar una instruccién INSERT como en el tdltimo ejemplo, pero incluyendo
solamente tres valores en lugar de cuatro, se recibiria como resultado un error. Por ejemplo, no
seria posible ejecutar la siguiente instruccion:

INSERT INTO INVENTARIO CD
VALUES ('Patsy Cline: 12 Greatest Hits', 'MCA Records', 32);

En este ejemplo se han especificado solamente tres valores. En este caso, el valor faltante es para
la columna TIPO_MUSICA. A pesar de que esta columna acepta valores nulos, la implementacién
de SQL no tiene forma de saber cudl valor esta siendo omitido, y por lo tanto se arroja un error.

En lugar de dejar el valor fuera de la clausula VALUES, se puede especificar un valor nulo,
como se muestra en el siguiente ejemplo:

INSERT INTO INVENTARIO CD
VALUES ('Out of Africa', null, 'MCA Records',6 29);

Si se ejecuta la instruccién INSERT, la tabla no incluird una fila adicional. La figura 8-2 muestra
cémo se veria la tabla, asumiendo que las dos instrucciones INSERT han sido ejecutadas.

El valor nulo se ingres6 en la columna TIPO_MUSICA, y los otros valores fueron ingresados
en sus columnas apropiadas. Si no se permitiera un valor nulo en la columna TIPO_MUSICA, se
tendria que haber especificado un valor.

NOTA

La figura 8-2 muestra la nueva fila que estd siendo insertada después de la fila existente en la
tabla. Sin embargo, la fila podria ser insertada en cualquier lugar en una tabla, dependiendo
de cémo inserte filas la implementacién de SQL. El estandar de SQL no especifica dénde se in-
sertard una fila en una tabla. De hecho, jamés se deberd confiar en que las filas en una tabla
estén en un orden en particular (se deberé utilizar la cléusula ORDER BY cuando los resultados
de SELECT necesiten estar en una secuencia en particular).

En lugar de proporcionar un valor para cada columna cuando se inserta una fila, se puede es-
pecificar cudles columnas recibirdn valores. Por ejemplo, se puede especificar los valores para las

NOMBRE_CD: TIPO_MUSICA: EDITOR: EN_EXISTENCIA:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT
Patsy Cline: 12 Greatest Hits Country MCA Records 32

Figura 8-1 La tabla INVENTARIO_CD con la nueva fila de datos.

Capitulo 8: Modificar datos SQL 179

NOMBRE_CD: TIPO_MUSICA: EDITOR: EN_EXISTENCIA
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT
Patsy Cline: 12 Greatest Hits Country MCA Records 32
Out of Africa NULL MCA Records 29

Figura 8-2 La tabla INVENTARIO_CD con dos filas de datos.

columnas NOMBRE_CD, EDITOR y EN_EXISTENCIA de la tabla INVENTARIO_CD, como se
muestra en el siguiente ejemplo:

INSERT INTO INVENTARIO CD (NOMBRE _CD, EDITOR, EN_ EXISTENCIA)
VALUES ('Fundamental', 'Capitol Records',6 34);

En este caso, un solo valor ha sido especificado para cada una de las columnas identificadas dentro
de la clausula INSERT INTO, y los valores se especifican en el mismo orden que las columnas en
la clausula INSERT INTO. Observe que la instruccién INSERT no incluye a la columna TIPO_
MUSICA dentro de la clausula INSERT INTO ni de la cldusula VALUES. Se puede omitir esta co-
lumna debido a que los valores nulos se permiten en esa columna. Si se ejecutara esta instruccion,
la tabla INVENTARIO_CD ahora tendrfa una tercera fila (mostrada la figura 8-3).

Una vez mads, el valor nulo (NULL) es agregado automéaticamente a la columna TIPO_MUSI-
CA. Si un valor por defecto hubiera sido definido para la columna, ese valor habria sido agregado.
Por ejemplo, la siguiente instruccién INSERT omite la columna EDITOR en lugar de la columna
TIPO_MUSICA:

INSERT INTO INVENTARIO CD (NOMBRE CD, TIPO _MUSICA, EN EXISTENCIA)
VALUES ('Orlando', 'Soundtrack', 5);

Cuando la fila es agregada a la tabla INVENTARIO_CD, el valor por defecto (Independiente) es
agregado a la columna EDITOR, como se muestra la figura 8-4.

NOMBRE_CD: TIPO_MUSICA: EDITOR: EN_EXISTENCIA:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT
Patsy Cline: 12 Greatest Hits Country MCA Records 32
Out of Africa NULL MCA Records 29
Fundamental NULL Capitol Records 34

Figura 8-3 La fabla INVENTARIO_CD con tres filas de datos.

180 Fundamentos de SQL

NOMBRE_CD: TIPO_MUSICA: EDITOR: EN_EXISTENCIA:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT

Patsy Cline: 12 Greatest Hits Country MCA Records 32

Out of Africa NULL MCA Records 29
Fundamental NULL Capitol Records 34

Orlando Soundtrack Independent 5

Figura 8-4 La tabla INVENTARIO_CD con cuatro filas de datos.

Si se intenta ejecutar una instruccién INSERT omitiendo una columna que no permita valores
nulos y que no tenga un valor por defecto definido, se arrojard como resultado un error. Cuando
se inserta una nueva fila, el RDBMS debe obtener un valor para cada columna desde algtin lado,
por lo que si no se permiten los valores nulos, entonces el valor debe venir ya sea de un valor por
defecto (si esta definido) o de la clausula VALUES de la instruccion INSERT.

NOTA

Los valores que se especifiquen en la cléusula VALUES deberdn hacerse de acuerdo con todas
las restricciones localizadas en una tabla. Esto significa que los valores deben cumplir con los
tipos de datos o dominios asociados con una columna. Ademés, los valores estén confinados
por cualquier restriccién definida en la tabla. Por ejemplo, una restriccién de clave fordnea
pudiera evitar que se agregue cualquier valor que viole la limitacién, o una limitacién de
revisién pudiera limitar el rango de valores que pueden ser ingresados a la tabla. Asegtrese
de conocer ampliamente las restricciones localizadas en una tabla antes de intentar agregar
datos en ella. Se puede aprender més acerca de los tipos de datos en el capitulo 3. Se puede
aprender mds acerca de dominios y restricciones en el capitulo 4.

Desde luego, también es posible especificar todas las columnas en la cldusula INSERT INTO.
Si se realiza esto, debe especificarse correctamente el mismo nimero de valores, en el mismo or-
den en el cual estan especificadas las columnas. La siguiente instruccién INSERT ingresa valores a
todas las columnas de la tabla INVENTARIO_CD:

INSERT INTO INVENTARIO CD (NOMBRE CD, MUSIC TYPE, EDITOR, EN_EXISTENCIA)
VALUES ('Court and Spark', 'Pop', 'Asylum Records',6 22);

Cuando se ejecuta esta instruccion, una fila es agregada a la tabla INVENTARIO_CD, con un va-
lor para cada columna. La figura 8-5 muestra la nueva fila, junto con las cuatro filas anteriores que
se habian insertado. Si se omitiera uno de los valores desde la clausula VALUES (incluso cuando
en esa columna relacional se permitan los valores nulos) se recibiria un mensaje de error cuando se
ejecute la instruccion.

Insertar valores desde una instruccién SELECT

Anteriormente en este capitulo, al inicio de la seccién “Insertar datos SQL”, se mencioné que la
clausula VALUES es obligatoria y que es necesario especificar por lo menos un valor. Sin embar-

Capitulo 8: Modificar datos SQL 181

NOMBRE_CD: TIPO_MUSICA: EDITOR: EN_EXISTENCIA:
VARCHAR(60) VARCHAR(15) VARCHAR(50) INT

Patsy Cline: 12 Greatest Hits Country MCA Records 32

Out of Africa NULL MCA Records 29
Fundamental NULL Capitol Records 34

Orlando Soundtrack Independent 5

Court and Spark Pop Asylum Records 22

Figura 8-5 La tabla INVENTARIO_CD con cinco filas de datos.

g0, existe una alternativa a la clausula VALUES. Se puede utilizar una instrucciéon SELECT para
especificar los valores que se quieran ingresar en una tabla. La clave para utilizar una instruccién
SELECT, al igual que al utilizar una cldusula VALUES, es asegurarse que el nimero de valores
aplicados por la instruccién SELECT coincida con el nimero requerido de valores, y que éstos
cumplan con cualquier restriccién de la tabla correspondiente. Observemos un ejemplo.

Supongamos que, ademads de la tabla INVENTARIO_CD que se ha estado utilizando en los
ejemplos anteriores, la base de datos también tuviera una segunda tabla llamada INVENTARIO_
CD_2, que incluyera dos columnas, como se muestra en la siguiente definicién de tabla:

CREATE TABLE INVENTARIO CD_2
(NOMBRE CD 2 VARCHAR (60) NOT NULL,
EN_EXISTENCIA 2 INT NOT NULL) ;

La columna NOMBRE_CD_2 en la tabla INVENTARIO_CD_2 tiene los mismos tipos de
datos que la columna NOMBRE_CD en la tabla INVENTARIO_CD, y la columna EN_EXIS-
TENCIA_2 en la tabla INVENTARIO_CD_2 tiene los mismos tipos de datos que la columna
EN_EXISTENCIA en la tabla INVENTARIO_CD. Como resultado, los valores tomados de las
dos columnas en una tabla pueden ser insertados en las dos columnas de la segunda tabla.

NOTA

Una columna en una tabla no tiene que contener los mismos tipos de datos que una columna
en otra tabla para que los valores sean copiados de una a la otra; basta con que los valores
insertados en la tabla destino cumplan con las restricciones de datos de esa tabla.

Al utilizar la instruccién INSERT, se pueden copiar valores de la tabla INVENTARIO_CD a
la tabla INVENTARIO_CD_2. La siguiente instrucciéon INSERT incluye una instruccién SELECT
que consulta a la tabla INVENTARIO_CD:

INSERT INTO INVENTARIO CD_ 2
SELECT NOMBRE CD, EN_EXISTENCIA
FROM INVENTARIO_CD;

182 Fundamentos de SQL

NOMBRE_CD: EN_EXISTENCIA:
VARCHAR(60) INT

Patsy Cline: 12 Greatest Hits 32

Out of Africa 29
Fundamental 34
Orlando 5

Court and Spark 22

Figura 8-6 La tabla INVENTARIO_CD_2 con cinco filas de datos.

Como se puede ver, ninguna columna estd especificada en la cldusula INSERT INTO; como
resultado, los valores serdn insertados en ambas columnas en la tabla INVENTARIO_CD_2. En la
segunda linea de la instruccién se utiliza una instruccién SELECT para tomar los valores desde las
columnas NOMBRE_CD y EN_EXISTENCIA de la tabla INVENTARIO_CD. Los valores serdn
entonces insertados en sus columnas respectivas en la tabla INVENTARIO_CD_2, como se mues-
tra la figura 8-6.

Observe que la tabla INVENTARIO_CD_2 contiene las mismas cinco filas de datos que se
muestran en la figura 8-5, sélo que la tabla INVENTARIO_CD_2 contiene inicamente dos colum-
nas: NOMBRE_CD_2 e EN_EXISTENCIA_2.

Al igual que cualquier otra instruccién SELECT, la instrucciéon SELECT que se utiliza en una
instruccién INSERT puede contener una cldusula WHERE. En la siguiente instruccién INSERT,
la instruccién SELECT contiene una cldusula WHERE que limita los valores de EN_EXISTEN-
CIA a una cantidad mayor a 10:

INSERT INTO INVENTARIO CD 2
SELECT NOMBRE_CD, EN EXISTENCIA

FROM INVENTARIO CD
WHERE EN_EXISTENCIA > 10;

Si se ejecutara esta instruccidn, solamente cuatro filas serian aiadidas a la tabla INVENTAR-
I0_CD_2, en lugar de las cinco filas que se vieron en el ejemplo anterior. En este caso, la cldusula
WHERE funciona exactamente igual que una cldusula WHERE en cualquier instrucciéon SELECT.
Como resultado, cualquier fila con un valor EN_EXISTENCIA que no sea mayor a 10 es elimi-
nado de los resultados de la consulta. Esos nuevos resultados filtrados se insertan entonces en la
tabla INVENTARIO_CD_2.

Actualizar datos SQL

Como su nombre lo indica, la instruccién UPDATE permite actualizar los datos en una base de da-
tos SQL. Con la instruccién UPDATE se pueden modificar datos en una o mads filas para una o mas
columnas. La sintaxis para la instruccién UPDATE se puede mostrar de la manera siguiente:

UPDATE <nombre de la tabla>
SET <determinar expresion de la clausula> [{, <determinar expresién de la cldusula> }...]
[WHERE <condicién de busqueda> |

Capitulo 8: Modificar datos SQL 183

Como se puede ver, la clausula UPDATE y la cldusula SET son obligatorias, mientras que la
clausula WHERE es opcional. En la clausula UPDATE se debe especificar el nombre de la tabla
(o vista) que se estd actualizando. En la clausula SET se debe especificar una o mas expresiones
de cldusula, lo cual se discutird con mds detalle posteriormente en este capitulo. En la clausula
WHERE, al igual que con la cldusula WHERE en una instrucciéon SELECT (véase el capitulo 7),
se debe especificar una condicién de bisqueda. La clausula WHERE funciona aqui de una forma
muy parecida a como lo hace en la instruccién SELECT. Se especifica una condicién o conjunto
de condiciones que actia como un filtro para las filas que se estdn actualizando. Solamente las
filas que cumplen con estas condiciones son actualizadas. En otras palabras, solamente las filas
cuyo resultado es verdadero son actualizadas.

NOTA

SQL permite utilizar nombres de vistas en las instrucciones UPDATE. Sin embargo, si la vista
esté basada en mdltiples tablas, todas las columnas que se estdn actualizando deben venir
desde una sola tabla base, y no debe haber otras restricciones como se describe en su docu-
mentacién de DBMS.

Ahora regresemos a la clausula SET. Como se puede ver, la cldusula incluye el marcador de
posicion <determinar expresion de la cldusula>. Se deben especificar una o mas determinar expre-
sién de la cldusula. Si se especifica mds de una, se deben separar utilizando comas. La sintaxis del
marcador de posicién <determinar expresion de la cldusula> puede descomponerse como se mues-
tra a continuacion:

<nombre de la columna> = <expresion de valor>

Baésicamente, se debe especificar un nombre de columna (desde la tabla que se estd actuali-
zando) y proporcionar un valor que el valor en la columna deberd igualar. Por ejemplo, supon-
gamos que se requiere que un valor en la columna EN_EXISTENCIA sea cambiado a 37. (Sin
importar cudl sea el valor actual en esa columna.) Determinar expresion de la clausula quedaria
como sigue: EN_EXISTENCIA = 37. En este caso, la expresion de valor es 37; sin embargo, la
expresion de valor puede ser mas complicada que eso. Por ejemplo, se puede basar el nuevo valor
en un valor antiguo: EN_EXISTENCIA = (EN_EXISTENCIA + 1). En este caso, la expresion de
valor es EN_EXISTENCIA + 1, la cual agrega 1 al valor actual en la columna EN_EXISTENCIA
para darle un nuevo valor. En este ejemplo, si el valor original era 37, el nuevo valor sera 38.

Ahora que se ha dado un vistazo a las diferentes partes de la instruccién UPDATE, pongdmos-
las todas juntas utilizando algunos ejemplos. Los ejemplos que se utilizardn estardn basados en la
tabla INVENTARIO_CD, que se muestra en la figura 8-5.

En el primer ejemplo se utiliza la instruccién UPDATE para cambiar los valores de la colum-
na EN_EXISTENCIA a 27, como se muestra en la siguiente instruccién SQL:

UPDATE INVENTARIO CD
SET EN_EXISTENCIA = 27;

Esta instruccion realiza exactamente lo que se pudiera esperar: cambia cada fila en la tabla IN-
VENTARIO_CD para que la columna EN_EXISTENCIA contenga un valor de 27 para cada fila.
El resultado es 6ptimo si eso es lo que se queria, pero es poco probable que se quiera cambiar cada
fila en una tabla para que todos los valores de esa columna sean iguales en cada fila. Es mucho
mds probable que se quiera precisar la actualizacién utilizando una cldusula WHERE.

184

Fundamentos de SQL

En el siguiente ejemplo se modifica la instruccién UPDATE anterior para incluir una clausula
WHERE:
UPDATE INVENTARIO CD

SET EN_EXISTENCIA = 27
WHERE NOMBRE CD = 'Out of Africa';

La instrucciéon UPDATE atn cambia la columna EN_EXISTENCIA a un valor de 27, pero sélo lo
hace para las filas que concuerdan con la condicién de bisqueda en la cldusula WHERE. En este
caso, solamente una fila cumple con esa condicién: Out of Africa.

Algunas veces también se requiere cambiar un valor basado en un valor que ya exista, por
ejemplo, la cantidad de inventario en existencia. Por ejemplo, se pueda afiadir 2 al valor en la co-
lumna EN_EXISTENCIA:

UPDATE INVENTARIO CD

SET EN_EXISTENCIA = (EN_EXISTENCIA + 2)
WHERE NOMBRE CD = 'Out of Africa';

Si la fila Out of Africa contiene el valor 27 en la columna EN_EXISTENCIA, y se ejecuta esta
instruccion UPDATE, el nuevo valor serd 29. Si se ejecuta esta instruccion sin la clausula WHE-
RE, el valor 2 serd agregado al valor EN_EXISTENCIA para cada fila en la tabla.

La cldausula WHERE también permite especificar mas de un predicado, al igual que se puede
hacer con una cldusula WHERE en la instruccion SELECT. En el siguiente ejemplo, se sustrae 2
del valor EN_EXISTENCIA para cualquier fila que contenga un valor TIPO_MUSICA de Coun-
try y un valor EN_EXISTENCIA mayor a 30:

UPDATE INVENTARIO CD

SET EN_EXISTENCIA = (EN_EXISTENCIA - 2)
WHERE TIPO MUSICA = 'Country' AND EN EXISTENCIA > 30;

Solamente una fila (Patsy Cline: 12 Greatest Hits) cumple con las condiciones de bisqueda espe-
cificadas en la cldusula WHERE. El valor EN_EXISTENCIA para esa fila ha sido cambiado de 32
a 30.

También es posible especificar miltiples expresiones en la cldusula SET. En otras palabras, se
pueden cambiar los valores de mds de una columna al mismo tiempo. Por ejemplo, supongamos
que se quiere cambiar el valor EDITOR y el valor EN_EXISTENCIA de la fila Orlando. La ins-
trucciéon UPDATE necesaria podria lucir de la siguiente forma:

UPDATE INVENTARIO CD

SET PLUBLISHER = 'Sarabande Records',
EN EXISTENCIA = (EN_EXISTENCIA * 2)
WHERE NOMBRE CD = 'Orlando';

Observe que las dos expresiones en la clausula SET estan separadas por una coma. Cuando se
ejecuta esta instruccion, el valor EDITOR se cambia de Independiente a Sarabande Records, y el
valor EN_EXISTENCIA se cambia de 5 a 10. (El valor 5 se multiplica por 2.)

Algo que no se puede realizar, sin embargo, es cambiar el valor para la misma columna para
dos diferentes filas si se estd tratando de dar diferentes valores para esas filas. Veamos un ejemplo
para hacer esto mas claro. Supongamos que se quiere actualizar el valor para la fila Out of Africa
y para la fila Fundamental, pero se quiere actualizar estas filas con diferentes valores. La fila Out
of Africa debe contener el valor Soundtrack para TIPO_MUSICA, y la fila Fundamental debe con-

Capitulo 8: Modificar datos SQL 185

tener el valor Blues para TIPO_MUSICA. Como resultado, se puede intentar ejecutar una instruc-
cion similar a la siguiente:

UPDATE INVENTARIO CD

SET TIPO MUSICA = 'Soundtrack',
TIPO MUSICA = 'Blues'
WHERE NOMBRE CD = 'Out of Africa' OR NOMBRE CD = 'Fundamental';

Si se intenta ejecutar esta instruccion, la implementacion de SQL no sabra cudl valor de
TIPO_MUSICA debe poner en qué fila, y arrojard un error. Para manejar una situacién como ésta,
se necesitaran crear dos instrucciones UPDATE separadas:

UPDATE INVENTARIO CD

SET TIPO_MUSICA = 'Soundtrack'
WHERE NOMBRE CD = 'Orlando"';
UPDATE INVENTARIO CD

SET TIPO MUSICA = 'Blues'
WHERE NOMBRE CD = 'Fundamental';

Actualizar valores desde una instruccién SELECT

En la seccion “Insertar valores desde una instruccién SELECT” ya presentada en este capitulo, se
dijo que se puede utilizar una instruccién SELECT en lugar de una cldusula VALUES. También se
puede utilizar una instruccién SELECT en la clausula SET de la instruccién UPDATE. La instruccion
SELECT arroja el valor que estd definido en la porcién <expresion de valor> de la expresion determi-
nar clausula. En otras palabras, la instruccion SELECT se agrega a la derecha del signo de igual.
Pongamos algunos ejemplos para ver como funciona esto. Los siguientes ejemplos estan ba-
sados en los datos originales de la tabla INVENTARIO_CD (mostrada en la figura 8-5) y la tabla
INVENTARIO_CD_2 (mostrada en la figura 8-6). Supongamos que se quieren actualizar los datos
en la tabla INVENTARIO_CD_2 utilizando valores de la tabla INVENTARIO_CD. Se puede
crear una instrucciéon UPDATE que sea similar a la siguiente:
UPDATE INVENTARIO CD 2
SET EN_EXISTENCIA 2 =

(SELECT AVG (EN_ EXISTENCIA)
FROM INVENTARIO CD) ;

La instrucciéon SELECT calcula el promedio de los valores EN_EXISTENCIA en la tabla
INVENTARIO_CD, el cual es 24, por lo que determinar la expresion de la cldusula puede ser in-
terpretado como sigue: EN_EXISTENCIA_2 = 24. Como resultado, todos los valores EN_EXIS-
TENCIA_2 en la tabla INVENTARIO_CD_2 son determinados a 24. Desde luego, probablemente
no se requiere que todos los valores de EN_EXISTENCIA_2 sean iguales, por lo que puede limi-
tarse cudles filas serdn actualizadas al agregar una cldusula WHERE a la instruccién UPDATE:

UPDATE INVENTARIO CD 2
SET EN_EXISTENCIA 2 =
(SELECT AVG (EN_EXISTENCIA)
FROM INVENTARIO CD)
WHERE NOMBRE CD 2 = 'Orlando';

Ahora, solamente la fila Orlando serd actualizada y el valor de EN_EXISTENCIA_2 serd cambia-
do a 24.

186

Fundamentos de SQL

Incluso se puede agregar una clausula WHERE a la instrucciéon SELECT, como se muestra en
el siguiente ejemplo:

UPDATE INVENTARIO CD 2
SET EN_EXISTENCIA 2 =
(SELECT EN_EXISTENCIA
FROM INVENTARIO CD
WHERE NOMBRE CD = 'Orlando')
WHERE NOMBRE CD 2 = 'Orlando';

En este caso, el valor EN_EXISTENCIA de 5 se toma directamente desde la fila Orlando de la ta-
bla INVENTARIO_CD vy se utiliza como la porcién <expresion de valor> de la expresion determi-
nar cldusula. Como resultado, determinar la expresion de la cldusula puede ser interpretado como
lo siguiente: EN_EXISTENCIA_2 = 5. (Por supuesto, el valor en la tabla INVENTARIO_CD_2
no cambiard debido a que ya es 5, pero si tuviera cualquier otro valor diferente, éste se habria ac-
tualizado a 5.)

Se puede agregar una capa mds de complejidad a la instruccién UPDATE modificando la clau-
sula SET todavia mds. Por ejemplo, supongamos que se quiere incrementar el valor en 2 antes de
insertarlo en la columna EN_EXISTENCIA_2. Para hacer eso, se puede cambiar la expresion de
valor a la siguiente:

UPDATE INVENTARIO CD_2
SET EN_EXISTENCIA 2 =
(SELECT EN_EXISTENCIA
FROM INVENTARIO CD
WHERE NOMBRE CD = 'Orlando') + 2
WHERE NOMBRE CD 2 = 'Orlando';

Una vez mas, la clausula SELECT toma el valor de 5 desde la columna EN_EXISTENCIA
de la tabla INVENTARIO_CD, pero esta vez el valor 2 es agregado al valor arrojado por la ins-
trucciéon SELECT, resultando un total de 7. Como resultado, el nuevo determinar la expresion de
la clausula puede ser representado asi: EN_EXISTENCIA_2 = (5) + 2. Si se ejecutara esta ins-
truccion, el valor de EN_EXISTENCIA_2 cambiaria a 7 en la fila Orlando de la tabla INVENTA-
RIO_CD_2.

Al combinar la clausula SET con la clausula WHERE, se pueden crear instrucciones UPDATE
que puedan calcular valores muy especificos que se utilicen para modificar cualquier nimero de
filas y columnas que se necesite actualizar. Sin embargo, al igual que con la instrucciéon INSERT,
cualquier valor que se modifique debera cumplir con las restricciones de la tabla. En otras pala-
bras, los nuevos valores deben regirse por los tipos de datos, dominios y limitaciones aplicables.

Eliminar datos SQL

De todas las instrucciones para modificacién de datos soportadas por SQL, probablemente la ins-
trucciéon DELETE sea la mas sencilla. Contiene solamente dos cldusulas, y una sola de ellas es
obligatoria. La siguiente sintaxis muestra qué tan bdsica es la instrucciéon DELETE:

DELETE FROM <nombre de la tabla>
[WHERE <condicién de busqueda> |

Capitulo 8: Modificar datos SQL 187

Como se puede ver, la clausula DELETE FROM requiere que se especifique el nombre de
la tabla (o vista) de la cual se quieren eliminar filas. La clausula WHERE, la cual es similar a la
clausula WHERE en una instruccion SELECT y en una instruccién UPDATE, requiere que se
especifique una condicién de bisqueda. Si no se incluye una clausula WHERE en la instruccién
DELETE, todas las filas serdn eliminadas de la tabla especificada. Es importante comprender que
la instruccién DELETE no elimina la tabla en si, sino solamente filas en la tabla (la instruccion
DROP TABLE, como se describi6 en el capitulo 3, se utiliza para eliminar definiciones de tabla de
la base de datos).

NOTA

SQL soporta vistas de referencia en la instruccién DELETE, pero la eliminacién real se realiza
en filas en la tabla base. Practicamente en ninguna de las implementaciones se pueden elimi-
nar filas utilizando vistas que hagan referencia a més de una tabla base (véase la documenta-
cién del fabricante para detalles mds especificos).

Observe que en la instruccion DELETE no hay nombres de columna especificados. Esto se
debe a que no es posible eliminar valores de columna individuales desde una tabla. Solamente se
pueden eliminar filas. Si se necesita eliminar un valor de columna especifico, se debera utilizar
una instruccién UPDATE para determinar el valor a nulo. Pero sélo es posible realizar esto si en
esa columna se soportan valores nulos.

Ahora veamos un par de ejemplos de la instruccion DELETE. El primer ejemplo elimina to-
dos los datos (todas las filas) de la tabla INVENTARIO_CD, mostrado en la figura 8-5:

DELETE FROM INVENTARIO CD;

Eso es todo lo que se necesita. Desde luego, deberd utilizarse esta instruccion solamente si se
quieren eliminar fodos los datos de INVENTARIO_CD. Aunque en ocasiones se puede ejecutar
esta instruccién donde sea necesario eliminar cada fila de una tabla, es un poco mds probable que
se prefiera utilizar la cldusula WHERE, para especificar cudles filas serdn eliminadas. Se puede
modificar la instruccién que acabamos de ver para eliminar solamente filas donde el valor TIPO_
MUSICA sea Country:

DELETE FROM INVENTARIO CD
WHERE TIPO MUSICA = 'Country';

Cuando se ejecuta esta instruccion, todas las filas cuyo valor TIPO_MUSICA es Country seran eli-
minadas de la tabla INVENTARIO_CD, que en este caso es la fila Patsy Cline: 12 Greatest Hits.

Ahora modificamos la instruccién DELETE un poco mas incluyendo dos predicados en la
clausula WHERE:

DELETE FROM INVENTARIO CD
WHERE TIPO MUSICA = 'Pop'
OR EDITOR = 'Independiente';

Esta instruccion eliminara cualquier fila en la tabla CD_INVENTORY que incluya a un valor
TIPO_MUSICA de Pop o un valor EDITOR de Independiente, lo que significa que la fila Court
and Spark y la fila Orlando serdn eliminadas.

Como se puede ver, el nimero de filas que se eliminan de una tabla depende de las condicio-
nes de bisqueda definidas dentro de la clausula WHERE. Cuando no se especifica una cldusula

188 Fundamentos de SQL

WHERE, todas las filas que arrojan un valor verdadero son eliminadas de la tabla. La clau-
sula WHERE permite especificar exactamente cudles filas deberan ser eliminadas de la tabla.

Modificar datos SQL

En este ejercicio se utilizardn todas las instrucciones de modificacién de datos analizadas en este
capitulo para cambiar los datos en la base de datos INVENTARIO. Se utilizar la instruccién
INSERT para agregar datos, la instruccion UPDATE para modificar los datos, y la instruccién
DELETE para eliminar los datos de la base de datos. Debido a que se estard trabajando solamente
con datos, no se afectard la estructura subyacente de las tablas. Se puede descargar el archivo Try_
This_08.txt (en inglés), que contiene las instrucciones SQL utilizadas en este ejercicio.

Paso a paso

1. Abra la aplicacion cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2, Primero se afiadird una nueva compaiiia a la tabla DISQUERAS_CD. La compaiiia es DRG Re-
cords y tendrd un valor ID_DISQUERA de 837. Ingrese y ejecute la siguiente instrucciéon SQL:

INSERT INTO DISQUERAS CD
VALUES (837, 'DRG Records');

Una fila se afiadira a la tabla DISQUERAS_CD.

3. Ahora agreguemos un nuevo CD a la tabla DISCOS_COMPACTOS. El CD tiene el nombre
Ann Hampton Callaway, el cual tiene un valor ID_DISCO_COMPACTO de 116. Se encuentran
14 de estos CD en existencia y el valor ID_DISQUERA debera ser 836. (Este no es el valor
ID_DISQUERA correcto, pero se utilizard aqui para propdsitos de este ejercicio.) Ingrese y eje-
cute la siguiente instruccién SQL:

INSERT INTO DISCOS_ COMPACTOS
VALUES (116, 'Ann Hampton Callaway', 836, 14);

Una fila se afiadira a la tabla DISCOS_COMPACTOS. El valor ID_DISQUERA de 836 repre-
senta Sarabande Records.

»

Ahora agregaremos otra fila en la tabla DISCOS_COMPACTOS; s6lo que esta vez, la instruc-
cién INSERT especificard los nombres de las columnas de la tabla destino. Se insertard un CD
llamado Rhythm Country and Blues. La nueva fila contendra un valor ID_DISCO_COMPACTO
de 117, un valor ID_DISQUERA de 832 (MCA Records) y un valor EN_EXISTENCIA de 21.
Ingrese y ejecute la siguiente instruccién SQL:

INSERT INTO DISCOS_COMPACTOS
(ID DISCO COMPACTO, TITULO CD, ID DISQUERA, EN EXISTENCIA)
VALUES (117, 'Rhythm Country and Blues',6 832, 21);

Una fila se afiadira a la tabla DISCOS_COMPACTOS.

Capitulo 8: Modificar datos SQL 189

5. Después de ingresar la fila Rhythm Country and Blues, se puede observar que el valor EN_
EXISTENCIA es incorrecto y que es necesario actualizar ese valor a 25. Ingrese y ejecute la
siguiente instruccién SQL:

UPDATE DISCOS_COMPACTOS
SET EN_EXISTENCIA = 25
WHERE ID DISCO_COMPACTO = 117;

El valor EN_EXISTENCIA de la fila Rhythm Country and Blues serd cambiado a 25.

6. Ahora se puede observar que se ingresé el valor incorrecto ID_DISQUERA para la fila Ann
Hampton Callaway. Sin embargo, se quiere modificar el valor existente especificando el nom-
bre de la compaiiia en lugar del valor ID_DISQUERA. El nombre de la compaiiia es DRG
Records, que se afiadi6 a la tabla DISQUERAS_CD en el paso 2. Ingrese y ejecute la siguiente
instruccion SQL:

UPDATE DISCOS_ COMPACTOS
SET ID_DISQUERA =
(SELECT ID DISQUERA
FROM DISQUERAS CD
WHERE NOMBRE_COMPAﬁIA = 'DRG Records')
WHERE ID_DISCO COMPACTO = 116;

En esta instruccion se utiliz6 la instruccién SELECT para tomar el valor ID_DISQUERA de

la tabla DISQUERAS_CD. La instruccién arroj6 un valor de 837. El valor 837 fue entonces
utilizado como el valor ID_DISQUERA para la tabla DISCOS_COMPACTOS. Observe que

no hubiera sido posible ingresar el valor de 837 en la columna ID_DISQUERA de la tabla DIS-
COS_COMPACTOS si no hubiera existido antes en la tabla DISQUERAS_CD. No sélo sucede
esto debido a que una instruccién SELECT fue utilizada para tomar el valor, sino también debi-
do a que la columna ID_DISQUERA en la tabla DISCOS_COMPACTOS es una clave externa
que hace referencia a la tabla DISQUERAS_CD. Como resultado, el valor debe existir en la
tabla referenciada antes de que pueda ser agregado a la tabla que hace referencia a ella. Véase el
capitulo 4 para mayor informacién acerca de estas claves externas.

7. Ahora echemos un vistazo a los datos que se han ingresado y actualizado. Ingrese y ejecute la
siguiente instrucciéon SQL:

SELECT *
FROM DISCOS_ COMPACTOS
WHERE ID DISCO_COMPACTO
OR ID DISCO_COMPACTO

La instrucciéon SELECT pide los datos de todas las columnas en la tabla DISCOS_COMPAC-
TOS, pero sélo para aquellas filas que tengan un valor ID_DISCO_COMPACTO de 116 0 117.
Los resultados de la consulta deberdn incluir dos filas. Verifique que la informacién en esas fi-
las esté correcta. La fila Ann Hampton Callaway deberd tener un valor ID_DISQUERA de 837
y un valor EN_EXISTENCIA de 14, y la fila Rhythm Country and Blues deber4 tener un valor
ID_DISQUERA de 832 y un valor EN_EXISTENCIA de 25.

116
117;

(continda)

190 Fundamentos de SQL

8. Ahora elimine las dos filas que se agregaron a la tabla DISCOS_COMPACTOS. Ingrese y eje-
cute la siguiente instruccién SQL:
DELETE FROM DISCOS_COMPACTOS
WHERE ID DISCO COMPACTO = 116
OR ID DISCO COMPACTO = 117;
La filas Ann Hampton Callaway y Rhythm Country and Blues deberdn haber sido eliminadas
de la tabla DISCOS_COMPACTOS.

9. Por dltimo elimine la fila que se afiadi6 a la tabla DISQUERAS_CD. Ingrese y ejecute la si-
guiente instruccion SQL:

DELETE FROM DISQUERAS CD
WHERE ID DISQUERA = 837;

La fila DRG Records debera haber sido eliminada de la tabla DISQUERAS_CD.

NOTA

Si se hubiera intentado eliminar esta fila anteriormente eliminando la fila Ann Hampton Ca-
llaway en la tabla DISCOS_COMPACTOS, se habria recibido un error debido a que el valor
ID_DISQUERA en DISCOS_COMPACTOS hace referencia a la fila DRG Records en DISQUE-
RAS_CD. La fila Ann Hampton Callaway tenia que ser eliminada primero, o el valor ID_DIS-
QUERA tenia que ser cambiado a otro valor que cumpliera con la limitante de la clave externa.

10. Cierre la aplicacién cliente.

Resumen de Pruebe esto

En este ejercicio se agregd una fila a la tabla ID_DISQUERA 'y dos filas a la tabla DISCOS_
COMPACTOS. Luego se actualizaron las dos filas en la tabla DISCOS_COMPACTOS. Después
de eso se eliminaron todas las filas que se habian creado. Al momento de terminar el ejercicio, la
base de datos INVENTARIO debera contener lo mismo que cuando se empez? el ejercicio. Como
se puede ver, modificar los datos dentro de las tablas es un proceso bastante simple; sin embargo,
las instrucciones de modificacion de datos individuales pueden volverse mucho mds complejas.
Cuando aprenda técnicas mds avanzadas para consultas de datos, usted serd capaz de refinar sus
instrucciones a un grado superior para que le proporcionen mayor flexibilidad al insertar, actuali-
zar y eliminar datos.

v Autoexamen Capitulo 8
1. ;Cudl instruccion SQL debera utilizarse para agregar datos a una tabla?
A SELECT
INSERT

B
C UPDATE
D DELETE

Capitulo 8: Modificar datos SQL 191

2. ;Cuiles dos cldusulas son obligatorias en una instruccién INSERT?

3. (En cudl cldusula dentro de la instruccion INSERT se identifica la tabla que recibird los nuevos
datos?

4, Se crea la siguiente instruccion INSERT para agregar datos a la tabla ARTISTAS_INTER-
PRETES:
INSERT INTO ARTISTAS INTERPRETES VALUES (12, 'Frank Sinatra');

La tabla ARTISTAS_INTERPRETES incluye tres columnas. ;Qué sucedera cuando se intente
ejecutar esta instrucciéon?

5. ;Qué informacidn se debe especificar en la cldusula VALUES de una instruccién INSERT?
6. ;Qué requerimientos deberan ser cumplidos por los valores en una cldusula VALUES?

7. Se estd creando una instruccion INSERT para introducir datos en la tabla TIPOS_ARTISTA. La
tabla incluye solamente dos columnas: ID_ART y NOMBRE_TIPO. Se quiere insertar una fila
que incluye el valor ID_ART de 27 y el valor NOMBRE_TIPO de Gospel. ;Cudl instruccién
SQL debera ser utilizada?

8. Se estd creando una instruccién INSERT que inserta valores tomados desde otra tabla. {Qué
tipo de instruccién o cldusula se puede utilizar en lugar de la clausula VALUES para tomar da-
tos desde la otra tabla?

A SELECT
B SET
C SELECT
D WHERE
9. ;Cudl instruccion deberd utilizarse para modificar los datos existentes en una o mas filas en una
tabla?
A SELECT
B INSERT
C UPDATE
D DELETE

10. ;Cuiles cldusulas son obligatorias en una instruccién UPDATE?

12. Se estd creando una instruccién UPDATE para actualizar los datos en la tabla ARTISTAS_IN-
TERPRETES. Se quiere actualizar el valor ID_ART en la fila que contenga el valor ID_ART_
INTER de 139. El nuevo valor ID_ART es 27. ;Cuadl instruccién SQL debera ser utilizada?

(Cudl es el proposito de la clausula WHERE en una instruccion UPDATE?

13. Se esta creando una instruccién UPDATE para actualizar los datos en la tabla ARTISTAS_IN-
TERPRETES. Se quiere actualizar el valor ID_ART de cada fila a 27. ;Cudl instruccién SQL
deberd ser utilizada?

192 Fundamentos de SQL

14. Se estdn actualizando dos columnas en la tabla INVENTARIO_CD. Se quiere cambiar el valor
EDITOR a MCA Records y se quiere duplicar el valor EN_EXISTENCIA. ;Cudl cldusula SET
deberd ser utilizada?

15. Se estd creando una instruccion UPDATE que incluye una cldusula SET con una expresion de
valor. Se requiere que la expresion de valor tome un valor desde otra tabla en la base de datos.
(Cudl instruccién o cldusula se puede utilizar como una expresion de valor para seleccionar da-
tos desde otra tabla?

A SELECT
B WHERE
C UPDATE
D INSERT

16. ;Cudl cldusula es requerida en una instrucciéon DELETE?

17. ;Cudl instruccion o cldusula se utiliza en una instruccion DELETE para especificar las filas que
seran eliminadas en una tabla?

Capitulo 9

Utilizar predicados

194 Fundamentos de SQL

Habilidades y conceptos clave

Comparar datos SQL

Arrojar valores nulos

Arrojar valores similares

Hacer referencia a fuentes adicionales de datos

Determinar la cantidad de predicados de comparacion

H asta este punto en el libro se ha presentado gran cantidad de informacién acerca de diversos
aspectos de los objetos de las bases de datos y los datos que éstos almacenan. En relacion a
esto, se analizo la consulta de datos (capitulo 7) y la modificacién de datos (capitulo 8). Ahora es
necesario dar un paso atrds y concentrarse en uno de los aspectos de estas discusiones: la clausula
WHERE. Esta, como puede recordarse, permite especificar una condicién de bisqueda que filtra
aquellas filas que no se quiere que sean arrojadas por una instruccién SELECT o que sean modi-
ficadas por una instruccién UPDATE o DELETE. La condicién de bisqueda incluye uno o mas
predicados que declaran cada uno un hecho acerca de la fila que serd arrojada o modificada. SQL
soporta varios tipos de predicados, y todos ellos permiten probar si una condicion es verdadera,
falsa o desconocida. Este capitulo se concentrard en aquellos predicados que son mis comtinmente
utilizados por programadores SQL, y se proporcionardn ejemplos sobre cdmo son utilizados para
ver y modificar los datos en una base de datos SQL.

Comparar datos SQL

El primer tipo de predicado que se planea analizar es el tipo de aquellos que comparan datos. Estos
predicados, como cualquier predicado, estan incluidos en la clausula WHERE. Se puede incluir
una cldusula WHERE en una instruccién SELECT, UPDATE o DELETE, y en cada caso la clau-
sula puede contener uno o mas predicados de comparacion.

Cada predicado en la clausula WHERE (ya sea un predicado de comparacién o de cualquier
otro tipo) se evaltia en un principio individual para determinar si éste cumple la condicién definida
por ese predicado. Después de que se evalian los predicados, la clausula WHERE se evalia como
un todo. La cldusula debe evaluarse como verdadera si se requiere que una fila sea incluida en los
resultados de una busqueda, sea actualizada o eliminada. Si la cldusula se evaluara como falsa o
desconocida, la fila no serfa incluida o modificada. Para una discusién completa sobre cémo se
evaldan los predicados y la clausula WHERE véase el capitulo 7.

Un predicado de comparacion es un tipo de predicado que compara los valores en una colum-
na especificada con un valor especificado. Un operador de comparacion se utiliza para comparar
esos valores. Hemos visto ya un nimero de operadores de comparacién (y subsecuentemente, pre-
dicados de comparacion) a lo largo de este libro. La tabla 9-1 lista los seis operadores de compara-
cién soportados por SQL y proporciona un ejemplo para cada uno.

Capitulo 9: Utilizar predicados

195

Operador Simbolo Ejemplo

Igual @ = EN_EXISTENCIA = 47
Desigual a < EN_EXISTENCIA <> 47
Menor que < EN_EXISTENCIA < 47
Mayor que > EN_EXISTENCIA > 47
Menor que o igual a <= EN_EXISTENCIA <= 47
Mayor que o igual a >= EN_EXISTENCIA >= 47

Tabla 9-1 Operadores de comparacién de SQL.

Sin duda usted reconocerd muchos de estos operadores, e incluso aquellos que no reconozca
seran muy faciles de comprender. Pero demos un vistazo a los ejemplos en la tabla 9-1 para com-
prender mas cémo funciona un predicado de comparacién. En la primera fila en la tabla (la fila
Igual a), el predicado de ejemplo es EN_EXISTENCIA = 47. Si ésta fuera a aparecer en una clau-
sula WHERE, se veria de la manera siguiente:

WHERE EN_EXISTENCIA = 47

EN_EXISTENCIA es el nombre de la columna en la tabla identificada en la instruccién que
contiene la clausula WHERE. El signo de igual (=) es el operador de comparacién que se utiliza
para comparar los valores en la columna EN_EXISTENCIA con el valor a la derecha del signo de
igual, el cual en este caso es 47. Por lo tanto, para que una fila sea evaluada como verdadera, el
valor EN_EXISTENCIA para esa fila debe ser de 47. Todos los seis operadores de comparacion
funcionan de la misma manera. En cada caso, la clausula WHERE debe evaluarse como verdadera
para que la fila sea arrojada en los resultados de la consulta o para que sea modificada.

Aun cuando es tradicional colocar el nombre de la columna a la izquierda del operador de
comparacion y el valor de la constante a la derecha, pueden ser invertidos y formar una instruccién
equivalente, asumiendo que también se ajuste el operador de comparacion si fuera necesario. Por
ejemplo, las siguientes dos cldusulas WHERE son l6gicamente idénticas, y cada una selecciona
filas con valores EN_EXISTENCIA mayores a 5:

WHERE EN_EXISTENCIA > 5
WHERE 5 < EN_EXISTENCIA

NOTA

Como se aprendié en el capitulo 7, es posible combinar predicados utilizando la palabra
clave AND o la palabra clave OR para colocar juntos dos o més predicados en una clausula
WHERE. También se puede utilizar la palabra clave NOT para crear una condicién inversa
para un predicado particular. Recuerde, sin importar cudntos predicados sean incluidos en la
cléusula WHERE, la cldusula atn debe evaluarse como verdadera para que una fila dada sea
seleccionada.

Ahora que se ha dado un vistazo a los seis tipos de predicados de comparacién, pongamos al-
gunos ejemplos. Estos ejemplos se basan en la figura 9-1, que muestra los datos almacenados en la
tabla CDS_A_LA_MANO.

196 Fundamentos de SQL

TITULO_CD: DERECHOSDEAUTOR: | PRECIO_MENUDEO: | INVENTARIO:
VARCHAR(60) INT NUMERIC(5,2) INT

Famous Blue Raincoat 1991 16.99 6

Blue 1971 14.99 26

Court and Spark 1974 14.99 18

Past Light 1983 15.99 2

Kojiki 1990 15.99 5

That Christmas Feeling 1993 10.99 3

Patsy Cline: 12 Greatest Hits 1988 16.99 25

Figura 9-1 Comparacién de datos en la tabla CDS_A_LA_ MANO.

En el primer ejemplo que veremos, la cldusula WHERE utiliza un operador Igual a para com-
parar los valores en la columna TITULO_CD con uno de los titulos de CD:

SELECT TITULO_CD, DERECHOSDEAUTOR
FROM CDS_A LA MANO
WHERE TITULO CD = 'Past Light';

Esta instruccidn arrojard una fila con s6lo dos valores (uno por cada columna especificada en
la clausula SELECT), como se muestra en los siguientes resultados de consulta:

TITULO_CD DERECHOSDEAUTOR

Past Light 1983

Ahora cambiemos un poco esta instruccion SELECT. En lugar de utilizar el operador Igual a,
utilizaremos el operador Desigual a:

SELECT TITULO CD, DERECHOSDEAUTOR
FROM CDS_A LA MANO
WHERE TITULO CD <> 'Past Light';

Cuando se ejecuta esta instruccion, se arrojan seis filas:

TITULO_CD DERECHOSDEAUTOR
Famous Blue Raincoat 1991
Blue 1971
Court and Spark 1974
Kojiki 1990
That Christmas Feeling 1993

Patsy Cline: 12 Greatest Hits 1988

Capitulo 9: Utilizar predicados 197

Observe que en los resultados de la consulta se incluyen todas las filas excepto la fila Past Light.
En este caso, la clausula WHERE se evaliia como verdadera solamente cuando el valor TITU-
LO_CD es diferente de Past Light. Sin embargo, obsérvese que si una fila tuviera un valor nulo
para TITULO_CD, esa fila no apareceria en ninguno de los conjuntos de resultados anteriores.
Tenga en mente que una comparacién con un valor nulo siempre se evaluara como desconocida
(NULL) (el DBMS no puede saber si el valor es Igual a o Desigual a debido a que es un valor des-
conocido). Como se vera posteriormente en la seccién “Arrojar valores nulos”, existen operadores
especiales utilizados para tratar con los valores nulos.

Demos ahora un vistazo al operador Menor que y al operador Mayor que. En el siguiente
ejemplo se combinan dos predicados de comparacién utilizando la palabra clave AND:

SELECT TITULO CD, INVENTARIO
FROM CDS_A LA MANO

WHERE INVENTARIO > 2
AND INVENTARIO < 25;

Como se puede ver, las filas arrojadas por esta instrucciéon SELECT deben contener un valor IN-
VENTARIO entre 2 y 25. Si se ejecuta esta instruccion, se obtendran cuatro filas:

TITULO_CD INVENTARIO
Famous Blue Raincoat 6

Court and Spark 18

Kojiki 5

That Christmas Feeling 3

Al definir los predicados en una clausula WHERE, no se estd limitado a utilizar solamente
una columna. Por ejemplo, si se desean seleccionar filas basadas tanto en los valores de la columna
INVENTARIO y de la columna PRECIO_MENUDEO, se puede modificar la dltima instruccién
SELECT como se muestra el siguiente ejemplo:

SELECT TITULO CD, INVENTARIO
FROM CDS_A LA MANO

WHERE INVENTARIO > 2
AND INVENTARIO < 25
AND PRECIO_MENUDEO <> 16.99;

Debido a que las condiciones se conectan utilizando AND, cualquier fila que se arroje en los resul-
tados de la consulta debe cumplir con las tres condiciones definidas en la clausula WHERE. Como
resultado, solamente se obtienen tres filas cuando se ejecuta esta instruccion:

TITULO_CD INVENTARIO
Court and Spark 18
Kojiki 5

That Christmas Feeling 3

Observe que los resultados de la consulta no incluyen a la columna PRECIO_MENUDEO. Esto
se debe a que esta columna no estd especificada en la clausula SELECT. Aun asi, se puede utilizar
esa columna en un predicado en la cldusula WHERE para definir una condicién de bisqueda.

198

Fundamentos de SQL

Ahora demos un vistazo al operador Menor que o igual a y al operador Mayor que o igual a.
En el siguiente ejemplo, ambos operadores se utilizan para limitar las filas resultantes a aquéllas
con un valor DERECHOSDEAUTOR con un rango entre 1971 y 1989.

SELECT TITULO CD, DERECHOSDEAUTOR
FROM CDS_A LA MANO

WHERE DERECHOSDEAUTOR >= 1971
AND DERECHOSDEAUTOR <= 1989;

Esta instruccion arrojard resultados ligeramente diferentes a aquellos que se habrian obtenido si
simplemente se hubieran utilizado los operadores Mayor que y Menor que. Utilizando el operador
Mayor que o igual a y el operador Menor que o igual a, los valores iguales al valor especificado
también son arrojados, como se muestra en los siguientes resultados de consulta:

TITULO_CD DERECHOSDEAUTOR
Blue 1971
Court and Spark 1974
Past Light 1983

Patsy Cline: 12 Greatest Hits 1988

Observe que la fila Blue incluye un valor DERECHOSDEAUTOR de 1971. Este no habria sido
incluido si se hubiera utilizado solamente el operador Mayor que.

Hasta este punto, todos los ejemplos mostrados han estado basados en las instrucciones SE-
LECT. Sin embargo, se puede agregar una cldusula WHERE a una instruccién UPDATE o a una
instruccién DELETE. Supongamos que se quiere incrementar el valor INVENTARIO para la fila
That Christmas Feeling. Se puede utilizar la siguiente instruccién UPDATE:

UPDATE CDS_A LA MANO
SET INVENTARIO = 10
WHERE TITULO CD = 'That Christmas Feeling';

Cuando se ejecuta esta instruccion, el valor INVENTARIO es incrementado a 10 para la fila That
Christmas Feeling, pero tinicamente para esa fila debido a que la clausula WHERE se evaliia como
verdadera s6lo para esa fila. De manera muy sencilla se pudo haber agregado esta cldusula
WHERE a una instruccién DELETE, en cuyo caso la fila That Christmas Feeling hubiera sido eli-
minada.

Al igual que con la cldusula WHERE en una instrucciéon SELECT, es posible combinar dos o
mads predicados para formar una condicién de busqueda:

UPDATE CDS_A LA MANO
SET INVENTARIO = 3
WHERE TITULO CD = 'That Christmas Feeling'
AND DERECHOSDEAUTOR = 1993;

Cuando se especifica la palabra clave AND, ambos predicados deben evaluarse como verdaderos
para que la clausula WHERE pueda evaluarse como verdadera. Si se especifica la palabra clave
OR en lugar de AND, entonces sélo serd necesario que un predicado se evalie como verdadero
para que la fila sea seleccionada.

Capitulo 9: Utilizar predicados 199

Utilizar el predicado BETWEEN

Hablando estrictamente, el predicado BETWEEN no es un predicado de comparacion, al menos
no lo es tal como se presenta en SQL:2006 estandar. Sin embargo, es lo suficientemente similar
en funciones al operador Mayor que o Igual a y a los operadores Menor que o Igual a, que vale la
pena analizar aqui.

El predicado BETWEEN se utiliza en conjuncién con la palabra clave AND para identificar
un rango de valores que pueden ser incluidos como una condicién de bisqueda en la cldusula
WHERE. Los valores en la columna identificada deben entrar en ese rango para poder evaluarse
como verdaderos. Cuando se utiliza la clausula BETWEEN, se debe especificar la columna aplica-
ble, el valor mds bajo del rango y el valor mas alto del rango. El siguiente ejemplo (que esta basa-
do en la tabla CDS_A_LA_MANO en la figura 9-1) especifica un rango entre 14 y 16.

SELECT TITULO CD, PRECIO MENUDEO
FROM CDS_A LA MANO
WHERE PRECIO MENUDEO BETWEEN 14 AND 16;

El valor PRECIO_MENUDEO para cada fila seleccionada debe entrar en ese rango, incluyendo
los puntos limite. Si se ejecuta esta instruccion, solamente cuatro filas serdn incluidas en los resul-
tados de la consulta:

TITULO CD PRECIO_MENUDEO
Blue 14.99
Court and Spark 14.99
Past Light 15.99
Kojiki 15.99

Ahora demos un vistazo a una consulta similar a la presentada en el dltimo ejemplo, s6lo que
esta vez utilizando los predicados de comparacion en lugar del predicado BETWEEN:

SELECT TITULO_CD, PRECIO_ MENUDEO
FROM CDS_A LA MANO

WHERE PRECIO MENUDEO >= 14
AND PRECIO_MENUDEO <= 16;

Observe que se utilizan dos predicados: uno con el operador Mayor que o igual a, y el otro con el
operador Menor que o igual a. Esta instruccién SELECT producird los mismos resultados de bs-
queda que la instruccién SELECT anterior.

Ahora regresemos al predicado BETWEEN. Al igual que con cualquier predicado, se puede
combinar el predicado BETWEEN con otros predicados. En la siguiente instruccion, la cldusula
WHERE incluye un predicado BETWEEN y un predicado de comparacion:

SELECT TITULO CD, PRECIO MENUDEO
FROM CDS_A LA MANO

WHERE PRECIO MENUDEO BETWEEN 14 AND 16
AND INVENTARIO > 10;

200

Fundamentos de SQL

Como resultado de ambos predicados, los resultados de la consulta pueden incluir solamente aque-
llas filas con un valor PRECIO_MENUDEO que quepa en el rango entre 14 y 16 y con un valor
INVENTARIO mayor a 10. Cuando se ejecuta esta consulta, solamente se obtienen dos filas:

TITULO_CD PRECIO_MENUDEO

Blue 14.99
Court and Spark 14.99

Una vez mds, puede notarse que los resultados de la consulta no incluyen a la columna INVEN-
TARIO incluso cuando esa columna se especifica en un predicado dentro de la clausula WHERE.
Observe también que se hace referencia a mas de una columna en la cldusula WHERE.

Ademds de lo que se ha visto hasta ahora para el predicado BETWEEN, también puede uti-
lizarse la cldusula para especificar el inverso de una condicidn. Esto se hace utilizando la palabra
clave NOT dentro del predicado. Por ejemplo, supongamos que se cambia el dltimo ejemplo a lo
siguiente:

SELECT TITULO CD, PRECIO MENUDEO
FROM CDS_A LA MANO
WHERE PRECIO MENUDEO NOT BETWEEN 14 AND 16;

Las filas arrojadas en los resultados de la consulta incluiran todas las filas que no tengan un valor
PRECIO_MENUDEUO dentro del rango entre 14 y 16. Cuando se ejecuta la instruccidn, se obtie-
nen tres filas:

TITULO_CD PRECIO_MENUDEO
Famous Blue Raincoat 16.99
That Christmas Feeling 10.99

Patsy Cline: 12 Greatest Hits 16.99

Observe que todos los valores dentro del rango especificado han sido excluidos de los resultados
de la consulta. Si usted encuentra confusa la funcién de la palabra clave NOT (como le pasa a mu-
cha gente), puede escribir una cldusula equivalente WHERE o utilizar la palabra clave OR y los
operadores Mayor que y Menor que de la manera siguiente:

WHERE PRECIO_MENUDEO < 14
OR PRECIO_MENUDEO > 16;

Arrojar valores nulos

Como se puede recordar del capitulo 4, un valor nulo es utilizado en lugar de un valor cuando dicho
valor no esta definido o no es conocido. Un valor nulo indica que el valor esta ausente. Esto no es lo
mismo que un valor cero, un espacio en blanco o un valor por defecto. Por opcién predeterminada,
SQL permite utilizar valores nulos en lugar de valores regulares (aunque se puede anular el valor
por opcién predeterminada incluyendo una restriccion NOT NULL en la definicién de la columna).
En aquellos casos donde se permiten los valores nulos, puede ser necesario especificar que esos
valores nulos sean arrojados cuando se consulta una tabla. Por esta razén, SQL proporciona un pre-
dicado NULL, que permite definir las condiciones de bisqueda que arrojaran los valores nulos.

201

Capitulo 9: Utilizar predicados

El predicado NULL resulta muy simple de implementar. Utilizado en conjuncién con la pa-
labra clave IS, el predicado se agrega a una clausula WHERE de la misma forma que cualquier
otro predicado, y se aplica sélo a los valores nulos que pudieran existir en la columna que se estd
consultando. La mejor forma de ilustrar esto es mediante el uso de ejemplos. En estos ejemplos se
utiliza la tabla BIO_ARTISTAS, mostrada en la figura 9-2.

El primer ejemplo es una instruccion SELECT que arroja filas con un valor LUGAR_DE _
NACIMIENTO nulo:

SELECT *
FROM BIO ARTISTAS
WHERE LUGAR DE NACIMIENTO IS NULL;

La instruccién arroja todas las columnas de la tabla BIO_ARTISTAS; sin embargo, arroja so-
lamente dos filas, como se puede ver en los siguientes resultados de la consulta (los resultados
pueden lucir diferentes dependiendo de cémo la aplicacion cliente de SQL despliega los valores
nulos):

NOMBRE INTERPRETE LUGAR DE NACIMIENTO

ANO NACIMIENTO

William Ackerman
Bing Crosby

El hecho de que la columna ANO_NACIMIENTO contenga un valor nulo para la fila William
Ackerman no tiene relacién directa con el hecho de que se utilice un predicado NULL. En este
caso el predicado NULL solamente identifica a la columna LUGAR_DE_NACIMIENTO, no a
la columna ANO_NACIMIENTO. Sin embargo, es posible reemplazar la columna LUGAR_DE_
NACIMIENTO en el predicado con la columna ANO_NACIMIENTO, en cuyo caso las filas arro-
jadas serdn aquellas con un valor ANO_NACIMIENTO nulo.

NOMBRE_INTERPRETE: | LUGAR_DE_NACIMIENTO ANO_NACIMIENTO:
VARCHAR(60) CARCHAR(60) INT
Jennifer Warnes Seattle, Washington, USA 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
William Ackerman NULL NULL
Kitaro Toyohashi, Japan NULL
Bing Crosby NULL 1904
Patsy Cline Winchester, Virginia, United States 1932
Jose Carreras Barcelona, Spain NULL
Luciano Pavarotti Modena, Italy 1935
Placido Domingo Madrid, Spain 1941

Figura 9-2 Valores nulos arrojados de la tabla BIO_ARTISTAS.

Fundamentos de SQL

De acuerdo al estandar SQL:2006, también es posible especificar ambas columnas en el predi-
cado NULL, como se muestra en el siguiente ejemplo:

SELECT *
FROM BIO ARTISTAS
WHERE (LUGAR DE NACIMIENTO, ANO_NACIMIENTO) IS NULL;

Cuando se incluyen ambas columnas, tanto la columna LUGAR_DE_NACIMIENTO como la co-
lumna ANO_NACIMIENTO deben arrojar valores nulos para que una fila aparezca en la bisque-
da, que en el caso de la tabla BIO_ARTISTAS seria solamente una fila.

NOTA

A pesar de que el esténdar SQL permite especificar multiples columnas en el predicador NULL,
existen muchas implementaciones que no pueden soportar esto. En su lugar, se deben especifi-
car dos predicados NULL conectados con la palabra clave AND.

Como una alternativa para incluir ambas columnas en un predicado, se puede escribir la ins-
trucciéon SELECT de la forma siguiente:

SELECT *
FROM BIO ARTISTAS

WHERE LUGAR DE NACIMIENTO IS NULL
AND AﬁO_NACIMIENTO IS NULL;

Si se ejecuta esta instruccion, se obtendran los siguientes resultados de consulta:

PERFORMER NAME LUGAR _DE NACIMIENTO AﬁO_NACIMIENTO

SQL soporta otra caracteristica en el predicador NULL. Se puede utilizar la palabra clave
NOT para encontrar los resultados inversos de predicado. Por ejemplo, supongamos que se quieren
obtener todas las filas que incluyan un valor actual en la columna LUGAR_DE_NACIMIENTO en
lugar de un valor nulo. La instruccién podria lucir de esta manera:

SELECT *
FROM BIO ARTISTAS
WHERE LUGAR DE NACIMIENTO IS NOT NULL;

Los resultados de la consulta ahora incluiran siete filas, todas ellas conteniendo valores en la co-
lumna LUGAR_DE_NACIMIENTO:

NOMBRE INTERPRETE LUGAR_DE NACIMIENTO AﬁO_NACIMIENTO
Jennifer Warnes Seattle, Washington, Estados Unidos 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
Kitaro Toyohashi, Japdn NULL
Patsy Cline Winchester, Virginia, Estados Unidos 1932

Jose Carreras Barcelona, Espafia NULL

Capitulo 9: Utilizar predicados 203

Luciano Pavarotti Modena, Italia 1935
Placido Domingo Madrid, Espafia 1941

Observe que los valores nulos pueden atin existir en otras columnas. Debido a que solamente
la columna LUGAR_DE_NACIMIENTO estd especificada en el predicado NULL, solamente
esa columna debe contener un valor para que una fila sea arrojada.

Al igual que con los predicados que se vieron anteriormente en este capitulo, se puede com-
binar el predicado NULL con otros tipos de predicados. Por ejemplo, se puede modificar el dltimo
ejemplo para limitar los valores de ANO_NACIMIENTO a sélo ciertos afios, como se muestra en
el siguiente ejemplo:

SELECT *
FROM BIO ARTISTAS

WHERE LUGAR DE NACIMIENTO IS NOT NULL
AND AﬁO_NACIMIENTO > 1940;

Ahora cualquier fila arrojada deberd incluir un valor en la columna LUGAR_DE_NACIMIENTO
y el valor de ANO_NACIMIENTO deberi ser mayor a 1940. Si se ejecuta esta consulta, se arroja-
ran los siguientes resultados:

NOMBRE INTERPRETE LUGAR _DE_NACIMIENTO ANO_NACIMIENTO
Jennifer Warnes Seattle, Washington, Estados Unidos 1947
Joni Mitchell Fort MacLeod, Alberta, Canada 1943
Placido Domingo Madrid, Espafia 1941

Como se puede ver, solamente se obtienen tres filas. Ninguna fila con valor LUGAR_DE_NACI-
MIENTO nulo es arrojada debido a que el valor nulo se evalia como desconocido, y solamente
las clausulas WHERE que se evalian como verdaderas pueden ser incluidas en los resultados de la
consulta.

Arrojar valores similares

Si algtin predicado puede ser divertido, éste es el predicado LIKE. El predicado LIKE proporciona
un ambiente flexible en el cual es posible especificar valores que son solamente similares a los va-
lores almacenados en la base de datos. Esto es particularmente beneficioso si sélo se conoce parte
de un valor pero atn se necesita recuperar informacién basada en ese valor. Por ejemplo, suponga-
mos que no se conoce el titulo completo de un CD, sino solamente una parte de ese titulo. O quiza
s6lo se conoce una parte del nombre del artista. Al utilizar el predicado LIKE, se pueden solicitar
valores que sean similares a la parte que se conoce y desde esos resultados determinar si la infor-
macién que se necesita esta ahi.

Antes de dar un vistazo al predicado LIKE en si mismo, veamos dos simbolos utilizados den-
tro del predicado. El predicado LIKE utiliza dos caracteres especiales, el signo de porcentaje (%) y
el guién bajo (_), para ayudar a definir las condiciones de bisqueda especificadas en el predicado.
El signo de porcentaje representa cero o mds caracteres desconocidos, y el guién bajo representa
exactamente un caracter desconocido. Se pueden utilizar estos caracteres al inicio de un valor, en
medio de €l, o al final, y se pueden combinar entre si segtin sea necesario. La forma en que se utili-
cen estos dos caracteres determina el tipo de datos que seran recuperados de la base de datos.

204 Fundamentos de SQL

Valor de ejemplo Posibles resultados de la consulta

)%’ Jennifer Warnes, Joni Mitchell, Jose Carreras
“%Spark’ Court and Spark

‘%Blue%’ Famous Blue Raincoat, Blue, Blues on the Bayou
“%Cline%Hits’ Patsy cline: 12 Greatest Hits

194’ 1940, 1941, 1947

19_~ 1900, 1907, 1938, 1963, 1999

‘e Blue

‘9_01 90201, 91401, 95501, 99301, 99901

‘9 3% 9032343, 903, 95312, 99306, 983393300333

Tabla 9-2 Utilizar caracteres especiales en un predicado LIKE.

La tabla 9-2 proporciona varios ejemplos de como pueden ser utilizados estos caracteres especiales
en un predicado LIKE.

Como se puede ver, los caracteres de signo de porcentaje y el guién bajo proporcionan una
gran flexibilidad y permiten consultar un amplio rango de datos.

NOTA

Algunas implementaciones de los fabricantes pueden ser configuradas para ser insensibles al
uso de mayusculas y mindsculas para las comparaciones de datos, lo que significa que las le-
tras en minGsculas o en mayUsculas en una comparacién se consideran iguales. De hecho, éste
es el comportamiento por defecto para SQL Server y Sybase; sin embargo, Oracle siempre

es sensible a mayUsculas y mindsculas. Observando la tabla 9-2, las letras en maytscula en

la columna Valor de ejemplo pueden ser cambiadas a minGsculas con los mismos resultados
siempre que DBMS esté configurado como insensible al uso de maydsculas y mindsculas. Por
ejemplo, el valor %spark del predicado LIKE adn seleccionaria a la fila Court and Spark en
una implementacién insensible al uso de maydsculas y mindsculas.

Ahora que estdn mejor comprendidos los caracteres especiales, demos un vistazo al predicado
LIKE como un todo. El predicado LIKE incluye el nombre de la columna, la palabra clave LIKE,
y un valor encerrado en un conjunto de comillas simples, a su vez encerrado en un conjunto de pa-
réntesis (los paréntesis son opcionales para la mayoria de las implementaciones de los fabricantes).
Por ejemplo, la siguiente cldusula WHERE incluye un predicado LIKE:

WHERE ID CD LIKE ('%01'")

El predicado incluye la columna ID_CD, la palabra clave LIKE y un valor de %01. Sélo las filas
que contengan el valor correcto en la columna ID_CD son arrojadas en los resultados de la consul-
ta. La columna ID_CD es parte de la tabla CDS, que se muestra en la figura 9-3. Se estard utilizan-
do esta tabla para los ejemplos en esta seccion. Observe que basandose en el predicado LIKE defi-
nido en la clausula WHERE precedente, solamente una fila puede ser arrojada por esta cldusula, la
fila con el valor ID_CD de 99301.

Capitulo 9: Utilizar predicados 205

ID_CD: | TITULO_CD:
INT VARCHAR(60)

99301 Famous Blue Raincoat

99302 | Blue

99303 | Court and Spark

99304 | Past Light

99305 | Kojiki

99306 | That Christmas Feeling

99307 Patsy Cline: 12 Greatest Hits

Figura 9-3 Arrojar valores similares desde la tabla CDS.

Ahora demos un vistazo a algunos ejemplos de instrucciones SELECT que incluyan un predi-
cado LIKE. Supongamos que se quiere encontrar cualquier CD que contenga la palabra Christmas
en el titulo. Se puede crear la siguiente instruccién SELECT para consultar la tabla CDS:

SELECT *
FROM CDS
WHERE TITULO CD LIKE ('%Christmas%');

Los resultados de esta consulta incluiran solamente una fila:

99306 That Christmas Feeling

Si se hubiera incluido solamente un signo de porcentaje, no se habria obtenido ninguna fila.
Por ejemplo, si se eliminara el primer signo de porcentaje, la implementacién SQL habria inter-
pretado esto como el significado de que el valor debe comenzar con la palabra Christmas, lo cual
no es asi. Lo mismo sucede para el otro signo de porcentaje. Si éste se hubiera eliminado, la im-
plementacién habria asumido que Christmas debe ser la dltima palabra de la cadena de caracteres.
Ademads de esto, si no se hubiera utilizado ningun signo de porcentaje, ninguna fila hubiera sido
arrojada porque ningtin valor habria coincidido exactamente con la palabra Christmas.

También se puede agregar la palabra clave NOT a un predicado LIKE si quieren obtenerse
todas las filas, excepto aquellas especificadas por el predicado. Tomemos el dltimo ejemplo. Si se
agregara la palabra clave NOT, luciria de la siguiente manera:

SELECT *
FROM CDS
WHERE TITULO CD NOT LIKE ('%Christmas%');

206

Fundamentos de SQL

Esta vez los resultados de la consulta incluyen todas las filas que no contengan la palabra Christmas:

ID_CD TITULO CD
99301 Famous Blue Raincoat

99302 Blue

99303 Court and Spark

99304 Past Light

99305 Kojiki

99307 Patsy Cline: 12 Greatest Hits

Observe que ahora falta la fila That Christmas Feeling.

También se puede combinar un predicado LIKE con otro predicado LIKE. Supongamos, por
ejemplo, que atin se quiere excluir el valor Christmas, pero se quiere incluir el valor Blue, como se
muestra en el siguiente ejemplo:

SELECT *
FROM CDS

WHERE TITULO CD NOT LIKE ('%Christmas%')
AND TITULO CD LIKE ('$%Blue%');

La clausula WHERE en la instruccién SELECT elimina cualquier fila que tenga la palabra Christ-
mas en cualquier parte del valor TITULO_CD. Ademas, el valor TITULO_CD debe incluir la pa-
labra Blue. Como resultado, s6lo se obtienen dos filas.

ID_CD TITULO CD
99301 Famous Blue Raincoat
99302 Blue

Pero (qué sucede si el titulo del CD incluye ambas palabras? Por ejemplo, Blue Christmas de
Elvis Presley que estd ahora disponible en CD. La palabra clave AND utilizada para conectar los
predicados significa que ambos predicados deben ser verdaderos para que una fila pueda ser arro-
jada. Incluso si existia una fila Blue Christmas, no seria incluida en los resultados de la consulta
debido a que el primer predicado (el que tiene NOT LIKE) seria evaluado como falso.

ALk k]l Utilizar predicados en

instrucciones SQL

Antes de moverse hacia otros predicados, es una buena idea revisar los predicados que ya han sido
discutidos. Estos incluyen los seis tipos de predicados de comparacién, el predicado BETWEEN,
el predicado NULL y el predicado LIKE. En este ejercicio se probardn varios de estos predicados
mediante el uso de instrucciones SELECT que incluiran las clausulas WHERE apropiadas. Se
consultaran las tablas que se crearon en la base de datos INVENTARIO. Debido a que se utilizaran
solamente instrucciones SELECT, de cualquier manera no se modificaran las tablas o las estructu-
ras de las bases de datos. Solamente se peticionardn datos basandose en los predicados que se de-
finan. Puede descargar el archivo Try_This_09.txt (en inglés), que contiene las instrucciones SQL
utilizadas en este ejercicio.

Capitulo 9: Utilizar predicados 207

Paso a paso

l‘
2‘

Abra la aplicacion de cliente para sus RDBMS y conéctese con la base de datos INVENTARIO.

En la primera instruccién creada, se consultara la tabla TIPOS_MUSICA para arrojar los nom-
bres de aquellas filas cuyo valor ID_TIPO sea igual a 11 o 12. Ingrese y ejecute la siguiente
instruccion SQL:

SELECT ID TIPO, NOMBRE TIPO
FROM TIPOS MUSICA
WHERE ID_TIPO = 11
OR ID TIPO = 12;

La instruccién deberd arrojar dos filas, una para Blues y otra para Jazz. Observe que la palabra
clave OR se utiliza para indicar que cualesquiera de los dos valores es aceptable.

Ahora se consultard la tabla ARTISTAS para buscar artistas diferentes a Patsy Cline y Bing
Crosby. Ingrese y ejecute la siguiente instruccién SQL:

SELECT NOMBRE ARTISTA, LUGAR DE NACIMIENTO
FROM ARTISTAS

WHERE NOMBRE_ARTISTA <> 'Patsy Cline'
AND NOMBRE ARTISTA <> 'Bing Crosby';

La consulta debera arrojar 16 filas y no deberd incluir las filas Patsy Cline o Bing Crosby.

Ahora combinemos un par de predicados de comparacién para crear un tipo diferente de condi-
cion de busqueda. En esta instruccién se consultard una vez mas la tabla ARTISTAS, pero ahora
s6lo se peticionardn aquellas filas cuyos valores ID_ARTISTA se encuentren entre 2004 y 2014
(excluyendo los puntos limite). Ingrese y ejecute la siguiente instrucciéon SQL:

SELECT ID ARTISTA, NOMBRE ARTISTA
FROM ARTISTAS

WHERE ID_ARTISTA > 2004
AND ID ARTISTA < 2014;

La consulta debera arrojar nueve filas.

Ahora modifiquemos la instruccién SELECT que se acaba de ejecutar. Debera utilizarse un pre-
dicado BETWEEN en lugar de los dos predicados de comparacién. Ingrese y ejecute la siguien-
te instruccion SQL:

SELECT ID ARTISTA, NOMBRE ARTISTA
FROM ARTISTAS
WHERE ID_ARTISTA BETWEEN 2004 AND 2014;

Ahora deberdn aparecer 11 filas, en lugar de las nueve que se arrojaron en el paso anterior,
debido a que BETWEEN siempre incluye los puntos limite. Si en el paso anterior se hubiera

(continda)

208 Fundamentos de SQL

6

utilizado el operador Mayor que o igual a y el operador Menor que o igual a, los resultados de
la consulta habrian sido los mismos que en este paso.

Ahora consultemos una vez mas la tabla ARTISTAS, s6lo que esta vez se utilizar el predicado
NULL. Ingrese y ejecute la siguiente instrucciéon SQL:

SELECT *
FROM ARTISTAS
WHERE LUGAR DE NACIMIENTO IS NULL;

La bisqueda no arrojard resultados debido a que la columna LUGAR_DE_NACIMIENTO no
contiene valores nulos.

Intentemos la misma consulta que en el paso anterior, s6lo que esta vez se agregard la palabra
clave NOT al predicado NULL. Ingrese y ejecute la siguiente instruccién SQL:

SELECT *
FROM ARTISTAS
WHERE LUGAR DE NACIMIENTO IS NOT NULL;

La consulta ahora debera arrojar todas las filas de la tabla (18 en total).

En la siguiente instruccién se utilizard el predicado LIKE para encontrar titulos de CD que
incluyan la palabra Best o la palabra Greatest. El predicado hard referencia a la columna TITU-
LO_CD de la tabla DISCOS_COMPACTOS. Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE TITULO CD LIKE ('%Greatest%')
OR TITULO_CD LIKE ('%Best%');

La consulta deberd arrojar tres filas. En todas estas filas, el valor TITULO_CD debera contener
las palabras Greatest o Best.

Esta vez se modificard la instruccién en el paso anterior para incluir la palabra clave NOT en
ambos predicados. También deberd cambiarse la palabra clave OR por la palabra AND. Ingrese
y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS

WHERE TITULO CD NOT LIKE ('%Greatest%')
AND TITULO CD NOT LIKE ('%Best%');

Los resultados de la consulta deberan ahora incluir 12 filas. Si no se hubiera cambiado la pala-
bra clave OR por AND, los resultados habrian incluido todas las 15 filas. Esto se debe a que la
instruccién siempre se habria evaluado como verdadera (el primer predicado se evaluaria como
verdadero para una fila que contenga Greatest; el segundo predicado se evaluaria como verda-

dero para una fila que contenga Best, y ambos predicados se evaluarian como verdaderos para

cualquier otra fila).

10. Cierre la aplicacién de cliente.

Capitulo 9: Utilizar predicados 209

Resumen de Pruebe esto

En este ejercicio se crearon varias instrucciones SELECT que inclufan varios predicados. Los
predicados estaban contenidos en clausulas WHERE que eran parte de las instrucciones SELECT;
sin embargo, estas cldusulas también pudieron haber sido parte de las instrucciones UPDATE y
DELETE. Al avanzar en el resto de este capitulo, se aprendera acerca de otros predicados y coémo
pueden ser utilizados en diferentes tipos de instrucciones. Estos predicados pueden ser utilizados
en conjuncién con los que ya han sido analizados utilizdndolos por si mismos para crear condicio-
nes de bisqueda mas complejas y para arrojar resultados mas precisos.

Hacer referencia a fuentes adicionales de datos

SQL soporta muchos tipos de predicados que permiten hacer referencia a fuentes diferentes a la
tabla principal que se esta consultando o modificando. Como resultado, se pueden crear condicio-
nes de bisqueda que comparen datos entre tablas para determinar cuéles filas deberan ser incluidas
en los resultados de la consulta, cudles filas deberan ser actualizadas o cudles eliminadas. En esta
seccién se veran dos predicados importantes que se pueden utilizar para hacer referencia a otras
tablas: el predicado IN y el predicado EXISTS.

Ambos predicados pueden utilizar subconsultas para hacer referencia a datos en la tabla que
se estd consultando o modificando, o mds comtinmente, a otras tablas. Se introdujo por primera
vez el tema de las subconsultas en el capitulo 4. Como se puede recordar de ese capitulo, una
subconsulta es una expresion que se utiliza como un componente dentro de otra expresion. En su
uso mds comuin, una subconsulta es simplemente una instruccién SELECT incrustada dentro de
otra instruccién. Cuando se utiliza en un predicado, una subconsulta se convierte en parte de ese
predicado y consecuentemente estd incrustada en la clausula WHERE de una instruccién SELECT,
UPDATE o DELETE. A pesar de que las subconsultas se analizan con detalle en el capitulo 12, se
mencionan aqui debido a que son una parte integral de los predicados que se estaran discutiendo
en la siguiente parte de este capitulo. En cada uno de estos predicados, las subconsultas se utilizan
para hacer referencia a datos en otras tablas. Para los propdsitos de este capitulo, se mantendran
los ejemplos y las subconsultas simples, pero tenga en mente que éstas pueden ser mucho mas
elaboradas que lo que se verd aqui, y una vez que haya completado el capitulo 12, serd capaz de
aplicar ese conocimiento a los predicados que se aprendieron en este capitulo.

Utilizar el predicado IN

El predicado IN permite determinar si los valores en la columna especificada de una tabla estdn
contenidos en una lista definida o contenidos dentro de otra tabla. En el primer caso, se debe es-
pecificar el nombre de la columna, la palabra clave IN y una lista de valores que son comparados
a los valores en la columna especificada. En el segundo caso, se debe especificar el nombre de la
columna, la palabra clave IN y una subconsulta, que hace referencia a la segunda tabla. En cada
caso, si el valor de la columna coincide con uno de los valores en la lista o en los resultados de
la subconsulta, el predicado se evaliia como verdadero y la fila es arrojada en los resultados de la
consulta.

210 Fundamentos de SQL

INVENTARIO_DISCO_COMPACTO ARTISTAS_DISCO_COMPACTO

NOMBRE_CD: EN_EXISTENCIA:| | TITULO: ARTISTA:

VARCHAR(60) INT VARCHAR(60) VARCHAR(60)

Famous Blue Raincoat | 13 Famous Blue Raincoat Jennifer Warnes

Blue 42 Blue Joni Mitchell

Court and Spark 22 Court and Spark Joni Mitchell

Past Light 17 Past Light William Ackerman

Kojiki 6 Kojiki Kitaro

That Christmas Feeling | 8 That Christmas Feeling Bing Crosby

Out of Africa 29 Patsy Cline: 12 Greatest Hits Patsy Cline

Blues on the Bayou 27 After the Rain: The Soft Sounds of Erik Satie| Pascal Roge

Orlando 5 Out of Africa John Barry
Leonard Cohen The Best of Leonard Cohen
Fundamental Bonnie Raitt
Blues on the Bayou B.B. King
Orlando David Motion

Figura 9-4 Consultar datos de la tabla INVENTARIO_DISCO_COMPACTO y de la tabla ARTISTAS_
DISCO_COMPACTO.

La mejor forma de ilustrar ambos de estos métodos es por medio de ejemplos. Sin embargo,
antes de verlos, refiérase a las tablas mostradas en la figura 9-4. Estas son las tablas que se estardn
utilizando para los ejemplos.

Como ya se menciond, el primer método para utilizar el predicado IN es definir una lista. La
lista debera incluir todos los valores que van a ser comparados a los valores en la columna especi-
ficada. Por ejemplo, supongamos que se quieren limitar los resultados de la consulta a las filas en
la tabla INVENTARIO_DISCO_COMPACTO que tengan un valor EN_EXISTENCIA de 12, 22,
32 0 42. Se puede crear una instruccién SELECT como la siguiente:

SELECT NOMBRE_ CD, EN_EXISTENCIA FROM INVENTARIO DISCO_ COMPACTO
WHERE EN EXISTENCIA IN (12, 22, 32, 42);

Esta instruccién arroja solamente dos filas debido a que son las tnicas filas que tienen los valores
EN_EXISTENCIA correctos:

NOMBRE_CD EN_EXISTENCIA

Blue 42
Court and Spark 22

Capitulo 9: Utilizar predicados 211

Como se puede ver, es un proceso bastante sencillo utilizar el predicado IN para definir una
lista, y es bastante 1itil cuando se sabe exactamente con cudles valores se quieren comparar las co-
lumnas. También es un método mas simple que definir predicados separados para cada valor, como
en el siguiente ejemplo:

SELECT NOMBRE _CD, EN_ EXISTENCIA
FROM INVENTARIO DISCO_COMPACTO
WHERE EN_ EXISTENCIA = 12
OR EN_EXISTENCIA 22
OR EN_EXISTENCIA 32
OR EN_EXISTENCIA = 42;

Esta instruccion arrojard los mismos resultados que la instruccién SELECT del ejemplo ante-
rior; sin embargo, como se puede ver, es mucho mds incémoda.

Ahora veamos una instruccion SELECT que utiliza una subconsulta en el predicado IN. Su-
pongamos que se quiere crear una consulta que arroje nombres de CD y sus artistas. Se requiere
que los resultados de la consulta incluyan solamente CD que tengan mds de 10 copias en exis-
tencia. Si nos referimos a la figura 9-4, se vera que la tabla ARTISTAS_DISCO_COMPACTO
incluye los nombres de CD y sus artistas. Sin embargo, como también se puede ver, los valores
EN_EXISTENCIA estdn almacenados en la tabla INVENTARIO_DISCO_COMPACTO, lo que
significa que se necesitara hacer referencia a esa tabla para poder arrojar las filas correctas. Para
hacer eso, se puede crear la siguiente instruccion SELECT:

SELECT TITULO, ARTISTA
FROM ARTISTAS DISCO_COMPACTO
WHERE TITULO IN
(SELECT NOMBRE_ CD
FROM INVENTARIO DISCO_COMPACTO
WHERE EN_ EXISTENCIA > 10);

Si se ejecuta esta instruccion, se recibiran los siguientes resultados:

TITULO ARTISTA

Famous Blue Raincoat Jennifer Warnes
Blue Joni Mitchell
Court and Spark Joni Mitchell
Past Light William Ackerman
Out of Africa John Barry

Blues on the Bayou B.B. King

Observe que sdlo seis filas han sido arrojadas. Sé6lo hay seis CD enlistados en la tabla INVENTA-
RIO_DISCO_COMPACTO que tienen un valor EN_EXISTENCIA mayor a 10.

Ahora veamos mas de cerca la instruccion SELECT para obtener una mejor comprension
de c6mo funciona el predicado IN. La cldusula WHERE contiene solamente un predicado. Este
comienza con el nombre de la columna (TITULO) cuyos valores se quieren verificar. La colum-
na TITULO es seguida por la palabra clave IN. Luego la palabra clave es seguida por una sub-

212

Fundamentos de SQL

consulta, que estd encerrada en paréntesis. La subconsulta consiste de la siguiente instruccion
SELECT:

SELECT NOMBRE_ CD
FROM INVENTARIO DISCO_COMPACTO
WHERE EN_EXISTENCIA > 10

Si se ejecutara sélo esta instruccion, se arrojarian los siguientes resultados:

NOMBRE_CD

Famous Blue Raincoat

Blue
Court and Spark
Past Light

Out of Africa
Blues on the Bayou

Cada fila en los resultados de la consulta, que se derivan de la tabla INVENTARIO_DISCO_
COMPACTO, contiene un valor EN_EXISTENCIA mayor a 10. Los valores en la columna TITU-
LO de la tabla ARTISTAS_DISCO_COMPACTO son entonces comparados con estos resultados.
Cualquier fila que contenga un valor TITULO que coincida con uno de los seis valores NOM-
BRE_CD (en los resultados de la subconsulta) esta incluida en los resultados de la consulta de la
instruccién SELECT principal.

NOTA

Cuando se incluye una subconsulta en un predicado IN, la cléusula SELECT de la subconsulta
debe arrojar solamente una columna de datos. Si se especifica mds de una columna en el con-
junto de resultados o se especifica un asterisco, se recibiré un error.

Al igual que muchos otros predicados, el predicado IN permite especificar el inverso de una con-
dicidn al utilizar la palabra clave NOT. Supongamos que se reescribe la instruccion SELECT del
dltimo ejemplo para incluir la palabra clave NOT en el predicado IN:

SELECT TITULO, ARTISTA
FROM ARTISTAS DISCO_COMPACTO
WHERE TITULO NOT IN
(SELECT NOMBRE_ CD
FROM INVENTARIO DISCO_COMPACTO
WHERE EN EXISTENCIA > 10);

Los resultados de la consulta incluirdn todas aquellas filas que no fueron arrojadas por la
instruccién SELECT anterior y excluird aquellas que si fueron arrojadas, como se muestra en
los siguientes resultados:

TITULO ARTISTA
Kojiki Kitaro
That Christmas Feeling Bing Crosby

Patsy Cline: 12 Greatest Hits Patsy Cline

Capitulo 9: Utilizar predicados 213

After the Rain: The Soft Sounds of Erik Satie Pascal Roge
Leonard Cohen The Best of Leonard Cohen
Fundamental Bonnie Raitt
Orlando David Motion

Como se puede ver, el predicado IN es una herramienta muy flexible para comparar valores
en una columna especificada con datos en otras tablas. Usted encontrara esto extremadamente util
cuando aprenda mds acerca de las subconsultas y pueda crear predicados mas complejos.

Utilizar el predicado EXISTS

A pesar de ser similar al predicado IN, el predicado EXISTS tiene un enfoque ligeramente diferen-
te. Estd dedicado tinicamente a determinar si la subconsulta arroja alguna fila o no. Si ésta arroja
una o mads filas, el predicado se evaliia como verdadero; de otra manera, el predicado se evalia
como falso. El predicado consiste de la palabra clave EXISTS y una subconsulta. Para que la sub-
consulta sea un valor real (y subsecuentemente el predicado EXISTS por s{ mismo), debe incluir
un predicado que coincida con dos columnas en diferentes tablas. Por ejemplo, en la figura 9-4, la
tabla INVENTARIO_DISCO_COMPACTO incluye la columna TITULO. Las dos columnas pue-
den hacerse coincidir juntas para asegurar que sélo las filas relevantes sean arrojadas por la sub-
consulta. Veamos un ejemplo para ayudar a aclarar este tema.

Supongamos que se quieren recuperar filas desde la tabla INVENTARIO_DISCO_COMPAC-
TO para poder determinar cudntos CD de Joni Mitchell se tienen en existencia. Solamente se quie-
ren desplegar los nombres de los CD y el niimero de ellos en existencia. No se quiere desplegar el
nombre del artista, ni los CD de otros artistas. Para cumplir con esto, se puede utilizar la siguiente
instruccién SELECT:

SELECT *
FROM INVENTARIO DISCO COMPACTO
WHERE EXISTS
(SELECT TITULO
FROM ARTISTAS DISCO_COMPACTO
WHERE ARTISTA = 'Joni Mitchell!
AND INVENTARIO DISCO COMPACTO.NOMBRE CD =
ARTISTAS DISCO COMPACTO.TITULO) ;

Si se ejecuta esta instruccion, se obtendréan los siguientes resultados de consulta:

NOMBRE_CD EN_EXISTENCIA

Blue 42
Court and Spark 22

La mejor forma de comprender cémo funciona esta instruccidn es observar cémo se evalian
las filas individuales. Como se aprenderd en el capitulo 12, las subconsultas como ésta son llama-
das subconsultas correlacionadas debido a que la subconsulta se ejecuta para cada fila arrojada
en la instrucciéon SELECT principal. Debido a que la clausula WHERE de la subconsulta hace
coincidir el valor NOMBRE_CD con el valor TITULO, el valor TITULO en la fila que se esta eva-

214

Fundamentos de SQL

luando (en la subconsulta) debe coincidir con el valor NOMBRE_CD para que esa fila pueda ser
arrojada. Por ejemplo, la primera fila en la tabla INVENTARIO_DISCO_COMPACTO contiene
un valor NOMBRE_CD de Famous Blue Raincoat. Cuando esta fila es comparada con el predica-
do EXISTS, el valor Famous Blue Raincoat se hace coincidir con el valor Famous Blue Raincoat
de la columna TITULO en la tabla ARTISTAS_DISCO_COMPACTO. Ademas, el valor Joni
Mitchell se hace coincidir con el valor ARTISTA para la fila Famous Blue Raincoat. Debido a que
el valor ARTISTA es Jennifer Warnes, y no Joni Mitchell, la condicién de bisqueda especificada
en la clausula WHERE de la subconsulta se evaliia como falsa; por lo tanto, no se arroja ninguna
fila de subconsulta para la fila Famous Blue Raincoat. Como resultado, la clausula WHERE en la
instruccién SELECT principal se evalia como falsa para la fila Famous Blue Raincoat de la tabla
INVENTARIO_DISCO_COMPACTO, y la fila no se incluye en los resultados de la consulta.

Este proceso se repite para cada fila en la tabla INVENTARIO_DISCO_COMPACTO. Si la
clausula WHERE en la subconsulta se evalia como verdadera, entonces el predicado EXISTS se
evalia como verdadero, lo que significa que la clausula WHERE en la instruccién SELECT prin-
cipal se evalia como verdadera. En el caso de nuestro ultimo ejemplo de la instruccion SELECT,
solamente dos filas coinciden con este criterio.

NOTA

No tiene importancia cuéles columnas o cuéntas columnas se especifican en la cldusula SE-
LECT de la subconsulta en un predicado EXISTS. Este tipo de predicado se concentra solamente
en si las filas serén arrojadas, en lugar de en el contenido de esas filas. Se puede especificar
cualquier nombre de columna o simplemente un asterisco.

El predicado EXISTS, como se puede esperar, permite utilizar el inverso de la condicion del
predicado utilizando la palabra clave NOT:

SELECT *
FROM INVENTARIO DISCO COMPACTO
WHERE NOT EXISTS
(SELECT TITULO
FROM ARTISTAS DISCO_COMPACTO
WHERE ARTISTA = 'Joni Mitchell!
AND INVENTARIO DISCO COMPACTO.NOMBRE CD =
ARTISTAS DISCO_ COMPACTO.TITULO) ;

En este caso, todos los CD, excepto los CD de Joni Mitchel, se incluyen en los resultados de la
consulta. Eso significa que si la cldusula WHERE de la subconsulta se evaltia como verdadera (lo
que significa que la subconsulta arroja una fila), el predicado en si mismo se evaliia como falso y
no se arroja ninguna fila. Por otro lado, si la subconsulta no arroja una fila, el predicado se evalia
como verdadero y la fila se arroja en los resultados de la consulta de la instrucciéon SELECT prin-
cipal.

Capitulo 9: Utilizar predicados

215

Pregunta al experto

P:

Se han proporcionado ejemplos que muestran que existe a menudo mas de una forma
para lograr el mismo resultado. ;Cémo puede uno saber cual opcién seleccionar cuando
se esta escribiendo una instruccion SQL?

Encontrard que, mientras mds aprende acerca de programacion SQL y logra un mejor enten-
dimiento de las facetas de cada instruccion, encontrard a menudo més de una forma de lograr
los mismos resultados. En estos casos, su eleccion de los métodos dependerd a menudo de
cudl instruccién sea la mds sencilla de escribir o cudl realiza mejor el trabajo en una imple-
mentacién SQL en particular. Al mismo tiempo que crece su comprension de SQL, también lo
hard su habilidad para elegir el método que sea mejor para cada situacion. En muchos casos, la
diferencia entre un método y otro no serd muy grande, y su eleccion dependerd simplemente
de sus preferencias personales. Sin embargo, también puede toparse con situaciones en las
cuales la implementacion de SQL en la que se estd trabajando no soporte todos los métodos
proporcionados en el estandar SQL. Por lo tanto, se debe seleccionar el método que pueda ser
implementado en ese ambiente en particular. Cualquiera que sea el método que se utilice en
cualquier ambiente dado, lo mejor por ahora es tener una base tan completa como sea posible
acerca de los conceptos bdsicos de SQL. De esa forma se estard mejor preparado para las di-
ferentes situaciones y mejor equipado para moverse de una implementacién a otra. Adicional-
mente, deberd aprender acerca de los temas de rendimiento relacionados a la implementacién
con la que se estd trabajando. Deber4 considerar los temas de rendimiento cuando se tome una
decision acerca de cudles instrucciones SQL se deben utilizar.

Cuando se proporcionaron ejemplos del predicado EXISTS, las subconsultas siempre
hacian coincidir columnas dentro de la clausula WHERE de la subconsulta. ;Esto es
necesario?

Es posible, si se desea, crear un predicado EXISTS que no haga coincidir columnas en la sub-
consulta, como la siguiente instruccion:
SELECT TITULO, ARTISTA
FROM ARTISTAS DISCO COMPACTO
WHERE EXISTS
(SELECT NOMBRE_CD
FROM INVENTARIO DISCO_COMPACTO
WHERE EN_EXISTENCIA > 10);

En este caso, la subconsulta simplemente revisa si es que existe en la tabla INVENTA-
RIO_DISCO_COMPACTO algtin valor EN_EXISTENCIA mayor a 10. Si esa fila o filas
existen, el predicado se evalué como verdadero, lo que significa que la clausula WHERE en
la instruccion SELECT principal se evalia como verdadera. Como resultado, se arrojan todas
las filas en la tabla ARTISTAS_DISCO_COMPACTO. Utilizar este tipo de subconsulta ge-
neralmente no es muy ttil debido a que ofrece pocas ventajas sobre una instruccion SELECT
simple. Cuando se utiliza EXISTS, hacer coincidir columnas de diferentes tablas dentro de la
subconsulta es esencial para proporcionar un filtrado significante para la instruccién SELECT
principal.

216 Fundamentos de SQL

Determinar la cantidad de predicados
de comparacién

SQL incluye otro tipo de predicado denominado predicado de comparacion cuantificado, que es
un tipo de predicado utilizado en conjuncién con un operador de comparacion para determinar

si alguno o todos los valores arrojados coinciden con los requerimientos de la busqueda. SQL
soporta tres predicados de comparacion cuantificados: SOME, ANY y ALL. Se hace referencia

a los predicados SOME y ANY como cuantificadores existenciales, y se encargan de comprobar
si cualquier valor arrojado corresponde a los requisitos de la busqueda. Estos dos predicados son
idénticos en significado y pueden ser utilizados intercambiablemente. El predicado ALL es llama-
do cuantificador universal y se ocupa de comprobar si fodos los valores arrojados corresponden a
los requisitos de la bisqueda. Ahora demos un vistazo mds cercano a cada uno.

Utilizar los predicados SOME y ANY

Como se menciond, los predicados SOME y ANY arrojan resultados idénticos. Para cada fila, los
predicados comparan el valor en una columna especificada con los resultados de una subconsulta.
Si la comparacion se evaliia como verdadera para cualquiera de los resultados, la condicion se
toma como satisfactoria y se arroja esa fila. Para crear uno de estos predicados, se debe especificar
el nombre de la columna que contiene los valores que se quieren comparar, el operador de compa-
racion (véase la seccion “Comparar datos SQL”), la palabra clave SOME o ANY, y la subconsulta.
A pesar de que se pueden utilizar cualquiera de las palabras, particularmente yo prefiero utilizar
ANY porque me parece mds intuitiva, pero siéntase libre de utilizar la que guste.

Ahora veamos un ejemplo para ilustrar mejor como funcionan estos predicados. El ejemplo estd
basado en la tabla MENUDEO_CD y en la tabla REBAJA_CD, que se muestran en la figura 9-5.

En este ejemplo se busca consultar datos de la tabla REBAJA_CD. Se quiere arrojar s6lo
aquellas filas que tengan un valor MENUDEO menor que algunos de los valores MENUDEO en
la tabla MENUDEO_CD.

MENUDEO_CD REBAJA_CD

NOMBRE_CD: MENUDEO: EN_EXISTENCIA: | | TITULO: VENTA:
VARCHAR(60) NUMERIC(5,2) |INT VARCHAR(60) NUMERIC(5,2)
Famous Blue Raincoat 16.99 5 Famous Blue Raincoat 14.99

Blue 14.99 10 Blue 12.99

Court and Spark 14.99 12 Court and Spark 14.99

Past Light 15.99 11 Past Light 14.99

Kojiki 15.99 4 Kojiki 13.99

That Christmas Feeling 10.99 8 That Christmas Feeling 10.99

Patsy Cline: 12 Greatest Hits | 16.99 14 Patsy Cline: 12 Greatest Hits | 16.99

Figura 9-5 Utilizar predicados de comparacién cuantificados en las tablas MENUDEO_CD y REBAJA_CD.

Capitulo 9: Utilizar predicados 217

Los valores RETAIL deberan ser de filas que tengan un valor EN_EXISTENCIA mayor a 9. En
otras palabras, la consulta deberd arrojar solamente aquellos CD cuyo precio rebajado (REBAJA)
sea menor que cualquier precio de lista (MENUDEO) en aquellos CD que haya una existencia
mayor a nueve. Para cumplir este requisito se utilizard la siguiente instruccion SELECT:

SELECT TITULO, REBAJA
FROM REBAJA CD
WHERE REBAJA < ANY
(SELECT MENUDEO
FROM MENUDEO_ CD
WHERE EN EXISTENCIA > 9);

Si se prefiere, se puede utilizar la palabra clave SOME en lugar de la palabra clave ANY. Los re-
sultados de la consulta serian los mismos, como se muestra en los siguientes:

TITULO REBAJA
Famous Blue Raincoat 14.99
Blue 12.99
Court and Spark 14.99
Past Light 14.99
Kojiki 13.99
That Christmas Feeling 10.99

Ahora analicemos la instruccién SELECT mads de cerca. El predicado ANY contiene la si-
guiente subconsulta:

SELECT RETAIL
FROM CD_RETAIL
WHERE EN_EXISTENCIA > 9

Si se ejecutara tal subconsulta por si sola, se recibirian los siguientes resultados:

MENUDEO

El valor REBAJA en cada fila en la tabla REBAJA_CD es por lo tanto comparado a los resul-
tados de la subconsulta. Por ejemplo, la fila Past Light tiene un valor REBAJA de 14.99. Este valor
es comparado a los resultados de la subconsulta para verificar si 14.99 es menor que cualquier va-
lor. Debido a que éste es menor que 15.99 y 16.99, el predicado se evalia como verdadero y la fila
es arrojada. La unica fila que no se evalia como verdadera es la fila Patsy Cline: 12 Greatest Hits
debido a que el valor REBAJA es 16.99, y éste no es menor a ninguno de los valores arrojados por
los resultados de la consulta.

Puede utilizar cualquiera de los seis operadores de comparacion en un predicado ANY o
SOME. Por ejemplo, si se hubiera utilizado el operador Mayor que, solamente la fila Patsy Cline:

218

Fundamentos de SQL

12 Greatest Hits habria sido arrojado debido a que hubiera sido la tnica fila con un valor REBAJA
mayor que cualquier fila en los resultados de la subconsulta.

NOTA

Los predicados de comparacién cuantificados no soportan una condicién inversa como lo
hacen otros predicados. En otras palabras, no se puede agregar la palabra NOT antes de
ANY o SOME. Sin embargo, se pueden lograr los mismos resultados utilizando el operador
desigual a (<>).

Utilizar el predicado ALL

El predicado ALL funciona muy parecido a los predicados SOME y ANY porque también compa-
ra valores de columna con los resultados de la subconsulta. Sin embargo, en lugar de que los valo-
res de columna tengan que evaluarse como verdaderos para cualquiera de los valores resultantes,
los valores de columna deben evaluarse como verdaderos para fodos los valores resultantes; si no
es asi, la fila no serd arrojada.

Regresemos al ejemplo anterior, solamente que esta vez se sustituird la palabra clave ANY por
la palabra clave ALL. La nueva instruccién SELECT lucird de la siguiente manera:

SELECT TITULO, REBAJA
FROM REBAJA CD
WHERE REBAJA < ALL
(SELECT MENUDEO
FROM MENUDEO CD
WHERE EN EXISTENCIA > 9);

Si se ejecuta esta instruccion, se encontrard que los resultados de la consulta son bastante diferen-
tes a lo que eran en el ejemplo anterior:

TITULO REBAJA
Blue 12.99
Kojiki 13.99

That Christmas Feeling 10.99

Esta vez solamente se arrojaron tres filas debido a que son las tnicas que cumplen la condicién del
predicado WHERE.

Si se da un vistazo mds cercano a la instruccién, se encontrard que la subconsulta arroja los
mismos valores que en los ejemplos anteriores. Sin embargo, el valor SALE para cada fila en la
tabla REBAJA_CD debe ahora ser menor que todos los valores en los resultados de la subconsulta.
Por ejemplo, la fila Kojiki contiene un valor REBAJA de 13.99. Los resultados de la subconsulta
incluyen los valores 14.99, 15.99 y 16.99. El valor 13.99 es menor que todos los tres valores re-
sultantes de la subconsulta, lo cual significa que el predicado se evalia como verdadero y que esa
fila se incluye en los resultados de la consulta. Por otro lado, la fila Past Light contiene un valor
REBAIJA de 14.99, el cual no es menor que el valor de la subconsulta 14.99, por lo que esa fila no
se incluye en los resultados de la consulta.

Capitulo 9: Utilizar predicados 219

Pregunta al experto

P:

En los analisis acerca de los predicados de comparacion cuantificados, se incluyeron
ejemplos sobre como utilizar estos predicados; sin embargo, los ejemplos incluian sola-
mente un predicado en la clausula WHERE. ;Es posible utilizar miiltiples predicados
cuando se utiliza un predicado de comparacion cuantificado?

Si. Es posible utilizar multiples predicados. Al igual que con cualquier otro tipo de predicado,
simplemente deben conectarse los predicados utilizando la palabra clave AND o la palabra
clave OR. Pero debe asegurarse de que la l6gica que se esta utilizando no solamente tenga
sentido en términos de los datos que serdn arrojados, sino también que tenga sentido para que
pueda comprenderse la instruccién por si misma. Como resultado, la mejor forma de tratar
con este tipo de situaciones es destacando cada predicado entre paréntesis y luego conectando
estas expresiones parentéticas con AND u OR. Por ejemplo, supongamos que se quiere utilizar
el ejemplo en la seccién “Utilizar los predicados SOME y ANY” y agregarle un predicado
LIKE. (El ejemplo estd basado en la figura 9-5.) Se puede crear una instruccién SELECT si-
milar a la siguiente:

SELECT TITULO, SALE
FROM REBAJA CD
WHERE (REBAJA < ANY (SELECT MENUDEO
FROM REBAJA CD
WHERE EN EXISTENCIA > 9))
AND (TITULO LIKE ('%Blue%'));

Observe que cada predicado ha sido encerrado en un conjunto de paréntesis y que éstos
estan unidos por AND. Si se ejecuta esta instruccion, los resultados de la consulta acatardn la
condicién del predicado ANY y del predicado LIKE, la cual especifica que el valor TITLE
incluya la palabra Blue. Si se prefiere, se pueden escribir estas instrucciones sin encerrar los
predicados entre paréntesis, pero entonces las instrucciones pueden empezar a confundirse, y
en estructuras mas complejas pueden también empezar a producir resultados inesperados.

Al igual que con los predicados ANY y SOME, es posible utilizar cualquiera de los seis

operadores de comparacion con el predicado ALL. Adicionalmente, se puede crear cualquier tipo
de subconsulta, siempre y cuando encaje l6gicamente con la instruccién SELECT principal. El
punto que debe recordarse es que el valor de la columna debe ser verdadero para todos los resulta-
dos de la subconsulta, y no solamente para algunos de ellos.

220 Fundamentos de SQL

RSS! Utilizar subconsultas

en predicados

Este ejercicio bdsicamente comienza donde se quedo el anterior. Una vez mds, trabajard con pre-
dicados, s6lo que esta vez serd con aquellos que utilizan subconsultas. Son estos los predicados
que se analizaron desde el ultimo ejercicio. Incluyen a los predicados IN, EXISTS, ANY y ALL.
Al igual que con el ejercicio anterior, se aplicardn estos predicados a las tablas que se crearon en la
base de datos INVENTARIO. Puede descargar el archivo Try_This_09.txt (en inglés), que contie-
ne las instrucciones SQL utilizadas en este ejercicio.

Paso a paso

1.
2.

Abra la aplicacién de cliente para sus RDBMS y conéctese con la base de datos INVENTARIO.

En su primera instruccién utilizard un predicado IN para consultar datos de la tabla DISCOS_
COMPACTOS. Se quiere ver la informacién de CD y de inventario para los CD publicados por
la compafifa Decca Record Company. Para averiguar cudles son estos CD, se debe crear una
subconsulta que consulte los datos de la tabla DISQUERAS_CD. Ingrese y ejecute la siguiente
instruccion SQL:

SELECT TITULO CD, EN EXISTENCIA
FROM DISCOS COMPACTOS
WHERE ID DISQUERA IN
(SELECT ID_DISQUERA
FROM DISQUERAS CD
WHERE NOMBRE_COMPAﬁIA = 'Decca Record Company') ;

Los resultados de la consulta deberan incluir solamente dos filas. Ambas filas tendran un va-
lor ID_DISQUERA de 833, que es el valor arrojado por la subconsulta.

Ahora se intentard una instruccion SELECT similar a la del paso 2, sélo que esta vez se utili-

zard un predicado EXISTS para arrojar los datos. Adicionalmente, tendrd que agregar un pre-

dicado a la clausula WHERE de la subconsulta que hara coincidir el valor ID_DISQUERA en
la tabla DISCOS_COMPACTOS con el valor ID_DISQUERA en la tabla DISQUERAS_CD.
Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN_EXISTENCIA FROM DISCOS_ COMPACTOS
WHERE EXISTS
(SELECT ID DISQUERA FROM DISQUERAS CD
WHERE DISCOS_ COMPACTOS.ID DISQUERA = DISQUERAS CD.ID_ DISQUERA
AND ID DISQUERA > 830);

Observe que uno de los predicados en la clausula WHERE de la subconsulta utiliza un ope-
rador de comparacién para buscar los valores ID_DISQUERA mayores a 830. Si se busca en la
tabla DISQUERAS_CD, se encontrara que hay seis filas que contienen valores ID_DISQUE-

Capitulo 9: Utilizar predicados 221

RA mayores a 830. Entonces, si se fuera a hacer coincidir estos seis valores con los valores
ID_DISQUERA en la tabla DISCOS_COMPACTOS, se encontraria que 11 filas se evaluarian
como verdaderas. Estas serdn las 11 filas arrojadas por la instruccién SELECT.

e

En esta instruccion se utilizard un predicado ANY para comparar los valores ID_DISQUERA
en la tabla DISQUERAS_CD con los valores ID_DISQUERA en la tabla DISCOS_COM-
PACTOS que estan incluidos en filas con un valor EN_EXISTENCIA mayor a 20. Los valores
ID_DISQUERA en la tabla DISQUERAS_CD pueden coincidir con cualquier valor en los re-
sultados de la subconsulta. Ingrese y ejecute la siguiente instruccién SQL:

SELECT ID_DISQUERA, NOMBRE_COMPAﬁIA
FROM DISQUERAS CD
WHERE ID DISQUERA = ANY
(SELECT ID DISQUERA
FROM DISCOS_COMPACTOS
WHERE EN_ EXISTENCIA > 20);

La consulta debera arrojar solamente cinco filas.

o

Ahora trate de crear la misma instrucciéon SELECT del paso 4, s6lo que esta vez utilizando un
predicado ALL en lugar de un predicado ANY. Ingrese y ejecute la siguiente instruccién SQL:

SELECT ID_DISQUERA, NOMBRE_COMPAﬁIA
FROM DISQUERAS CD
WHERE ID DISQUERA = ALL
(SELECT ID_ DISQUERA
FROM DISCOS_COMPACTOS
WHERE EN_ EXISTENCIA > 20);

Encontrard que con esta consulta no se arroja ninguna fila. Esto se debe a que la subconsulta
arroja ocho filas con cinco diferentes valores. El valor ID_DISQUERA para cada fila en la ta-
bla DISQUERAS_CD no puede hacer coincidir todos los valores, solamente uno o algunos de
ellos. La unica forma en que se arrojaria alguna fila en este caso seria si la subconsulta arrojara
solamente una fila o maltiples filas, todas con el mismo valor.

o

Ahora intente modificar la instruccién SELECT cambiando el predicado de comparacién en la
clausula WHERE de la subconsulta a mayor que 40. Ingrese y ejecute la siguiente instruccion
SQL:

SELECT ID_DISQUERA, NOMBRE_COMPAﬁIA
FROM DISQUERAS CD
WHERE ID DISQUERA = ALL
(SELECT ID_ DISQUERA
FROM DISCOS_COMPACTOS
WHERE EN_ EXISTENCIA > 40);

Los resultados de la consulta ahora arrojaran una fila. Esto se debe a que la subconsulta arro-
ja s6lo una fila que cumple la condicién del predicado ALL.

7. Cierre la aplicacién de cliente.

222 Fundamentos de SQL

Resumen de Pruebe esto

En este ejercicio se utilizaron los predicados IN, EXISTS, ANY y ALL para consultar datos de la
base de datos INVENTARIO. También pudo haberse utilizado el predicado SOME en lugar del
predicado ANY. Combinados con los pasos del ejercicio anterior, las instrucciones aqui deberan
haberle permitido probar con una gran variedad de predicados. Segiin vaya aprendiendo mds acer-
ca de las subconsultas, serd capaz de crear predicados incluso mas elaborados, unos que pueda
utilizar no solamente en las instrucciones SELECT, sino también en las instrucciones UPDATE y
DELETE. Entretanto, se le sugiere experimentar con diferentes tipos de instrucciones SELECT e
intentar diferentes predicados dentro de esas instrucciones para ver exactamente qué tipos de resul-
tados de consulta pueden arrojarse.

v Aot Capitulo 9

1. (En cudl cldusula de la instruccién SELECT se incluyen predicados?

2. ;Cudl simbolo de operador de comparacién debera utilizarse para expresar una condicién des-

igual?

A <=
B >=
C <
D =<

3. ;Cuidles palabras clave pueden utilizarse para combinar predicados en una clausula WHERE?

4, Se quiere consultar una tabla que incluye la columna PRECIO. Es necesario asegurarse que to-
das las filas arrojadas tengan un valor PRECIO de 13.99. ;Cual predicado debera utilizarse?

5. Se crea la siguiente instruccién SQL:

SELECT TITULO CD, PRECIO MENUDEO
FROM CDS_A LA MANO

WHERE PRECIO MENUDEO >= 14
AND PRECIO_MENUDEO <= 16;

(,Qué predicado puede utilizarse en lugar de los dos predicados mostrados en esta instruccién?

6. ;Qué palabra clave puede agregarse a un predicado BETWEEN para encontrar el inverso de la
condicién especificada por el predicado?

7. ;Cuéndo se utiliza un valor nulo en una columna?

8. Se quiere consultar una tabla para determinar cuéles valores son nulos. ;Qué tipo de predicado
debera utilizarse?

Capitulo 9: Utilizar predicados 223

9.

10.

12.
13

14.
15.

16.
17.

Se estd creando una instrucciéon SELECT que consulta la tabla BIO_ARTISTAS. Se quieren
arrojar todas las columnas en la tabla, pero se quieren arrojar sélo aquellas columnas que no
contengan valores nulos en la columna LUGAR_DE_NACIMIENTO. ;Cudl instruccién SE-
LECT debera utilizarse?

Se estd consultando la tabla INVENTARIO_CD. Se quiere ver todas las columnas, pero se
requiere ver s6lo aquellas columnas que contengan la palabra Christmas en el nombre del CD.
Los nombres estdn almacenados en la columna TITULO_CD. ;Cudl instruccion SELECT de-
berd utilizarse?

(Cudl es la diferencia entre un signo de porcentaje y un guién bajo cuando se usan en un predi-
cado LIKE?

(Cudles dos tipos de fuentes de datos pueden utilizarse en un predicado IN?

(Cudl tipo de predicado se ocupa solamente de determinar si una subconsulta arroja cualquier
fila o no?

(Cudles nombres de columna deben ser especificados en un predicado EXISTS?

Se estd creando una instrucciéon SELECT que incluye un predicado en la cldusula WHERE. Se
quiere utilizar un operador de comparacion para comparar los valores en una de las columnas
con los resultados de una subconsulta. Se quiere que el predicado se evalie como verdadero
para cualquiera de los resultados de la subconsulta. ;Qué tipo de predicado debera utilizarse?

A EXISTS

B ANY
C ALL
D IN

(Cudl es la diferencia entre un predicado SOME y un predicado ANY?
(Coémo difiere el predicado ALL del predicado SOME?

Capitulo 10

Trabajar con funciones
y expresiones de valor

226 Fundamentos de SQL

Habilidades y conceptos clave

Utilizar funciones Set
Utilizar funciones de valor
Utilizar expresiones de valor

Utilizar valores especiales

En partes anteriores de este libro se han presentado brevemente varias funciones y expresiones re-
lacionadas con valores. Estos valores y expresiones se utilizan en ejemplos y ejercicios en varios
capitulos para demostrar diferentes componentes de SQL. En este capitulo se dard un vistazo més
cercano a muchos de estos valores y expresiones, centrandose en aquellos que mds probablemente
pueda utilizar un programador principiante de SQL. Debera conservar en mente, sin embargo, que
este capitulo cubre solamente una porcién de los muchos tipos de funciones y expresiones soporta-
dos por SQL. Adicionalmente, las implementaciones de SQL pueden variar respecto a cudles fun-
ciones y expresiones SQL pueden soportar, cémo son implementados esos valores y expresiones,

y cudles funciones y expresiones estdndar y no estandar incluyen en sus productos. Asegurese de
revisar la documentacién del producto para determinar cudles funcionalidades son soportadas. En
general, se incluyen en este capitulo aquellas funciones y expresiones mas comtinmente soportadas
por las implementaciones SQL.

Utilizar funciones Set

En el capitulo 3 se introdujo el concepto de funcién. Como se puede recordar, una funcién es una
operacion nombrada que realiza tareas definidas que normalmente no se pueden realizar utilizando
solamente instrucciones SQL. Es un tipo de rutina que toma pardmetros de entrada, los cuales es-
tan encerrados en paréntesis, y arroja valores basados en esos paréntesis. Una propiedad importan-
te de las funciones es que cada ejecucion de una funcién arroja exactamente un valor de datos, y
ésta es la razén por la que las funciones pueden ser utilizadas en lugar de los nombres de columna
de una tabla en la lista SELECT de una consulta (la funcion arroja un valor tnico para cada fila
procesada por la consulta). Ya hemos visto ejemplos de funciones como SUM y AVG. Ambas fun-
ciones son conocidas como funciones set. Una funcion set, a veces nombrada funcién agregada,
procesa o calcula datos y arroja los valores apropiados. Las funciones set requieren que los datos
estén agrupados de cierta manera, como seria el caso si la cliusula GROUP BY fuera utilizada en
una instruccién SELECT. Si las filas no estdn agrupadas explicitamente de esa manera, la tabla
completa es tratada como un grupo.

En esta seccidn se analizan cinco funciones set: COUNT, MAX, MIN, SUM y AVG. Todas es-
tas funciones son cominmente soportadas en las implementaciones SQL. Para todas las funciones
set, se proporcionan ejemplos acerca de como se utilizarian en la cldusula SELECT de una instruc-
ciéon SELECT. Los ejemplos estdn basados en la tabla mostrada en la figura 10-1.

Capitulo 10: Trabajar con funciones y expresiones de valor

227

NOMBRE_ARTISTA: | NOMBRE_CD: VENDIDOS:
VARCHAR(60) VARCHAR(60) INT
Jennifer Warnes Famous Blue Raincoat 23
Joni Mitchell Blue 45
Joni Mitchell Court and Spark 34
William Ackerman Past Light 12
Bing Crosby That Christmas Feeling 34
Patsy Cline Patsy Cline: 12 Greatest Hits 54
John Barry Out of Africa 23
Leonard Cohen Leonard Cohen The Best of 20
Bonnie Raitt Fundamental 29
B.B. King Blues on the Bayou 18

Figura 10-1 Utilizar las funciones set en la tabla CDS_ARTISTA.

Utilizar la funcién COUNT

La primera funcién set que veremos serd la funcion COUNT. Como su nombre sugiere, la funcién
COUNT cuenta el ndimero de filas en una tabla o el nimero de valores en una columna, segin se
especifique en la instruccién SELECT. Cuando se utiliza la funcién COUNT, se debe especificar
un nombre de columna para contar el nimero de valores que no sean nulos en una columna, o

un asterisco para contar todas las filas en una tabla independientemente de los valores nulos. Por
ejemplo, si se quiere saber el nimero total de filas en la tabla CDS_ARTISTA, se puede utilizar la
siguiente instruccién SELECT:

SELECT COUNT (*) AS FILAS TOTALES
FROM CDS_ARTISTA;

En esta instruccion, la funcién COUNT es utilizada con un asterisco (en paréntesis) para con-
tar cada fila en la tabla CDS_ARTISTA vy arrojar la cuenta total. El valor arrojado se enlista en la
columna FILAS_TOTALES, que es el nombre dado a la columna arrojada en los resultados de la
consulta, como se muestra en los siguientes resultados:

FILAS TOTALES

Como se puede ver, los resultados de la consulta incluyen solamente un valor (una fila con una
columna), como podria esperarse de una funcién set utilizada sin ningiin agrupamiento de fila. El
valor 10 indica que la tabla CDS_ARTISTA contiene 10 filas.

228

Fundamentos de SQL

Al igual que con cualquier otra clase de instruccién SELECT, se pueden cualificar los resul-
tados de la consulta agregando a la instruccién las cldusulas necesarias. Por ejemplo, supongamos
que se quiere averiguar cudntas filas incluye un valor VENDIDOS mayor a 20. Se puede modificar
la instruccion SELECT para incluir una clausula WHERE:

SELECT COUNT (*) AS FILAS TOTALES
FROM CDS_ARTISTA
WHERE VENDIDOS > 20;

El valor arrojado ahora serd 7 en lugar de 10, debido a que solamente siete filas cumplen con la
condicién de bisqueda especificada en la clausula WHERE.

Se puede encontrar con que, en lugar de consultar el nimero de filas en una tabla, se quiera
conocer el nimero de valores en una columna dada (sin incluir los valores nulos). En este caso, se
especificaria el nombre de la columna en lugar del asterisco (*). Por ejemplo, supongamos que se
modifica la instruccién SELECT mostrada en el dltimo ejemplo para contar valores en la columna
NOMBRE_ARTISTA:

SELECT COUNT (NOMBRE ARTISTA) AS TOTAL DE ARTISTAS
FROM CDS ARTISTA
WHERE VENDIDOS > 20;

Cuando se ejecuta esta consulta, el valor arrojado una vez mas es 7. Esto significa que siete
valores NOMBRE_ARTISTA tienen un valor VENDIDOS mayor a 20. Sin embargo, esta instruc-
cién no contabiliza aquellos valores NOMBRE_ARTISTA que pudieran estar duplicados. Si se
quiere llegar a un conteo que tome en consideracidn los valores duplicados, se puede agregar la
palabra clave DISTINCT a la funcién COUNT:

SELECT COUNT (DISTINCT NOMBRE ARTISTA) AS TOTAL DE ARTISTAS
FROM CDS ARTISTA
WHERE VENDIDOS > 20;

Esta vez el valor arrojado es de 6 en lugar de 7. Esto se debe a que la columna NOMBRE _
ARTISTA incluye dos instancias del valor Joni Mitchell. La columna contiene solamente seis va-
lores tinicos que cumplen la condicién establecida en el criterio de bisqueda.

NOTA

Tenga en cuenta que la instruccién SELECT es procesada en un orden especifico: primero la
cléusula FROM, luego la cléusula WHERE, y después la clausula SELECT. Como resultado, la
funcién COUNT aplica solamente a las filas que cumplen la condicién de bisqueda definida
en la cléusula WHERE. Las filas que no estén incluidas en los resultados de la cléusula WHERE
no tendrén relevancia en la funcién COUNT. Para mayor informacién acerca de la instruccién
SELECT, véase el capitulo 7.

Como ya se menciond, si la columna especificada en la funcién atin contiene valores nulos,
esos valores no estardn incluidos en la cuenta. Por ejemplo, si se agregara una fila a la tabla CDS_
ARTISTA con un valor NOMBRE_ARTISTA nulo y un valor VENDIDOS mayor a 20, la instruc-
ciéon SELECT mostrada en el ejemplo anterior ain arrojaria un valor de 6 debido a que el valor
nulo no serfa contado. Sin embargo, si se utilizara un asterisco en lugar de un nombre de columna
en la funcién COUNT, todas las filas serian contadas, incluso si algunas tuvieran valores nulos.

Capitulo 10: Trabajar con funciones y expresiones de valor 229

Utilizar las funciones MAX y MIN

Las funciones MAX y MIN son tan similares que resulta ideal revisarlas juntas. La funcién MAX
arroja el valor mas alto para la columna especificada, y la funcién MIN arroja el valor mas bajo.
Ambas funciones requieren que se especifique un nombre de columna. Por ejemplo, supongamos
que se quiere arrojar el valor mds alto de la columna VENDIDOS en la tabla CDS_ARTISTA. La
instruccién SELECT quedaria de la manera siguiente:

SELECT MAX (VENDIDOS) AS MAX VENDIDOS
FROM CDS ARTISTA;

Cuando se ejecuta esta instruccion, los resultados de la consulta incluirdn solamente un valor
(una fila y una columna), como se muestra en los siguientes resultados:

MAX VENDIDOS

Este resultado, por si mismo, no resulta de mucha ayuda. Seria mejor si los resultados de la
consulta también incluyeran el nombre del artista y el CD. Sin embargo, SQL no soporta una ins-
trucciéon SELECT como la siguiente:

SELECT NOMBRE ARTISTA, NOMBRE CD, MAX (VENDIDOS)
FROM CDS ARTISTA;

Debido a que las funciones set tratan los datos como grupos, no es posible especificar el nom-
bre del artista y el nombre del CD sin agrupar los datos de alguna forma. De la manera en que estd
ahora, la funcién MAX trata la tabla entera como un grupo; sin embargo, ni los valores de NOM-
BRE_ARTISTA ni los de NOMBRE_CD estan agrupados de ninguna forma, por lo que la clausula
SELECT se vuelve ilégica.

Cada vez que se incluya una funcién set en una instruccion SQL, cada argumento en la lista
SELECT debera ser una funcién set o estar incluido en un grupo (utilizando la clausula GROUP
BY descrita posteriormente en este tema). Una forma relativa a esto es utilizar una subconsulta en
la clausula WHERE para arrojar el valor maximo y luego arrojar la informacién necesaria pasada
en ese valor, como se muestra en el siguiente ejemplo:

SELECT NOMBRE ARTISTA, NOMBRE CD, VENDIDOS
FROM CDS ARTISTA
WHERE VENDIDOS = (SELECT MAX (VENDIDOS)
FROM CDS_ARTISTA) ;

La subconsulta encuentra el valor maximo (54) y utiliza ese valor como una condicién en la
cldusula WHERE. El valor VENDIDOS debe ser igual a 54 mientras ése sea el valor mds alto de
VENDIDOS en la tabla. Una vez que se define la condicion de bisqueda necesaria en la clausula
WHERE, se pueden utilizar esos resultados para arrojar la informacién que se necesita. Si se eje-
cuta esta instruccion, se arrojard solamente una fila:

NOMBRE ARTISTA NOMBRE_CD VENDIDOS

Patsy Cline: Patsy Cline 12 Greatest Hits 54

230

Fundamentos de SQL

Como se puede ver, ahora se tiene toda la informacién necesaria para determinar cudl artista y cua-
les CD han tenido las ventas mds altas.

Como se dijo anteriormente, las funciones MAX y MIN son muy similares. Si se reemplaza
MAX por MIN en el ejemplo anterior, los resultados de la consulta seran los siguientes:

NOMBRE ARTISTA NOMBRE_CD VENDIDOS

William Ackerman Past Light 12

Se arroja la fila Past Light debido a que es la fila con el valor VENDIDOS mads bajo.

Las funciones MAX y MIN no estan limitadas a datos numéricos. También pueden ser utiliza-
das para comparar cadenas de caracteres. Por ejemplo, supongamos que se quiere saber cudl artista
apareceria primero alfabéticamente. La siguiente instruccidn arrojard B.B. King:

SELECT MIN (NOMBRE ARTISTA) AS LOW NOMBRE
FROM CDS ARTISTA;

Si se utiliza la funcion MAX, la instruccién arrojard William Ackerman.

NOTA

Es muy probable que las tablas en su base de datos agrupen separadamente los nombres de
los apellidos debido a que ése es un disefio mas flexible. Aqui se han incluido ambos nombres
a una sola columna para proporcionarle ejemplos simples sobre cémo funcionan las diferentes
instrucciones. Si los nombres estuvieran separados en dos columnas, la funcién MIN o MAX
necesitaria ser utilizada en la columna apropiada.

Ahora volvamos un poco a la idea de la agrupacién de datos. Como se menciond, una funcién
set trata a una tabla como un grupo si ningin agrupamiento ha sido implementado. Sin embargo,
se puede utilizar facilmente una clausula GROUP BY para agrupar los datos. Supongamos que se
quiere conocer la cantidad maxima vendida por cada artista. Se pueden agrupar los datos basados
en los valores NOMBRE_ARTISTA:

SELECT NOMBRE ARTISTA, MAX(VENDIDOS) AS MAX VENDIDOS
FROM CDS ARTISTA

WHERE VENDIDOS > 30

GROUP BY NOMBRE ARTISTA;

La clausula WHERE arroja solamente aquellas filas con un valor VENDIDOS mayor a 30.
Luego las filas son agrupadas de acuerdo con los valores NOMBRE_ARTISTA. Una vez que han
sido agrupadas, la cantidad maxima se arroja para cada artista, como se muestra en los siguientes
resultados de la consulta:

NOMBRE ARTISTA MAX VENDIDOS
Bing Crosby 34
Joni Mitchell 45
Patsy Cline 54

Capitulo 10: Trabajar con funciones y expresiones de valor 231

La cldusula GROUP BY crea tres grupos, uno para cada artista que cumple con la condicién
de la bisqueda definida en la clausula WHERE. De estos tres grupos, solamente uno consta de
valores duplicados: Joni Mitchell. Debido a que hay dos filas Joni Mitchell en la tabla CDS_AR-
TISTA, también hay dos valores VENDIDOS: 45 y 34. Como se puede ver, el valor mas alto es
45, que es el que estd incluido en los resultados de la consulta para el grupo Joni Mitchell. Si la
funciéon MIN hubiera sido utilizada en la instruccién SELECT, seria el valor 34 el que hubiera sido
arrojado. Para los otros dos grupos de artistas, debido a que sélo existe un valor para cada uno, es
ese mismo valor el que es arrojado sin importar si se utiliza la funcién MAX o la funcién MIN.

Utilizar la funcién SUM

A diferencia de las funciones MIN y MAX, que seleccionan los valores mds alto y mds bajo de
una columna, la funcién SUM agrupa valores de columna. Esto es particularmente ttil cuando se
necesita encontrar los totales para datos agrupados (a pesar de que la funciéon SUM, al igual que
cualquier otra funcién set, trata a la tabla entera como un grupo unico si ningin dato ha sido expli-
citamente agrupado).

Para entender mejor la funcién SUM, tomemos el dltimo ejemplo que vimos y hagdmosle al-
gunas modificaciones:

SELECT NOMBRE_ARTISTA, SUM(VENDIDOS) AS TOTAL_VENDIDOS
FROM CDS_ARTISTA

WHERE VENDIDOS > 30

GROUP BY NOMBRE ARTISTA;

Como se vio anteriormente, la clausula WHERE arroja solamente aquellas filas con un valor
VENDIDOS mayor a 30. Luego estas filas son agrupadas de acuerdo con los valores de NOM-
BRE_ARTISTA. Una vez agrupadas, las cantidades totales de cada grupo ARTIST son arrojadas
en los resultados de la consulta:

NOMBRE ARTISTA TOTAL_VENDIDOS

Bing Crosby 34
Joni Mitchell 79
Patsy Cline 54

Observe que los resultados de la consulta incluyen los mismos tres grupos que fueron arroja-
dos en el ejemplo anterior. La tnica diferencia es que el valor TOTAL_VENDIDOS en la fila Joni
Mitchell es de 79, a diferencia de 45 o 34. La funciéon SUM junta estos dos valores y arroja un
valor de 79. Debido a que los otros dos grupos solamente constan de una entrada, sus valores TO-
TAL_VENDIDOS son los mismos que sus valores VENDIDOS en la tabla CDS_ARTISTA.

No es obligatorio utilizar una clausula GROUP BY en una instruccién SELECT que utilice
una funcién SUM. Se puede crear una instruccion SELECT tan simple como la siguiente:

SELECT SUM(VENDIDOS) AS TOTAL VENDIDOS
FROM CDS ARTISTA;

232 Fundamentos de SQL

Esta instruccion simplemente coloca juntos todos los valores en la columna VENDIDOS vy arroja
un valor de 292. Por si misma, esta informacioén no siempre es de mucha ayuda, y es por eso que
utilizar la funcién junto con una clausula GROUP BY resulta mucho més efectivo.

Utilizar la funcién AVG

Como se puede imaginar, la funcién AVG simplemente promedia los valores en una columna es-
pecificada. Al igual que la funciéon SUM, es més efectiva cuando se utiliza junto con una cldusula
GROUP BY, a pesar de que puede ser utilizada sin la clausula, como se muestra en el siguiente
ejemplo:
SELECT AVG (VENDIDOS) AS PROM VENDIDOS

FROM CDS_ARTISTA;

Esta instruccién arroja un valor de 29, que estd basado en los valores VENDIDOS en la tabla
CDS_ARTISTA. Esto significa que, para todos los CD enlistados en la tabla, se ha vendido un pro-
medio de 29 de cada uno. A pesar de que esta informacion puede ser bastante 1til, serfa de mucha
mads ayuda si se estableciera una instruccién que agrupe los datos:

SELECT NOMBRE_ARTISTA, AVG(VENDIDOS) AS PROM VENDIDOS
FROM CDS_ARTISTA

WHERE VENDIDOS > 30

GROUP BY NOMBRE ARTISTA;

Si se ejecuta esta instruccion, se obtendran los siguientes resultados de la consulta:

NOMBRE ARTISTA PROM_VENDIDO

Bing Crosby 34
Joni Mitchell 39
Patsy Cline 54

Como en los ejemplos anteriores, se crearon tres grupos, y para cada grupo se calcula un pro-
medio basado en los valores de la columna VENDIDOS. Para la fila Joni Mitchell, este promedio
estd basado en los valores VENDIDOS de 45 y 34. Para las otras dos filas, el promedio es el mis-
mo que el valor VENDIDOS debido a que solamente hay una fila por cada artista.

NOTA

La precisién de los valores arrojados por la funcién AVG depende del tipo de datos de la co-
lumna, si se utilizan decimales, y de cémo promedia los nimeros la implementacién SQL. Por
ejemplo, el promedio exacto para la fila Joni Mitchell es 39.5, pero debido a que la columna
VENDIDOS estd configurada con un tipo de datos INT, solamente se utilizan ndmeros enteros.
Para algunas implementaciones, el .5 es ignorado y no se redondea, como se muestra en los
dltimos resultados de consulta de ejemplo.

Utilizar funciones de valor

Las funciones de valor son un tipo de funcién que permite arrojar un valor que de alguna manera
calcula o deriva informacién de los datos almacenados dentro de las tablas o de la misma imple-

Capitulo 10: Trabajar con funciones y expresiones de valor 233

mentacién SQL. Las funciones de valor son similares a las funciones set en el sentido de que reali-
zan algtn tipo de accién por debajo del agua para llegar a ese valor. Sin embargo, las funciones de
valor son diferentes de las funciones set en que no requieren que los datos sean agrupados.

SQL soporta diferentes funciones de valor. Cudles funciones son soportadas por cudles im-
plementaciones SQL puede variar ampliamente. Ademas, el significado de un nombre de funcién
puede a veces variar de una implementacién a otra. Aun con eso, existen algunas consistencias
entre las diferentes implementaciones, y ésas son las funciones de valor en las cuales nos enfoca-
remos.

Las funciones de valor que se discutirdn se dividen en dos categorias: funciones de valor de
cadena y funciones de valor fecha y hora. Para ilustrar coémo trabajan estas funciones se utilizard la
tabla FECHAS_VENTAS, mostrada la figura 10-2.

Trabajar con funciones de valor de cadena

Una funcién de valor de cadena permite manipular datos de cadenas de caracteres para producir
un valor preciso que esté basado en la cadena de caracteres original. Cuando se utiliza una funcién
de valor de cadena, se debe proporcionar la cadena de caracteres como un pardmetro de la funcion.
Ese pardmetro es entonces convertido a un nuevo valor de acuerdo con el propdsito de esa funcién
y de otros pardmetros que pudieran ser especificados. En esta seccidn se presentaran tres funciones
de valor de cadena: SUBSTRING, UPPER y LOWER.

Utilizar la funcién de valor de cadena SUBSTRING

La funcién del valor de cadena SUBSTRING extrae un nimero definido de caracteres de una
cadena de caracteres identificada para crear una nueva cadena. Esa cadena de caracteres original
puede ser derivada de una columna o puede ser declarada explicitamente. En ambos casos, la cade-

DISCO_COMPACTO:
VARCHAR(60)

FECHA_VENTA:
TIMESTAMP

Famous Blue Raincoat

2002-12-22 10:58:05.120

Blue

2002-12-22 12:02:05.033

Court and Spark

2002-12-22 16:15:22.930

Past Light

2002-12-23 11:29:14.223

That Christmas Feeling

2002-12-23 13:32:45.547

Patsy Cline: 12 Greatest Hits

2002-12-23 15:51:15.730

Out of Africa

2002-12-23 17:01:32.270

Leonard Cohen The Best of

2002-12-24 10:46:35.123

Fundamental

2002-12-24 12:19:13.843

Blues on the Bayou

2002-12-24 14:15:09.673

Figura 10-2 Uso de funciones de valor en la tabla FECHAS_VENTAS.

234

Fundamentos de SQL

na de caracteres pasa como un pardmetro de la funciéon SUBSTRING, junto con un punto de inicio
y, opcionalmente, una especificacion de longitud. Por ejemplo, supongamos que se quieren arrojar
solamente los primeros 10 caracteres de los valores en la columna DISCO_COMPACTO en la ta-
bla FECHAS_VENTAS. Se puede crear una instruccion SELECT similar a la siguiente:

SELECT SUBSTRING (DISCO_COMPACTO FROM 1 FOR 10) AS NOMBRE ABREVIADO
FROM FECHAS VENTAS;

La funcién SUBSTRING incluye tres parametros. El primero es el nombre de la columna,
DISCO_COMPACTO, que identifica la fuente utilizada para la cadena de caracteres. El siguiente
parametro, FROM 1, indica que la funcién empezara a contar a partir del primer caricter. El ter-
cer parametro, 10, sigue a la palabra clave FOR. El parametro FOR 10, que es opcional, indica que
seran incluidos hasta 10 caracteres en la nueva cadena de caracteres.

NOTA

La mayoria de las implementaciones, incluyendo SQL Server, MySQL y Oracle, no utilizan

las palabras clave FROM y FOR (simplemente se separan los parédmetros utilizando comas).
Ademés, en Oracle la funcién es llamada SUBSTR. Aqui estd la misma instruccién modificada
para Oracle:

SELECT SUBSTR(DISCO_COMPACTO, 1, 10) AS NOMBRE_ABREVIADO
FROM FECHAS_VENTAS;

Si se ejecuta esta instruccién SELECT, se obtendrdn los siguientes resultados de la consulta:

NAME_ABREVIADO

Famous Blu
Blue

Court and
Past Light
That Chris
Patsy Clin
Out of Afr
Leonard Co
Fundamenta
Blues on t

Observe que solamente los primeros 10 caracteres de cada valor DISCO_COMPACTO estdn
incluidos en los resultados. Para aquellos valores que tiene menos de 10 caracteres, aparece
el nombre completo.

El parametro FROM puede aceptar un nimero negativo o un cero como parametro, asumiendo
que la implementacién SQL lo permite. Cuando utilice un nimero negativo o un cero, tenga en
cuenta que el 1 representa lo que se puede considerar como una posicién de inicio normal. El si-
guiente cardcter a la izquierda del 1 es 0. El caracter a la izquierda de O es —1, y asf sucesivamente.
El parametro FOR cuenta caracteres empezando desde el punto de inicio. Si se utiliza un cero o un
nimero negativo, la funcién SUBSTRING actda como si de todas maneras existieran caracteres

Capitulo 10: Trabajar con funciones y expresiones de valor 235

en esos lugares. Por ejemplo, supongamos que se modifica la instruccién SELECT anterior de la
siguiente manera:

SELECT SUBSTRING (DISCO_COMPACTO FROM -2 FOR 10) AS NOMBRE ABREVIADO
FROM FECHAS VENTAS;

Si se ejecuta esta instruccion, solamente los primeros siete caracteres de cada nombre
serian arrojados. Si en lugar de eso se utiliza un cero, solamente los primeros nueve caracteres se-
rian arrojados. Solamente cuando se utiliza un pardmetro FROM de 1 se arroja exactamente el nd-
mero de caracteres (desde la cadena de caracteres) que estan especificados por el pardmetro FOR.

La funcién SUBSTRING no esta limitada a la clausula SELECT. De hecho, utilizarla en una
clausula WHERE puede ser muy titil cuando se define una condicién de bisqueda. Por ejemplo,
la siguiente instrucciéon SELECT utiliza la funcién SUBSTRING para arrojar filas que inician con
Blue:

SELECT DISCO COMPACTO, FECHA VENTA
FROM FECHAS VENTAS
WHERE SUBSTRING (DISCO_COMPACTO FROM 1 FOR 4) = 'Blue';

En esta instruccion, la funcién SUBSTRING arroja los primeros cuatro caracteres de los va-
lores DISCO_COMPACTO y los compara con el valor Blue. Solamente dos filas son incluidas en
los resultados de la consulta:

DISCO_COMPACTO FECHA VENTA

Blue 2002-12-22 12:02:05.033
Blues on the Bayou 2002-12-24 14:15:09.673

Ambas filas en los resultados de la consulta tienen un valor DISCO_COMPACTO que inicia con
Blue. Ninguna otra fila cumple con la condicién de bisqueda especificada en la clausula WHERE.

NOTA

El manejo de datos de fecha y hora varia considerablemente a través de las implementaciones
de SQL, por lo que los resultados de su DBMS pueden variar enormemente con respecto a la

columna FECHA_VENTA.

Utilizar las funciones de valor de cadena UPPER y LOWER

Las funciones de valor de cadena UPPER y LOWER son muy similares en que ambas son utiliza-
das para convertir caracteres entre mayusculas y mindsculas. La funcién UPPER permite convertir
una cadena de caracteres completa a mayusculas. La funcion LOWER permite convertir una ca-
dena de caracteres completa a mintdsculas. Por ejemplo, supongamos que se quiere modificar la
instruccién SELECT mostrada en el tltimo ejemplo para arrojar todos los valores DISCO_COM-
PACTO en mayusculas. Su instruccién SELECT ahora incluirfa una funcién UPPER:

SELECT UPPER (DISCO_COMPACTO) AS TITULO, FECHA VENTA
FROM FECHAS VENTAS
WHERE SUBSTRING (DISCO_COMPACTO FROM 1 FOR 4) = 'Blue';

236

Fundamentos de SQL

Los resultados de la consulta son los mismos que en el dltimo ejemplo, sélo que esta vez en
los titulos de CD estdn todos en mayusculas, como se muestra en los siguientes resultados:

Titulo FECHA VENTA

BLUE 2002-12-22 12:02:05.033
BLUES ON THE BAYOU 2002-12-24 14:15:09.673

Si se hubiera utilizado la funcién LOWER en lugar de UPPER, los titulos de CD estarian todos
en minusculas, incluso sin mayuscula al inicio de las palabras. Estas funciones también son muy
utiles para comparar datos en implementaciones que son sensibles a mayusculas y mindsculas
cuando no se sabe cudl de las dos fue utilizada para almacenar los datos, o cuando se quiere estar
seguro de que los datos aparezcan en mayusculas o mindsculas al momento que se estdn insertan-
do, actualizando o convirtiendo datos de una base de datos a otra.

Trabajar con funciones de valor de fecha y hora

Las funciones de valor de fecha y hora proporcionan informacién acerca de la fecha y la hora
actuales. Cada funcién arroja un valor basado en la fecha u hora (o ambos) tal como estdn configu-
rados en el sistema operativo. SQL:2006 soporta cinco funciones de valor de fecha y hora, que se
describen en la tabla 10-1.

NOTA

Las implementaciones SQL varian ampliamente en cuanto a cémo implementan la funciona-
lidad fecha y hora; consecuentemente, la implementacién de funciones fecha y hora también
varia. Por ejemplo, SQL Server soporta solamente la funcién de valor fecha y hora CURRENT
TIMESTAMP. Por otro lado, Oracle soporta las funciones de valor fecha y hora CURRENT_
DATE, CURRENT_TIMESTAMP y LOCALTIMESTAMP, pero no las funciones CURRENT_TIME y
LOCALTIME. No obstante, MySQL soporta todas las cinco. Adicionalmente, los valores exactos
generados por estas funciones también pueden variar de implementacién a implementacién.
Por ejemplo, los resultados de consulta no siempre incluirén informacién acerca del huso hora-

rio actual, y algunos representan la hora utilizando un formato de 24 horas en lugar de A.M.
y PM.

Funcién de valor Descripcién
CURRENT_DATE Avrroja un valor que representa la fecha actual.
CURRENT_TIME Arroja un valor que representa la hora actual. El valor incluye informacién

acerca del huso horario actual, concerniente a Coordinated Universal Time
(UCT), o lo que antes era llamado Greenwich Mean Time (GMT).

CURRENT_TIMESTAMP Arroja un valor que rerresenta la fecha y la hora actuales. El valor incluye
informacién acerca del huso horario actual, concerniente al UCT.

LOCALTIME Arroja un valor que representa la hora actual.

LOCALTIMESTAMP Arroja un valor que representa la fecha y la hora actudles.

Tabla 10-1 Funciones de valor fecha y hora soportadas por SQL:2006.

Capitulo 10: Trabajar con funciones y expresiones de valor 237

Debido a que la funcién de valor fecha y hora CURRENT_TIMESTAMP es soportada tanto
por SQL Server como por Oracle, démosle un vistazo mds detallado. No obstante, tenga en mente
que implementar cualquiera de las funciones fecha y hora de SQL es un proceso similar, depen-
diendo de cudles funciones se soporten por la implementacion especifica SQL en la que se esté tra-
bajando. Al comprender cdmo trabaja la funcion CURRENT_TIMESTAMP, se obtendrd una mu-
cho mejor comprensién de cdmo trabajan todas las funciones. Sin embargo, asegtirese de revisar la
documentacién de su implementacién para mayor informacién sobre cualquiera de las funciones
que sean soportadas por ese producto.

Dependiendo de la implementacién SQL, se puede utilizar la funcion CURRENT_TIMES-
TAMP en una instruccién SELECT para simplemente recuperar la informacion actual de la marca
de fecha y hora. Como se puede esperar de cualquier cuestion relacionada con la funcionalidad
fecha y hora, la forma en que se convoca una funcién puede variar. Sin embargo, en algunos casos
es posible utilizar una instruccidn tan sencilla como la siguiente:

SELECT CURRENT_ TIMESTAMP

Esta instruccion recuperard la fecha y hora actuales en algunas implementaciones. En otras
implementaciones, puede ser necesario agregar una cldusula FROM a la instruccién para recuperar
esta informacion. Por ejemplo, Oracle proporciona una tabla simulada llamada especificamente
DUAL porque requiere una cldusula FROM en todas las instrucciones SELECT. Sin importar
c6mo se necesite escribir la instruccién SELECT, con toda probabilidad no serd muy aprovechable
utilizar una funcién CURRENT_TIMESTAMP de esta manera. Probablemente se hard un mejor
uso de las funciones fecha y hora utilizdndolas para comparar datos o para insertar datos automati-
camente.

NOTA

La mayoria de las implementaciones SQL tienen funciones especiales para manejar los datos
de fecha y hora. Por ejemplo, SQL Server proporciona la funcién getdate para arrojar la
fecha actual, mientras que Oracle proporciona el valor especial SYSDATE para el mismo pro-
pésito. Las primeras implementaciones SQL no incluian ningin soporte para los tipos de datos
fecha y hora, pero tan pronto se volvieron populares las bases de datos relacionales en apli-
caciones de negocios, los usuarios empezaron a pedirlas. Esto empezé a confundir a los E::bri-
cantes al agregar nuevas caracteristicas, y debido a que no habia un estdndar SQL a seguir,
el resultado fue una amplia variacién entre las implementaciones. Productos como MySQL que
fueron desarrollados después del estandar tienen muy pocas de esas variaciones. Como siem-
pre, revise la informacién del fabricante para mayores detalles.

Por ejemplo, supongamos que se quiere utilizar la tabla FECHAS_VENTAS (mostrada en
la figura 10-2) para insertar la hora y fecha actuales automdaticamente en la tabla cada vez que se
agregue una nueva fila. La definicién de dicha tabla podria lucir de la siguiente manera:

CREATE TABLE FECHAS VENTAS

(DISCO_COMPACTO VARCHAR (60) ,
FECHA VENTA DATETIME DEFAULT CURRENT TIMESTAMP) ;

En esta definicién de tabla se ha asignado un valor por defecto a la columna FECHA_VENTA
que estd basado en la funcion CURRENT_TIMESTAMP. Cada vez que una fila sea agregada a
la tabla, el valor de fecha y hora serd insertado en la columna DATE_SOLD para esa fila. Como

238

Fundamentos de SQL

resultado, se pueden crear instrucciones INSERT que especifiquen solamente el valor DIS-
CO_COMPACTO. La fecha y la hora actuales, por lo tanto, son agregadas automdticamente a la
columna DATE_SOLD al momento que se agrega la fila.

Utilizar expresiones de valor

Una expresion de valor es un tipo de expresion que arroja un valor de datos. La expresion puede
incluir nombres de columna, valores, operadores matematicos, palabras clave u otros elementos
que juntos creen algun tipo de férmula o expresion que arroje un valor tnico. Por ejemplo, se pue-
den combinar los valores de dos columnas para crear un valor, o se pueden realizar operaciones en
el valor de una columna para crear un nuevo valor.

En esta seccién daremos un vistazo a las expresiones de valor numéricas y también a las ex-
presiones de valor CASE y CAST. Para demostrar cémo funcionan varias de estas expresiones,
utilizaremos la tabla RASTREO_CD, mostrada en la figura 10-3.

Trabajar con expresiones de valor numéricas

Las expresiones de valor numéricas son expresiones que utilizan operadores matematicos para
realizar cdlculos sobre valores de datos numéricos almacenados en tablas. Se pueden utilizar estos
operadores para sumar, sustraer, multiplicar y dividir estos valores. La tabla 10-2 muestra los cua-
tro operadores que se pueden utilizar para crear expresiones de valor numéricas.

Es posible construir expresiones de valor numéricas de una forma muy parecida a como se
construyen las formulas matemadticas. Los principios basicos son los mismos. Por ejemplo, la mul-
tiplicacidén y la divisién toman precedencia sobre la suma y la resta, y los elementos que deben ser

NOMBRE_CD: CATEGORIA_CD | EN_EXISTENCIA: |EN_PEDIDO:| VENDIDOS:
VARCHAR(60) CHAR(4) INT INT INT
Famous Blue Raincoat FROK 19 16 34
Blue CPOP 28 22 56
Court and Spark CPOP 12 11 48
Past Light NEWA 6 7 22
That Christmas Feeling XMAS 14 14 34
Patsy Cline: 12 Greatest Hits CTRY 15 18 54
Out of Africa STRK 8 5 26
Leonard Cohen The Best of FROK 6 8 18
Fundamental BLUS 10 6 21
Blues on the Bayou BLUS 11 10 17

Figura 10-3 Utilizar expresiones de valor en la tabla RASTREO_CD.

Capitulo 10: Trabajar con funciones y expresiones de valor 239

Expresion Operador Ejemplo

Suma + EN_EXISTENCIA + EN_PEDIDO

Sustraccién - VENDIDOS - (EN_EXISTENCIA + EN_ORDEN)
Multiplicacién * EN_EXISTENCIA * 2

Divisién / VENDIDOS / 2

Tabla 10-2 Utilizar expresiones de valor numéricas para calcular datos.

calculados primero se encierran en paréntesis; de otra manera, cada operacién se calcula de acuer-
do con la precedencia y orden en la cual fue descrita. Por ejemplo, la férmula 2 + 2 * 5/ 4 es igual
a4.5; sin embargo, la férmula (2 + 2) * 5/4 es igual a 5. En la primer férmula, el 2 fue multiplica-
do por 5, luego dividido entre 4 y luego se le sumaron 2. En la segunda férmula, al 2 se le sumaron
2, luego fue multiplicado por 5 y luego dividido entre 4.

Ahora demos un vistazo a un ejemplo de una expresioén de valor numérica. Supongamos que
se quiere agregar la columna EN_EXISTENCIA a la columna EN_PEDIDO en la tabla RAS-
TREO_CD. Se puede crear una instruccién SELECT similar a la siguiente:

SELECT NOMBRE CD, EN_EXISTENCIA, EN PEDIDO, (EN EXISTENCIA + EN PEDIDO)
AS TOTAL
FROM RASTREO CD

Como se puede ver, la cldusula SELECT especifica primero tres nombres de columna: NOM-
BRE_CD, EN_EXISTENCIA y EN_PEDIDO. Por lo regular éstos son seguidos por una expresion
de valor numérica: (EN_EXISTENCIA + EN_PEDIDO). Los valores de las columnas EN_EXIS-
TENCIA y EN_PEDIDO se agregan juntos y se incluyen en los resultados de la consulta bajo una
columna llamada TOTAL, como se muestra en los siguientes resultados:

NOMBRE_ CD EN_EXISTENCIA EN_PEDIDO TOTAL
Famous Blue Raincoat 19 16 35
Blue 28 22 50
Court and Spark 12 11 23
Past Light 6 7 13
That Christmas Feeling 14 14 28
Patsy Cline: 12 Greatest Hits 15 18 33
Out of Africa 8 5 13
Leonard Cohen The Best Of 6 8 14
Fundamental 10 6 16
Blues on the Bayou 11 10 21

Para cada fila se ha agregado un valor a la columna TOTAL que junta los valores en la columna
EN_EXISTENCIA y en la columna EN_PEDIDO.

Las expresiones de valor numéricas no estdn limitadas a la clausula SELECT. Por ejemplo, se
puede utilizar una en una cldusula WHERE para especificar una condicién de bisqueda. Suponga-
mos que se quieren arrojar los mismos resultados que en la instruccién SELECT anterior pero sélo

240

Fundamentos de SQL

para aquellos CD con un valor TOTAL mayor a 25. Se puede modificar la instruccién de la manera
siguiente:

SELECT NOMBRE CD, EN_EXISTENCIA, EN PEDIDO, (EN EXISTENCIA + EN PEDIDO)
AS TOTAL

FROM RASTREO_ CD

WHERE (EN_EXISTENCIA + EN PEDIDO) > 25

Ahora los resultados de la bisqueda incluirdn solamente 4 filas, como se muestra a continua-
cion:

NOMBRE_ CD EN_EXISTENCIA EN_PEDIDO TOTAL
Famous Blue Raincoat 19 16 35
Blue 28 22 50
That Christmas Feeling 14 14 28
Patsy Cline: 12 Greatest Hits 15 18 33

Los operadores de valor numéricos pueden también ser combinados entre si para crear expre-
siones mds complejas. En el siguiente ejemplo se incluye una expresion adicional que calcula tres
conjuntos de valores y los combina en una columna en los resultados de la consulta:

SELECT NOMBRE_CD, EN_EXISTENCIA, EN PEDIDO, (EN EXISTENCIA + EN PEDIDO)
AS TOTAL,
SOLD, (SOLD - (EN EXISTENCIA + EN PEDIDO)) AS ESCASEZ
FROM RASTREO CD
WHERE (EN EXISTENCIA + EN_PEDIDO) > 25

Esta instruccion permite calcular cudntos CD se tienen disponibles (EN_EXISTENCIA +
EN_PEDIDO) y se comparan con cudntos se han vendido. Luego la diferencia se agrega en la co-
lumna ESCASEZ en los resultados de la consulta. Si se han vendido més CD de los que estan dis-
ponibles, un nimero positivo se coloca en la columna ESCASEZ. Si, por otro lado, hay suficientes
CD disponibles, se crea un nimero negativo. Los siguientes resultados de la consulta muestran las
cantidades calculadas cuando se ejecuta la instruccion SELECT:

NOMBRE_CD EN_EXISTENCIA EN_PEDIDO TOTAL VENDIDOS ESCASEZ
Famous Blue Raincoat 19 16 35 34 -1
Blue 28 22 50 56 6

That Christmas Feeling 14 14 28 34 6
Patsy Cline: 12 Greatest Hits 15 18 33 54 21

Los resultados de la consulta ahora incluyen dos columnas calculadas: TOTAL y ESCASEZ. To-
dos los demds valores (EN_EXISTENCIA, EN_PEDIDO y VENDIDOS) se toman directamente
de la tabla.

Como se puede ver, las expresiones de valor numéricas son muy flexibles y pueden ser utili-
zadas de muchas diferentes formas. Como un agregado a los métodos que se han visto hasta ahora,
se pueden combinar valores de columna con valores especificos. Por ejemplo, supongamos que se

Capitulo 10: Trabajar con funciones y expresiones de valor 241

quiere revisar cuantos CD se tendrian disponibles si se duplicara la cantidad que se tenia bajo pe-
dido para aquellos CD en los que hay menos de 15 disponibles:

SELECT NOMBRE_CD, EN_EXISTENCIA, EN PEDIDO, (EN EXISTENCIA + EN_PEDIDO)
AS TOTAL,
(EN_EXISTENCIA + EN PEDIDO * 2) AS DOBLE ORDEN
FROM RASTREO CD
WHERE (EN EXISTENCIA + EN_PEDIDO) < 15

La segunda expresion de valor numérica en esta instruccién multiplica el valor EN_PEDIDO
por 2, lo suma al valor EN_EXISTENCIA, e inserta el total en la columna DOBLE_ORDEN de
los resultados de la consulta, como se muestra en los siguientes resultados:

NOMBRE CD EN EXISTENCIA EN PEDIDO TOTAL DOBLE_ORDEN
Past Light 6 7 13 20
Out of Africa 8 5 13 18
Leonard Cohen The Best Of 6 8 14 22

Los resultados de la consulta incluyen solamente tres filas que cumplen la condicién de la
cldusula WHERE. Para estas filas, las columnas EN_EXISTENCIA y EN_PEDIDO se calculan
para proporcionar los datos que puedan ser ttiles para el usuario, dependiendo de sus necesidades.
La mejor parte es que estos valores no tienen que ser almacenados en la base de datos. En su lugar,
son calculados cuando se ejecuta la instrucciéon SELECT, en lugar de tener que mantener tablas
con datos adicionales.

Utilizar la expresién de valor CASE

Una expresion de valor CASE permite determinar una serie de condiciones que modifican valo-
res especificos arrojados por la instrucciéon SQL. Se puede cambiar la forma en que un valor esta
representado o se calcula un nuevo valor. Cada valor es modificado de acuerdo con la condicién
especificada dentro de la expresion CASE. Una expresion de valor incluye la palabra clave CASE
y una lista de condiciones. La dltima condicién proporciona una condicién por defecto si ninguna
de las condiciones anteriores ha sido cumplida. Entonces la expresion de valor se cierra utilizando
la palabra clave END.

Demos un vistazo a un ejemplo para proporcionar una mejor idea de cémo funciona esto.
Supongamos que se quiere incrementar el nimero de CD que se tienen bajo pedido, pero se quiere
incrementar la cantidad solamente para ciertos CD. Ademas, se quiere fundamentar cudntos CD se
agregan al pedido sobre la cantidad actual. Antes de actualizar realmente la tabla, se puede ver lo
que serian los nuevos valores al crear una instruccién SELECT que consulte la tabla RASTREO_
CD, como se muestra en el siguiente ejemplo:

SELECT NOMBRE_CD, EN_PEDIDO, NUEVAS ORDENES =
CASE
WHEN EN PEDIDO < 6 THEN EN_PEDIDO + 4
WHEN EN_PEDIDO BETWEEN 6 AND 8 THEN EN_PEDIDO + 2
ELSE EN_PEDIDO
END
FROM RASTREO_ CD
WHERE EN_PEDIDO < 11;

242

Fundamentos de SQL

En esta instruccion se especifican tres columnas: NOMBRE_CD, EN_PEDIDO y NUE-
VAS_ORDENES. La columna NUEVAS_ORDENES es la columna creada por los resultados de
la bisqueda. Contendra los valores actualizados para la expresion de valor CASE. La expresion en
si misma consta del nombre de columna (NUEVAS_ORDENEYS), el signo igual, la palabra clave
CASE, dos clausulas WHEN/THEN, una cldusula ELSE y la palabra clave END. Cada cldusula
WHEN/THEN representa una de las condiciones. Por ejemplo, la primera cldusula especifica que
si el valor EN_PEDIDO es menor a 6, entonces 4 debera ser agregado a ese valor. La segunda
clausula WHEN/THEN especifica que si el valor EN_PEDIDO cae dentro del rango de 6 a 8, en-
tonces 2 deberd ser agregado al valor.

Después de las clausulas WHEN/THEN, la cldusula ELSE especifica la condicién final. Si el
valor no cumple las condiciones definidas en las clausulas WHEN/THEN, la clausula ELSE espe-
cifica una condicién por defecto. En el caso de la instruccién SELECT anterior, la clausula ELSE
simplemente se referia a la columna EN_PEDIDO, sin especificar ninguna modificacion. (Esto
resulta lo mismo que definir EN_PEDIDO + 0.) En otras palabras, si ninguna de las condiciones
WHEN/THEN se cumplen, el valor EN_PEDIDO permanece igual. Si se ejecutara la instruccion
SELECT, se recibirian los siguientes resultados:

NOMBRE_ CD EN_PEDIDO NUEVAS_ ORDENES
Past Light 7 9
Out of Africa 5 9
Leonard Cohen The Best Of 8 10
Fundamental 6 8
Blues on the Bayou 10 10

Como se puede ver, la fila Out of Africa se incrementa en 4, la fila Blues on the Bayou no
cambia en lo absoluto, y las otras tres filas se incrementan en 2.

Ademds de modificar los valores, se puede utilizar una expresion de valor CASE para renom-
brar valores. Esto es particularmente titil si los resultados de la consulta incluyen valores que no
son reconocibles facilmente. Por ejemplo, supongamos que se quiere crear una consulta que arroje
datos desde la columna CD_CATEGORY de la tabla RASTREO_CD. Se pueden renombrar los
valores en la columna para que la informacidn arrojada sea mds entendible para los usuarios, como
se muestra en la siguiente instruccion SELECT:

SELECT NOMBRE CD, CATEGORIA CD =
CASE

WHEN CATEGORIA CD '"FROK' THEN 'Folk Rock'

WHEN CATEGORIA CD = 'CPOP' THEN 'Classic Pop'
WHEN CATEGORIA CD = 'NEWA' THEN 'New Age'
WHEN CATEGORIA CD = 'XMAS' THEN 'Christmas'
WHEN CATEGORIA CD = 'CTRY' THEN 'Country'
WHEN CATEGORIA CD = 'STRK' THEN 'Soundtrack'
WHEN CATEGORIA CD = 'BLUS' THEN 'Blues'

ELSE NULL

END

FROM RASTREO_CD;

Capitulo 10: Trabajar con funciones y expresiones de valor

243

NOTA

No es necesario colocar los diferentes componentes de la expresién de valor CASE en lineas
separadas, como se hizo aqui. Se hizo de esa forma para mostrar més claramente cada com-
ponente. También devuelve el cédigo mds legible para cualquiera que lo revise.

En esta instruccion SELECT, los diferentes valores en la columna CATEGORIA_CD fueron
renombrados a nombres mds comunes. Observe que no se necesitan repetir los nombres de co-
lumna a la derecha de la palabra clave THEN. La construccién del predicado se asume por el con-
texto de la cldusula. Cuando se ejecuta esta instruccion, se reciben los siguientes resultados de la
consulta:

NOMBRE_CD CATEGORIA CD
Famous Blue Raincoat Folk Rock
Blue Classic Pop
Court and Spark Classic Pop
Past Light New Age
That Christmas Feeling Christmas
Patsy Cline: 12 Greatest Hits Country

Out of Africa Soundtrack
Leonard Cohen The Best Of Folk Rock
Fundamental Blues

Blues on the Bayou Blues

Como se puede ver, nombres mas faciles de utilizar aparecen en la columna CATEGO-
RIA_CD. Si ninguno de los valores originales cumple con la condicién definida en las cldusulas
WHEN/THEN, un valor nulo serd insertado en los resultados de la consulta.

Pregunta al experto

P: . Se puede utilizar una expresion de valor CASE en una instruccion diferente a SE-
LECT?

R: Tambicn se puede hacer uso de la expresion de valor CASE en la cldusula SET o en una
instruccién UPDATE. Por ejemplo, supongamos que se quieren actualizar los valores en la
columna EN_PEDIDO en la tabla RASTREO_CD (mostrada en la figura 10-3). Es posible
actualizar esos valores definiendo condiciones especificas en una expresion CASE:

UPDATE RASTREO CD
SET EN PEDIDO =
CASE
WHEN EN_PEDIDO < 6 THEN EN PEDIDO + 4
WHEN EN PEDIDO BETWEEN 6 AND 8 THEN EN PEDIDO + 2
ELSE EN_PEDIDO
END (continda)

244 Fundamentos de SQL

Esta instruccion agregard 4 a los valores EN_PEDIDO que sean menores a 6, y agregard 2 a
los valores EN_PEDIDO que caigan dentro del rango de 6 a 8. De otra manera, no se cambia-
ran filas adicionales.

P: .Se puede hacer referencia a mas de una columna en la expresién de valor CASE?

R: Si, se puede hacer referencia a mas de una columna. Supongamos que se quieren actualizar los
valores EN_PEDIDO, pero basando esas actualizaciones en los valores CATEGORIA_CD. Se
puede crear una instruccidn similar a la siguiente:

UPDATE RASTREO_CD
SET EN_PEDIDO =
CASE
WHEN CATEGORIA CD 'CPOP' THEN EN_PEDIDO * 3
WHEN CATEGORIA CD = 'BLUS' THEN EN_PEDIDO * 2
ELSE EN_PEDIDO
END

En esta instruccion, los valores EN_PEDIDO son multiplicados por 3 cuando los valores CA-
TEGORIA_CD igualan a CPOP, y los valores EN_PEDIDO son multiplicados por 2 cuando
los valores CATEGORIA_CD igualan BLUS. De otra manera, no se cambia ningtn valor.

P: ¢ Existe alguna implicacion de rendimiento cuando se utiliza la expresién de valor
CASE?

R: Aunque no existen detalles inherentes al rendimiento relacionados al uso de las expresiones de
valor CASE, si es posible pasar los limites. En general, mientras mas compleja es la instruc-
cion, especialmente en términos de anidado y de una légica condicional elaborada, mayores
recursos se necesitaran para analizar gramdticamente y ejecutar la instruccion.

Utilizar la expresién de valor CAST

La expresion de valor CAST sirve a un propdsito muy diferente al de la expresiéon CASE. La ex-
presién CAST permite cambiar el tipo de datos de un valor por un valor literal o cuando se recupe-
ra ese valor desde la base de datos. Sin embargo, no cambia el tipo de datos de la columna fuente.
Esto es particularmente util cuando se trabaja con lenguajes de programacion en los cuales los
tipos de datos no coinciden y se necesita utilizar un comtn denominador para trabajar con el valor.
Para utilizar la expresion de valor CAST, se debe especificar la palabra clave CAST, y, en
paréntesis, proporcionar el nombre de columna, la palabra clave AS, y el nuevo tipo de datos, en
ese orden. Para ilustrar esto, regresemos a la tabla FECHAS_VENTAS mostrada en la figura 10-2.
La tabla incluye la columna DISCO_COMPACTO y la columna FECHA_VENTA. La columna
FECHA_VENTA se configura con el tipo de datos TIMESTAMP. Supongamos que se desea cam-

Capitulo 10: Trabajar con funciones y expresiones de valor 245

biar los valores de fecha y hora a cadenas de caracteres. Se puede utilizar la expresion CAST en la
clausula SELECT, como se muestra en la siguiente instruccion:

SELECT DISCO COMPACTO, CAST (FECHA VENTA AS CHAR(25)) AS CHAR_FECHA
FROM FECHAS VENTAS
WHERE DISCO_ COMPACTO LIKE ('%Blue%')

Esta instruccion convierte los valores FECHA_VENTA de los valores TIMESTAMP a los
valores CHAR. Como se puede ver, todo lo que se necesita hacer es especificar la palabra clave
CAST, seguida por los pardmetros en paréntesis que identifican la columna fuente y el nuevo tipo
de datos, junto con la palabra clave AS. Cuando se ejecuta esta instruccion, se reciben resultados
de consulta similares a lo que se veria si no se hubiera utilizado CAST:

DISCO_COMPACTO CHAR_FECHA

Famous Blue Raincoat Dec 22 2002 10:58AM
Blue Dec 22 2002 12:02PM
Blues on the Bayou Dec 24 2002 2:15PM

Observe que se puede asignar un nombre a la columna que contiene los nuevos resultados de fecha
y hora. En este caso, el nombre de la nueva columna es CHAR_FECHA.

NOTA

Se puede encontrar que, dependiendo de la implementacién SQL, cuando un valor de fecha
y hora es convertido, el formato cambia ligeramente. Por ejemplo, en SQL Server, un valor
de fecha es expresado numéricamente y un valor de hora es expresado como un reloj de 24
horas (horario militar), pero cuando valor es convertido a un tipo de datos CHAR, el valor de
tiempo es expresado en caracteres alfanuméricos, y la hora se expresa como un reloj de 12
horas (A.M. y PM).

Utilizar valores especiales

En el capitulo 6 se analizaron valores especiales soportados por SQL que permiten determinar a
los usuarios actuales. Un valor especial existe para cada tipo de usuario. Estos valores actian como
marcadores de posicion para los valores actuales relacionados con los usuarios. Pueden utilizarse
en expresiones para arrojar el valor del usuario especifico. SQL soporta cinco valores especiales,
que se describen en la tabla 10-3. (Véase el capitulo 6 para mayor informacién acerca de los dife-
rentes tipos de usuarios SQL.)

Los valores especiales pueden ser utilizados en diferentes formas en una base de datos SQL,
por ejemplo para establecer conexiones o ejecutar un procedimiento almacenado. El valor especial,
en lugar del nombre del usuario actual, es incrustado en el cédigo para permitir al cédigo perma-
necer flexible de una situacion a la otra. Otra forma en la que un valor especial puede ser utilizado
es para almacenar datos de usuario en una tabla. Para ilustrar esto, demos un vistazo a la tabla PE-
DIDOS_CD en la figura 10-4.

Esta vez se agrega una fila a la tabla, y se inserta un valor para CURRENT_USER dentro de
la columna PEDIDO_POR. Esto facilita rastrear cudl usuario ha colocado la orden. Si se observara

246 Fundamentos de SQL

Valor Descripcién

CURRENT_USER Identifica al identificador de usuario actual. Si el identificador de usuario de

la sesién SQL es el identificador de usuario actual, entonces CURRENT_USER,
USER y SESSION_USER tienen el mismo valor, lo que puede ocurrir si el par de
idenﬁgcador inicial es el Gnico par identificador de usuario activo/nombre de rol
(el par en la parte superior de la pila de autenticacién).

USER Identifica al identificador de usuario actual. USER tiene el mismo significado que
CURRENT_USER.

SESSION_USER Identifica al identificador de usuario de la sesién SQL.

CURRENT_ROLE Identifica el nombre de rol actual.

SYSTEM_USER Identifica al usuario del sistema operativo actual que invocé un médulo SQL.

Tabla 10-3 Utilizar los valores especiales de SQL:2006.

la definicién de la tabla, se veria que un valor por defecto ha sido definido para la columna PEDI-
DO_POR, como se muestra en la siguiente instruccion CREATE TABLE:

CREATE TABLE PEDIDOS CD
(TITULOCD VARCHAR (60) ,
PEDIDO INT,
PEDIDO_POR CHAR(30) DEFAULT CURRENT USER) ;

Si fueran a insertarse datos a esta tabla, se tendria que especificar solamente un valor TITU-
LO_CD y un valor PEDIDO. El valor PEDIDO_POR seria insertado automdticamente, y ese valor

NOMBRE_CD: PEDIDO: PEDIDO_POR:
VARCHAR(60) INT CHAR(30)
Famous Blue Raincoat 16 Mngr
Blue 22 AsstMngr
Court and Spark 11 Mngr
Past Light 7 AsstMngr
That Christmas Feeling 14 Mngr
Patsy Cline: 12 Greatest Hits 18 AsstMngr
Out of Africa 5 AsstMngr
Leonard Cohen The Best of 8 Mngr
Fundamental 6 Mngr
Blues on the Bayou 10 Mngr

Figura 10-4 Utilizar el valor especial CURRENT_USER en la tabla PEDIDOS_CD.

Capitulo 10: Trabajar con funciones y expresiones de valor 247

seria el identificador de usuario actual. Si no se especifica un valor por defecto para la columna
PEDIDO_POR, se puede utilizar el valor especial para insertar al usuario. Por ejemplo, la siguien-
te instruccién INSERT inserta una fila en la tabla PEDIDOS_CD:

INSERT INTO PEDIDOS CD
VALUES ('Rhythm Country and Blues', 14, CURRENT USER) ;

Cuando se ejecuta la instruccion, un valor representando al identificador de usuario actual
(por ejemplo Mngr) se inserta en la columna PEDIDO_POR.

Para determinar la extension para la que se pueden utilizar los valores especiales, deberd revi-
sar la documentacidn del producto para su implementaciéon SQL. Encontrard que las formas en las
que se pueden utilizar estos valores tendrdn variaciones de una implementacion a otra; sin embar-
g0, una vez que se sienta cémodo utilizando valores especiales en su implementacion, encontrard
que son una herramienta muy ttil, al mismo tiempo que usted se hace mds eficiente con la progra-
macién SQL.

kel Utilizar funciones y expresiones

de valor

En este capitulo aprendi6 acerca de muchas de las funciones y expresiones de valor soportadas por
SQL. Ahora se ejercitardn esas funciones y expresiones consultando datos desde la base de datos
INVENTARIO. Especificamente, se creardn instrucciones SELECT que contengan las funciones
COUNT, MIN, SUM, SUBSTRING y UPPER, y aquellas que contengan expresiones de valor nu-
méricas, CASE y CAST. Puede descargar el archivo Try_This_10.txt (en inglés), que contiene las
instrucciones SQL utilizadas en este ejercicio.

Paso a paso
1. Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2. En la primera instruccién se determinara el nimero de valores NOMBRE_ARTISTA tnicos en
la tabla ARTISTAS. Ingrese y ejecute la siguiente instrucciéon SQL:

SELECT COUNT (DISTINCT NOMBRE ARTISTA) AS ARTISTAS
FROM ARTISTAS;

La consulta debera arrojar una cuenta de 18.

3. En la siguiente instruccién se determinard el nimero minimo de CD en existencia, como se
enlistan en la tabla DISCOS_COMPACTOS. Se nombra la columna en los resultados de la con-
sulta MIN_EXISTENCIA. Ingrese y ejecute la siguiente instruccién SQL:

SELECT MIN(EN_EXISTENCIA) AS MIN EXISTENCIA
FROM DISCOS_ COMPACTOS;

Los resultados de la consulta deberan incluir solamente una columna y una fila, y mostrar un
valor de 5. Esto significa que 5 es el nimero menor de CD que se tienen en existencia para
cualquier CD. (continda)

248 Fundamentos de SQL

4.

Ahora se determinard el niimero total de CD en existencia. Sin embargo, esta vez se agruparan
estos totales de acuerdo con los valores ID_DISQUERA. Ingrese y ejecute la siguiente instruc-
cién SQL:

SELECT ID DISQUERA, SUM(EN_EXISTENCIA) AS TOTAL

FROM DISCOS_COMPACTOS
GROUP BY ID DISQUERA;

La consulta arrojard 10 filas una por cada valor ID_DISQUERA. El valor TOTAL para cada fila
representa el nimero total de CD para ese grupo particular ID_DISQUERA.

En los pasos anteriores se utilizaron funciones set al consultar datos desde la base de datos IN-
VENTARIO. Ahora se practicardn un par de funciones de valor. La primera de éstas es SUBS-
TRING. En la instrucciéon SELECT se extraeran los datos desde la columna LUGAR_DE_NA-
CIMIENTO en la tabla ARTISTAS. Se necesita extraer ocho caracteres, empezando por el
primer cardcter en la cadena. Ingrese y ejecute la siguiente instruccién SQL:

SELECT NOMBRE_ ARTISTA,
SUBSTRING (LUGAR_DE NACIMIENTO FROM 1 FOR 8) AS LUGAR_NACIMIENTO
FROM ARTISTAS;

Los resultados de la consulta deberan arrojar 18 filas e incluir dos columnas: NOMBRE_AR-
TISTA y LUGAR_NACIMIENTO. La columna LUGAR_NACIMIENTO contiene los valores
extraidos, los cuales estan basados en la columna LUGAR_DE_NACIMIENTO de la tabla.

La siguiente funcidn de valor que se ejercitard es la funciéon UPPER. En esta instruccién SE-
LECT, los nombres de todos los CD se convertirdn a mayusculas. Ingrese y ejecute la siguiente
instruccion SQL:

SELECT UPPER (TITULO CD) AS NOMBRE CD
FROM DISCOS_ COMPACTOS;

Esta instruccion deberd arrojar 15 filas con una sola columna que enlista el nombre de los CD
en la tabla DISCOS_COMPACTOS. Todos los titulos de los CD deberan estar en mayusculas.

Ahora nos moveremos a las expresiones de valor numéricas. La siguiente instruccion que se
utilizard crea dos columnas en los resultados de la consulta que duplican y triplican los valores
en la columna EN_EXISTENCIA de la tabla DISCOS_COMPACTOS. Sin embargo, la instruc-
cion arroja valores solamente para aquellas filas con un valor EN_EXISTENCIA menor a 25.
Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN_EXISTENCIA,
(EN_EXISTENCIA * 2) AS DOBLE, (EN_EXISTENCIA * 3) AS TRIPLE
FROM DISCOS_ COMPACTOS
WHERE EN_EXISTENCIA < 25;

La instrucciéon SELECT deber4d arrojar nueve filas, y cada una debera incluir valores EN_EXIS-
TENCIA que han sido multiplicados por 2 y por 3.

Capitulo 10: Trabajar con funciones y expresiones de valor 249

8. La siguiente expresion de valor serd la expresion CASE. Esta instruccién proporcionard valores
EN_EXISTENCIA actualizados a la columna EN_PEDIDO de los resultados de la consulta.
Para los valores EN_EXISTENCIA menores a 10, los valores serdn duplicados. Para los valores
EN_EXISTENCIA que caigan dentro del rango entre 10y 15, serd sumado un 3. Todos los de-
mads valores EN_EXISTENCIA permanecerdn iguales. La instruccion opera solamente en aque-
llas filas cuyo valor EN_EXISTENCIA original sea menor a 20. Ingrese y ejecute la siguiente
instrucciéon SQL:

SELECT TITULO CD, EN_EXISTENCIA, EN PEDIDO =

CASE

WHEN EN_EXISTENCIA < 10 THEN EN_EXISTENCIA * 2

WHEN EN_EXISTENCIA BETWEEN 10 AND 15 THEN EN_EXISTENCIA + 3

ELSE EN_EXISTENCIA

END

FROM DISCOS COMPACTOS
WHERE EN_EXISTENCIA < 20;

Los resultados de la consulta deberan incluir solamente siete filas, y la columna EN_PEDIDO
de los resultados de la consulta debera contener los valores actualizados.

9. Ahora se ejercitard la expresion de valor CAST. Se consultard la tabla TIPOS_MUSICA, pero
se convertird el tipo de datos de la columna NOMBRE_TIPO en los resultados de la consulta.
Ingrese y ejecute la siguiente instruccién SQL:

SELECT ID TIPO, CAST(NOMBRE TIPO AS CHAR(20)) AS CHAR TIPO
FROM TIPOS MUSICA;

Los resultados de la consulta deberan arrojar 11 filas. Los resultados deberan incluir una co-
lumna CHAR_TIPO que contenga los valores convertidos.

10. Cierre la aplicacién de cliente.

Resumen de Pruebe esto

Ahora se debera sentir mucho mas cémodo con las diferentes funciones y expresiones de valor
que se revisaron en este capitulo. Recuerde que cada implementacién SQL soporta diferentes fun-
ciones y expresiones de valor, usualmente muchas mas de las que hemos visto aqui. De hecho, en
muchos casos las funciones y expresiones de valor que se vieron en este capitulo representan sola-
mente la punta del iceberg. Asegurese de revisar la documentacién de su producto para averiguar
qué funciones y valores de expresion se soportan y como estan implementadas. Encontrara que son
herramientas muy utiles en una variedad de situaciones y que vale la pena el esfuerzo que puso en
este capitulo.

250 Fundamentos de SQL

v Aot Capitulo 10

1. /Qué es una funcidn set?

2. Se esté creando una instruccién SELECT que consulta la tabla CDS_ARTISTA. La tabla inclu-
ye las columnas NOMBRE_ARTISTA y NOMBRE_CD. Se requiere que la instruccién arroje
el ndmero total de filas en la tabla. ;Cudl funcién COUNT deberad incluirse en la cldusula SE-

LECT?
A COUNT(*)
B COUNT(NOMBRE_ARTISTA)
C COUNT(NOMBRE_CD)
D COUNT(NOMBRE_ARTISTA, NOMBRE_CD)
3. ;Cudl funcién set deberd utilizarse para sumar los valores en una columna?
A MAX
B COUNT
C SUM
D AVG
4, Las funciones set requieren que los datos estén de alguna manera.

(,Qué son las funciones de valor?

6. Se estd utilizando la funcién SUBSTRING para extraer caracteres de la columna DISCO_
COMPACTO de la tabla FECHAS_VENTAS. Se quiere iniciar con el tercer cardcter y extraer
ocho caracteres. ;Qué pardmetros deberan utilizarse en la funciéon SUBSTRING?

Se estd utilizando la funcién LOWER en el valor Past Light de la columna NOMBRE_CD.
(Qué valor serd arrojado?

(,Qué funcidn arroja un valor que represente la fecha y la hora actuales al igual que la informa-
cion relacionada con UCT?

A
B
C
D

LOCALTIMESTAMP
CURRENT_DATE
LOCALTIME
CURRENT_TIMESTAMP

(Cudles son los cuatro tipos de operadores que se utilizan en una expresion de valor numérica?

Se estdn consultando datos de la tabla RASTREO_CD. Se quiere agregar valores en la columna
EN_EXISTENCIA a los valores en la columna EN_PEDIDO. Luego se quiere duplicar los to-
tales de la columna. ;Cémo se establece la expresion de valor numérica?

Capitulo 10: Trabajar con funciones y expresiones de valor 251

11. ;Cudl expresion de valor se utiliza para establecer una serie de condiciones que modifiquen va-
lores?

12. Se esta creando una instruccién SELECT que incluye una expresién de valor CASE. Se re-
quiere que una de las condiciones especifique que cualquier valor EN_PEDIDO mayor a 10 se
incremente en 5. ;Como deberd establecerse la cldusula WHEN/THEN?

13. ;Cual es la ultima palabra en una expresién de valor CASE?
14. ;Qué es la expresion de valor CAST?

15. Se estd consultando la columna FECHA_VENTA en la tabla FECHAS_VENTAS. Se requiere
convertir los valores a un tipo de datos CHAR(25), y que los datos sean desplegados en la co-
lumna CHAR_FECHA en los resultados de la consulta. ;Como se define la expresion de valor
CAST?

16. ;Qué valor especial puede utilizarse para identificar al identificador de usuario de sesién SQL
actual?

Capitulo 11

Acceder a multiples
tablas

254 Fundamentos de SQL

Habilidades y conceptos clave

Realizar operaciones bésicas join
Unir tablas con nombres de columna compartidos
Utilizar el método join de condicidén

Realizar operaciones de unién

U n componente importante de cualquier base de datos relacional es la correlacién que puede
existir entre dos tablas cualesquiera. Esta relacion le permite al usuario publicar datos en una
tabla con datos en otra tabla. Este tipo de relaciones es particularmente ttil cuando se necesita
consultar datos relacionados de mas de una tabla y se requiere recuperar esos datos de una forma
significativa para que las relaciones entre las tablas sean, para todos los propdsitos practicos, in-
visibles. Un método que soporta SQL:2006 para consultar datos de esta manera es unir las tablas
en una instruccién. Una operacion join es una operacion que hace coincidir las filas en una tabla
con las filas de manera tal que las columnas de ambas tablas puedan ser colocadas lado a lado en
los resultados de la consulta como si éstos vinieran de una sola tabla. SQL define muchos tipos de
operaciones join. El tipo de operacion que puede utilizarse en cualquier situacién dada depende de
la implementacién SQL (depende de las instrucciones soportadas y cémo pueda ser impactado el
rendimiento), cudles datos se quieren arrojar y como han sido definidas las tablas. En este capitulo
se analizardn varias operaciones que combinen datos desde mudltiples tablas, incluyendo joins y
unions, y proporcionando detalles acerca de cémo son implementadas, ademds de los resultados
que se puedan esperar al utilizarlas.

Realizar operaciones bdsicas join

Uno de los tipos mas simples de operaciones join para implementar son las operaciones separadas
por comas. En este tipo de operacion, sélo se necesita proporcionar una lista de tablas (separadas por
comas) en la cldusula FROM de la instruccién SELECT. Se puede, por supuesto, cualificar la ope-
racion join en la clausula WHERE (lo cual es necesario para obtener datos significativos desde las
tablas), pero no es obligatorio hacerlo. Sin embargo, antes de analizar la clausula WHERE, demos
primero un vistazo a las operaciones join separadas por comas desde sus puntos mas basicos.

Supongamos que se quieren desplegar los datos de la tabla INVENTARIO_CD y de la tabla
INTERPRETES, mostradas en la figura 11-1. (La figura también incluye la tabla TIPO_INTER, la
cual se estard utilizando en la seccién “Crear operaciones join con més de dos tablas”). Se pueden
visualizar los datos de las tablas INVENTARIO_CD e INTERPRETES consultando cada tabla por
separado, o se pueden unir las tablas en una instruccion.

Para unir las dos tablas, se puede crear una instruccion SELECT tan simple como la siguiente:

SELECT *
FROM INVENTARIO CD, INTERPRETES;

Capitulo 11: Acceder a miltiples tablas

255

INVENTARIO_CD INTERPRETES TIPO_INTER
NOMBRE_CD: ID_INTER: |[EN_EXISTENCIA:| | ID_INTER:| NOMBRE_INTER: |ID_TIPO: ID_TIPO: | NOMBRE_TIPO:
VARCHAR(60) INT INT INT VARCHAR(60) INT INT CHAR(20)
Famous Blue Raincoat [102 12 101 Joni Mitchell 10 10 Popular
Blue 101 24 102 Jennifer Warnes 12 11 Blues
Court and Spark 101 17 103 B.B. King 11 12 Folk

Past Light 105 9 104 Bonnie Raitt 10 13 Rock
Fundamental 104 22 105 William Ackerman| 15 14 Classical
Blues on the Bayou 103 19 106 Bing Crosby 16 15 New Age
Longing in Their Hearts 104 18 107 Patsy Cline 17 16 Classic Pop
Luck of the Draw 104 25 108 John Barry 18 17 Country
Deuces Wild 103 17 109 Leonard Cohen 12 18 Soundtrack
Nick of Time 104 11

Both Sides Now 101 13

Figura 11-1

Uniendo las tablas INVENTARIO_CD, INTERPRETES y TIPO_INTER.

La consulta produce lo que se conoce como una fabla de producto cartesiano (nombrada asi
debido al matemético y filésofo francé€s René Descartes), que es una lista de cada fila en una tabla,
unida con cada una de las filas en la otra tabla, como se muestra (parcialmente) en los siguientes

resultados de la consulta:

NOMBRE_CD

Famous Blue Raincoat
Blue

Court and Spark

Past Light
Fundamental

Blues on the Bayou
Longing in Their Hearts
Luck of the Draw
Deuces Wild

Nick of Time

Both Sides Now
Famous Blue Raincoat
Blue

Court and Spark

Past Light

ID INTER EN_EXISTENCIA

102 12
101 24
101 17
105 9

104 22
103 19
104 18
104 25
103 17
104 11
101 13
102 12
101 24
101 17
105 9

ID INTER NOMBRE_INTER

Warnes
Warnes

Jennifer
Jennifer
Jennifer Warnes
Warnes

Warnes

Jennifer
Jennifer
Jennifer Warnes
Warnes

Warnes

Jennifer
Jennifer
Jennifer Warnes
Warnes
Jennifer Warnes
Joni Mitchell
Joni Mitchell
Joni Mitchell
Joni Mitchell

Jennifer

ID TIPO

En realidad, la instruccién SELECT anterior arrojard muchas mads filas de las que se muestran
aqui. Estos resultados representan solamente una lista parcial. Debido a que la tabla INVENTA-
RIO_CD contiene 11 filas y la tabla INTERPRETES contiene 9 filas, los resultados completos
de la consulta contendrian 99 filas. Demos un vistazo mds profundo a esto. La fila Famous Blue

256

Fundamentos de SQL

Raincoat en la tabla INVENTARIO_CD ha sido unida con cada fila en la tabla INTERPRETES,
lo cual nos da un total de 9 filas. Cada una de las 10 filas restantes en la tabla INVENTARIO_CD
se hace coincidir con cada una de las filas en la tabla INTERPRETES de la misma manera. Como
resultado, habra 99 filas (11 x 9 = 99).

Como se puede ver, los resultados de esta consulta no son de gran ayuda. Sin embargo, es
posible generar resultados mds significativos si se utiliza una clausula WHERE para crear una
operacion equi-join (también escrita como equijoin), que es un tipo de operacion join que equipara
los valores de una o mas columnas en la primera tabla con los valores de una o mas columnas co-
rrespondientes en la segunda tabla. Como puede uno imaginar por el nombre, el operador de com-
paracién en una operacién equi-join es el operador igual a (=). Por ejemplo, se puede cualificar la
instruccién SELECT previa, de la siguiente forma:

SELECT *

FROM INVENTARIO CD, INTERPRETES
WHERE INVENTARIO CD.ID INTER = INTERPRETES.ID INTER;

Ahora los resultados de la consulta incluirdn solamente a aquellas filas en las cuales el valor en
la columna ID_INTER de la tabla INVENTARIO_CD coincida con el valor en la columna ID_IN-
TER de la tabla INTERPRETES. Observe que se deben cualificar los nombres de columna agregan-
do los nombres de tabla. Esto debe hacerse cada vez que las columnas de diferentes tablas tengan el
mismo nombre. Si se ejecuta esta instruccidn, se arrojaran los siguientes resultados de consulta:

NOMBRE_CD ID INTER EN_EXISTENCIA ID INTER NOMBRE_INTER ID TIPO
Famous Blue Raincoat 102 12 102 Jennifer Warnes 12
Blue 101 24 101 Joni Mitchell 10
Court and Spark 101 17 101 Joni Mitchell 10
Past Light 105 9 105 William Ackerman 15
Fundamental 104 22 104 Bonnie Raitt 10
Blues on the Bayou 103 19 103 B.B. King 11
Longing in Their Hearts 104 18 104 Bonnie Raitt 10
Luck of the Draw 104 25 104 Bonnie Raitt 10
Deuces Wild 103 17 103 B.B. King 11
Nick of Time 104 11 104 Bonnie Raitt 10
Both Sides Now 101 13 101 Joni Mitchell 10

Los datos arrojados por esta consulta son ahora mucho mas significativos. Cada CD coincide
con el artista apropiado, y solamente se despliegan 11 filas, en lugar de 99. Sin embargo, incluso
estos resultados de la consulta incluyen datos repetitivos (la columna ID_INTER). Ademas, puede
suceder que no sélo se requieran las columnas duplicadas, sino que se requiera desplegar solamen-
te ciertas columnas y quiza cualificar incluso mas la condicién de la bisqueda.

Modifiquemos la instruccién SELECT sobre la que se ha estado trabajando al especificar los
nombres de las columnas en la cldusula SELECT para limitar las columnas arrojadas y agregar
otro predicado a la clausula WHERE vy asi limitar las filas arrojadas, como se muestra en el si-
guiente ejemplo:

SELECT INVENTARIO CD.NOMBRE CD, INTERPRETES.NOMBRE INTER, INVENTARIO
CD.EN_EXISTENCIA
FROM INVENTARIO_CD, INTERPRETES

WHERE INVENTARIO CD.ID INTER = INTERPRETES.ID INTER
AND INVENTARIO CD.EN_EXISTENCIA < 15;

Capitulo 11: Acceder a multiples tablas 257

En esta instruccion se ha especificado que tres columnas deberan estar incluidas en los resul-
tados de la consulta. Observe que se han cualificado los nombres de las columnas al incluir los
nombres de las tablas. Observe también que la clausula WHERE incluye un predicado adicional,
conectado con el primer predicado por medio de la palabra clave AND. Ahora cualquier fila que
sea arrojada deberd también tener valores EN_EXISTENCIA menores a 15. Si se ejecuta esta ins-
truccion, se recibiran los siguientes resultados de la consulta:

NOMBRE_CD NOMBRE INTER EN_EXISTENCIA
Famous Blue Raincoat Jennifer Warnes 12
Both Sides Now Joni Mitchell 13
Past Light William Ackerman 9
Nick of Time Bonnie Raitt 11

Como se puede ver, se han refinado los resultados de la consulta a solamente la informacién
mds esencial. Desde luego, se pueden crear todo tipo de consultas, dependiendo de las necesida-
des, siempre y cuando se sigan los lineamientos bdsicos para crear una operacion join separada por
comas:

La clausula FROM debe incluir todos los nombres de las tablas.
La clausula WHERE debera definir una condicién join, evitando un producto cartesiano.

Las referencias de columna deberan ser cualificadas cuando los nombres de columna estén
compartidos entre las tablas.

Aparte de estos lineamientos, existe la libertad de crear cualquier tipo de instruccion SE-
LECT que sea necesaria para extraer la informacién que se requiera de las tablas participantes. Y
mientras que utilizar la cldusula WHERE para especificar la condicién join era la forma original
de realizar operaciones join en SQL, posteriormente en este capitulo se verd que existen otras va-
riaciones de la sintaxis utilizando la palabra clave JOIN, que la mayoria de los programadores de
SQL prefieren en lugar de la sintaxis original. Pero sin importar qué sintaxis se utilice, siempre
tenga en mente que necesita existir algtin tipo de conexién 16gica entre las tablas. Esta conexion
a menudo se aprecia en la forma de una clave externa, pero no resulta obligatorio de esta manera.
(Para mayor informacion acerca de las claves externas, véase el capitulo 4.) Las tablas pueden ser
unidas aun si existe o no una clave externa. Y a pesar de que equi-join es el mas comun, puede en-
contrarse ocasionalmente que resulta muy util usar un operador de comparacién join diferente, por
ejemplo menor que (<) o BETWEEN, en cuyo caso el operador join es llamado theta-join.

Utilizar nombres de correlacién

Como se estipul6 anteriormente, se deben cualificar las referencias de columna agregando nom-
bres de tabla a aquellas columnas que compartan un nombre. Sin embargo, como una politica
general, siempre es una buena idea cualificar las referencias de columna cuando se unan tablas, sea
necesario o no. Esto vuelve mucho mas facil referenciar el c6digo en algiin momento posterior si
la instruccién es totalmente autodocumentada. Sin embargo, cuando sus consultas se vuelvan mu-
cho mas complejas, se puede volver muy tedioso reingresar los nombres de las tablas cada vez que
se hace referencia a una columna. Debido a esto, SQL soporta nombres de correlacién, o alias, que
pueden ser utilizados durante la duracién de una instruccién. Un nombre de correlacion es simple-

258

Fundamentos de SQL

mente una versién mas corta del nombre de tabla actual que se utiliza para simplificar el c6digo y
hacerlo mas legible.

Tomemos, por ejemplo, la tltima instruccion SELECT que se vio. Se puede moldear esta ins-
truccién utilizando nombres de correlacién para ambas tablas:

SELECT c¢.NOMBRE CD, p.NOMBRE INTER, c.EN EXISTENCIA
FROM INVENTARIO CD AS c, INTERPRETES AS p

WHERE c¢.ID INTER = p.ID_ INTER
AND c.EN EXISTENCIA < 15;

La instruccién SELECT produce exactamente los mismos resultados que la instruccion ante-
rior, excepto en la clausula FROM. De hecho, se puede utilizar la clausula FROM para definir los
alias que son utilizados en el resto de la instruccién. En este caso, la tabla INVENTARIO_CD se
renombra como c, y la tabla INTERPRETES se renombra como p. Como resultado, ¢ y p deben
utilizarse en cualquier otra posicién dentro de la instruccion SELECT cuando se haga referencia
a esas tablas. Una vez que se haya definido el nombre de la correlacion, ya no podra utilizarse el
nombre actual de la tabla. Y esto puede resultar muy confuso debido a que se utiliza el alias en la
clausula SELECT, pero no esta atn definido sino hasta la clausula FROM posterior a la clausula
SELECT. Sin embargo, esto toma sentido si recordamos que la clausula FROM siempre se procesa
primero.

Para comprender mejor cémo funciona el proceso de renombrado, recordemos el tema de
cémo son procesadas en las instrucciones SELECT. En el capitulo 7 se establecid que la clausula
FROM se procesa en primer lugar y la clausula SELECT se procesa en el tltimo. Esta es la razén
por la que los nombres de correlacion se definen en la clausula FROM. Una vez que son definidos,
todas las demads cldusulas pueden (y deben) utilizar esos alias cuando se definan las referencias
de columna. Los nombres de correlacion se utilizan durante todo el resto de la instruccién, pero
solamente aplican a la instruccién en la cual estan definidos. Si se crea una nueva instruccién SE-
LECT, deben redefinirse esos nombres para poder utilizarlos en la nueva instruccion.

Como se pudo ver en la anterior instrucciéon SELECT, un nombre de correlacién es definido
inmediatamente después del nombre actual de la tabla. El nuevo nombre sigue a la palabra clave
AS. Sin embargo, la palabra clave AS no es obligatoria. En la mayorfa de las implementaciones
también puede utilizarse la siguiente convencion para renombrar las tablas dentro de una consulta:

SELECT c.NOMBRE CD, p.NOMBRE INTER, c.EN EXISTENCIA
FROM INVENTARIO CD c¢, INTERPRETES p

WHERE c¢.ID INTER = p.ID_ INTER
AND c.EN EXISTENCIA < 15;

Observe que solo se especifica el nuevo nombre, sin la palabra clave AS. Esto hace a la ins-
truccion SQL mucho mas sencilla. De hecho, algunas implementaciones como Oracle no permiten
utilizar la palabra clave AS en lo absoluto, aun cuando ésta es parte del estindar SQL. Una vez
mads, esta tltima instruccion SELECT proporcionara los mismos resultados de la consulta que se
vieron en los dos ejemplos anteriores. S6lo que la instruccion en si misma ha sido cambiada.

Crear operaciones join con mds de dos tablas

Hasta este punto, los ejemplos que se han visto han unido solamente dos tablas. Sin embargo, se
puede utilizar una operacién join separada por comas para desplegar datos de mas de dos tablas.

Capitulo 11: Acceder a mltiples tablas 259

Si nos referimos una vez mas a la figura 11-1, se vera que la tabla TIPO_INTER est4 incluida en
la ilustracién. Es posible, si se desea, unir las tres tablas en una sola instruccién SELECT, como se
muestra en el siguiente ejemplo:

SELECT c.NOMBRE CD, p.NOMBRE INTER, t.NOMBRE TIPO
FROM INVENTARIO CD c¢, INTERPRETES p, TIPO_INTER t
WHERE c.ID INTER = p.ID INTER
AND p.ID TIPO = t.ID TIPO
AND NOMBRE TIPO = 'Popular';

En esta instruccion, la clausula FROM incluye todas las tres tablas. Adicionalmente, la cldusu-
la WHERE proporciona dos condiciones equi-join: una que traza las columnas ID_INTER y otra
que traza las columnas ID_TIPO. Si se ejecuta esta instruccion, se recibirdn los siguientes resulta-
dos de la consulta:

NOMBRE_CD NOMBRE_INTER NOMBRE_TIPO
Blue Joni Mitchell Popular
Court and Spark Joni Mitchell Popular
Fundamental Bonnie Raitt Popular
Longing in Their Hearts Bonnie Raitt Popular
Luck of the Draw Bonnie Raitt Popular
Nick of Time Bonnie Raitt Popular
Both Sides Now Joni Mitchell Popular

Observe que la informacion de las tres tablas estd incluida en los resultados: el nombre del
CD, el nombre del artista y la categoria del artista. A pesar de que pudiera existir una relacién en-
tre la tabla INVENTARIO_CD vy la tabla INTERPRETES, al igual que entre la tabla INTERPRE-
TES y la tabla TIPO_INTER, los resultados de la consulta proporcionan un desplegado uniforme
que oculta esas relaciones y muestra solamente la informacién necesaria.

Crear la operacién cross join

Ademds de la operacion join separada por comas, SQL soporta otro tipo de operacién llamada
cross join. Esta operacidn es practicamente idéntica a la operacién join separada por comas. La
unica diferencia es que en lugar de separar los nombres de columna con una coma, se utilizan las
palabras clave CROSS JOIN. Por ejemplo, tomemos una instruccidn que se utilizé anteriormente y
modifiquémosla reemplazandola con las palabras clave CROSS JOIN:

SELECT c.NOMBRE CD, p.NOMBRE INTER, c.EN EXISTENCIA
FROM INVENTARIO CD c¢ CROSS JOIN INTERPRETES p
WHERE c.ID INTER = p.ID INTER
AND c.EN_EXISTENCIA < 15;

Esta instruccion arroja tres columnas desde dos tablas, y la clausula WHERE contiene una
condicién equi-join. Decidir entre utilizar una o la otra puede simplemente ser una cuestién de
determinar cudl instruccidn es soportada por la implementacién SQL, y, si ambas son soportadas,
cudl de ellas proporciona un mejor rendimiento. Con toda probabilidad, se convertird en un asunto
de preferencia personal, con pocas ventajas entre una y otra.

260 Fundamentos de SQL

Pregunta al experto

P: Si se estén uniendo tablas, parece probable que en algunos casos se arrojaran filas dupli-
cadas en los resultados de la consulta, dependiendo de como se construya la instrucciéon
SELECT. ;Coémo pueden evitarse las filas duplicadas?

R: a1 igual que con la mayoria de las consultas, es posible generar filas duplicadas. Por ejemplo,
la siguiente instruccion arrojard tipos y nombres de artista duplicados:

SELECT P.NOMBRE INTER, T.NOMBRE TIPO

FROM INVENTARIO CD C, INTERPRETES P, TIPO_INTER T
WHERE C.ID INTER = P.ID INTER

AND P.ID TIPO = T.ID TIPO;

Para aquellos artistas que tienen mas de un CD, los resultados de la consulta contendran
alguna fila para cada uno de esos CD. Sin embargo, al igual que con cualquier otra instruccién
SELECT, puede afiadirse la palabra clave DISTINCT a la cldusula SELECT, como se mues-
tran el siguiente ejemplo:

SELECT DISTINCT P.NOMBRE INTER, T.NOMBRE TIPO

FROM INVENTARIO CD C, INTERPRETES P, TIPO INTER T
WHERE C.ID INTER = P.ID INTER

AND P.ID TIPO = T.ID TIPO;

Esta instruccién arrojard menos filas que la instruccién anterior (5 comparadas con 11), y
ninguna fila estard duplicada. Observe también que se pueden lograr los mismos resultados sin
la palabra clave DISTINCT utilizando una cldusula GROUP BY que enliste ambas columnas.

Crear la operacién self-join

Otro tipo de operacién join que puede crearse es self-join, que puede ser tanto una operacion sepa-
rada por comas como una operacion cross join. En una operacion self-join se crea una condicién
join que se refiere a la misma tabla dos veces, esencialmente uniendo la tabla consigo misma. Esto
se realiza casi siempre para resolver una relacion recursiva, al encontrar otras filas en la misma ta-
bla que estdn relacionadas con las filas seleccionadas. Por ejemplo, supongamos que se agrega
la tabla EMPLEADOS a la base de datos, como se muestra en la figura 11-2. La tabla EMPLEA-
DOS incluye una lista de niimeros de identificaciéon de empleados, nombres de empleados y los
nimeros de identificacion de los jefes de los empleados, quienes también estdn enlistados en la
tabla. Por ejemplo, el jefe de Mr. Jones (ID_EMP 102) es Ms. Smith (ID_EMP 101).

Para crear una operacion self-join en esta tabla se debe crear una operacion join que trate a
la tabla como si fueran dos tablas separadas con el mismo nombre, mismas columnas y mismos
datos:

SELECT a.ID EMP, a.NOMBRE EMP, b.NOMBRE EMP AS ADMINISTRADOR
FROM EMPLEADOS a, EMPLEADOS b

WHERE a.ADMIN = b.ID EMP

ORDER BY a.ID EMP;

Capitulo 11: Acceder a multiples tablas 261

ID_EMP: | NOMBRE_EMP: ADMIN:
INT VARCHAR(60) INT
101 Ms. Smith NULL
102 Mr. Jones 101
103 Mr. Roberts 101
104 Ms. Hanson 103
105 Mr. Fields 102
106 Ms. Lee 102
107 Mr. Carver 103

Figura 11-2 La tabla EMPLEADOS unida por una operacién self-join.

En esta instruccion, a cada instancia de la tabla se le da un nombre de correlaciéon. Como re-
sultado, ahora se tiene (en este ejemplo) una tabla a y una tabla b. Se toman los valores ID_EMP
y NOMBRE_EMP de la tabla a, pero se toma el valor ADMINISTRADOR de la tabla b. La con-
dicién equi-join se define en la clausula WHERE al igualar el valor ADMIN en Ia tabla a con el
valor ID_EMP en la tabla b. Esto proporciona el vinculo que trata una tabla fisica como dos tablas
l16gicas. Cuando se ejecuta esta instruccidn, se reciben los siguientes resultados de la consulta:

ID EMP NOMBRE EMP ADMINISTRADOR
102 Mr. Jones Ms. Smith

103 Mr. Roberts Ms. Smith

104 Ms. Hanson Mr. Roberts
105 Mr. Fields Mr. Jones

106 Ms. Lee Mr. Jones

107 Mr. Carver Mr. Roberts

Los resultados incluyen el niimero de identificacion de empleado y el niimero de cada emplea-
do, junto con el nombre del jefe del empleado. Como se puede ver, la operacién self-join puede ser
una herramienta muy util en casos como éste en donde una tabla haga referencia a si misma.

Unir tablas con nombres de columna compartidos

SQL proporciona dos métodos para configurar operaciones join que pueden utilizarse cuando se
estd trabajando con columnas que tienen los mismos nombres. Estos dos métodos (join natural y
join de columna nombrada) permiten facilmente especificar una condicién join entre dos tablas
cuando una o mas columnas son iguales dentro de esas tablas. Para poder utilizar cualquiera de
estos dos métodos, las tablas deben cumplir con las siguientes condiciones:

Las columnas unidas deberdn compartir el mismo nombre y tener tipos de datos compatibles.

Los nombres de las columnas unidas no pueden ser cualificados con nombres de tabla.

262

Fundamentos de SQL

Cuando se estd utilizando ya sea el método join natural o un join de columna nombrada, cada
tabla debe compartir por lo menos una columna en comun. Por ejemplo, las tablas TITTULOS_EN_
EXISTENCIA y COSTOS_TITULO, mostradas en la figura 11-3, tienen dos columnas que son
iguales: TITULO_CD y TIPO_CD. Observe que cada conjunto de columnas a unir esta configura-
do con el mismo tipo de datos.

Se puede utilizar tanto un método join natural o un join de columna nombrada para unir estas
dos tablas. Se describen cada uno de estos tipos de operaciones join en varias de las siguientes
secciones, y se utilizan las tablas en la figura 11-3 para ilustrar cémo funciona cada uno de estos
métodos.

NOTA

No todas las implementaciones de SQL soportan métodos join naturales o métodos join de
columna nombrada. Por ejemplo, SQL Server no soporta ninguno de estos métodos, MySQL
soporta joins naturales pero no los joins de columna nombrada, y Oracle soporta ambos.

Crear el método join natural

El método join natural hace coincidir automaticamente las filas de aquellas columnas con el
mismo nombre. No es necesario especificar ningin tipo de condicién equi-join para los joins na-
turales. La implementaciéon SQL determina cudles columnas tienen los mismos nombres y luego
intenta hacerlas coincidir. El inconveniente de hacer esto es que no se puede especificar cudles
columnas son comparadas, aunque si se puede especificar cudles columnas son incluidas en los
resultados de la consulta.

En el siguiente ejemplo se utiliza un join natural para unir la tabla TITULOS_EN_EXISTEN-
CIA con la tabla COSTOS_TITULO:
SELECT TITULO CD, TIPO CD, c.MENUDEO

FROM TITULOS EN EXISTENCIA s NATURAL JOIN COSTOS TITULO c
WHERE s.INVENTARIO > 15;

TITULOS_EN_EXISTENCIA COSTOS_TITULO
TITULO_CD: TIPO_CD: |INVENTARIO: TITULO_CD: TIPO_CD: | MAYOREO: MENUDEO:
VARCHAR(60) CHAR(20) |[INT VARCHAR(60) CHAR(20) | NUMERIC(5,2) | NUMERIC(5,2)
Famous Blue Raincoat | Folk 12 Famous Blue Raincoat | Folk 8.00 16.99
Blue Popular 24 Blue Popular 7.50 15.99
Past Light New Age 9 Court and Spark Popular 7.95 15.99
Blues on the Bayou Blues 19 Past Light New Age | 6.00 14.99
Luck of the Draw Popular 25 Fundamental Popular 8.25 16.99
Deuces Wild Blues 17 Blues on the Bayou Blues 7.25 15.99
Nick of Time Popular 11 Longing in their Hearts | Popular 7.50 15.99
Both Sides Now Popular 13 Deuces Wild Blues 745 14.99
Nick of Time Popular 6.95 14.99

Figura 11-3 Unir las tablas TITULOS_EN_EXISTENCIA y COSTOS_TITULO.

Capitulo 11: Acceder a mltiples tablas 263

En esta instruccion, las tablas estdn unidas mediante las columnas TITULO_CD y TIPO_CD.
Observe que ningiin nombre de columna esta cualificado (los nombres cualificados no se permiten
en operaciones join naturales). Si cualquiera de estos nombres de columna hubiera sido incluido
en la clausula WHERE, tampoco estaria cualificado de esta manera. Cuando se ejecute esta ins-
truccion, se recibiran los siguientes resultados de consulta:

TITULO_CD TIPO CD MENUDEO
Blues on the Bayou Blues 15.99
Deuces Wild Blues 14.99
Blue Popular 15.99

Como se puede ver, solamente son arrojadas tres filas. Existen filas en las cuales los valores
de TITULO_CD en ambeas tablas son iguales y los valores de TIPO_CD son iguales. Adicional-
mente, los valores INVENTARIO son mayores a 15.

Crear el método join de columna nombrada

A pesar de que las operaciones join naturales pueden ser de mucha utilidad para operaciones join
simples, encontrard que no siempre se quiere incluir cada columna coincidente como parte de la
condicioén join. La forma de evitar eso es utilizando una operacién join de columna nombrada, que
permite especificar cudles columnas coincidentes serdn agregadas. Por ejemplo, supongamos que
se quiere incluir solamente TITULO_CD en la condicién join. Se puede modificar el ejemplo ante-
rior de esta manera:

SELECT TITULO_CD, S.TIPO_CD, c .MENUDEO
FROM TITULOS_EN_EXISTENCIA s JOIN COSTOS_TITULO c
USING (TITULO CD)
WHERE s.Inventario > 15;

En esta instruccion se ha removido la palabra clave NATURAL vy se ha agregado una cldusula
USING, que identifica las columnas coincidentes. Observe que el nombre de columna TIPO_CD
ahora ha sido cualificado, pero no asi la columna TITULO_CD. Solamente las columnas identifi-
cadas en la cldusula USING estan sin cualificar. Esta instruccién arroja los mismos resultados que
el ejemplo anterior, aunque no necesariamente serd siempre el caso, y dependerd de los datos en
las tablas. Sin embargo, si se incluyen ambas columnas coincidentes en la cldusula USING, defini-
tivamente se obtendrian los mismos resultados que se vieron en el join natural. Al identificar todas
las columnas coincidentes en la clausula USING, se esta realizando la misma funcién que con un
join natural.

Utilizar el método join de condicién

Hasta ahora en este capitulo se han visto las operaciones join separadas por coma, las cross joins,
joins naturales y los joins de columna nombrada. En las operaciones join separadas por coma y
cross joint, la condicién equi-join es definida en la clausula WHERE. En las operaciones join natu-
rales, la condicién equi-join es asumida automdaticamente en todas las columnas coincidentes. Y en
las join de columna nombrada, la condicién equi-join estd localizada en cualquier columna coinci-
dente definida en la cldusula USING. El join de condicion realiza un método diferente a cualquiera

264

Fundamentos de SQL

de éstos. En un join de condicidn, la condicion equi-join estd definida en la clausula ON, que
funciona de manera muy similar a la clausula WHERE. Sin embargo, a pesar de utilizar la cldusula
ON, una condicién bésica join es similar de muchas maneras a las operaciones join previas que
se han visto, excepto que, a diferencia de las join naturales y de las join de columna nombrada, la
condicioén join permite hacer coincidir cualquier columna compatible de una tabla con cualquier
otra de otra tabla. Los nombres de columna no necesitan ser iguales. La join de condicién es la
sintaxis preferida por la mayoria de los programadores SQL debido a su claridad, flexibilidad y
amplio soporte entre todas las implementaciones SQL.

Una join de condicién puede ser separada en dos tipos de uniones: inner joins 'y outer joins.
La diferencia entre estas dos uniones es la cantidad de datos arrojados por la consulta. Una inner
join arroja solamente aquellas filas que coinciden con la condicién equi-join definida en la instruc-
cién SELECT. En otras palabras, la inner join arroja solamente filas coincidentes. Esta era la join
original disponible en SQL, y por lo tanto algunos programadores la llaman “join estdndar”, a pe-
sar de que esto es un error debido a que todas las joins presentadas en este capitulo estan descritas
en el estandar SQL. Una outer join, por otro lado, arroja las filas coincidentes y alguna o todas las
filas no coincidentes, dependiendo del tipo de outer join.

NOTA

De acuerdo con el esténdar SQL:2006, tanto las operaciones join naturales como las join de
columna nombrada soportan joins inner y outer. Sin embargo, esto puede variar entre las di-
ferentes implementaciones SQL, por lo que debe asegurarse de revisar la documentacién del
producto. De manera predeterminada, una join se procesa como una inner join, a menos que
esté especificamente definida como una outer join.

Crear la inner join

Ahora que se tiene una idea general de la condicién join, demos un vistazo mds de cerca a la inner
join. Esta es la mas comiin de las condiciones join y estd especificada al utilizar las palabras cla-
ve INNER JOIN. Sin embargo, la palabra clave INNER no es necesaria. Si se utiliza JOIN por si
sola, se asume que es una inner join. Ademads de la palabra clave JOIN (especificada en la cldusula
FROM), también se puede definir una cldusula ON, que se coloca inmediatamente después de la
clausula FROM. Echemos un vistazo a un ejemplo para ver cémo funciona esto.

Supongamos que se quiere unir las tablas TITULO_CDS y ARTISTAS_TITULOS, mostradas
en la figura 11-4. En el siguiente ejemplo se ha creado una inner join que esta basada en las co-
lumnas ID_TITULO en las dos tablas:

SELECT t.TITULO, ta.ID ARTISTA
FROM TITULO CDS t INNER JOIN ARTISTAS TITULOS ta
ON t.ID TITULO = ta.ID TITULO
WHERE t.TITULO LIKE ('%Blue%');

La instruccioén utiliza las palabras clave INNER JOIN para unir las tablas TITULO_CDS y
ARTISTAS_TITULOS. La condicién equi-join se define en la clausula ON, utilizando la columna
TITLE_ID en cada tabla. Observe que los nombres de correlacién han sido definidos en ambas
tablas. La instruccién SELECT es cualificada adelante por la cldusula WHERE, que arroja sola-
mente aquellas filas que contienen el valor Blue en la columna TITLE de la tabla TITULO_CDS.
Cuando se ejecute esta consulta, se recibirdn los siguientes resultados de consulta:

Capitulo 11: Acceder a multiples tablas 265

TITULO_CDS ARTISTAS_TITULOS ARTISTAS_CD
ID_TITULO: | TITULO: TITLE_ID: | ID_ARTISTA: ID_ARTISTA: | ARTISTA:
INT VARCHAR(60) INT INT INT VARCHAR(60)
101 Famous Blue Raincoat 101 2001 2001 Jennifer Warnes
102 Blue 102 2002 2002 Joni Mitchell
103 Court and Spark 103 2002 2003 William Ackerman
104 Past Light 104 2003 2004 Kitaro
105 Kojiki 105 2004 2005 Bing Crosby
106 That Christmas Feeling 106 2005 2006 Patsy Cline
107 Patsy Cline: 12 Greatest Hits 107 2006 2007 Jose Carreras
108 Carreras Domingo Pavarotti in Concert 108 2007 2008 Luciano Pavarotti
109 Out of Africa 108 2008 2009 Placido Domingo
110 Leonard Cohen The Best of 108 2009 2010 John Barry
111 Fundamental 109 2010 2011 Leonard Cohen
112 Blues on the Bayou 110 2011 2012 Bonnie Raitt
113 Orlando 111 2012 2013 B.B. King
112 2013 2014 David Motion
113 2014 2015 Sally Potter
113 2015

Figura 11-4 Unir las tablas TITULO_CDS, TITLES_ARTISTS y CD_ARTISTS.

TITULO ID ARTISTA
Famous Blue Raincoat 2001
Blue 2002
Blues on the Bayou 2013

Como se puede ver, los resultados incluyen informacién de ambas tablas: la columna TITULO
de la tabla TITULO_CDS en la columna ID_ARTISTA de la tabla ARTISTAS_TITULOS. A pesar
de que esta informacién puede ser muy {til, podria resultar mejor para algunos usuarios si ellos
pudieran ver los nombres reales de los artistas en lugar de nimeros. La forma de lograr esto es in-
cluir una tercera tabla en la union.

Volvamos al ejemplo anterior y agreguemos una segunda condicién join a la tabla ARTIS-
TAS_CD (mostrada en la figura 11-4). En el siguiente ejemplo se agrega la segunda condicién
inmediatamente despu€s de la cldusula original ON:

SELECT t.TITULO, a.ARTISTA
FROM TITULO CDS t INNER JOIN ARTISTAS TITULOS ta
ON t.ID TITULO = ta.ID_TITULO
INNER JOIN ARTISTAS CD a
ON ta.ID ARTISTA = a.ID ARTISTA
WHERE t.TITULO LIKE ('%Blue%');

266

Fundamentos de SQL

Observe que se repiten las palabras clave INNER JOIN, seguidas del nombre de la tercera ta-
bla, la cual entonces sigue a la otra clausula ON. En esta cldusula, la condicién equi-join se define
en las columnas ID_ARTISTA dentro de las tablas ARTISTAS_TITULOS y ARTISTAS_CD. Ten-
ga en mente que no es necesario incluir la palabra clave INNER, ni tampoco las columnas especi-
ficadas en la cldusula ON necesitan tener el mismo nombre.

Si se ejecuta esta instruccion, se obtendran lo siguientes resultados de la consulta:

TITULO ARTISTA

Famous Blue Raincoat Jennifer Warnes
Blue Joni Mitchell
Blues on the Bayou B.B. King

Observe que los nombres de artista ahora estdn listados en los resultados. Observe también
que el hecho de que se hayan utilizado tres tablas para recuperar esta informacion es invisible a
cualquier persona que vea los resultados de la consulta.

Crear la outer join

Como se menciond anteriormente en este capitulo, una operacion outer join arroja todas las filas
coincidentes y alguna o todas las filas no coincidentes, dependiendo del tipo de outer join que se
cree. SQL soporta tres tipos de outer joins:

Left Arroja todas las filas coincidentes y todas las filas no coincidentes de la tabla de la iz-
quierda (la tabla a la izquierda de la palabra clave JOIN).

Right Arroja todas las filas coincidentes y todas las filas no coincidentes de la tabla de la
derecha (la tabla a la derecha de la palabra clave JOIN).

Full Arroja todas las filas coincidentes y todas las filas no coincidentes de ambas tablas.

NOTA

Debido a que es una caracteristica relativamente nueva, pocas implementaciones SQL sopor-

tan actualmente las operaciones full outer join (Oracle y SQL Server pueden hacerlo, pero no
MySQL).

Una operacién outer join sigue la misma sintaxis que una operacién inner join, sélo que en
lugar de utilizar las palabras clave INNER JOIN (o solamente la palabra clave JOIN), se aplica
LEFT OUTER JOIN, RIGHT OUTER JOIN o FULL OUTER JOIN. Observe que la palabra clave
OUTER es opcional. Por ejemplo, se puede especificar LEFT JOIN en lugar de LEFT OUTER
JOIN.

La mejor forma de ilustrar las diferencias entre los tipos de outer joins es mostrar diferentes
ejemplos de resultados de consulta para cada tipo. Para ilustrar las diferencias, se utilizan las tablas
INFO_CD y CD_TIPO, mostradas en la figura 11-5.

Capitulo 11: Acceder a

multiples tablas 267

INFO_CD

TITULO: ID_TIPO: EXISTENCIA:
VARCHAR(60) CHAR(4) INT

Famous Blue Raincoat FROK 19

Blue CPOP 28

Past Light NEWA 6

Out of Africa STRK 8
Fundamental NPOP 10

Blues on the Bayou BLUS 11

Figura 11-5 Unir las tablas INFO_CD y TIPO_CD.

TIPO_CD

ID_TIPO: | NOMBRE_TIPO:
CHAR(4) | CHAR(20)
FROK Folk Rock
CPOP Classic Pop
NEWA New Age

CTRY Country

STRK Soundtrack
BLUS Blues

JAZZ Jazz

En el primer ejemplo, se define una operacién inner join en las dos tablas, solamente para
mostrar cémo lucirfan normalmente los resultados de la consulta:

SELECT 1i.TITULO, t.NOMBRE TIPO,

FROM INFO CD i JOIN TIPO CD t

ON i.ID TIPO = t.ID TIPO;

i.EXISTENCIA

Esta instruccion arroja los siguientes resultados de la consulta:

TITULO

Famous Blue Raincoat
Blue

Past Light

Out of Africa

Blues on the Bayou

NOMBRE_TIPO

Folk Rock
Classic Pop
New Age
Soundtrack

Blues

EXISTENCIA

En la mayoria de los casos la operacion inner join proporcionard toda la informacién necesa-
ria. Pero supongamos que se quieren incluir las filas no coincidentes de la tabla INFO_CD. En este
caso, se deberd crear una operacion left outer join, como se muestra en el siguiente ejemplo:

SELECT i.TITULO, t.NOMBRE TIPO,

i.EXISTENCIA

FROM INFO CD i LEFT OUTER JOIN TIPO CD t

ON i.ID TIPO = t.ID TIPO;

268

Fundamentos de SQL

Observe que se ha reemplazado JOIN (por INNER JOIN) con LEFT OUTER JOIN. Como se
menciond anteriormente, se puede omitir la palabra clave OUTER en la mayoria de las implemen-
taciones. Si se ejecuta esta instruccion, se recibirdn los siguientes resultados de la consulta:

TITULO NOMBRE_TIPO EXISTENCIA
Famous Blue Raincoat Folk Rock 19

Blue Classic Pop 28

Past Light New Age 6

Out of Africa Soundtrack 8
Fundamental NULL 10

Blues on the Bayou Blues 11

Como podrd haber notado, la fila Fundamental estd ahora incluida en los resultados de la con-
sulta. A pesar de que esta fila no incluye columnas coincidentes, estd ain incluida en los resultados
de la consulta debido a que es parte de la tabla de la izquierda (left). Para esta fila, a la columna
NOMBRE_TIPO se le asigna un valor nulo debido a que ningtin valor 16gico puede ser arrojado
para esta columna. El valor nulo sirve como un marcador de posicién.

También es posible arrojar las filas no coincidentes de la tabla TIPO_CD, que es la tabla a la
derecha de la palabra clave JOIN:

SELECT 1i.TITULO, t.NOMBRE TIPO, i.EXISTENCIA
FROM INFO CD i RIGHT OUTER JOIN TIPO CD t
ON i.ID TIPO = t.ID TIPO;

Esta instruccién es practicamente la misma que la instruccién anterior, excepto que ahora se ha es-
pecificado RIGHT. La instruccién arroja los siguientes resultados de la consulta:

TITULO NOMBRE_TIPO EXISTENCIA
Famous Blue Raincoat Folk Rock 19

Blue Classic Pop 28

Past Light New Age 6

NULL Country NULL

Out of Africa Soundtrack 8

Blues on the Bayou Blues 11

NULL Jazz NULL

Esta vez las columnas no coincidentes de la tabla de la derecha se incluyen en los resultados, y los
valores nulos se muestran para las columnas TITLE y STOCK.

Si se quiere arrojar todas las filas no coincidentes, se necesitaria modificar la instruccion para
definir una operacioén full outer join:

SELECT 1i.TITULO, t.NOMBRE TIPO, 1i.EXISTENCIA
FROM INFO CD i FULL OUTER JOIN TIPO CD t
ON i.ID TIPO = t.ID TIPO;

Capitulo 11: Acceder a mltiples tablas 269

Esta instruccion arrojard los siguientes resultados de la consulta:

TITULO NOMBRE TIPO EXISTENCIA
Famous Blue Raincoat Folk Rock 19

Blue Classic Pop 28

Past Light New Age 6

Out of Africa Soundtrack 8
Fundamental NULL 10

Blues on the Bayou Blues 11

NULL Jazz NULL

NULL Country NULL

Como se puede ver, todas las filas coincidentes y no coincidentes se incluyen en los resultados de
la consulta. Observe que estdn incluidas todas las seis filas de la tabla CD_INFO y todas las siete
filas de la tabla TIPO_CD.

Realizar operaciones de unién

SQL proporciona un método mds para combinar datos desde diferentes tablas de una forma que
resulta un poco diferente de las operaciones join mostradas anteriormente en este capitulo. El
operador UNION es un método que puede utilizarse para combinar los resultados de multiples
instrucciones SELECT en un solo conjunto de resultados, esencialmente uniendo filas de una
consulta con filas de otra. A diferencia de las operaciones join, que agregan columnas desde mul-
tiples tablas y las colocan lado a lado, las operaciones de unidn agregan filas al final del conjunto
de resultados. Para poder utilizar un operador UNION, cada instruccién SELECT debe producir
columnas compatibles con union, lo que significa que cada una debe producir el mismo nimero de
columnas, y las columnas correspondientes deben tener tipos de datos compatibles. Por ejemplo, si
la primera columna de la instrucciéon SELECT produce una columna de caracteres, entonces otras
instrucciones SELECT combinadas con ella que utilizan el operador UNION deberan tener un tipo
de datos de caracteres en la primera columna en lugar de un tipo de datos numérico o de fecha y
hora.

Demos un vistazo a un ejemplo para mostrar lo que esto significa. La figura 11-6 muestra
dos tablas: la tabla CDS_CONTINUADOS vy la tabla CDS_DESCONTINUADOS. Las tablas son
practicamente idénticas en estructura pero sirven para dos propdsitos muy diferentes, que deberan
ser obvios si observamos los nombres de las tablas.

Supongamos que se quiere combinar los datos en estas dos tablas para que pueda visualizarse
la informacién de las dos tablas. Es posible, desde luego, ejecutar dos instrucciones SELECT se-
paradas, o se pueden combinar esas instrucciones en una sola que combine la informacién, como
se muestra en el siguiente ejemplo:

SELECT *

FROM CDS_ CONTINUADOS
UNION
SELECT *

FROM CDS DESCONTINUADOS;

270 Fundamentos de SQL

CDS_CONTINUADOS CDS_DESCONTINUADOS

NOMBRE_CD: TIPO_CD: | EN_EXISTENCIA:| |NOMBRE_CD: TIPO_CD: | EN_EXISTENCIA:
VARCHAR(60) CHAR(4) |INT VARCHAR(60) CHAR(4) INT

Famous Blue Raincoat | FROK 19 Court and Spark FROK 3

Blue CPOP 28 Kojiki NEWA 2

Past Light NEWA 6 That Christmas Feeling XMAS 2

Out of Africa STRK 8 Patsy Cline: 12 Greatest Hits| CTRY 4

Fundamental NPOP 10 Leonard Cohen The Best of | FROK 3

Blues on the Bayou BLUS 11 Orlando STRK 1

Figura 11-6 Unir las tablas CDS_CONTINUADOS y CDS_DESCONTINUADOS.

Como se puede ver, las dos instrucciones SELECT estdn combinadas utilizando el operador
UNION. Si se ejecuta esta instruccion, se recibirdn los siguientes resultados:

NOMBRE CD TIPO CD EN_EXISTENCIA
Blue CPOP 28
Blues on the Bayou BLUS 11
Court and Spark FROK 3
Famous Blue Raincoat FROK 19
Fundamental NPOP 10
Kojiki NEWA 2
Leonard Cohen The Best Of FROK 3
Orlando STRK 1
Out of Africa STRK 8
Past Light NEWA 6
Patsy Cline: 12 Greatest Hits CTRY 4
That Christmas Feeling XMAS 2

Los resultados incluyen 12 filas de datos, 6 filas para cada tabla. Se pueden limitar los resul-
tados incluso mds al especificar condiciones de biisqueda en las cldusulas WHERE. También es
posible especificar que la bisqueda solamente arroje columnas especificas, como se muestra en la
siguiente instruccién:

SELECT TIPO CD

FROM CDS_ CONTINUADOS
UNION
SELECT TIPO CD

FROM CDS DESCONTINUADOS;

Capitulo 11: Acceder a multiples tablas 271

Ahora cuando se genere la consulta, solamente serdn desplegados los valores de la columna TIPO_
CD:

TIPO CD

Observe que sélo son arrojadas 8 filas en lugar de 12. Esto se debe a que de manera predeter-
minada se filtran las filas para evitar duplicados. Si se quieren incluir todas las filas en los resul-
tados de la consulta, sin importar la existencia de valores duplicados, se puede agregar la palabra
clave ALL después del operador UNION, como se muestra en el siguiente ejemplo:

SELECT TIPO CD

FROM CDS_ CONTINUADOS
UNION ALL
SELECT TIPO CD

FROM CDS_DESCONTINUADOS;

Esta instruccion arrojara 12 filas en lugar de 8, con varios valores duplicados.

Como se puede ver, el operador UNION solamente resulta ttil en casos muy especificos. Si se
requiere mayor control sobre los resultados de la consulta, se deberd utilizar uno de los diferentes
tipos de operadores join soportados por SQL.

Pregunta al experto
P: (Hay algun tipo de operador join que sea comparable a utilizar el operador UNION?

R: SQL:2006 soporta actualmente un operador union join que realiza muchas de las mismas fun-
ciones que el operador UNION. El operador union join es similar al operador full outer join,
en términos de cémo son consolidados los resultados de la consulta. Sin embargo, el operador
full outer join permite especificar (en la cldusula ON) cudles columnas se hardn coincidir, a
diferencia del operador union join. Ademads, el operador union join no ha sido implementado
de manera general en los RDBMS, y ha sido desaprobado en el estindar SQL:2006, lo que
significa que es un candidato a eliminarse de futuras versiones de SQL. Asf que para cualquier
propdsito practico, el operador union join no es algo que deba preocuparle.

272

Fundamentos de SQL

Adicionalmente, el estdndar SQL:2006 soporta los operadores INTERSECT y EXCEPT, que
tienen una sintaxis similar a UNION. INTERSECT funciona de forma parecida a UNION, excepto
que arroja solamente las filas que aparecen en los resultados de ambas instrucciones SELECT.
EXCEPT, por otro lado, arroja solamente filas que aparezcan en los resultados de la primera ins-
truccion SELECT pero no en los resultados de la segunda. SQL Server soporta tanto INTERSECT
como EXCEPT. Oracle y MySQL soportan INTERSECT pero utilizan el operador MINUS en
lugar de EXCEPT.

Consultar maltiples tablas

En este capitulo se han introducido gran variedad de operaciones join asi como el operador
UNION, el cual técnicamente no estd considerado como una operacion join. Ahora tendrd la
oportunidad de practicar varias de estas técnicas join para consultar datos desde la base de datos
INVENTARIO. Especificamente, consultard algunas de las tablas que estdn configuradas con rela-
ciones de clave externa, que son el tipo de relaciones que ligan datos de una tabla con datos en otra
tabla. Debido a que no se cambiard ninguno de los datos, siéntase libre de intentar diferentes tipos
de operaciones join, incluso mds alld de las que se vieron en este ejercicio. Puede descargar el ar-
chivo Try_This_11.txt (en inglés), que contiene las instrucciones SQL utilizadas en este ejercicio.

Paso a paso

1. Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2. El primer tipo de operacion a realizar serd una operacion join separada por comas en las tablas
ARTISTAS y CDS_ARTISTA. La operacion join utilizard la columna ID_ARTISTA para esta-
blecer la condicién equi-join. Ingrese y ejecute la siguiente instruccién SQL:

SELECT * FROM ARTISTAS a, CDS_ARTISTA c
WHERE a.ID ARTISTA = c.ID_ ARTISTA;

Los resultados de la consulta deberdn incluir 19 filas, y también las columnas ID_ARTISTA de
ambas tablas al igual que las columnas NOMBRE_ARTISTA, LUGAR_DE_NACIMIENTO e
ID_DISCO_COMPACTO.

3. Ahora se modificard la instruccién anterior para que también pueda unir la tabla DISCOS_
COMPACTOS. De esa manera, se puede desplegar el nombre real de los CD. Adicionalmente,
se especifican los nombres de las columnas que deberan ser arrojadas. Ingrese y ejecute la si-
guiente instruccién SQL:

SELECT d.TITULO CD, a.NOMBRE ARTISTA, a.LUGAR DE NACIMIENTO
FROM ARTISTAS a, CDS_ARTISTA c, DISCOS_COMPACTOS d

WHERE a.ID ARTISTA = c.ID ARTISTA
AND d.ID DISCO COMPACTO = c.ID DISCO COMPACTO;

Los resultados de la consulta deberan incluir una vez mas 19 filas. Sin embargo, esta vez los
resultados desplegaran solamente las columnas TITULO_CD, NOMBRE_ARTISTA y LU-
GAR_DE_NACIMIENTO.

Capitulo 11: Acceder a mltiples tablas 273

4., Ahora convirtamos la anterior instruccién SELECT en una operacidn cross join. Ingrese y eje-
cute la siguiente instruccién SQL:

SELECT d.TITULO CD, a.NOMBRE ARTISTA, a.LUGAR DE NACIMIENTO

FROM ARTISTAS a CROSS JOIN CDS ARTISTA c CROSS JOIN DISCOS COMPACTOS d
WHERE a.ID ARTISTA = c.ID_ARTISTA

AND d.ID_DISCO _COMPACTO = c.ID_DISCO COMPACTO;

Se recibirdn los mismos resultados de la consulta que se arrojaron en la anterior instruccién SE-
LECT.

5. El siguiente tipo de instruccion que debera ejercitar es una condicién join. La primer condicién
serd del tipo inner join. En esta instruccion se unirdn tres tablas: DISCOS_COMPACTOS,
TIPOS_DISCO_COMPACTO y TIPOS_MUSICA. Ingrese y ejecute la siguiente instruccién
SQL:

SELECT d.TITULO_CD, t.NOMBRE TIPO
FROM DISCOS COMPACTOS d JOIN TIPOS DISCO COMPACTO dt
ON d.ID DISCO COMPACTO = dt.ID DISCO_COMPACTO
JOIN TIPOS MUSICA t
ON dt.ID TIPO MUSICA = t.ID TIPO;

Los resultados de la consulta deberan incluir 24 filas. Solamente las columnas TITULO_CD y
NOMBRE_TIPO deberan ser desplegadas.

6. Ahora modifiquemos la anterior instrucciéon SELECT para crear una operacion full outer join
en ambas condiciones join. Ingrese y ejecute la siguiente instruccién SQL:

SELECT d.TITULO_CD, t.NOMBRE TIPO
FROM DISCOS COMPACTOS d FULL JOIN TIPOS DISCO COMPACTO dt
ON d.ID DISCO COMPACTO = dt.ID DISCO_COMPACTO
FULL JOIN TIPOS MUSICA t
ON dt.ID TIPO MUSICA = t.ID TIPO;

Los resultados de la consulta deberdn ahora incluir 26 filas en lugar de 24. Esto se debe a que la
tabla TIPOS_MUSICA incluye dos filas que son no coincidentes: la fila Jazz y la fila Interna-
tional. En otras palabras, ningtin CD coincide con ninguno de estos dos tipos de musica.

7. Cierre la aplicacion cliente.

Resumen de Pruebe esto

En este ejercicio se crearon operaciones join separadas por comas, operaciones cross y operacio-
nes de condicién. Las operaciones join de condicion incluian inner y outer joins. Como se puede
ver, las operaciones join proporcionan gran flexibilidad cuando se consultan datos desde las tablas
en la base de datos. Sin embargo, no son la tinica solucién cuando se necesitan datos de mas de
una tabla. Una subconsulta a menudo proporcionard la misma funcionalidad que una operacién
join. En el capitulo 12 se analizardn las subconsultas con gran detalle. Como se verd, éstas propor-
cionan una forma més para acceder a datos desde multiples tablas.

274 Fundamentos de SQL

v Aot Canitulo 11

1. Se estd utilizando una operacién join separada por comas para unir dos tablas. La primera tabla
contiene cinco filas y la segunda tres filas. ;Cudntas filas contendra la tabla de producto carte-
siano?

2. ;Qué constituye una condicién equi-join en una cldusula WHERE?
3. (Cudl cldusula contiene la condicién equi-join en una operacion join separada por comas?

4. ;Qué lineamientos basicos deberdn seguirse cuando se crea una operacion join separada por
comas?

5. Se estd creando una operacion join sobre dos tablas. Se asignan nombres de correlacion para
cada una de estas tablas. ;Cudles nombres deberan utilizarse en la cldusula SELECT: los nom-
bres de correlacion o los nombres reales de las tablas?

6. ;Qué tipo de operacién join es practicamente idéntica a la operacion join separada por comas?
A Join de condicion
B Join natural
C Cross join
D Join de columna nombrada
7. ;Cudntas tablas estdn contenidas en una operacién self-join?

8. (Qué lineamientos deberdn seguirse cuando se crean operaciones join naturales o de columna
nombrada?

9. (Cudl es la diferencia entre una operacién join natural y una de columna nombrada?

10

(Qué tipo de operacidn join contiene una cldusula USING para especificar la condicién equi-
join?

11. ;Cuadles son los dos tipos de operaciones join de condicién?
12. ;Cudles son los tres tipos de operacién outer join?

13. ;Cuadl tipo de operacién join de condicién debera utilizarse si se quieren arrojar solamente filas
coincidentes?

A Inner join
B Left outer join
C Right outer join
D Full outer join
14. ;Qué tipo de operacién join de condicién arroja todas las filas coincidentes y no coincidentes?
A Inner join
B Left outer join
C Right outer join
D

Full outer join

Capitulo 11: Acceder a multiples tablas 275

15. ;Qué tipo de operacion join contiene una cldusula ON?
A Crossjoin
B Join separada por comas
C Join natural
D Join de condicion

16. Un operador permite combinar instrucciones SELECT separadas en una sola
instruccién para unir los datos en un solo resultado de consulta.

17. ;Qué palabra clave puede utilizarse con un operador UNION para arrojar todas las filas en los
resultados de la consulta, sin importar si existen valores duplicados?

Capitulo 12

Utilizar subconsultas
para acceder
y modificar datos

278 Fundamentos de SQL

Habilidades y conceptos clave

Crear subconsultas que arrojen multiples filas
Crear subconsultas que arrojen un solo valor
Trabajar con subconsultas correlacionadas
Utilizar subconsultas anidadas

Utilizar subconsultas para modificar datos

Las subconsultas, al igual que las operaciones join, proporcionan una forma de acceder a datos en
multiples tablas con una sola consulta. Una subconsulta puede agregarse a una instruccién SE-
LECT, INSERT, UPDATE o DELETE para permitir a esa instruccién utilizar los resultados de la
consulta arrojados por la subconsulta. La subconsulta es esencialmente una instruccion SELECT
incrustada que actia como una puerta de entrada a los datos en una segunda tabla. Los datos
arrojados por la subconsulta se utilizan como la instruccién primaria para cumplir cualquier con-
dicién que haya sido definida en la instruccion. En este capitulo se discutird cémo se utilizan las
subconsultas en diferentes instrucciones, particularmente en instrucciones SELECT, y se propor-
cionardn ejemplos que demuestren cdmo crear subconsultas y qué tipo de resultados de consulta
esperar.

Crear subconsultas que arrojen mdltiples filas

En el capitulo 9 se incluyeron muchos ejemplos de subconsultas que se utilizan para demostrar
ciertos tipos de predicados, por ejemplo IN y EXISTS. De varias maneras, este capitulo es una
extension de esa discusion debido a la forma en la cual las subconsultas son implementadas mas
comuinmente (en la clausula WHERE de una instruccién SELECT). La comprension sobre este
tipo de subconsultas va de la mano con la comprension sobre como se formulan los predicados
para crear condiciones especificas de biisqueda; condiciones de busqueda que dependen de esas
subconsultas para arrojar datos desde una tabla referenciada.

Se pueden dividir las subconsultas de una cldusula WHERE en dos categorias generales:
aquellas que pueden arrojar multiples filas y aquellas que pueden arrojar solamente un valor. En
esta seccidn se analizard la primera de estas categorias. En la siguiente seccidn, “Crear subconsul-
tas que arrojan un solo valor”, se analizard la segunda categoria. Mientras se expande cada tema,
sin duda usted reconocerd los formatos de instruccién desde la discusion de los predicados. A pe-
sar de que esta informacién pudiera parecer un poco repetitiva (es por eso que se tocard de manera
breve), se presenta aqui no solamente para proporcionar un repaso cohesivo de las subconsultas,
sino también para proporcionar una perspectiva diferente. En otras palabras, en lugar de mirar
las subconsultas a través de la perspectiva del predicado, miraremos directamente a la subconsulta
en si.

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 279

A pesar del hecho de que la discusion se enfoca en las subconsultas que son implementadas a
través de la clausula WHERE, el uso de las subconsultas no se limita a esa clausula. De hecho, se
pueden incluir subconsultas en una cldusula SELECT o en una cldusula HAVING. Sin embargo,
utilizar subconsultas en una cldusula SELECT no es muy comin. Ademads, solamente se utiliza-
rian subconsultas en una clausula HAVING cuando se definan condiciones de bisqueda en datos
agrupados. Con todo esto, los principios para utilizar subconsultas en una clausula HAVING son
similares a utilizarlas en una clausula WHERE. Por estas razones, la discusién aqui se enfocara
en utilizar subconsultas en la cldusula WHERE. Conforme usted se convierta en un programador
SQL mas avanzado, muy probablemente querrd utilizar subconsultas en otros lugares dentro de la
instruccién SELECT.

Utilizar el predicado IN

El primer tipo de subconsulta que se vera es el tipo utilizado dentro del predicado IN. Como podra
recordar del capitulo 9, el predicado IN compara valores de una columna en la tabla primaria con
valores arrojados por la subconsulta. Si el valor de la columna se encuentra en los resultados de la
subconsulta, esa fila (de la tabla primaria) se arroja en los resultados de la consulta de la instruc-
cion SELECT. Por ejemplo, supongamos que se quieren consultar los datos de la tabla EXISTEN-
CIA_CD, mostrada en la figura 12-1.

EXISTENCIA_CD ARTISTAS_CD

TITULO_CD: EXISTENCIA: TITULO: ARTIST_NAME:

VARCHAR(60) INT VARCHAR(60) VARCHAR(60)

Famous Blue Raincoat | 13 Famous Blue Raincoat Jennifer Warnes

Blue 42 Blue Joni Mitchell

Court and Spark 22 Court and Spark Joni Mitchell

Past Light 17 Past Light William Ackerman

Kojiki 6 Kojiki Kitaro

That Christmas Feeling | 8 That Christmas Feeling Bing Crosby

Out of Africa 29 Patsy Cline: 12 Greatest Hits Patsy Cline

Blues on the Bayou 27 After the Rain: The Soft Sounds of Erik Sat| Pascal Roge

Orlando 5 Out of Africa John Barry
Leonard Cohen The Best of Leonard Cohen
Fundamental Bonnie Raitt
Blues on the Bayou B.B. King
Orlando David Motion

Figura 12-1 Consultar las tablas EXISTENCIA_CD y ARTISTAS_CD.

280

Fundamentos de SQL

Los resultados de la consulta deberdn incluir solamente aquellas filas cuyo valor TITULO_CD
coincida con uno de los valores arrojados por la subconsulta. Los resultados de la subconsulta de-
beran incluir solamente aquellas filas que contengan un valor NOMBRE_ARTISTA de Joni
Mitchell (de la tabla ARTISTAS_CD). La siguiente instrucciéon SELECT arrojard estos datos:

SELECT *
FROM EXISTENCIA CD
WHERE TITULO_CD IN
(SELECT TITULO
FROM ARTISTAS CD
WHERE NOMBRE ARTISTA = 'Joni Mitchell');

Demos un vistazo mds cercano a la subconsulta en esta instruccién. Como se puede ver, estd
incluida en el predicado IN, después de la palabra clave IN. La subconsulta es basicamente una
instruccién SELECT que incluye una condicién de bisqueda definida en la clausula WHERE:

SELECT TITULO
FROM ARTISTAS CD
WHERE NOMBRE ARTISTA = 'Joni Mitchell'

Si se quisiera ejecutar solamente la subconsulta, se arrojarian lo siguientes resultados de la consul-
ta:

Blue
Court and Spark

Estos resultados son entonces utilizados por el predicado IN para compararlos con los valores
TITULO_CD en la tabla EXISTENCIA_CD. Cuando se ejecuta la instruccién SELECT completa,
se reciben los siguientes resultados:

TITULO_CD EXISTENCIA

Blue 42
Court and Spark 22

Observe que solamente dos filas son arrojadas de la tabla EXISTENCIA_CD. Esas filas repre-
sentan los dos CD grabados por Joni Mitchell. A pesar de que la tabla EXISTENCIA_CD no in-
cluye informacién sobre el artista, atin es posible ligar los datos desde las dos tablas debido a que
éstas incluyen columnas similares, permitiendo utilizar los datos arrojados por una subconsulta.

NOTA

En el caso de la tabla de ejemplo mostrada en la figura 12-1, es concebible que una clave
externa pueda ser configurada en la columna TITULO_CD de la tabla EXISTENCIA_CD para
hacer referencia a la columna TITULO de la tabla ARTISTAS_CD. Sin embargo, no es necesa-
ria una relacién de clave externa. El requerimiento principal que una subconsulta debe cumplir
es que debe arrojar resultados que sean légicamente comparables a los valores de columna
referenciados. De ofra manera, el propésito de la subconsulta seria nulo, y ninguna fila seria
arrojada por la instruccién SELECT principal debido a que no se puede cumplir la condicién
del predicado IN.

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 281

Utilizar el predicado EXISTS

En algunas circunstancias se puede requerir que la subconsulta arroje solamente un valor de verda-
dero o falso. El contenido de los datos en si mismo no es importante, en términos de cumplir con
la condicién de un predicado. En este caso, se puede utilizar un predicado EXISTS para definir la
subconsulta. El predicado EXISTS se evalia como verdadero si una o mas filas son arrojadas por
la subconsulta; de otra manera, se evalia como falso.

Para que un predicado EXISTS sea de utilidad, la subconsulta asociada deberd incluir una
condicion de biisqueda que haga coincidir los valores en las dos tablas que estan siendo vinculadas
a través de la subconsulta. (Se explica este tipo de subconsulta con mayor detalle en la seccién
“Trabajar con subconsultas correlacionadas”, posteriormente en este capitulo.) Esta condicién de
busqueda es similar a la condicién equi-join utilizada en ciertas operaciones join. (Véase el capitu-
lo 11 para mayor informacién acerca de condiciones join y equi-join.) Por ejemplo, regresando a la
tabla EXISTENCIA_CD vy a la tabla ARTISTAS_CD (mostradas en la figura 12-1), podemos crear
una instrucciéon SELECT que utilice un predicado EXISTS para consultar la tabla ARTISTAS_CD:

SELECT *
FROM EXISTENCIA CD s
WHERE EXISTS
(SELECT TITULO
FROM ARTISTAS CD a
WHERE a.NOMBRE ARTISTA "Joni Mitchell'
AND s.TITULO CD = a.TITULO) ;

En esta instruccion, cada fila arrojada por la instruccién SELECT principal se evalda con la
subconsulta. Si la condicién especificada en el predicado EXISTS es verdadera, la fila se incluye
en los resultados de la consulta; de otra manera, la fila es omitida. Cuando la condicién especifi-
cada es verdadera, eso significa que al menos una fila ha sido arrojada por la subconsulta. En este
caso, la fila arrojada incluird un valor NOMBRE_ARTISTA de Joni Mitchell. Ademas, el valor
TITULO_CD en la tabla EXISTENCIA_CD permanecera sin cambios igual que el valor TITULO
en la tabla de ARTISTAS_CD. Como resultado, solamente se arrojaran dos filas de esa instruccién
SELECT completa:

TITULO CD EXISTENCIA

Blue 42
Court and Spark 22

Como en el caso del predicado IN, el predicado EXISTS permite utilizar una subconsulta
para acceder a la informacion en otra tabla. A pesar de que la tabla EXISTENCIA_CD no incluye
informacién acerca de los artistas, la subconsulta permite arrojar los datos que estén basados en la
informacion del artista.

NOTA

La forma en que se procesa un predicado EXISTS a veces puede ser un tanto confusa. Asegu-
rese de referirse al capitulo 9 para una discusién completa acerca de este predicado.

Fundamentos de SQL

Utilizar predicados de comparacién cuantificados

Los predicados IN y EXISTS no son los tnicos predicados que se basan en el tipo de subconsul-
tas que pueden arrojar una o mas filas para que la condicién de bisqueda se evaliie como verda-
dera. Los predicados de comparacién cuantificados (SOME, ANY y ALL) también utilizan sub-
consultas que pueden arrojar multiples filas. Estos predicados se utilizan en conjuncién con opera-
dores de comparacién para determinar si alguno o todos los valores arrojados (de la subconsulta)
cumplen la condicién de bisqueda determinada por el predicado. Los predicados SOME y ANY,
que realizan la misma funcién, comprueban si algiin valor arrojado cumple con la condicién de
bisqueda. El predicado ALL comprueba si fodos los valores arrojados cumplen con la condicién
de buisqueda.

Cuando se utiliza un predicado de comparacién cuantificado, los valores en una columna de
la tabla primaria se comparan con los valores arrojados por la subconsulta. Demos un vistazo a un
ejemplo para dejar mas claro como funciona esto. Supongamos que la base de datos incluye la ta-
bla PRECIOS_MENUDEO y PRECIOS_VENTA, mostradas en la figura 12-2.

Ahora supongamos que se decide consultar la tabla PRECIOS_MENUDEO, pero solamente
se quieren arrojar aquellas filas con un valor P_MENUDEO mayor que todos los valores en la
columna P_VENTA de la tabla PRECIOS_VENTA para aquellos valores P_VENTA menores a
15.99. Para realizar esta consulta, se puede crear una instruccién similar a la siguiente:

SELECT NOMBRE_CD, P_MENUDEO
FROM PRECIOS_MENUDEO
WHERE P_MENUDEO > ALL
(SELECT P_VENTA
FROM PRECIOS_VENTA
WHERE P_VENTA < 15.99);

Observe que la subconsulta arroja solamente una columna de datos (los valores P_VENTA
que son menores a 15.99). Los valores en la columna P_MENUDEO son entonces comparados a
los resultados de la subconsulta.

PRECIOS_MENUDEO PRECIOS_VENTA

NOMBRE_CD: P_MENUDEO: |CANTIDAD: | | TITULO_CD: P_VENTA:
VARCHAR(60) NUMERIC(5,2) [INT VARCHAR(60) NUMERIC(5,2)
Famous Blue Raincoat 16.99 5 Famous Blue Raincoat 14.99

Blue 14.99 10 Blue 12.99

Court and Spark 14.99 12 Court and Spark 14.99

Past Light 15.99 11 Past Light 14.99

Kojiki 15.99 4 Kojiki 13.99

That Christmas Feeling 10.99 8 That Christmas Feeling 10.99

Patsy Cline: 12 Greatest Hitg 16.99 14 Patsy Cline: 12 Greatest Hits| 16.99

Figura 12-2 Consultar las tablas PRECIOS_MENUDEO y PRECIOS_VENTA.

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 283

Siun valor P_MENUDEQO especifico es mayor que fodos los resultados de la subconsulta, la fila es
arrojada. Cuando se ejecuta la instrucciéon SELECT completa, se reciben los siguientes resultados:

NOMBRE_CD P_MENUDEO
Famous Blue Raincoat 16.99
Past Light 15.99
Kojiki 15.99

Patsy Cline: 12 Greatest Hits 16.99

Como se puede ver, s6lo cuatro filas son arrojadas. Para cada fila, el valor P_MENUDEO es ma-
yor al precio mas alto arrojado por la subconsulta, el cual en este caso es de 14.99.

Pregunta al experto

P: se dijo que la clausula SELECT puede incluir una subconsulta. ; Cémo se incluiria la
subconsulta en esa clausula?

R: se puede incluir la subconsulta en una cldusula SELECT justo de la misma manera que se ha-
ria con un nombre de columna. Los valores arrojados desde las subconsultas son insertados en
los resultados de la consulta de la misma forma en que serian insertados los valores de colum-
na. Por ejemplo, se puede insertar una subconsulta en una cldusula SELECT de una instruc-
cién que es utilizada para consultar la tabla EXISTENCIA_CD (mostrada en la figura 12-1).
La subconsulta toma los datos desde la tabla ARTISTAS_CD, como se muestran en el siguien-
te ejemplo:

SELECT TITULO CD,
(SELECT NOMBRE_ARTISTA
FROM ARTISTAS CD a

WHERE s.TITULO CD = a.TITULO) AS ARTIST,
EXISTENCIA FROM EXISTENCIA CD s;

En la parte principal de esta instruccion, los valores son tomados desde las columnas TI-
TULO_CD y EXISTENCIA. Ademads de estos valores, una lista de artistas es arrojada por la
subconsulta. Los nombres de artista se hacen coincidir con sus CD utilizando un predicado de
comparacioén para comparar los valores en las columnas TITULO_CD y TITULO.

Cuando se utiliza una subconsulta en una clausula SELECT, se debe ser cuidadoso de no
crear una subconsulta que arroje solamente un valor cuando se necesitan multiples valores.
Cuando se arroja un solo valor, éste puede ser insertado en todas las filas arrojadas por la ins-
truccién principal SELECT, dependiendo de cémo se haya construido la consulta.

Crear subconsultas que arrojen un solo valor

Hasta ahora hemos observado subconsultas que pueden arrojar una o mas filas de datos. Esto es
conveniente en muchas circunstancias; sin embargo, puede haber ocasiones en que se requiera que la
subconsulta arroje solamente un valor para que puedan compararse los valores en una columna con
un valor inico de subconsulta. En estos casos se pueden utilizar los operadores de comparacion.

284

Fundamentos de SQL

Como se aprendio en el capitulo 9, los operadores de comparacion incluyen igual a (=),
desigual a (<>), menor que (<), mayor que (>), menor que o igual a (<=) y mayor que o igual a
(>=). Por ejemplo, demos otro vistazo a las tablas PRECIOS_MENUDEO y PRECIOS_VENTA
(mostradas en la figura 12-2). Supongamos que se quieren recuperar datos desde la tabla PRE-
CIOS_MENUDEQO. Se requiere que los valores P MENUDEQO igualen el precio maximo listado
en la columna P_VENTA de la tabla PRECIOS_VENTA. La siguiente consulta permite arrojar los
datos necesarios:

SELECT NOMBRE CD, P_MENUDEO
FROM PRECIOS_ MENUDEO
WHERE P_MENUDEO =
(SELECT MAX (P_VENTA)
FROM PRECIOS VENTA) ;

Observe que la subconsulta arroja solamente un valor, el cual en este caso es de 16.99. Como
resultado, la instruccién SELECT arroja solamente filas con un valor P_ MENUDEO de 16.99,
como se muestra en los siguientes resultados de la consulta:

NOMBRE_CD P_MENUDEO
Famous Blue Raincoat 16.99
Patsy Cline: 12 Greatest Hits 16.99

No se tiene que utilizar una funcién agregada (por ejemplo MAX) para arrojar un valor inico
en una subconsulta. Por ejemplo, la cldusula WHERE de la subconsulta pudiera incluir una con-
dicién que arrojarfa un tnico valor. El punto importante a recordar es que debe asegurarse que la
subconsulta arroje un tnico valor; de otra manera, se recibird un error cuando se utilice un opera-
dor de comparacion. Sin embargo, si se ha establecido la subconsulta apropiadamente, se puede
utilizar cualquiera de los operadores de comparacion para comparar los valores de columna. Ade-
mads, no se estd limitado en nimeros. Las cadenas de caracteres también pueden ser comparadas en
los predicados de comparacidn.

NOTA

En muchos casos se pueden utilizar predicados como IN con subconsultas que arrojan sola-
mente un valor. Sin embargo, estos predicados pueden soportar solamente las condiciones
igual a (=), o desigual a (<>), y no soportan las condiciones menor que (<), mayor que (>),
menor que o igual a (<=) y mayor que o igual a (>=), y todas ellas se pueden utilizar con los
operadores de comparacién.

Trabajar con subconsultas correlacionadas

En la seccién “Utilizar el predicado EXISTS” anterior en este capitulo, se mencioné que, para que
el predicado EXISTS sea de utilidad, debera incluir en la subconsulta una condicién de bisqueda
que coincida con los valores en las dos tablas que estan siendo vinculadas a través de la subcon-
sulta. Para ilustrar este punto, se incluye en esta seccién una instrucciéon SELECT de ejemplo que
contiene tal subconsulta. Se repetird esa instruccién aqui para mayor facilidad:

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 285

SELECT *
FROM EXISTENCIA CD s
WHERE EXISTS
(SELECT TITULO
FROM ARTISTAS CD a
WHERE a.NOMBRE ARTISTA = 'Joni Mitchell'
AND s.TITULO CD a.TITLE) ;

Esta instruccion hace referencia a las tablas EXISTENCIA_CD y ARTISTAS_CD en la figura
12-1. Observe que la subconsulta incluye un predicado que hace coincidir los valores TITULO_
CD en la tabla EXISTENCIA_CD con los valores TITLE en la tabla ARTISTAS_CD. Esta funcién
de hacer coincidir los valores es similar a las condiciones equi-join que se definen cuando se unen
tablas.

La razén por la que se ha regresado a esta instruccion es que ésta incluye un tipo de subcon-
sulta que no se habia analizado antes (la subconsulta correlacionada). Una subconsulta correlacio-
nada es aquella que estd pendiente de alguna manera de la instruccién outer. En este caso, la ins-
truccién outer es la instruccion SELECT principal que incluye una cldusula SELECT, una cldusula
FROM vy una cldusula WHERE, la cual contiene en sf misma una subconsulta. Debido a que esa
subconsulta hace referencia a la tabla EXISTENCIA_CD, la cual es un componente de la instruc-
cidén outer, la subconsulta es dependiente de esa instruccién para poder arrojar los datos.

En la mayoria de los ejemplos de subconsulta que hemos visto en este capitulo, las sub-
consultas han permanecido independientes de la instruccion outer. Por ejemplo, en la siguiente
instruccién SELECT (la cual fue utilizada como ejemplo en la seccién “Utilizar el predicado IN”
anteriormente en este capitulo), la subconsulta no es dependiente de la instruccién outer:

SELECT *
FROM EXISTENCIA CD
WHERE TITULO CD IN
(SELECT TITULO
FROM ARTISTAS CD
WHERE NOMBRE ARTISTA = 'Joni Mitchell');

En este caso, la subconsulta simplemente arroja resultados, que son luego utilizados en una
instruccién outer. La subconsulta es evaluada (ejecutada) sélo una vez, y los resultados son utili-
zados por la instruccién principal seglin sea necesario. Sin embargo, con una subconsulta corre-
lacionada, la subconsulta debe a menudo ser revaluada para cada fila arrojada por la instruccién
outer. La subconsulta correlacionada no puede ser evaluada solamente una vez debido a que al
menos uno de los valores cambia para cada fila. Por ejemplo, si miramos otra vez a la instruccion
SELECT que contiene la subconsulta correlacionada (como parte del predicado EXISTS), se pue-
de ver que el valor TITULO_CD cambia para cada fila arrojada por la instruccién SELECT outer.
Esto puede tener un severo impacto en el rendimiento, particularmente cuando se estd arrojando un
gran nimero de valores. En estos casos, se puede encontrar que crear una operacidn join propor-
ciona mejor rendimiento que una subconsulta correlacionada, pero desde luego depende en gran
parte de cémo la implementacion SQL maneje las operaciones join y las subconsultas correlacio-
nadas.

286 Fundamentos de SQL

Pregunta al experto

P: se dijo que crear una operacion join puede ser una mejor alternativa que crear una sub-
consulta correlacionada. ;Cémo se restableceria la instrucciéon SELECT anterior como
una operacion join?

R: En 1a instruccién SELECT anterior ya se ha identificado la condicién equi-join en la subcon-
sulta, y ya se conocen los nombres de las dos tablas que estin siendo unidas. Una forma en
que se puede modificar esta instruccién es utilizando una operacién join separada por comas,
como se muestra en el siguiente ejemplo:

SELECT TITULO CD, EXISTENCIA
FROM EXISTENCIA CD s, ARTISTAS CD a
WHERE a.NOMBRE ARTISTA 'Joni Mitchell'
AND s.TITULO CD = a.TITULO;

Observe que las columnas TITULO_CD y TITULO estan atin equiparadas una con otra.
Esta instruccion produce los mismos resultados que la instruccién que incluia la subconsulta
correlacionada, s6lo que la implementacién SQL no esta siendo forzada a reprocesar una
subconsulta para cada fila arrojada por la instruccién outer. En su lugar, la cldusula WHERE
simplemente toma los resultados arrojados por la clausula FROM vy aplica las condiciones de
busqueda definidas en los dos predicados. Para mayor informacién acerca de las operaciones
join, véase el capitulo 11.

Utilizar subconsultas anidadas

Hasta este punto hemos visto las instrucciones SELECT que incluyen solamente una subconsul-
ta. Sin embargo, una instruccién SELECT puede contener multiples subconsultas. El estandar
SQL:2006 no limita el nimero de subconsultas que pueden ser incluidas en la instruccién, aunque
la aplicacidn préctica, el rendimiento y las limitaciones de la implementacion SQL juegan un papel
importante al determinar cudl podria ser un niimero razonable. Asegurese de referirse a la docu-
mentacién de su implementacién SQL para determinar cudles restricciones pueden aplicar al uso
de las subconsultas.

Una forma de poder incluir multiples subconsultas en una instrucciéon SELECT es incluirlas
como diferentes componentes de la instruccién. Por ejemplo, la clausula WHERE podria incluir
dos predicados, y cada uno de ellos contener una subconsulta. Otra forma en la que multiples sub-
consultas pueden ser incluidas en una instruccion SELECT es anidar una subconsulta dentro de
otra. Estos son los tipos de subconsultas que se verdn en esta seccion.

Una subconsulta anidada es aquella que es un componente de otra subconsulta. La subcon-
sulta “outer” actia como una instrucciéon SELECT primaria que incluye una subconsulta dentro de
una de sus cldusulas. En la mayoria de los casos, la subconsulta anidada serd parte de un predicado
en la cldusula WHERE de la subconsulta outer. Veamos un ejemplo para ayudar a explicar mejor

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 287

INVENTARIO_DISCO ARTISTAS_DISCO TIPOS_DISCO
NOMBRE_DISCO: ID_ARTISTA: | CANTIDAD_EXISTENCIA: ID_ARTISTA: | NOMBRE_ARTISTA: | ID_TIPO_DISCO: ID_TIPO_DISCO: | NOMBRE_TIPO_DISCO:
VARCHAR(60) INT INT INT VARCHAR(60) INT INT CHAR(20)
Famous Blue Raincoat | 102 12 101 Joni Mitchell 10 10 Popular
Blue 101 24 102 Jennifer Warnes 12 11 Blues
Court and Spark 101 17 103 B.B. King 11 12 Folk

Past Light 105 9 104 Bonnie Raitt 10 13 Rock
Fundamental 104 22 105 William Ackerman | 15 14 Classical
Blues on the Bayou 103 19 106 Bing Crosby 16 15 New Age
Longing in Their Hearts | 104 18 107 Patsy Cline 17 16 Classic Pop
Luck of the Draw 104 25 108 John Barry 18 17 Country
Deuces Wild 103 17 109 Leonard Cohen 12 18 Soundtrack
Nick of Time 104 11

Both Sides Now 101 13

Figura 12-3 Consultar las tablas INVENTARIO_DISCO, ARTISTAS_DISCO y TIPOS_DISCO.

este concepto. El ejemplo utiliza las tablas INVENTARIO_DISCO, ARTISTAS_DISCO y TI-
POS_DISCO, mostradas en la figura 12-3.

Supongamos que se quieren desplegar los nombres de los CD y la cantidad en existencia de
los CD que son interpretados por artistas de blues. La tabla INVENTARIO_DISCO contiene los
nombres de los CD y la cantidad en existencia para cada uno, la tabla ARTISTAS_DISCO con-
tiene los nombres de los artistas, y la tabla TIPOS_DISCO contiene los nombres de los tipos de
artista. Las tablas INVENTARIO_DISCO y ARTISTAS_DISCO estan relacionadas a través de la
columna ID_ARTISTA en cada tabla. Las tablas ARTISTAS_DISCO y TIPOS_DISCO estén rela-
cionadas a través de la columna ID_TIPO_DISCO en cada tabla. Para arrojar la informacién nece-
saria se deberdn consultar las tres tablas, como se muestra en la siguiente instrucciéon SELECT:

SELECT NOMBRE DISCO, CANTIDAD EXISTENCIA
FROM INVENTARIO DISCO
WHERE ID ARTISTA IN
(SELECT ID_ARTISTA
FROM ARTISTAS DISCO
WHERE ID TIPO DISCO IN
(SELECT ID TIPO DISCO
FROM TIPOS_DISCO
WHERE NOMBRE_TIPO_DISCO = 'Blues'));

En esta instruccion, la instruccién SELECT primaria consulta la tabla INVENTARIO_DIS-
CO. La instruccidn incluye una subconsulta en un predicado IN en la clausula WHERE. La sub-
consulta es una instruccién SELECT que consulta la tabla ARTISTAS_DISCO. La subconsulta, al
igual que la instrucciéon SELECT primaria, incluye un predicado IN en la clausula WHERE, y este
predicado también incluye una subconsulta. Como es el caso con la subconsulta outer, la subcon-
sulta inner incluye una instruccién SELECT. Sin embargo, en este caso la instruccion estd consul-
tando la tabla TIPOS_DISCO.

288

Fundamentos de SQL

Uti

tilizar subconsultas para modificar datos

Para comprender mejor como funciona la instruccién SELECT completa, primero veamos la
subconsulta inner. Si se quisiera ejecutar esta instruccion por si sola, arrojaria un valor de 11, el
cual es el valor ID_TIPO_DISCO para el valor NOMBRE_TIPO_DISCO de Blues. La subcon-
sulta outer utiliza este valor en el predicado IN para arrojar aquellas filas con un valor ID_TIPO_
DISCO de 11. En este caso, la tnica fila arrojada es la fila B.B. King, que tiene un valor ID_AR-
TISTA de 103. El valor ID_ARTISTA es entonces utilizado en el predicado IN de la instruccién
SELECT primaria para arrojar solamente aquellas filas que contengan un valor ID_ARTISTA de
103. Si se ejecuta la instruccion SELECT completa, se arrojaran los siguientes resultados de la
consulta:

NOMBRE DISCO CANTIDAD EXISTENCIA
Blues on the Bayou 19
Deuces Wild 17

Como se puede ver, solamente dos filas son arrojadas. Observe que los resultados no incluyen
ninguna informacién de la tabla ARTISTAS_DISCO o de la tabla TIPOS_DISCO, a pesar de que
estas dos tablas son de gran importancia para llegar a estos resultados. Si se hubiera deseado, se
podrian haber anidado subconsultas adicionales en la instruccién. Cada una se habria procesado de
la misma manera que las subconsultas mostradas en el ejemplo anterior.

Al inicio de este capitulo se dijo que es posible utilizar subconsultas para modificar datos al igual
que para consultar datos. Ahora veremos las tres instrucciones de modificacién de datos primarias
(INSERT, UPDATE y DELETE) y cémo éstas utilizan subconsultas para modificar los datos en la
base de datos. Para cada instruccién se proporciona un ejemplo que modifica los datos en la tabla
TIPOS_TITULO, mostrada en la figura 12-4. Cada ejemplo incluye una subconsulta que arroja
datos desde la tabla INVENTARIO_TITULOS. Esta informacidn es utilizada como una base para
la modificacién de datos en la tabla TIPOS_TITULO.

NOTA

Esta seccién se centra en las subconsultas utilizadas en las instrucciones INSERT, UPDATE y DE-
LETE. Para mayor informacién acerca de estas instrucciones por si mismas, véase el capitulo 8.

Utilizar subconsultas para insertar datos

Una instrucciéon INSERT, como sin duda recordard, permite agregar datos a una tabla existente.
Se pueden agregar esos datos directamente a la tabla o a través de una vista que permita insertar
datos a la tabla subyacente. Si se utiliza una subconsulta en una instruccién INSERT, debe ser in-
cluido como uno de los valores definidos en la cldusula VALUES. Por ejemplo, supongamos que
se quieren insertar datos a la tabla TIPOS_TITULO. La clausula VALUES deber4 incluir un valor
para la columna TITULO_CD y la columna TIPO_CD. Ahora supongamos que se conoce el valor

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 289

INVENTARIO_TITULOS TIPOS_TITULO
ID_TITULO: | TITULO: EXISTENCIA: TITULO_CD: TIPO_CD
INT VARCHAR(60) INT VARCHAR(60) CHAR(20)
101 Famous Blue Raincoat 12 Famous Blue Raincoat Folk
102 Blue 24 Blue Popular
103 Past Light 9 Court and Spark Popular
104 Blues on the Bayou 19 Past Light New Age
105 Luck of the Draw 25 Fundamental Popular
106 Deuces Wild 17 Blues on the Bayou Blues
107 Nick of Time 11 Longing in their Hearts Popular
108 Both Sides Now 13 Deuces Wild Blues
Nick of Time Popular

Figura 12-4 Modificar la tabla TIPOS_TITULO.

ID_TITULO (de la tabla INVENTARIO_TITULOS), pero no se conoce el exacto nombre del CD.
Se puede crear una instruccion INSERT que tome el nombre del CD desde la tabla INVENTA-
RIO_TITULOS e inserte ese valor en la tabla TIPOS_TITULO, como se muestra en el siguiente
ejemplo:

INSERT INTO TIPOS TITULO VALUES
((SELECT TITULO FROM INVENTARIO TITULOS WHERE ID TITULO = 108),
'Popular');

Observe que la subconsulta aparece como uno de los valores en la clausula VALUES. La sub-
consulta arroja el valor Both Sides Now. Este valor y el valor Popular son insertados en la tabla
TIPOS_TITULO.

En su mayoria, utilizar una subconsulta en una instrucciéon INSERT es relativamente un pro-
ceso simple. Sin embargo, debe asegurarse de que la subconsulta arroje solamente un valor; de
otra manera, se recibird un error. Ademds, el valor debe ser compatible con el tipo de datos y con
cualquier otro requerimiento definido en la columna objetivo.

NOTA

No todas las implementaciones SQL soportan el uso de una subconsulta como un valor en la
instruccién INSERT. Por ejemplo, SQL Server no permite insertar valores de esta manera, mien-
tras que Oracle y MySQL si lo hacen.

290

Fundamentos de SQL

Utilizar subconsultas para actualizar datos

Una instruccién UPDATE permite modificar los datos existentes en una tabla. Al igual que con
una instruccién INSERT, se pueden modificar los datos directamente o a través de una vista, si esa
vista es actualizable. Para utilizar una subconsulta en una instruccién UPDATE, se puede incluir
en un predicado en la clausula WHERE, como se hizo con las instrucciones SELECT que se vie-
ron anteriormente en este capitulo. Por ejemplo, si se quiere actualizar el valor Both Sides Now
que fue insertado en el ejemplo anterior de instruccién INSERT, se puede crear una instruccion
UPDATE similar a la siguiente:

UPDATE TIPOS_ TITULO
SET CD_TYPE = 'Folk'
WHERE TITULO_CD IN
(SELECT TITULO
FROM INVENTARIO TITULOS
WHERE TITLE ID = 108);

En esta instruccion, el predicado IN compara los valores en la columna TITULO_CD de la
tabla TIPOS_TITULO con el valor arrojado por la subconsulta. La subconsulta es una instruccién
SELECT simple que arroja datos desde la tabla INVENTARIO_TITULOS. La subconsulta fun-
ciona aqui de la misma manera que se vio en los ejemplos anteriores de instrucciones SELECT. En
este caso, la subconsulta arroja un valor Both Sides Now. Este valor es por lo tanto utilizado para
determinar cudl fila actualizar en la tabla TIPOS_TITULO. Una vez que esta fila es determinada,
el valor TIPO_CD es cambiado a Folk.

Las subconsultas no estdn limitadas a la clausula WHERE de una instruccién UPDATE.
También se puede utilizar una subconsulta en la cldusula SET para proporcionar un valor para la
columna identificada. Por ejemplo, supongamos que se quiere una vez mas actualizar el valor Both
Sides Now que fue insertado en el ejemplo anterior de instruccién INSERT. Se puede tomar un
valor desde la tabla INVENTARIO_TITULOS para utilizarlo como el nuevo valor para la tabla
TIPOS_TITULO, como se muestra en la siguiente instruccién UPDATE:

UPDATE TIPOS TITULO
SET TITULO CD =
(SELECT TITULO
FROM INVENTARIO TITULOS
WHERE ID_TITULO = 108)
WHERE TITULO CD = 'Both Sides Now';

Observe que, en lugar de especificar un valor en la cldusula SET (a la derecha del signo de
igual), se puede especificar una subconsulta. La subconsulta arroja un valor de Both Sides Now e
inserta ese valor en la tabla TIPOS_TITULO.

NOTA

En el ejemplo anterior, todo lo que se ha hecho es escribir el mismo valor sobre uno existente. El
propésito de esta instruccién solamente es demostrar cémo una subconsulta puede ser utilizada
en una cléusula SET. Incluso si un nuevo valor hubiera sido escrito dentro de la fila, los princi-

pios hubieran sido los mismos. Por ejemplo, si el titulo hubiera cambiado en la tabla INVENTA-

RIO_TITULOS, la instruccién anterior habria actualizado el titulo en la tabla TIPOS_TITULO.

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 291

Utilizar subconsultas para eliminar datos

Una instrucciéon DELETE es similar a una instruccién UPDATE, en términos de cémo puede ser
utilizada una subconsulta en la cldusula WHERE. Simplemente se incluye un predicado que con-
tenga una subconsulta. En el siguiente ejemplo se borra el valor Both Sides Now que se modific
en el ejemplo anterior de instruccién UPDATE. Para determinar cudl fila debe eliminarse, se utiliza
una subconsulta para arrojar el valor apropiado TITULO de la tabla INVENTARIO_TITULOS:

DELETE TIPOS TITULO
WHERE TITULO_CD IN
(SELECT TITLE
FROM INVENTARIO TITULOS
WHERE TITLE ID = 108);

Como puede esperarse, la subconsulta arroja el valor de Both Sides Now. El predicado IN
compara este valor a los valores en la columna TITULO_CD de la tabla TIPOS_TITULO. Cada
fila con valores coincidentes es eliminada. En este caso, solamente una fila tiene un valor TITU-
LO_CD de Both Sides Now; por lo tanto, ésa es la fila que es eliminada.

s Akl - Trabajar con subconsultas

En este capitulo se analizé como se pueden utilizar subconsultas para consultar y modificar datos.
Las subconsultas que se han visto, dependen en su mayor parte del uso de predicados para definir
la condicién de la subconsulta. En este ejercicio creard varias instrucciones SELECT que incluyan
clausulas WHERE. Cada una de esas cldusulas contendrd un predicado que defina una subcon-
sulta, permitiendo el acceso a los datos para mds de una tabla. También modificara los datos uti-
lizando una instruccién UPDATE que contenga subconsultas en la clausula SET y en la cldusula
WHERE. Para este ejercicio, al igual que con los ejercicios anteriores, se utilizard la base de datos
INVENTARIO. Puede descargar el archivo Try_This_12.txt (en inglés), que contiene las instruc-
ciones SQL utilizadas en este ejercicio.

Paso a paso
1. Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2, La primera instruccién SELECT que se va a crear permite arrojar el nombre y el nimero de CD
que son producidos por MCA Records. Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN_ EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISQUERA IN
(SELECT ID_DISQUERA
FROM DISQUERAS CD
WHERE NOMBRE_COMPAﬁIA = 'MCA Records');

(continda)

292 Fundamentos de SQL

5

Esta instruccién utiliza una subconsulta para arrojar el valor ID_DISQUERA para MCA Re-
cords, que estd almacenado en la tabla DISQUERAS_CD. El valor es entonces utilizado en el
predicado IN para compararlo con los valores ID_DISQUERA en la tabla DISCOS_COMPAC-
TOS. La consulta deberd arrojar cuatro filas.

En la siguiente instruccién se utilizard un predicado EXISTS para definir una subconsulta. El
predicado determina si es que la tabla DISCOS_COMPACTOS contiene alguna fila con el valor
TITULO_CD de Out of Africa. Ingrese y ejecute la siguiente instrucciéon SQL:

SELECT NOMBRE_COMPAﬁIA
FROM DISQUERAS CD 1
WHERE EXISTS
(SELECT *
FROM DISCOS COMPACTOS d
WHERE 1.ID DISQUERA = d.ID DISQUERA
AND TITULO CD = 'Out of Africa');

La instruccién arrojard el nombre de la compaiiia que produce el CD Out of Africa, el cual en
este caso es MCA Records. La fila MCA Records en la tabla DISQUERAS_CD es la unica fila
que se evaliia como verdadera para la subconsulta en el predicado EXISTS.

En la siguiente instruccion a crear, se determinardn los nombres de los distribuidores para aque-
llos CD en los cuales el valor ID_DISQUERA en la tabla DISQUERAS_CD es igual a cuales-
quiera que sean los valores ID_DISQUERA arrojados por la subconsulta. Ingrese y ejecute la
siguiente instruccién SQL:

SELECT NOMBRE_COMPAﬁIA
FROM DISQUERAS CD
WHERE ID DISQUERA = ANY
(SELECT ID DISQUERA
FROM DISCOS COMPACTOS
WHERE EN EXISTENCIA > 30);

La subconsulta arroja solamente aquellos valores ID_DISQUERA para las filas que contienen
un valor EN_EXISTENCIA mayor a 30. Cuando se ejecuta esta instruccion, los nombres de
so6lo tres compaiifas deberan ser arrojados.

Ahora se creard una instrucciéon SELECT que utilice un predicado de comparacion para definir
una subconsulta. La subconsulta arroja el valor ID_DISQUERA (de la tabla DISQUERAS_CD)
para Capitol Records. El valor es entonces comparado con los valores ID_DISQUERA en la
tabla DISCOS_COMPACTOS. Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID_DISQUERA =
(SELECT ID DISQUERA
FROM DISQUERAS CD
WHERE NOMBRE COMPANIA = 'Capitol Records');

Esta instruccion deberd arrojar solamente dos filas.

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 293

6. Ahora hagamos de nuevo la instruccién del paso 5, pero ahora la convertiremos en una opera-
cién join separada por comas. Recuerde que deberd asignar nombres de correlacion a las tablas
para simplificar el cédigo. También recuerde que la clausula WHERE debera incluir una con-
dicién equi-join que hard coincidir los valores ID_DISQUERA. Ingrese y ejecute la siguiente
instrucciéon SQL:

SELECT TITULO CD, EN EXISTENCIA

FROM DISCOS_COMPACTOS d, DISQUERAS CD 1
WHERE d.ID DISQUERA = 1.ID DISQUERA

AND NOMBRE COMPANIA = 'Capitol Records';

Como se puede ver, esta instruccion es mucho més simple que la subconsulta utilizada en la
instruccidn anterior, y arroja los mismos resultados.

7. En la siguiente instruccion a crear, se utilizard una subconsulta anidada para arrojar los valores
a la subconsulta outer. Ingrese y ejecute la siguiente instruccién SQL:

SELECT NOMBRE ARTISTA
FROM ARTISTAS

WHERE ID_ ARTISTA IN

(SELECT ID _ARTISTA

FROM CDS ARTISTA
WHERE ID DISCO_COMPACTO IN
(SELECT ID DISCO COMPACTO
FROM DISCOS_COMPACTOS
WHERE TITULO CD = 'Past Light'));

La subconsulta inner arroja el valor ID_DISCO_COMPACTO para el CD Past Light. La sub-
consulta outer entonces utiliza ese valor para determinar el valor ID_ARTISTA para ese CD.

Este valor es luego utilizado en la instruccién SELECT principal, la cual arroja un solo valor:
William Ackerman. El es el artista del CD Past Light.

8. Ahora vamos empezar a utilizar subconsultas en una instruccién UPDATE. Sin embargo, pri-
mero demos un vistazo a la tabla que se va a actualizar, que es la tabla TIPOS_DISCO_COM-
PACTO. Para saber qué se va a actualizar, vamos a utilizar valores de la tabla DISCOS_COM-
PACTOS y de la tabla TIPOS_MUSICA para ayudar a identificar los nimeros de ID utilizados
en la tabla TIPOS_DISCO_COMPACTO. Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, NOMBRE TIPO

FROM DISCOS COMPACTOS d, TIPOS DISCO COMPACTO t, TIPOS MUSICA m
WHERE d.ID_DISCO COMPACTO = t.ID DISCO_COMPACTO

AND t.ID TIPO MUSICA = m.ID TIPO

AND TITULO_ CD 'Kojiki';

En esta instruccion se unieron tres tablas para arrojar el valor TITULO_CD y el valor TYPE_
NAME para el CD Kojiki. El CD est4 clasificado como New Age.

9. En este paso se actualizard la fila en la tabla TIPOS_DISCO_COMPACTO que coincida con
ID_DISCO_COMPACTO para el CD Kojiki con el valor ID_TIPO_MUSICA para el tipo de

(continda)

294 Fundamentos de SQL

musica New Age. Se cambiard el tipo de musica de New Age a Classical. Ingrese y ejecute la
siguiente instrucciéon SQL:

UPDATE TIPOS_DISCO_COMPACTO
SET ID TIPO MUSICA =
(SELECT ID TIPO
FROM TIPOS_MUSICA
WHERE NOMBRE_TIPO = 'Classical')
WHERE ID_DISCO_COMPACTO =
(SELECT ID DISCO COMPACTO
FROM DISCOS_COMPACTOS
WHERE TITULO CD = 'Kojiki')
AND ID_TIPO MUSICA =
(SELECT ID TIPO
FROM TIPOS_MUSICA
WHERE NOMBRE_TIPO = 'New Age');

La instruccién utiliza una subconsulta en la cldusula SET para tomar el valor TYPE_ID de la
tabla MUSIC_TYPES. La instruccion también utiliza dos subconsultas en la clausula WHERE
de la instruccion UPDATE para determinar cudl fila serd actualizada en la tabla TIPOS_DIS-
CO_COMPACTO. La primera subconsulta en la clausula WHERE arroja el valor ID_DISCO_
COMPACTO para el CD Kojiki. La segunda subconsulta arroja el valor ID_TIPO para el tipo
de musica Classical.

10. Ahora consultemos la tabla TIPOS_DISCO_COMPACTO para ver los cambios. Ingrese y eje-
cute la siguiente instruccién SQL:

SELECT TITULO CD, NOMBRE TIPO
FROM DISCOS COMPACTOS d, TIPOS DISCO COMPACTO t, TIPOS MUSICA m
WHERE d.ID DISCO COMPACTO = t.ID DISCO COMPACTO
AND t.ID TIPO MUSICA = m.ID TIPO
AND TITULO_ CD 'Kojiki';

El valor NOMBRE_TIPO ahora debera ser Classical.

11. Finalmente, se requiere arrojar la tabla TIPOS_DISCO_COMPACTO en su estado original. In-
grese y ejecute la siguiente instrucciéon SQL:

UPDATE TIPOS DISCO_COMPACTO
SET ID TIPO MUSICA =
(SELECT ID_TIPO
FROM TIPOS MUSICA
WHERE NOMBRE TIPO = 'New Age')
WHERE ID DISCO COMPACTO =
(SELECT ID DISCO_COMPACTO
FROM DISCOS_COMPACTOS
WHERE TITULO_CD
AND ID TIPO MUSICA
(SELECT ID TIPO
FROM TIPOS MUSICA
WHERE NOMBRE TIPO = 'Classical');

"Kojiki')

Capitulo 12: Utilizar subconsultas para acceder y modificar datos 295

Esta instruccion es similar a la instruccion UPDATE anterior, sélo que ahora el tipo de musica
New Age serd utilizado (éste era el tipo de musica original).

12. Ahora revisemos la tabla una vez mas. Ingrese y ejecute la siguiente instruccién SQL.:

SELECT TITULO CD, NOMBRE TIPO
FROM DISCOS COMPACTOS d, TIPOS DISCO COMPACTO t, TIPOS MUSICA m
WHERE d.ID _DISCO COMPACTO = t.ID DISCO COMPACTO
AND t.ID TIPO_MUSICA m.ID _TIPO
AND TITULO_ CD = 'Kojiki';

La tabla COMPACT_TIPOS_DISCO debera ahora contener los mismos valores que tenia cuan-
do se inici6 este ejercicio.

13. Cierre la aplicacién de cliente.

Resumen de Pruebe esto

En este ejercicio se crearon varias instrucciones SELECT que contenian subconsultas. Estas sub-
consultas fueron incluidas en predicados que permitian a las subconsultas arrojar una o mas filas.
Especificamente, las clausulas WHERE incluyeron los predicados IN, EXISTS y ANY. Ademas,
se cred una instrucciéon SELECT que incluia un predicado de comparacion, el cual permite a

la subconsulta arrojar solamente una fila. También se cred una instruccién SELECT que inclufa
subconsultas anidadas. Estas consultas utilizaron el predicado IN. Ademds de consultar datos de
la base de datos INVENTARIO, se actualizé la tabla TIPOS_DISCO_COMPACTO utilizando
subconsultas que accedieron a otras tablas. Como se puede ver, las subconsultas proporcionan una
herramienta versatil para acceder a los datos en la base de datos. Sin embargo, cuando se crean
instrucciones que incluyen subconsultas, siempre se deberd tratar de determinar si una operacion
join pudiera tener un mejor rendimiento en cualquier situacion dada.

v Aot Canitulo 12

1. (En cudl tipo de instruccién se pueden incluir subconsultas?

A SELECT
B INSERT

C UPDATE
D DELETE

2, ;Qué es una subconsulta?

296 Fundamentos de SQL

bod

(En cudles cldusulas de una instrucciéon SELECT se puede incluir una subconsulta?
A SELECT

B WHERE

C GROUPBY

D HAVING

(En cudles dos categorfas generales se pueden dividir las subconsultas de una clausula
WHERE?

(Cudles tipos de predicados se deben evitar utilizar con subconsultas que arrojen multiples
filas?

A Predicados IN y EXISTS
B Predicados SOME, ANY y ALL

C Predicados de comparacion

>

b

D Predicados de comparacion cuantificados

6. ;Cudndo se evalda una condicién EXISTS como verdadera?
7. ;Qué deberd incluirse en la condicién de bisqueda de una subconsulta cuando se utiliza un pre-
dicado EXISTS?
8. Ademds de nimeros, los datos pueden ser comparados en los predicados de
comparacion.
9. ;Cudles son los tres predicados de comparacion cuantificados?
10. ;Qué tipos de predicados permiten utilizar subconsultas que arrojen mdltiples filas?
A Predicados IN y EXISTS
B Predicados SOME, ANY y ALL
C Predicados de comparacion
D Predicados de comparacion cuantificados
11. ;Qué es una subconsulta correlacionada?
12. ;Qué tan seguido es evaluada una subconsulta correlacionada cuando se procesa una instruc-
cién SELECT?
13. Un(a) es una subconsulta que es un componente de otra subconsulta.

14. ;Cudntas subconsultas pueden ser incluidas en una instruccion SELECT, segtin especifica el
estandar SQL?

15. ;Cudl clausula en una instruccién INSERT puede contener una subconsulta?

16. ;Cudntos valores puede arrojar una subconsulta si es utilizada dentro de una instruccién IN-
SERT?

17. ;Cuadles cldusulas en una instruccion UPDATE pueden contener una subconsulta?

Parte I I I

Acceso avanzado
a los datos

Capitulo 13

Crear rutinas invocadas
por SQL

300 Fundamentos de SQL

Habilidades y conceptos clave

Entender las rutinas invocadas por SQL

Crear procedimientos invocados por SQL

Agregar pardmetros de entrada a sus procedimientos
Agregar variables locales a sus procedimientos
Trabajar con instrucciones de control

Agregar pardmetros de salida a sus procedimientos

Crear funciones invocadas por SQL

Antes de la liberacién de SQL:1999, el Instituto Americano de Estandares (ANSI, o Ameri-

can National Standards Institute) y la Organizacion Internacional de Normalizacién (ISO,
o International Organization for Standardization) publicaron un estandar provisional en 1996
que agregaba procedimientos y funciones, junto con el lenguaje relacionado, al estandar SQL
existente como Part 4. Esta nueva publicacién, también conocida como SQL/PSM, o PSM-96
(PSM se refiere a persistent stored module), represent6 el primer paso para incluir capacidades de
procedimiento dentro del mismo SQL. Part 4 (SQL/PSM) fue revisada e incorporada al estandar
SQL:1999, y revisada una vez mds para el estdndar SQL:2003. Estas capacidades de procedimien-
to definen, entre otros componentes, la creacién de rutinas invocadas por SQL (especificamente,
procedimientos invocados por SQL y funciones invocadas por SQL). En este capitulo veremos
de cerca ambos procedimientos y funciones, incluyendo cémo crearlos y cémo invocarlos una vez
que han sido creados. También se verdn varios ejemplos para demostrar los diferentes tipos de pro-
cedimientos y funciones y los componentes que forman a cada uno.

Entender las rutinas invocadas por SQL

Se introdujo por primera vez el concepto de las rutinas invocadas por SQL en el capitulo 2, donde
se describieron los objetos de esquema que pueden existir dentro de un ambiente SQL. Como se
podra recordar, una rutina invocada por SQL es una funcién o procedimiento que puede ser invo-
cado desde SQL. Ambas funciones y procedimientos son conjuntos almacenados de instrucciones
SQL predefinidas que realizan algin tipo de accién sobre los datos en la base de datos. Por ejem-
plo, se puede definir una instruccién SELECT y almacenarla como un procedimiento invocado por
SQL. Una vez que se ha creado ese procedimiento, puede invocarse simplemente citando su nom-
bre y, si resulta apropiado, proporcionando los pardmetros necesarios.

A diferencia de las vistas, todas las rutinas invocadas por SQL soportan el uso de pardmetros,
que son valores que pasan desde y hacia una rutina cuando se invoca esa rutina. Una funcién puede
recibir pardmetros de entrada y arrojar un valor basado en la expresion incluida en la definicién
de la funcién. Un procedimiento puede pasar parametros de entrada y de salida. Sin importar si es
un procedimiento o una funcidn, una rutina invocada por SQL puede ser un objeto de esquema o

Capitulo 13: Crear rutinas invocadas por SQL 301

puede estar incrustada en un médulo de SQL Server, que también es un objeto de esquema. (Un
modulo es un objeto que contiene instrucciones o rutinas SQL.)

NOTA

SQL:2006 también soporta un tercer tipo de rutina invocada por SQL (el método invocado
por SQL). Un método, que es utilizado en los tipos definidos de usuario, es un tipo de funcién
que realiza tareas predefinidas. SQL soporta dos tipos de tipos definidos por el usuario: tipos
estructurados y tipos distintos. Los métodos se utilizan en los tipos estructurados. El tema de los
tipos estructurados definidos por el usuario sale del campo de accién de este libro, por lo que
no se cubrirén métodos en este capitulo.

La mayoria de las implementaciones SQL soportan alguna forma de la rutina invocada por
SQL en sus productos. En varias implementaciones SQL, los procedimientos invocados por SQL
a menudo son nombrados procedimientos almacenados, y las funciones invocadas por SQL a me-
nudo son nombradas funciones definidas por el usuario. Sin importar los nombres utilizados, los
conceptos fundamentales son los mismos, y la funcionalidad basica soportada es similar de un pro-
ducto a otro. Sin embargo, mientras los conceptos y la funcionalidad son similares, la implementa-
cion de las rutinas invocadas por SQL puede variar ampliamente, y los detalles acerca de cémo son
creadas y nombradas las rutinas invocadas por SQL difieren no solamente entre el estandar SQL y
los productos individuales, sino también entre los mismos productos. La principal razén de esto es
que muchos productos habian ya implementado tecnologia PSM antes de la publicacién inicial del
estandar SQL/PSM en 1996. Como resultado, la funcionalidad propietaria ha persistido entre las
diferentes implementaciones, con pocos productos SQL ajustandose al estandar real SQL/PSM, o,
consecuentemente, la porcion relacionada con PSM del estandar SQL:2006.

A pesar de las diferencias de los productos, resulta conveniente dar un vistazo a los conceptos
basicos detrds de las rutinas invocadas por SQL, ya que estan definidos en el estindar SQL. El es-
tandar proporciona una mirada hacia la estructura subyacente utilizada por varias implementacio-
nes SQL y puede darle una idea general cohesiva de los conceptos basicos compartidos por todos
los productos que implementan los procedimientos y las funciones invocadas por SQL. Sin embar-
g0, al igual que con otras tecnologias relacionadas a SQL, debera referirse a la documentacién del
producto para su implementacién especifica SQL. En muy pocos casos se podra utilizar el estandar
SQL puro para crear una rutina invocada por SQL de implementacion especifica.

Procedimientos y funciones invocadas por SQL

Como se menciond anteriormente, una rutina invocada por SQL puede ser ya sea un procedimiento
invocado por SQL o una funcién invocada por SQL (o, en el caso de los tipos de datos de usuario,
un método invocado por SQL). Los procedimientos y funciones invocados por SQL son similares
de muchas maneras, aunque existen algunas diferencias bésicas. La tabla 13-1 proporciona una
vista general de las principales diferencias y similitudes.

La forma mads sencilla de distinguir entre los procedimientos y funciones invocados por SQL
es considerar un procedimiento como un conjunto de una o mds instrucciones SQL almacenadas,
similar a cémo una vista almacena una instruccién SELECT (como se describié en el capitulo 5),
y considerar una funcién como un tipo de operacién que arroja un valor, similar a las funciones
SET como SUM o AVG (descritas en el capitulo 10).

302 Fundamentos de SQL

Procedimientos Funciones

Se invoca desde las instrucciones SQL, no | Se invoca desde las instrucciones SQL, no desde un lenguaije
desde un lenguaje de programacién. de programacién.

Puede ser escrito en SQL o en otro Puede ser escrito en SQL o en otro lenguaije de programacién.

lenguaije de programacion.

Se invoca utilizando la instruccién CALL. | Se invoca como un valor en una expresién.

Soporta parémetros de entrada y salida, | Soporta parémetros de entrada, aunque no son obligatorios.
aunque ninguno de ellos es obligatorio. | No se pueden definir parédmetros de entrada o salida para
una funcién. La funcién arroja un Gnico valor de salida.

Tabla 3-1 Diferencias y similitudes entre los procedimientos y funciones SQL.

Trabajar con la sintaxis bdsica

Existen muchas similitudes entre la sintaxis que se usa para crear procedimientos y la que se usa
para crear funciones. De hecho, estan definidas como un solo elemento sintactico en SQL:2006.
Ademas, la sintaxis es, en su nivel mds bésico, similar a como se crean los procedimientos en la
mayoria de las implementaciones SQL. Demos un vistazo a la sintaxis de cada uno para compren-
der mejor sus elementos basicos.

Utilizar la instruccién CREATE PROCEDURE

La primera sintaxis que veremos es aquella que sirve para crear un procedimiento. En su nivel mds
basico, la instruccion CREATE PROCEDURE luce de la siguiente manera:

CREATE PROCEDURE <nombre del procedimiento>

([<declaracién de pardametro> [{ , <declaracién de pardmetro> } ...]])
| <caracteristica de la rutina>...]

<cuerpo de la rutina>

Como se puede ver, debe proporcionarse un nombre para el procedimiento (en la cldusula
CREATE PROCEDURE) seguido por cero o mas declaraciones de parametro, que van encerradas
en paréntesis. Se deben proporcionar los paréntesis incluso si no se define ninguna declaracién.
Después de las declaraciones de parametro se tiene la opcion de definir una o mds caracteristicas
de la rutina. Por ejemplo, se puede especificar si una rutina es SQL o una escrita en otro lenguaje,
por ejemplo C o Java.

NOTA

El tipo de caracteristicas de rutina que se puede definir varia ampliamente entre las imple-
mentaciones SQL, no solamente en términos de cudles opciones son soportadas, sino también
acerca de cémo estén definidas. Consecuentemente, el andlisis sobre estas opciones se man-
tendrd corto, por lo que deberd asegurarse de revisar la documentacién del producto para
mayor informacién. Por ejemplo, las extensiones de procedimiento en Oracle estén definidas
utilizando un lenguaije que Oracle llama PL/SQL, mientras que en SQL Server y Sybase, las
extensiones de procedimiento son parte de un lenguaije llamado Transact-SQL; ambos lengua-
jes son significativamente diferentes del esténdar SQL. Por ofro lado, MySQL y DB2 general-
mente acatan el esténdar SQL al definir funciones y procedimientos almacenados.

Capitulo 13: Crear rutinas invocadas por SQL - 303

Después de haber definido las caracteristicas del procedimiento, todo esta listo para agregar
las instrucciones SQL, que estan representadas por el marcador de posicién <cuerpo de la rutina>.
Muchas de las instrucciones que se utilizardn en esta seccidn serdn similares a aquellas que ya se
han visto en este libro. Sin embargo, el estandar SQL/PSM introdujo nuevos elementos del lengua-
je que hicieron mds dindmicos los procedimientos. Mientras continuamos a través de este capitulo,
se veran muchos de estos elementos y como son utilizados para extender la funcionalidad de los
procedimientos invocados por SQL.

Utilizar la instruccién CREATE FUNCTION

Ahora demos un vistazo a la instruccién utilizada para crear una funcién invocada por SQL. Como
se puede ver en la siguiente sintaxis, una funcién contiene unos cuantos elementos mds que un
procedimiento:

CREATE FUNCTION <nombre de la funcion>

([<declaracién de pardmetro> [{ , <declaracién de pardmetro> } ...]])
RETURNS <tipo de datos>

[<caracteristica de la rutina> . . . |

[STATIC DISPATCH |

<cuerpo de la rutina>

Al igual que con los procedimientos, primero se debe proporcionar un nombre a la funcion,
seguido por la lista de declaraciones de pardmetro. Las funciones soportan solamente pardmetros
entrada, y si no se proporciona ninguno, deberan utilizarse los paréntesis de todas formas. Si se
proporciona mds de un pardmetro de entrada, deberdn separarse utilizando comas. Siguiendo a las
declaraciones de pardmetro estd la clausula RETURNS. Se debe proporcionar el tipo de datos para
el valor que es arrojado por la funcién. Después de eso, se pueden incluir cualquiera de las caracte-
risticas opcionales de rutina, dependiendo de qué opciones soporte la implementaciéon SQL. Luego
estd la clausula STATIC DISPATCH. Se debe especificar esta cldusula si se utiliza un tipo definido
por el usuario, un tipo de datos de referencia, o un tipo de datos de arreglo. Debido a que todos
estos tipos salen del campo de accién de este libro, por el momento no es necesario preocuparse
acerca de la cldusula STATIC DISPATCH.

Lo dltimo que se debe incluir en la definicién del procedimiento es, desde luego, el cuerpo de
la rutina. Al igual que con los procedimientos, éstas son las instrucciones SQL que componen el
nicleo del procedimiento. Sin embargo, hay un elemento adicional que se puede encontrar en el
cuerpo de la rutina y que no estd incluido en el cuerpo de la rutina del procedimiento (una instruc-
ciéon RETURN, que no debe ser confundida con la cldusula RETURNS). La instrucciéon RETURN
especifica el valor que serd arrojado por la funcién. Posteriormente en este capitulo, en la seccién
“Crear funciones invocadas por SQL”, se discutirdn mds a detalle la instrucciéon RETURN y otros
elementos de la instruccion CREATE FUNCTION.

Crear procedimientos invocados por SQL

Ahora que se tiene una idea general de las rutinas invocadas por SQL y de la sintaxis utilizada para
crearlas, demos un vistazo mds cercano a cémo crear los procedimientos invocados por SQL. Un
procedimiento puede realizar la mayoria de funciones que se pueden realizar utilizando directa-
mente las instrucciones SQL. Ademds, los procedimientos pueden utilizarse para pasar pardmetros

304 Fundamentos de SQL

INVENTARIO_CD TIPOS_CD

TITULO_CD: ID_TIPO_CD: | EXISTENCIA_CD: ID_TIPO_CD: | NOMBRE_TIPO_CD:
VARCHAR(60) CHAR(4) INT CHAR(4) CHAR(20)

Famous Blue Raincoat FROK 19 FROK Folk Rock

Blue CPOP 28 CPOP Classic Pop

Past Light NEWA 6 NEWA New Age

Out of Africa STRK 8 CTRY Country
Fundamental NPOP 10 STRK Soundtrack

Blues on the Bayou BLUS 11 BLUS Blues

Kojiki NEWA 10 JAZZ Jazz

Figura 13-1 Utilizar procedimientos para acceder a las tablas INVENTARIO_CD y TIPOS_CD.

y definir variables, algo en que nos adentraremos posteriormente en este capitulo. Por ahora, vea-
mos un procedimiento desde su nivel mds bdsico, uno que no incluya pardmetros o tipos especiales
de instrucciones SQL.

Supongamos que se necesitan consultar los datos en las tablas INVENTARIO_CD y TIPOS_
CD mostrados en la figura 13-1. Se requiere que los resultados de la consulta arrojen los nombres
de los CD y el nimero en existencia para todos los CD de New Age.

Para ver esta informacion, se puede crear una instruccién SELECT que una las dos tablas,
como se muestra en el siguiente ejemplo:

SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD i, TIPOS CD t

WHERE i.ID TIPO CD = t.ID TIPO CD
AND NOMBRE_TIPO CD = 'New Age';

Desde luego, cada vez que se quiera ver esta informacion, se tendrd que volver a crear la
instruccién SELECT. Sin embargo, otra opcién es almacenar la instruccién SELECT dentro del
esquema. De esta manera, todo lo que se necesita hacer es convocar la instruccién cada vez que se
quiera ver la informacién de los CD de New Age. Una forma de almacenar la instruccién SELECT
es dentro de una definicién de vista:

CREATE VIEW NEW AGE AS
SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD i, TIPOS CD t
WHERE 1.ID TIPO CD = t.ID TIPO CD
AND NOMBRE TIPO CD = 'New Age';

Una vez que se ha creado la vista, se puede utilizar una instruccién SELECT para convocar la vis-
ta, como se muestra en la siguiente instruccion:

SELECT * FROM NEW_AGE;

Capitulo 13: Crear rutinas invocadas por SQL - 305

Sin embargo, las vistas son muy limitadas respecto a los tipos de instruccién y a la funciona-
lidad que soportan. Por ejemplo, no se puede incluir una instruccion UPDATE en una vista, ni se
pueden pasar pardmetros desde y/o hacia las vistas. Como resultado, una mejor forma de alma-
cenar esta instrucciéon SELECT es como un procedimiento invocado por SQL. Para hacer esto,
se debe crear un objeto de esquema utilizando la instruccion CREATE PROCEDURE, como se
muestra en el siguiente ejemplo:

CREATE PROCEDURE NEW AGE CDS ()
SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD i, TIPOS CD t
WHERE i.ID_TIPO CD = t.ID TIPO CD
AND NOMBRE_TIPO CD = 'New Age';

Esta instruccion representa la cantidad minima de informacion que se debe proporcionar
para crear un procedimiento. Incluye una cldusula CREATE PROCEDURE que le da nombre al
procedimiento (CDS_NEW_AGE), un conjunto de paréntesis y un cuerpo de la rutina, que es la
instruccién SELECT. Si se fueran a definir pardmetros, sus instrucciones estarian encerradas en los
paréntesis.

Como bien puede imaginarse, una instruccion CREATE PROCEDURE puede ser mucho més
compleja de lo que se ve aqui. Sin embargo, la instruccién en el ejemplo representa la estructura
bésica sobre la cual pueden construirse instrucciones mds extensas. Antes de analizar procedimien-
tos mds complicados, primero toquemos el tema de como se crea esta instruccion en diferentes
implementaciones SQL.

Anteriormente en el capitulo se dijo que las implementaciones SQL pueden variar amplia-
mente respecto a los puntos especificos de como se crean y se convocan las rutinas invocadas por
SQL. Como resultado, pocas implementaciones soportan el SQL puro cuando intentan definir los
procedimientos. Por ejemplo, tanto SQL Server como Oracle requieren que se utilice la palabra
clave AS antes del cuerpo de la rutina. Adicionalmente, SQL Server no utiliza paréntesis después
del nombre del procedimiento, sin importar si los pardmetros estdn siendo definidos o no. Oracle,
por otro lado, si utiliza los paréntesis, y también requiere algunas instrucciones adicionales que
encierran instrucciones ejecutables en bloques BEGIN...END. Como se mencion6 anteriormente,
MySQL y DB2 acatan mds cercanamente el estdindar SQL. Con esto debe estar claro que usted
simplemente debe consultar la documentacion de su producto cada vez que se esté creando un pro-
cedimiento para determinar cémo difiere el lenguaje especifico de ese producto del estandar SQL.

Invocar procedimientos invocados por SQL

Una vez que se ha creado el procedimiento, puede invocarse (o convocarse) utilizando una instruc-
cion CALL. La sintaxis basica para la instrucciéon CALL es la siguiente:

CALL <nombre del procedimiento>
([<valor>[{,<valor>1}..]1])

Como se puede ver, debe identificarse el nombre del procedimiento en la cldusula CALL y se-
guirla con los valores (en paréntesis) que pasan al procedimiento como parametros. Los paréntesis
deben utilizarse incluso si ningtin pardmetro es definido para el procedimiento. Si mas de un para-

306

Fundamentos de SQL

metro es definido para el procedimiento, deben separarse por comas. Ademads, deben seguirse estos
lineamientos cuando se ingresen los valores:

La instruccién CALL debera incluir el mismo nimero de valores que el nimero de parametros
definidos en el procedimiento.

Los valores deberdn ser ingresados en el mismo orden en que fueron definidos en el procedi-
miento.

Los valores deben ajustarse a los tipos de datos que estan asignados a los parametros.

Se analizaran los pardmetros con mas detalle en la siguiente seccion, “Agregar pardmetros de
entrada a sus procedimientos”.

Ahora veamos un ejemplo de la instruccién CALL. Si se quiere convocar el procedimiento
que fue creado en el ejemplo anterior, se puede utilizar la siguiente instruccién:

CALL CDS_NEW AGE();

En esta instruccion, el nombre del procedimiento sigue a la palabra clave CALL. Nétese el uso de
paréntesis a pesar de que ningin parametro fue definido para el procedimiento. Si algin parametro
hubiera sido definido, estaria encerrado en los paréntesis. Cuando se ejecuta esta instruccion, se
arrojardn los mismos resultados que se hubieran obtenido si se hubiera ejecutado la instruccién
SELECT separadamente, como se muestra en los siguientes resultados de la consulta:

TITULO_CD EXISTENCIA CD
Past Light 6
Kojiki 10

La instruccién CALL, al igual que la instruccion CREATE PROCEDURE, pueden variar de
implementacién a implementacién SQL en cdmo se utilizan y si son soportadas o no. De hecho,
probablemente encontrard que, para la mayoria de las implementaciones, se debe utilizar una ins-
truccion EXECUTE, en lugar de CALL, para invocar un procedimiento.

Agregar pardmetros de entrada
a sus procedimientos

El procedimiento CDS_NEW_AGE que se vio en los ejemplos anteriores puede ser de mucha
utilidad porque evita que se tenga que crear una instruccién SQL cada vez que se quiera ver la
informacidn acerca de los CD de New Age. Sin embargo, para poder arrojar informacién acerca
de otros tipos de CD, por ejemplo Blues o Country, se debe crear una nueva consulta o estructurar
un procedimiento para el tipo especifico de musica. Pero existe otra alternativa. Se puede crear

un procedimiento que no defina especificamente el tipo de musica sino que en su lugar permita al
usuario ingresar el tipo cada vez que quiera convocar ese procedimiento. De esa manera, solamen-
te se necesita un procedimiento para revisar cualquier tipo deseado de musica.

Para soportar este tipo de procedimiento se debe declarar un parametro dentro de la definicién
del procedimiento que permita al procedimiento aceptar valores de entrada cuando sea convocado.
Regresemos a las tablas INVENTARIO_CD y TIPOS_CD mostradas en la figura 13-1. Si modifi-
camos el lenguaje del procedimiento que se cred anteriormente, podemos crear un nuevo procedi-

Capitulo 13: Crear rutinas invocadas por SQL - 307

miento que incluya el pardmetro de entrada necesario, como se muestra en la siguiente instruccién
CREATE PROCEDURE:

CREATE PROCEDURE CDS_POR TIPO (IN p TIPO CD CHAR(20))
SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD i, TIPOS CD t
WHERE i.ID_TIPO CD = t.ID TIPO_CD
AND NOMBRE_TIPO CD = p TIPO CD;

En la primera linea de cédigo se define un parametro después de la clausula CREATE PRO-
CEDURE. La instruccién del pardmetro incluye la palabra clave IN, el nombre del pardmetro
(p_TIPO_CD) y el tipo de datos para ese pardmetro (CHAR(20)), y todos ellos estdn encerrados
en paréntesis.

NOTA

La convencién “p_” utilizada para nombrar los parémetros no es obligatoria. Sin embargo,
resulta mds fécil utilizar algon tipo de convencién de nombrado para separar los parémetros,
haciéndolos mds féciles de escoger en el cédigo.

SQL soporta tres tipos de pardmetros: de entrada, de salida y de entrada/salida. Los tres tipos
se representan por las palabras clave de modo de pardmetro IN, OUT e INOUT, respectivamente.
Los pardmetros de entrada permiten proporcionar valores cuando se invoca un procedimiento.
Esos valores son después utilizados dentro del cuerpo de la rutina cuando se ejecutan las instruc-
ciones SQL. Los pardmetros de salida permiten al procedimiento proporcionar valores como un
resultado de invocar el procedimiento. Los pardmetros de entrada/salida son aquellos que propor-
cionan la funcionalidad de pardmetros tanto de entrada como de salida. No se necesita especificar
alguna de las palabras clave de modo de pardmetro cuando se definan los pardmetros. Sin embar-
20, si no se especifica una de las palabras clave, SQL asume que se estd definiendo un parametro
de entrada.

NOTA

Al igual que con muchos otros aspectos de la instruccién CREATE PROCEDURE, las declara-
ciones de pardmetro pueden variar de producto a producto. En SQLL Server, por ejemplo, los
nombres de parédmetro deben ser precedidos del simbolo arroba (@), como en @p_Tipo_CD;
las declaraciones de parémetro no estén encerradas en paréntesis, y no se utiliza la palabra
clave IN. Oracle, por otro lado, no requiere el simbolo arroba y no utiliza los paréntesis. Ora-
cle también utiliza la palabra clave IN, pero se posiciona después del nombre del parémetro,
como en p_CD_Type IN CHAR(20).

Ahora regresemos al procedimiento CDS_POR_TIPO que esta definido en la instruccién
anterior CREATE PROCEDURE. Una vez que se define el parametro de entrada, se querra uti-
lizarlo de alguna forma significativa dentro del cuerpo de la rutina. En este caso, el pardmetro
p_TIPO_CD se utiliza en el segundo predicado en la clausula WHERE (NOMBRE_TIPO_CD
= p_TIPO_CD). Esto significa que el valor que se ingresa cuando se invoca el procedimiento es
comparado con los valores NOMBRE_TIPO_CD de la tabla TIPOS_CD cuando se ejecuta la ins-
truccién SELECT. En consecuencia, los resultados de la consulta incluirdn la informacion de CD
acerca del tipo de musica especificado.

308

Fundamentos de SQL

Una vez que se ha creado el procedimiento, puede invocarlo utilizando una instruccién CALL
que especifique un valor para el pardmetro. Por ejemplo, si se quiere arrojar informacion de los
CD de Folk Rock, se puede utilizar la siguiente instrucciéon CALL:

CALL CDS_POR_TIPO('Folk Rock') ;

Notese que se incluye el valor para el pardmetro en paréntesis después del nombre del proce-
dimiento. El valor debe obedecer al tipo de datos asignado al pardmetro, el cual en este caso es
CHAR(20). Al igual que con cualquier otra instancia en la que se esté trabajando con valores de
cadenas de caracteres, se debe cerrar el valor en comillas sencillas. Cuando se invoca este proce-
dimiento, el valor Folk Rock se inserta al predicado en la clausula WHERE vy el procedimiento
arroja los siguientes resultados de la consulta:

TITULO_CD EXISTENCIA CD

Famous Blue Raincoat 19

Como puede verse, ahora se tiene un procedimiento que puede usarse para arrojar la informa-
cién de CD de cualquier tipo de musica. Simplemente se proporciona el nombre del tipo de miisica
cuando se convoca el procedimiento. Sin embargo, los procedimientos no estdn limitados a sola-
mente un pardmetro. Se pueden incluir maltiples pardmetros en cualquier definicién de procedi-
miento. Por ejemplo, supongamos que se quiere modificar la definicién de procedimiento anterior
para permitir ingresar una cantidad. Se quiere utilizar esa cantidad para arrojar la informacién de
CD solamente para aquellos CD con un valor EXISTENCIA_CD que exceda la cantidad especifi-
cada. Al mismo tiempo, todavia se quiere arrojar la informacién de CD solamente para los tipos de
musica especificados. Como resultado, se necesita definir dos pardmetros, como se muestra en la
siguiente instruccion CREATE PROCEDURE:

CREATE PROCEDURE CDS POR TIPO (IN p Tipo CD CHAR(20), IN p Cantidad INT)
SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD i, TIPOS CD t
WHERE i.ID TIPO CD = t.ID TIPO CD
AND NOMBRE TIPO CD = p Tipo CD
AND EXISTENCIA CD > p Cantidad;

Noétese que la cldusula de instruccidn de pardmetro ahora incluye dos pardmetros de entrada:
p_Tipo_CD y p_Cantidad. El pardmetro p_Cantidad se configura con el tipo de datos INT. El pard-
metro p_Cantidad, al igual que el pardmetro p_Tipo_CD, se utiliza en un predicado en la cldusula
WHERE (EXISTENCIA_CD > p_Cantidad). Como resultado, las filas arrojadas por el procedi-
miento deben incluir valores EXISTENCIA_CD mayores a la cantidad especificada que cuando se
convoco el procedimiento.

Una vez que se ha creado el procedimiento, puede ser convocado utilizando una instruccion
CALL que incluya valores para ambos pardmetros, como se muestra en el siguiente ejemplo:

CALL CDS_POR TIPO('New Age', 5);

Ahora la instruccién CALL incluye dos valores (separados por una coma) dentro de los paréntesis.
Los valores deben ser enlistados en el mismo orden en el que los pardmetros estén definidos en la
instruccién CREATE PROCEDURE. Cuando se invoca esta instruccion, se asigna el valor New
Age al parametro p_Tipo_CD, y el valor 5 al pardmetro p_Cantidad, haciendo que la instruccién

Capitulo 13: Crear rutinas invocadas por SQL - 309

SELECT incrustada en la definicién del procedimiento se comporte como si se ingresaran los va-
lores directamente, como se muestra en el siguiente ejemplo:

SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD i, TIPOS CD t
WHERE i.ID _TIPO CD = t.ID TIPO CD
AND NOMBRE_TIPO CD = 'New Age'

AND EXISTENCIA CD > 5;

Si se ejecutara esta instruccidn, se arrojarian los mismos resultados que si se hubiera ejecuta-
do la instruccién CALL utilizando el valor New Age y el valor 5, como se muestra en el siguiente
resultado:

TITULO CD EXISTENCIA CD

Past Light 6
Kojiki 10

Ahora modificamos la instruccién CALL para ver cémo el especificar un valor diferente pu-
diera afectar los resultados. Supongamos que se utiliza un valor numérico de 8 en lugar de 5, como
se muestra en la siguiente instruccién:

CALL CDS_POR TIPO ('New Age', 8);
Si se ejecutara esta instruccién, solamente una fila seria arrojada:

TITULO_CD EXISTENCIA CD

Si regresamos a la tabla INVENTARIO_CD en la figura 13-1, se vera que tinicamente la fila Ko-
jiki es un CD de New Age con un valor EXISTENCIA_CD que rebasa la cantidad de 8, el valor
que se especificd en la instruccion CALL. Como se puede ver, utilizar multiples parametros puede
proporcionar una variedad de opciones para convertir a los procedimientos en una herramienta util
y flexible que puede eliminar la necesidad de escribir multiples instrucciones que se usaban para
lograr resultados similares. Si se definen los pardmetros necesarios, simplemente se tendrdn que
afiadir los valores necesarios para lograr los resultados que se deseen.

Utilizar procedimientos para modificar datos

Hasta este punto, los procedimientos invocados por SQL que se han visto han contenido instruccio-
nes SELECT que consultan datos. Sin embargo, los procedimientos no estan limitados a solamente
las instrucciones SELECT. Se pueden incluir instrucciones de modificacién de datos tales como
INSERT, UPDATE y DELETE. Regresemos a las tablas INVENTARIO_CD y TIPOS_CD, mos-
tradas en la figura 13-1. Puede notarse que la tabla INVENTARIO_CD incluye una fila para el CD
Fundamental. El tipo de musica para ese CD es New Pop, que se representa por NPOP (el valor en la
columna ID_TIPO_CD). También puede haberse notado que no hay una entrada correspondiente en
la tabla TIPOS_CD para el tipo New Pop. Se puede crear un procedimiento que permita insertar va-

310

Fundamentos de SQL

lores a esa tabla. Simplemente se necesita definir ese procedimiento con los pardmetros apropiados
de entrada y la instruccién INSERT, como se muestran en el siguiente ejemplo:

CREATE PROCEDURE INSERTAR TIPO(IN p Tipo CHAR(4), IN p Nombre CHAR(20))
INSERT INTO TIPOS CD VALUES (p Tipo, p Nombre) ;

Noétese que la definicién del procedimiento incluye dos pardmetros de entrada: p_Tipo y
p_Nombre, y que ambos estan definidos con el tipo de datos CHAR. Estos pardmetros son por
lo tanto utilizados en la instruccién INSERT, de la misma forma en la cual se hubieran especifi-
cado normalmente los valores a ser insertados en una tabla. Cualquier pardmetro que se declare
para este propdsito debe ser definido con un tipo de datos que sea compatible con el tipo de datos
definido en la columna que contenga los datos a ser modificados. Una vez que se crea el procedi-
miento, se puede utilizar una instruccién CALL similar a la del siguiente ejemplo para invocar el
procedimiento:

CALL INSERTAR TIPO('NPOP', 'New Pop') ;

Notese que la instrucciéon CALL incluye los valores NPOP y New Pop. Estos valores se pasan
a los dos pardmetros definidos en el procedimiento e INSERTAR_TIPO. Como resultado, son in-
sertados en la tabla TIPOS_CD como si se hubiera ejecutado la instruccion INSERT directamente.

De la misma forma en que se cre6 el procedimiento INSERTAR_TIPO, se pueden crear
procedimientos para actualizar y eliminar datos incluyendo la instruccion apropiada UPDATE y
DELETE, en lugar de la instruccién INSERT. Simplemente tendrd que crear los pardmetros de
entrada necesarios y asignar los valores apropiados a esos pardmetros cuando se convoque el pro-
cedimiento. Sin embargo, tenga en mente que el valor que se pase utilizando los pardmetros debe
acatar no solamente los tipos de datos definidos en las instrucciones de pardmetro, sino también
los tipos de datos y restricciones en las columnas que contienen los datos que se estdn tratando de
modificar.

Pregunta al experto

P: Hasta este punto se nos ha mostrado cémo crear procedimientos invocados por SQL, pero
no céomo modificarlos. ;Existe alguna forma de alterar o eliminar los procedimientos?

R: Elestandar SQL soporta tanto a la instruccion ALTER PROCEDURE como a la instruccién
DROP PROCEDURE. La instruccion ALTER PROCEDURE permite alterar algunas de las
caracteristicas de rutina del procedimiento, pero no permite alterar el cuerpo del procedi-
miento. Sin embargo, la funcionalidad soportada por la instruccion ALTER PROCEDURE
puede variar tan ampliamente entre una implementacion SQL y otra que se necesitard revisar
la documentacién del producto para ver si es que la instruccion es soportada y qué se puede
hacer con esa instruccién. En SQL Server, por ejemplo, la instrucciéon ALTER PROCEDU-
RE permite modificar la mayoria de los aspectos del procedimiento, mientras que la misma
instruccion en Oracle es utilizada principalmente para recopilar el procedimiento y evitar asi
la compilacién en tiempo real (que también evita la sobrecarga en tiempo real). Sin embargo,
Oracle proporciona la sintaxis CREATE OR REPLACE PROCEDURE que reemplaza a un

Capitulo 13: Crear rutinas invocadas por SQL 311

procedimiento existente (incluyendo el cuerpo del procedimiento) o crea un nuevo procedi-
miento si éste no existia auin.

En el caso de la instruccion DROP PROCEDURE, es soportada por la mayoria de las
implementaciones y por lo general es muy sencilla de utilizar. Simplemente se proporciona
el nombre del procedimiento en la instruccién y, dependiendo de la implementacién SQL,
las palabras clave RESTRICT o CASCADE, como se ha visto su uso en otras instrucciones
DROP. Nétese que resulta lo mismo para las instrucciones ALTER FUNCTION y DROP
FUNCTION. A pesar de ser soportada por muchas implementaciones, la instruccion ALTER
FUNCTION puede variar entre un producto y otro, y la instruccién DROP FUNCTION es
practicamente similar entre las diferentes implementaciones.

Agregar variables locales a sus procedimientos

Ademds de permitir pasar los pardmetros a un procedimiento, SQL también proporciona una for-
ma para crear variables locales en la definicion del procedimiento que puedan ser utilizadas dentro
del cuerpo del procedimiento. Una variable local puede ser considerada como un tipo de marcador
de posicion que mantiene un valor en la memoria durante la ejecucion de las instrucciones en el
cuerpo de la rutina. Una vez que las instrucciones han sido ejecutadas, la variable deja de existir.

Cuando se define una variable local, se debe declarar primero la variable y luego determinar
un valor inicial para ella. Entonces ya se puede utilizar esa variable en el resto del bloque de ins-
trucciones. La sintaxis basica para definir una variable es la siguiente:

DECLARE <nombre de la variable> <tipo de datos>;

Como se puede ver, la sintaxis es muy sencilla. Se debe proporcionar un nombre para la varia-
ble y asignar un tipo de datos. Una vez que se ha declarado la variable, debe asignarsele un valor
antes de que pueda ser referenciada. (Sin embargo, algunas implementaciones asignan automati-
camente un valor nulo a las variables en el momento de ser definidas.) Se puede utilizar la instruc-
cion SET para asignar un valor a una variable utilizando la siguiente sintaxis:

SET <nombre de la variable> = <expresion de valor>;

En esta instruccion se debe proporcionar primero el nombre de la variable y luego el valor, que
puede ser cualquier tipo de expresion de valor, como un nimero, una cadena de caracteres o una
subconsulta.

Después de que se ha declarado la variable y se le ha asignado un valor, todo estd listo para
utilizar la variable en el cuerpo de la rutina. La mejor forma de ilustrar esto es mostrando un ejem-
plo de un procedimiento que utilice la variable. Por ejemplo, utilizaremos una vez mds la tabla IN-
VENTARIO_CD, mostrada en la figura 13-1. La siguiente instruccién crea un procedimiento que
recupera la informacién de CD para un tipo de musica en especifico:

CREATE PROCEDURE CANTIDAD CD (IN p ID Tipo CHAR(4))
BEGIN
DECLARE v_Cantidad INT;
SET v_Cantidad = (SELECT AVG(EXISTENCIA CD)
FROM INVENTARIO CD) ;

312

Fundamentos de SQL

SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD
WHERE ID TIPO CD = p_ID Tipo
AND EXISTENCIA CD < v_Cantidad;
END;

Vayamos a través de esta instruccion linea por linea. En la primera linea se crea un procedi-
miento llamado CD_AMOUNT y un pardmetro de entrada llamado p_ID_Tipo. La segunda linea
contiene la palabra clave BEGIN. La palabra clave BEGIN es emparejada con la palabra clave
END en la tltima linea. Juntas encierran un bloque de instrucciones que son procesadas como una
unidad. Daremos un vistazo mds cercano al bloque BEGIN...END posteriormente en la seccién
“Trabajar con instrucciones de control”.

La tercera linea de la definicién del procedimiento incluye una instruccion DECLARE que
declara la variable v_Cantidad, que se define con el tipo de datos INT. Las dos nuevas lineas uti-
lizan una instruccién SET para asignar un valor inicial al parametro. Este valor se deriva de una
subconsulta que encuentra el promedio para todos los valores EXISTENCIA_CD. En este caso el
promedio es cercano a 13. En las siguientes cuatro lineas de la definicion del procedimiento, una
instruccién SELECT recupera datos de la tabla INVENTARIO_CD basados en los valores propor-
cionados por el pardmetro y la variable.

Una vez que se ha creado el procedimiento, puede ejecutarse utilizando una instruccion CALL
y proporcionando un valor para el pardmetro, como se muestran en el siguiente ejemplo:

CALL CANTIDAD CD('NEWA') ;

Cuando se procesa el procedimiento, utiliza el valor NEWA del pardmetro y el promedio
EXISTENCIA_CD de la variable en la instruccién SELECT definida en la definicién del procedi-
miento. Lo anterior seria similar a ejecutar la siguiente instruccién:

SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD

WHERE ID TIPO_CD = 'NEWA'
AND EXISTENCIA CD < 13;

Esta instrucciéon SELECT, al igual que el procedimiento en si mismo, arrojara los siguientes resul-
tados de la consulta:

TITULO_CD EXISTENCIA CD
Past Light 6
Kojiki 10

Nétese que ambas filas contienen valores EXISTENCIA_CD menores que la cantidad promedio
(13) y ambos son CD de New Age.

En una definicién de procedimiento no se estd limitado solamente a una variable. Se puede
crear una instruccién DECLARE para cada variable que se quiera incluir. También es posible
incluir mdltiples variables en una instruccion, si esas variables estdn asignadas al mismo tipo de
datos. Por ejemplo, supongamos que se desea declarar muchas variables con un tipo de datos INT,
como se muestra en la siguiente instruccion DECLARE:

DECLARE Varl, Var2, Var3 INT;

Capitulo 13: Crear rutinas invocadas por SQL 313

Esta instruccién declara las variables Var 1, Var 2 y Var 3, y cada una es asignada al tipo de datos
INT. Una vez que se asignan valores iniciales a las variables, se les puede utilizar en el cuerpo de
la rutina de la misma forma que cualquier otra variable local.

Trabajar con instrucciones de control

Cuando se liber6 el estandar SQL/PSM en 1996, no sélo incluia lenguaje que soportaba rutinas
invocadas por SQL, sino también lenguaje que pudiera ser utilizado dentro de esas rutinas para
hacerlas mds robustas. Tales caracteristicas como agrupar instrucciones en bloques y repetir ins-
trucciones para que pudieran ser ejecutadas multiples veces (comportamiento tradicionalmente
asociado con lenguajes del tipo de procedimientos) hacia a los procedimientos y funciones mucho
mas valiosos para los usuarios que necesitaban acceder y manipular datos en sus bases de datos. El
estandar SQL:2006 se referia a estos elementos del lenguaje como instrucciones de control debido
a que éstas afectaban la manera como se pueden controlar los datos en las rutinas invocadas por
SQL. En esta seccion se veran muchas de estas instrucciones de control, incluyendo aquellas que
permiten agrupar instrucciones en un bloque, crear instrucciones condicionales y establecer ins-
trucciones dentro de un bucle de repeticion.

Crear instrucciones compuestas

La mads basica de las instrucciones de control es la instrucciéon compuesta, que permite agrupar
instrucciones en un bloque. La instruccién compuesta inicia con la palabra clave BEGIN y termina
con la palabra clave END. Todo lo que esté entre estas dos palabras es parte del bloque. La ins-
truccién compuesta estd conformada por una o mas instrucciones SQL individuales, que pueden
incluir instrucciones como DECLARE, SET, SELECT, UPDATE, INSERT, DELETE u otras ins-
trucciones de control.

Ya se ha presentado un ejemplo de una instruccién compuesta en la instruccion CREATE
PROCEDURE anterior que define el procedimiento CANTIDAD_CD. (Este es el ejemplo mostra-
do en la seccion “Agregar variables locales a sus procedimientos”.) Si miramos otra vez este ejem-
plo, se observard que la definicién del procedimiento incluye una instruccién compuesta. Como se
pudiera esperar, inicia con la palabra clave BEGIN y termina con la palabra clave END. El bloque
creado por estas palabras clave incluye una instruccion DECLARE, una instruccién SET y una
instruccién SELECT. Nétese que cada instruccion es terminada con punto y coma. A pesar de que
la instrucciéon BEGIN...END es considerada una sola instruccion, las instrucciones encerradas en
estas palabras clave son instrucciones individuales por si mismas.

NOTA

En algunas implementaciones SQL, la instruccién compuesta pudiera no ser necesaria bajo
cierfas circunstancias. En estos casos, el terminador punto y coma pudiera ser suficiente como
sefial para la implementacién de que una instruccién ha terminado y otra ha empezado. Inclu-
so en aquellas implementaciones que no requieren el punto y la coma, como en SQL Server,

a veces se procesardn moltiples instrucciones como un bloque incluso sin haber utilizado la
construccién BEGIN...END. Cuando la implementacién alcanza el final de una instruccién,
simplemente continGa con la siguiente. Sin embargo, como una regla general, deberd utili-
zarse la construccién compuesta para mantener juntas aquellas instrucciones que deberdn ser
procesadas como una unidad. Cuando no se utilice, dependiendo de la implementacién, a
veces se puede experimentar un comportamiento imprevisible.

314

Fundamentos de SQL

Se puede utilizar la instruccién compuesta en cualquier parte donde se necesite mantener las
instrucciones SQL juntas. Esto significa que pueden ser incrustadas dentro de otras instrucciones
compuestas o dentro de otros tipos de instrucciones de control. Las palabras clave BEGIN y END
no afectan la manera en que los datos pueden pasarse de una instruccion a la siguiente, como en el
caso de los parametros.

El aspecto positivo acerca de las instrucciones compuestas y la construccion BEGIN...END
es que ambas son soportadas por la mayoria de las implementaciones SQL, a pesar de que puede
haber ligeras variaciones de un producto a otro, en términos de los aspectos especificos de cémo
sean implementadas. Asegurese de revisar la documentacién del producto cuando se utilicen estas
instrucciones.

Crear instrucciones condicionales

El siguiente tipo de instruccién de control que veremos es la instruccién condicional. Esta instruc-
cién determina si una instruccién (o una serie de instrucciones) se ejecuta basada en si una con-
dicién especifica se evalia como verdadera. La instruccién utiliza las palabras clave IF, THEN y
ELSE para establecer las condiciones y definir las acciones a tomar: si (if) se cumple la condicién,
entonces (then) se ejecuta la instruccién SQL, o se toma alguna otra (else) accion.

NOTA

La instruccién condicional a veces foma a otros nombres, como instruccién IF, instruccién IF...
ELSE, instruccién IF...END IF o instruccién IF...THEN...ELSE.

Demos un vistazo a un ejemplo que utilice una instruccién condicional para definir los cursos
diferentes de accion, dependiendo de la condicién. En la siguiente definicién de procedimiento se
modificé el cuerpo de la rutina del procedimiento CANTIDAD_CD (que utilizamos en el ejemplo
anterior) para incluir una instruccién condicional:

CREATE PROCEDURE CANTIDAD CD (IN p ID Tipo CHAR (4))

BEGIN
DECLARE v_Cantidad INT;
SET v_Cantidad = (SELECT SUM(EXISTENCIA CD)

FROM INVENTARIO_ CD
WHERE ID TIPO CD = p ID Tipo);
IF v_Cantidad < 20 THEN
SELECT TITULO_ CD, EXISTENCIA CD
FROM INVENTARIO CD
WHERE ID TIPO CD = p ID Tipo;
ELSE
SELECT TITULO CD, EXISTENCIA CD
FROM INVENTARIO CD;
END IF;
END;

Notese que el bloque BEGIN...END ahora incluye una instruccién IF...END IF. La cldusula IF
introduce la instruccién y establece la condicién. Para que la condicién se evalie como verdadera,
el valor de la variable v_Cantidad debe ser menor a 20. Si la condicion se evalia como verdadera,

Capitulo 13: Crear rutinas invocadas por SQL 315

se ejecuta la primera instruccién SELECT. Esta es la instruccién SELECT que sigue a la palabra
clave THEN. Si la condicion se evalia como falsa, entonces se ejecuta la segunda instruccion
SELECT. Esta es la instruccién que sigue a la palabra clave ELSE. Para resumir, si v_Cantidad
es menor a 20, los valores TITULO_CD y EXISTENCIA_CD de la tabla INVENTARIO_CD son
arrojados para aquellas filas que contengan el ID Tipo (la columna ID_TIPO_CD) especificada por
el parametro p_ID_Tipo. Si v_Cantidad no es menor a 20, los valores TITULO_CD y EXISTEN-
CIA_CD seran arrojados para todas las filas en la tabla INVENTARIO_CD.

Una vez que se ha creado el procedimiento, puede invocarse utilizando una instruccién
CALL, como se ha hecho en procedimientos previos. Por ejemplo, si se quieren arrojar los CD de
New Age (NEWA), puede utilizarse la siguiente instruccion CALL:

CALL CANTIDAD CD('NEWA') ;

Esta instruccién arrojard ambas filas New Age: Past Light y Kojiki. Esto se debe a que el
nimero total de CD de New Age (16) es menor a 20, por lo que se ejecuta la primera instruccién
SELECT. Si se hubiera especificado la categoria Classic Pop (CPOP) cuando se invocé el procedi-
miento CANTIDAD_CD, todas las filas habrian sido arrojadas. Esto se debe a que el nimero total
de CD de Classic Pop (28) es mayor a 20. Como resultado, si la condicién IF no puede ser cumpli-
da, serd ejecutada la instruccién ELSE.

Si se quiere crear una instruccién condicional que incluya mds de una instruccién SQL ya sea
en la clausula IF o en la cldausula ELSE, se pueden encerrar esas instrucciones en una instruccion
de control. Por ejemplo, si agregamos la instruccién UPDATE a la condicién en el ejemplo ante-
rior y utilizamos una instruccién de control para encerrar las instrucciones UPDATE y SELECT, la
definicion del procedimiento luciria parecida a lo siguiente:

CREATE PROCEDURE CANTIDAD CD (IN p ID Tipo CHAR (4))

BEGIN
DECLARE v_Cantidad INT;
SET v_Cantidad = (SELECT SUM(EXISTENCIA CD)

FROM INVENTARIO CD
WHERE ID TIPO CD = p ID Tipo);
IF v_Cantidad < 20 THEN
BEGIN
UPDATE INVENTARIO_ CD
SET EXISTENCIA CD = EXISTENCIA CD + 1
WHERE ID TIPO CD = p ID Tipo;
SELECT TITULO_CD, EXISTENCIA CD
FROM INVENTARIO_ CD
WHERE ID TIPO CD = p ID Tipo;
END;
ELSE
SELECT * FROM INVENTARIO CD;
END IF;
END;

La instruccién compuesta agrupa las dos instrucciones dentro de un bloque de c6digos. De
esta manera, las tablas serdn actualizadas y los resultados de la actualizacion serdn desplegados en
los resultados de la consulta.

316

Fundamentos de SQL

Pregunta al experto

P:

La instruccion de condicion en el ejemplo anterior muestra solamente dos condiciones
y cursos de accion: la condicion/accion definida en la clausula IF y la condicion/accion
definida en la clausula ELSE. ;Qué pasa si se quieren incluir mas condiciones?

El estandar SQL:2006 soporta mas de dos construcciones de condicién/accién en una instruc-
cion condicional. Si se necesitan mds de dos, se trata a la cldusula IF y a la clausula ELSE tal
como se mostré en el ejemplo. Las condiciones adicionales se insertan entre las dos cldusulas
afiadiendo la clausula ELSE IF o una cldausula ELSEIF. La sintaxis para esto seria como la si-
guiente:

IF <condicidén> THEN <accidn>
ELSE IF <condicidén> THEN <accidn>
ELSE <accidn>

La forma exacta de implementar la tercera condicién/accion dependerd de la implementa-
cién. Ademds, no todas las implementaciones soportan ELSEIF, y algunas utilizan la palabra
clave ELSIF. Como siempre, asegtrese de referirse a la documentacién de su producto.

Crear instrucciones de repeticion

Ahora demos un vistazo a otro tipo de instruccién de control (la instruccién de repeticién). En
realidad, SQL soporta muchos tipos de instrucciones de repeticion. Centraremos nuestra atencion
en dos de ellas: la instruccion LOOP y la instruccion WHILE, las cuales realizan funciones simila-
res.

La instrucciéon LOOP utiliza las palabras clave LOOP y END LOOP para encerrar un bloque
de instrucciones que se ejecutan repetitivamente hasta que el bucle de repeticion sea explicitamen-
te terminado, utilizando por lo general la palabra clave LEAVE. Oracle utiliza la palabra clave
EXIT en lugar de la palabra clave LEAVE, y SQL Server no soporta la instruccién LOOP. Demos
un vistazo a un ejemplo para ilustrar cémo funciona esto. Una vez mds se utilizardn las tablas de la
figura 13-1, asi como una instruccién LOOP para actualizar la tabla INVENTARIO_CD.

NOTA

Si se cred y probé por completo el procedimiento CANTIDAD_CD del ejemplo anterior, se asu-
me que la tabla INVENTARIO_CD ha regresado a su condicién original mostrada en la figura
13-1 y que ningin dato ha sido modificado.

En la siguiente definicién de procedimiento se incluye una instruccién LOOP que contindia
para actualizar la columna EXISTENCIA_CD hasta que alcance una cantidad mayor a 14:

CREATE PROCEDURE ACTUALIZAR_ EXISTENCIAS (IN p Titulo CHAR(20))
BEGIN
DECLARE v_Cantidad INT;

Capitulo 13: Crear rutinas invocadas por SQL 317

SET v_Cantidad = (SELECT EXISTENCIA CD
FROM INVENTARIO CD
WHERE TITULO CD = p Titulo);
Loopl:
LOOP
SET v_Cantidad = v_Cantidad + 1;
UPDATE INVENTARIO CD
SET EXISTENCIA CD = v_Cantidad
WHERE TITULO CD = p Titulo;
IF v_Cantidad > 14
THEN LEAVE Loopl;
END IF;
END LOOP;

END;

En esta instruccion se le asigna primero un nombre a la repeticién (Loopl:), lo que a veces se

denomina etiqueta de instruccién. Se deben incluir los dos puntos con el nombre la primera vez
que se asigna. Después se crea el bloque de repeticién, que empieza con la palabra clave LOOP y
termina con las palabras clave END LOOP. Dentro del bloque estan las instrucciones SET y UP-
DATE. Estas dos instrucciones se ejecutan hasta que termine el bucle de repeticién. Nétese que el
valor EXISTENCIA_CD aumenta en un incremento de 1 cada vez que se ejecutan las instruccio-
nes en la repeticion. Estas dos instrucciones estan seguidas por una instruccién IF, que especifica
la condicién en la cual se termina el bucle de repeticion. Si el valor para la variable v_Cantidad
pasa de 14, entonces se termina la repeticién (LEAVE Loopl). La instruccién IF es entonces fina-
lizada con las palabras clave END IF.

NOTA

Si no se incluye la instruccién IF dentro del bucle de repeticién (con el operador de terminacién
LEAVE), la repeticién continuard para incrementar el valor EXISTENCIA_CD hasta que llene
todo el espacio disponible o algin otro evento o finalice la operacién. Este es un error de pro-
gramacién comin conocido como bucle de repeticién infinito.

Se puede entonces invocar el procedimiento proporcionando el nombre del procedimiento y

un valor para el pardmetro. Por ejemplo, supongamos que se quiere actualizar la fila Fundamental
en la tabla INVENTARIO_CD. Se puede invocar el procedimiento con la siguiente instruccion
CALL:

CALL ACTUALIZAR EXISTENCIAS ('Fundamental') ;

Cuando se ejecuta el procedimiento, un valor de 1 es repetidamente agregado a la columna

EXISTENCIA_CD hasta que el valor alcance 15, y luego el bucle de repeticion es finalizado.

Se pueden recibir los mismos resultados mds elegantemente utilizando la instruccion WHILE.

En el siguiente ejemplo se modificé la definicién de procedimiento ACTUALIZAR_EXISTEN-
CIAS reemplazando la instruccién LOOP con una instruccion WHILE:

CREATE PROCEDURE ACTUALIZAR EXISTENCIAS(IN p Titulo CHAR(20))
BEGIN

DECLARE v_Cantidad INT;

318 Fundamentos de SQL

SET v_Cantidad = (SELECT EXISTENCIA CD
FROM INVENTARIO CD
WHERE TITULO CD = p Titulo);

WHILE v_Cantidad < 15 DO

SET v_Cantidad = v_Cantidad + 1;

UPDATE INVENTARIO CD

SET EXISTENCIA CD = v_Cantidad

WHERE TITULO CD = p Titulo;

END WHILE;
END;

NOTA

Una vez més, si se ejecuté por completo el procedimiento creado en el ejemplo anterior, se
asume que la tabla ha regresado a su condicién original mostrada en la figura 13-1 y que
ningdn dato ha sido modificado.

La instrucciéon WHILE establece el mismo tipo de condicién de repeticién que la instruccion
LOOP. Sin embargo, en lugar de utilizar una instruccién IF para terminar el bucle, se especificd
una condicién en la clausula WHILE que finaliza la repeticién automaticamente cuando la condi-
cién se evalia como falsa. En este caso, el valor de pardmetro para v_Cantidad debe ser menor a
15 para que la condicién WHILE se evalie como verdadera. Mientras la condicién se evalie como
verdadera, la instruccién SET y la instruccion UPDATE serdn ejecutadas. Si la condicidn se evalia
como falsa, se finalizard la repeticion WHILE. Nétese que muchas implementaciones, incluyendo
Oracle y SQL Server, utilizan un bloque BEGIN en lugar de la palabra clave DO para encerrar las
instrucciones que se van a repetir por el bucle de repeticion WHILE. Un punto mds en el que hay
que poner atencion es dénde se evaltia la condicién en la 16gica de repeticién. Algunas implemen-
taciones evalian la condicion al principio de la repeticidn. Otras la evaldan al final de la repeti-
cioén, lo que significa que las instrucciones en la repeticion siempre se ejecutardn por lo menos una
vez, incluso si la condicién se evalia como falsa la primera vez que se inicia la repeticion.

AR Ak]] - Crear procedimientos invocados
por SQL

En este ejercicio aplicard todo lo que ha aprendido acerca de crear procedimientos invocados por
SQL para la base de datos INVENTARIO. Debera crear, invocar y eliminar procedimientos. Uno
de los procedimientos deberd incluir el pardmetro, y uno mas deberd incluir una variable. Para

este ejercicio, incluso mas que para la mayoria de los demads ejercicios, necesitara referirse a la
documentacién del producto de su implementaciéon SQL para asegurarse de tomar en cuenta las
diferentes variaciones acerca de cémo un procedimiento es creado, convocado y eliminado. Como
se menciond anteriormente en este capitulo, la implementacion del procedimiento puede variar
ampliamente entre el estindar SQL y el producto individual. Puede descargar el archivo Try_This_
13_1.txt, que contiene las instrucciones SQL utilizadas en este ejercicio (en inglés).

Capitulo 13: Crear rutinas invocadas por SQL 319

Paso a paso

l‘
2‘

Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

El primer procedimiento que deberd crearse es uno muy basico que consulta la informacién

de las tablas DISCOS_COMPACTOS, CDS_ARTISTA y ARTISTAS. Se uniran las tres tablas
para desplegar los nombres de CD y los nombres de artista. El procedimiento no debera incluir
parametros ni variables. Ingrese y ejecute la siguiente instruccién SQL:

CREATE PROCEDURE OBTENER CD ARTISTAS ()
SELECT cd.TITULO CD, a.NOMBRE ARTISTA
FROM DISCOS_COMPACTOS cd, CDS_ARTISTA ac, ARTISTAS a
WHERE cd.ID DISCO COMPACTO = ac.ID DISCO COMPACTO
AND ac.ID ARTISTA = a.ID ARTISTA;

Debera recibir un mensaje indicando que el procedimiento OBTENER_ CD_ARTISTAS ha
sido creado.

Después se convocard el procedimiento OBTENER_CD_ARTISTAS. Ingrese y ejecute la si-
guiente instruccién SQL:

CALL OBTENER CD ARTISTAS();

Cuando se invoque el procedimiento, se recibirdn resultados de la consulta que incluyan una
lista de todos los CD y sus artistas.

Ahora se eliminard el procedimiento de la base de datos. Ingrese y ejecute la siguiente instruc-
cién SQL:

DROP PROCEDURE OBTENER CD_ ARTISTAS CASCADE;

Debera recibir un mensaje indicando que el procedimiento OBTENER_CD_ARTISTAS ha sido
eliminado de la base de datos. Nétese que la palabra clave CASCADE puede no estar soportada
por su implementacion SQL.

El siguiente paso es crear un procedimiento similar al anterior, s6lo que esta vez se definird un
pardmetro que permita ingresar el nombre del CD. La instruccién SELECT incluird un predica-
do que compare el valor TITTULO_CD con el valor en el pardametro p_CD. Ingrese y ejecute la
siguiente instruccién SQL:

CREATE PROCEDURE OBTENER CD ARTISTAS (IN p CD VARCHAR (60))
SELECT cd.TITULO CD, a.NOMBRE ARTISTA
FROM DISCOS COMPACTOS cd, CDS ARTISTA ac, ARTISTAS a
WHERE cd.ID DISCO_COMPACTO = ac.ID DISCO COMPACTO
AND ac.ID_ARTISTA = a.ID_ARTISTA
AND cd.TITULO_CD = p_CD;

Debera recibir un mensaje indicando que el procedimiento OBTENER_CD_ARTISTAS ha sido
creado.

(continda)

320 Fundamentos de SQL

6.

N

9.

Ahora se convocard el procedimiento OBTENER_CD_ARTISTAS. La instruccién CALL in-
cluird el valor Fundamental para insertarlo en el pardmetro. Ingrese y ejecute la siguiente ins-
truccion SQL:

CALL OBTENER CD ARTISTAS ('Fundamental');

Los resultados de la consulta deberan ahora incluir solamente la fila Fundamental.

El siguiente procedimiento que se creard es uno que utilice una variable que sostenga un niime-
ro basado en el promedio de los valores EN_EXISTENCIA. La definicién del procedimiento
incluird una instruccién compuesta que agrupe a las otras instrucciones en el cuerpo de la ruti-
na. Ingrese y ejecute la siguiente instruccién SQL:

CREATE PROCEDURE OBTENER CANTIDAD CD ()

BEGIN
DECLARE v_En existencia INT;
SET v_En_Existencia = (SELECT AVG (EN_EXISTENCIA)

FROM DISCOS_COMPACTOS) ;
SELECT TITULO CD, EN EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE EN EXISTENCIA < v _En Existencia;
END;

Debera recibir un mensaje indicando que el procedimiento ha sido creado.
Ahora se convocard el procedimiento. Ingrese y ejecute la siguiente instrucciéon SQL:
CALL OBTENER CANTIDAD CD();

Los resultados de la consulta deberan incluir una lista de los CD que tienen un valor EN_EXIS-
TENCIA menor al promedio para todos los valores EN_EXISTENCIA.

Cierre la aplicacion cliente.

Resumen de Pruebe esto

En este ejercicio se crearon tres procedimientos. El primer procedimiento, OBTENER_CD_AR-
TISTAS, no incluia pardmetros ni variables. Después se abandoné ese procedimiento y se modi-
fic6 el procedimiento OBTENER_CD_ARTISTAS original para incluir un pardmetro. Luego se
creé un nuevo procedimiento (OBTENER_CANTIDAD_CD) que no incluia procedimientos, pero
sf inclufa una variable. La base de datos INVENTARIO deberd ahora contener estos dos procedi-
mientos. Debido a que ambos procedimientos s6lo recuperan datos SQL, pueden ser invocados en
cualquier momento.

Agregar parémetros de salida
a sus procedimientos

Hasta este punto hemos visto solamente procedimientos que toman valores de pardmetro de entra-
da. Sin embargo, los procedimientos invocados por SQL también soportan pardmetros de salida.

Capitulo 13: Crear rutinas invocadas por SQL 321

Los parametros de salida proporcionan una forma de crear un procedimiento que arroja un valor
(o multiples valores).

El proceso para definir un parametro salida es similar a aquél para definir un pardmetro de
entrada, solamente que se utiliza la palabra clave OUT en lugar de IN. Sin embargo, atn se debe
proporcionar un nombre de parametro y asignar un tipo de datos. Ademads, se debe asignar un valor
a ese parametro antes de que el procedimiento termine utilizando una instruccién SET, a pesar de
que muchas implementaciones arrojan automdaticamente valores nulos para los parametros de sali-
da a los que no se les asigné un valor.

Una definicién de procedimiento puede incluir tanto parametros de entrada como de salida
(y parametros de entrada/salida si la implementacién los soporta). También es posible incluir va-
riables o cualquier otro elemento que se ha visto hasta ahora en este capitulo.

Ahora demos un vistazo a un ejemplo de un parametro de salida. La siguiente instruccién
CREATE PROCEDURE crea un procedimiento que incluye un pardmetro de salida (pero ningtin
parametro de entrada o variable):

CREATE PROCEDURE NEW AGE TOTAL (OUT p Total INT)

BEGIN
SET p_Total = (SELECT SUM(EXISTENCIA CD)
FROM INVENTARIO CD i, TIPOS CD t
WHERE i.ID _TIPO CD = t.ID TIPO CD
AND NOMBRE TIPO CD = 'New Age');
END;

Al pardmetro de salida (p_Total) se le asigna el tipo de datos INT. La instrucciéon SET define
un valor para el parametro. En este caso, el valor es igual al niimero total de CD de New Age. Este
es el valor que es arrojado por el procedimiento cuando se invoca.

El proceso para invocar este procedimiento es diferente de lo que hemos visto hasta ahora.
Cuando se invoca un procedimiento con un pardmetro de salida, primero se debe declarar una va-
riable que luego se utilice en la instruccién CALL, como se muestra en el siguiente ejemplo:

BEGIN

DECLARE p_Total INT;

CALL NEW AGE TOTAL(p Total);
END;

En este caso se utiliz6 el mismo nombre para la variable que el nombre del pardmetro que fue
definido en la definicién del procedimiento. Sin embargo, la variable y el pardmetro no estdn obli-
gados a tener el mismo nombre, aunque si deben ser definidos con el mismo tipo de datos.

Crear funciones invocadas por SQL

Anteriormente en este capitulo, en la seccién “Entender las rutinas invocadas por SQL”, se intro-
dujeron los dos tipos de rutinas invocadas por SQL (procedimientos y funciones), y se describie-
ron las diferencias y similitudes entre ellas. Las principales diferencias son que los procedimientos
soportan la definicién de pardmetros de entrada y salida y son invocados utilizando la instruccién
CALL. Las funciones, por otro lado, solamente soportan la definicién de parametros de entrada y
son invocadas como un valor en una expresion. El resultado de una funcién es el valor arrojado por
la ejecucién de la funcién, y no a través de la definicidn explicita de un pardmetro de salida.

Fundamentos de SQL

Para crear una funcion se debe utilizar una instruccion CREATE FUNCTION. La instruccién
es similar a la instruccion CREATE PROCEDURE, excepto por algunas diferencias criticas:

Las definiciones de pardmetros de entrada no pueden incluir la palabra clave IN.

Una cldusula RETURNS debe seguir a las definiciones de los pardmetros. La cldusula asigna
un tipo de datos al valor arrojado por la funcién.

El cuerpo de la rutina debe incluir una instruccion RETURN que defina el valor arrojado por
el pardmetro.

NOTA

SQL Server también utiliza una cléusula RETURNS para asignar un tipo de datos al valor
arrojado, mientras que Oracle utiliza una cldusula RETURN para el mismo propésito. En am-
bos casos esta cldusula es seguida por la palabra clave AS. Tanto SQL Server como Oracle
utilizan una instruccién RETURN en el cuerpo de la rutina para definir el valor arrojado por el
pardmetro.

Una definicién de funcién puede incluir muchos de los elementos que han sido descritos a lo
largo de este capitulo. Por ejemplo, se pueden definir variables locales, crear instrucciones com-
puestas y utilizar instrucciones condicionales. Ademads, se pueden definir y utilizar pardmetros de
entrada de la misma forma que se definen y utilizan pardmetros de entrada en los procedimientos
(excepto que no se utiliza la palabra clave IN).

Ahora que se tiene una idea general de cémo crear una funcién, observemos un ejemplo, el
cual estd basado en las tablas CDS_EN_EXISTENCIA e INTERPRETES, mostradas en la figura
13-2.

La siguiente instruccion CREATE FUNCTION define una funcién que arroja el nombre del
artista para un CD en especifico, como aparece en la tabla CDS_EN_EXISTENCIA:

CREATE FUNCTION CD ARTIST (p Title VARCHAR(60))
RETURNS VARCHAR (60)
BEGIN
RETURN
(SELECT NOMBRE ARTISTA
FROM IN STOCK CDS s, PERFORMERS p
WHERE s.Title = p.Title
AND s.Title = p Title);
END;

En la primera linea de la instruccion, la funcién CD_ARTISTA y el pardmetro p_Title han
sido definidos. En la siguiente linea, la clausula RETURNS asigna el tipo de datos VARCHAR(60)
al valor arrojado por la funcién. En el cuerpo de rutina se puede ver que una instrucciéon RETURN
ha sido definida. La instruccién incluye una subconsulta que utiliza el valor del pardmetro de en-
trada para arrojar el nombre del artista.

Como se puede ver, definir una funcién no es muy diferente a definir un procedimiento; sin
embargo, convocar la funcién es un asunto muy distinto. En lugar de utilizar la instruccién CALL
para invocar la funcidn, se utiliza la funcién como seria con cualquiera de las funciones predefini-

Capitulo 13: Crear rutinas invocadas por SQL 323

CDS_EN_EXISTENCIA INTERPRETES
TITULO: EXISTENCIA: TITULO: NOMBRE_ARTISTA:
VARCHAR(60) INT VARCHAR(60) VARCHAR(60)
Famous Blue Raincoat| 13 Famous Blue Raincoat Jennifer Warnes
Blue 42 Blue Joni Mitchell
Court and Spark 22 Court and Spark Joni Mitchell
Past Light 17 Past Light William Ackerman
Kojiki 6 Kojiki Kitaro
That Christmas Feeling| 8 That Christmas Feeling Bing Crosby
Out of Africa 29 Patsy Cline: 12 Greatest Hits Patsy Cline
Blues on the Bayou 27 After the Rain: The Soft Sounds of Erik Satie| Pascal Roge
Orlando 5 Out of Africa John Barry
Leonard Cohen The Best of Leonard Cohen
Fundamental Bonnie Raitt
Blues on the Bayou B.B. King
Orlando David Motion

Figura 13-2 Uso de funciones para recuperar valores de las tablas CDS_EN_EXISTENCIA e
INTERPRETES.

das SQL. (Se vieron algunas de estas funciones en el capitulo 10.) Por ejemplo, supongamos que
se quiere encontrar el nombre de un artista basado en el nombre del CD y que se quiere conocer
qué otros CD ha hecho ese artista. Se puede crear una instruccién SELECT similar a la que se
muestra en el siguiente ejemplo para recuperar los datos:

SELECT TITULO, NOMBRE ARTISTA
FROM INTERPRETES
WHERE NOMBRE ARTISTA = ARTISTA CD ('Blue');

La funcién ARTISTA_CD arroja el valor Joni Mitchell (el artista del CD Blue), que es luego
comparado con los valores NOMBRE_ARTISTA. Como resultado, dos filas son arrojadas por la
instruccién, como se muestra en los siguientes resultados de la consulta:

TITULO NOMBRE ARTISTA

Blue Joni Mitchell
Court and Spark Joni Mitchell

324

Fundamentos de SQL

Como se puede ver, las funciones ayudan a simplificar las consultas almacenando parte del

c6digo como un objeto de esquema (en la forma de una rutina invocada por SQL) y luego invo-
cando ese codigo segtin sea necesario al convocar la funcién como un valor en la instruccién SQL.
Las funciones proporcionan un amplio rango de posibilidades para arrojar valores que hagan a las
consultas menos complejas y mas manejables.

A ky] - Crear funciones invocadas por SQL

En este ejercicio se creard una funcién llamada DISQUERA_CD en la base de datos INVENTA-
RIO. La funcién proporcionard el nombre de la compaiiia que publica un CD en especifico. Una
vez que se crea la funcidn, se invocara utilizindola como un valor en una instruccién SELECT.
Cuando se haya terminado, se quitard esa funcién de la base de datos. Puede descargar el archivo
Try_This_13_2.txt, que contiene las instrucciones SQL utilizadas en este ejercicio (en inglés).

Paso a paso

1. Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2, Se creard una funcién que arroje el nombre de la compaiifa que publica un CD en especifico.

La funcién incluird un pardmetro de entrada que permita pasar el nombre del CD a la funcién.
Ingrese y ejecute la siguiente instruccién SQL:

CREATE FUNCTION DISQUERA CD (p CD VARCHAR (60))
RETURNS VARCHAR (60)
BEGIN
RETURN (SELECT NOMBRE_COMPANIA
FROM DISCOS COMPACTOS d, DISQUERAS CD 1
WHERE d.ID DISQUERA = 1.ID DISQUERA

AND TITULO_CD = p CD);

END;

Se debera recibir un mensaje indicando que la funcién DISQUERA_CD ha sido creada.

3. Ahora que la funcién ha sido creada, se puede utilizar en las instrucciones SQL como un valor

en una expresion. La siguiente instruccion que se creard es una instruccion SELECT que arroja
el nombre del CD y la compaiiia que publica CD para aquellos CD publicados por la misma
compaiiia que el CD especificado. Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, NOMBRE_COMPANIA
FROM DISCOS COMPACTOS d, DISQUERAS CD 1
WHERE d.ID DISQUERA = 1.ID DISQUERA
AND NOMBRE_COMPANIA = DISQUERA CD ('Blues on the Bayou');

Los resultados de la consulta deberan incluir una lista de cuatro CD, todos ellos publicados por
la compafita MCA Records, la compaiifa que publica el CD Blues on the Bayou.

4. Intente ejecutar la misma instruccién utilizando diferentes nombres de CD para ver cudles son

los resultados arrojados.

Capitulo 13: Crear rutinas invocadas por SQL - 325

5. Ahora se puede quitar la funcion DISQUERA_CD de la base de datos. Ingrese y ejecute la si-
guiente instruccién SQL:

DROP FUNCTION DISQUERA CD CASCADE;

Debera recibirse un mensaje indicando que la funcién DISQUERA_CD ha sido abandonada de
la base de datos.

6. Cierre la aplicacion cliente.

Resumen de Pruebe esto

El ejercicio nos ayud¢ a crear una funcién (DISQUERA_CD) que incluye un pardmetro (p_CD).
El pardmetro pasa el valor del nombre de un CD a la instruccién SELECT definida en la instruc-
ciéon RETURN del pardmetro. La instruccién utiliza esta informacién para determinar el nombre
de la compaiifa que publica el CD. Entonces se utiliza la funcién DISQUERA_CD en una instruc-
ciéon SELECT para recuperar los nombres de todos los CD que son publicados por la misma com-
paiiia que public6 el CD especificado. Después de eso, se abandona la funcién de la base de datos.
Ahora que ha completado este ejercicio, intente crear otras funciones en la base de datos, y luego
utilice las funciones en las instrucciones SELECT para ver qué tipo de datos pueden arrojar.

v Autoexamen Capitulo 13

1. ;Cudles son los tipos de rutinas invocadas por SQL soportados por el estandar SQL?
A CHECK Constraint
B Function
C Trigger
D Procedimiento invocado por SQL

2, ;Cuiles tipos de pardmetros pueden utilizarse en una funcién invocada por SQL?
A De entrada
B De salida
C De entrada/salida
D Variables

3. ;Cudl instruccion se utiliza para invocar un procedimiento invocado por SQL?
A RETURN
B CALL

326 Fundamentos de SQL

C SET
D DECLARE
4, Un(a) es un valor pasado a una instruccién en un procedimiento cuando se

invoca ese procedimiento.
5. ;Cudles tipos de parametros pueden utilizarse en una funcién invocada por SQL?
A De entrada
B Desalida
C De entrada/salida
D Variables
6. ;Cuidl es otro nombre para un procedimiento invocado por SQL?
7. Cuiles son las dos diferencias principales entre procedimientos y funciones?
8. ;Qué informacién debe incluirse en una instruccién CALL cuando se invoca un procedimiento?

9. ;Qué tipo de instrucciones pueden incluirse en un procedimiento?

A SELECT
B INSERT

C UPDATE
D DELETE

10. ;Cuadl instruccién se utiliza para asignar un valor inicial a una variable?

A DECLARE
B RETURN
C SET
D CALL
11. Una instruccién permite agrupar las instrucciones SQL en bloques.

12. ;Qué palabra clave se utiliza para comenzar una instruccién condicional?

A IF

B BEGIN
C THEN
D ELSE

13. ;Qué palabra clave se utiliza en una instruccién LOOP para terminar la repeticién?

Capitulo 13: Crear rutinas invocadas por SQL 327

14. ;Cudl es la diferencia entre una instruccién condicional y una instrucciéon compuesta?
15. ;Cudles son los dos tipos de instrucciones de repeticién?

A BEGIN..END

B IF.ENDIF

C LOOP..END LOOP

D WHILE..END WHILE
16. ;Qué tipo de pardmetro puede arrojar un valor cuando se invoca un procedimiento?

17. ;Qué paso debe tomarse cuando se convoque un procedimiento que incluya un parametro de
salida?

18. ;Qué tanto difiere una instruccion CREATE FUNCTION de una instrucciéon CREATE PROCE-
DURE?

19. Se estd convocando un procedimiento llamado OBTENER_TOTALES. El procedimiento no in-
cluye ningtin pardmetro, pero si incluye una instrucciéon SELECT que consulta la tabla INVEN-
TARIO_CD. ;Cudl instruccién SQL deberd utilizarse para invocar este pardimetro?

20. Se crea un procedimiento llamado OBTENER_INFO_CD que selecciona datos acerca de un ar-
tista de la tabla INFO_CD. EI procedimiento incluye un pardmetro de entrada. Se quiere convo-
car ese procedimiento con el valor Bonnie Raitt. ;Cudl instruccién SQL debera utilizarse para
invocar el procedimiento?

21. ;Cuiles son los dos tipos de objetos de esquema que pueden utilizarse para almacenar una ins-
trucciéon SELECT?

Capitulo 14

Crear activadores SQL

330 Fundamentos de SQL

Habilidades y conceptos clave

Entender los activadores SQL
Crear activadores SQL

Crear activadores de insercién
Crear activadores de actualizacién

Crear activadores de eliminacion

H asta este punto del libro hemos aprendido a crear varios objetos de esquema que pueden acce-
derse o invocarse utilizando instrucciones SQL. Por ejemplo, se aprendi6 a crear tablas, vistas y
rutinas invocadas por SQL. En cada caso, una vez que se creaban estos objetos, era necesario tomar
cierta accién para interactuar directamente con ellos, por ejemplo ejecutando una instruccién SE-
LECT para recuperar datos de una tabla o utilizando una instruccién CALL para invocar un proce-
dimiento. Sin embargo, SQL soporta objetos que realizan acciones automaticamente. Estos objetos
de esquema, que son conocidos como activadores, responden a modificaciones hechas a los datos
dentro de una tabla. Si se ha realizado una modificacién especifica, el activador es invocado auto-
madticamente, o disparado, causando que ocurra una accion adicional. Como resultado, nunca se
invoca directamente el disparador (tomar una accién definida en el disparador implicitamente causa
la invocacion). En este capitulo exploraremos los activadores y cémo son utilizados cuando los
datos de la tabla son modificados. También veremos ejemplos de como crear los tres tipos basicos
de disparadores (de insercion, de actualizacién y de eliminacién) y cémo pueden ser definidos para
extender la funcionalidad de la base de datos y ayudar a asegurar la integridad de los datos.

Entender los activadores SQL

Si usted ha trabajado anteriormente con productos SQL, sin duda ha visto a los activadores imple-
mentados en alguna de las bases de datos de su organizacién, o al menos ha escuchado el término
en algin momento. La mayoria de los RDBMS implementaron activadores en sus productos desde
hace mucho tiempo, a pesar de que no fue sino hasta SQL:1999 que los activadores fueron afiadidos
al estandar. El resultado de los productos anteriores al estdndar es que las implementaciones de los
activadores resultan muy propietarias entre los productos SQL, y por lo tanto soportan diferentes
tipos de funcionalidad y son implementados de diferentes formas. Por ejemplo, MySQL 5.0 no
soporta activadores, pero esa caracteristica adicional estd prevista para la versioén 5.1. Por otro lado,
SQL Server y Oracle soportan actualmente activadores, pero los activadores de SQL Server de al-
guna manera estan limitados en alcance, comparados al estandar SQL, mientras que los activadores
de Oracle son mds robustos (aun con todo esto, ningtin producto implementa los activadores de
acuerdo con las especificaciones del estindar SQL). A pesar de estas diferencias, existe un nimero
de similitudes entre los productos (por ejemplo, el uso de la instruccién CREATE TRIGGER para
crear un activador), y las implementaciones de activadores en varios productos comparten algunas
caracteristicas basicas, particularmente aquellas que hacen posible dispararlo automaticamente para
realizar una accion secundaria relacionada con la accién primaria que invocd el activador.

Capitulo 14: Crear activadores SQL 331

NOTA

La funcionalidad soportada por los activadores a veces es llamada base de datos activa. De
hecho, este término se utiliza para describir uno de los paquetes opcionales que estén inclui-
dos en el esténdar SQL. El paquete (PKG008) define cémo los disparadores son implemen-
tados en SQL. (Un paquete es un conjunto de caracteristicas a las cuales un producto puede
aseverar correspondencia ademés de Core SQL.) Para mayor informacién acerca de la
correspondencia en SQL:2006, véase el capitulo 1.

Antes de sumergirnos en los aspectos especificos de cémo implementar activadores, demos
un vistazo al activador en si mismo, el cual, como se dijo, es un objeto de esquema (en el mismo
sentido que una tabla, vista o rutina invocadas por SQL). Una definicién del activador precisa las
caracteristicas del activador y qué acciones van a ser tomadas cuando el activador sea invocado.
Estas acciones, que estan especificadas en una o mas instrucciones SQL (referidas como instruc-
ciones de activador SQL), pueden incluir tales eventos como actualizar tablas, eliminar datos,
invocar procedimientos o realizar la mayoria de las tareas que pueden efectuarse con las instruc-
ciones SQL. Ninguna limitacién colocada en esas instrucciones es igual a aquellas colocadas por
la implementacién SQL.

Los activadores son invocados cuando se insertan datos en la tabla, se actualizan estos datos
o se eliminan. Al definir uno o mds activadores en una tabla, se puede especificar cudles acciones
de modificacién de datos causardn que el activador se dispare. El activador nunca es invocado a
menos que la accién especifica sea llevada a cabo. Como se puede concluir facilmente hasta ahora,
SQL soporta tres tipos de activadores: de insercién, de actualizacién y de eliminacién. Cada tipo
corresponde a la instruccién de modificacién de datos aplicable. Por ejemplo, un activador de in-
sercién se dispara cuando una instruccién INSERT se ejecuta hacia la tabla especificada.

A pesar de que un activador es un objeto de esquema, separado de los objetos de la tabla,
puede ser asociado solamente con una tabla, la cual especifica cudndo se crea la definicién del
activador. Cuando la instruccién de modificacion de datos aplicable se invoca dentro de la tabla, el
activador se dispara; sin embargo, no se disparara si una instruccién similar es invocada dentro de
una tabla diferente, o si una instruccién diferente al tipo especificado se invoca dentro de la misma
tabla. En ese sentido, un activador puede ser visto como un objeto de tabla, a pesar del hecho de
ser creado en un nivel de esquema.

Si un disparador falla, generando una condicién de error, la instruccién SQL que causé que se
disparara el activador también falla y se repliega. Esta es la forma en que los activadores pueden
ser utilizados para reforzar restricciones complejas (el activador se escribe para realizar cualquier
nimero de pruebas necesarias para verificar que las condiciones de la restriccion sean cumplidas,
y si no, termina por generar una condicién de error).

Contexto de ejecucién del activador

Antes de empezar el andlisis de como se crea un activador, seria mejor tocar el tema de como se
ejecuta un activador, con respecto al contexto de ejecucion del activador, un tipo de contexto de
ejecucion SQL. Se puede considerar al contexto de ejecucion como un espacio creado en la me-
moria que alberga un proceso de instruccion durante la ejecucion de esa instruccién. SQL soporta
muchos tipos de contextos de ejecucion, y uno de ellos estd relacionado con los activadores.

Un contexto de ejecucion del activador se crea cada vez que un activador es invocado. Si mul-
tiples activadores son invocados, se crea un contexto de ejecucion para cada uno. Sin embargo,

332

Fundamentos de SQL

Tabla 1 Instruccién UPDATE

i \
| Contexto de ejecucion del]
~ activador de actualizacion]
i

Activador de
actualizacion
en tabla 1

[(Y o

| | Tabla de transicion | | Tabla de transicién | |

1 para los datos ! para los datos !
| |

] 1 11

antiguos nuevos

Tabla 2

Contexto de ejecucion
del activador para el

Activador de activador de insercion

ion en
tabla 2

Tabla 3 [

Tabla de transicién !
para los datos nuevos |

P VP S S
i
'
i
i
i
i
'
i
i
'
i
i
i
i
'
i
i
'
'

Figura 14-1 Contextos de ejecucién del activador para dos activadores.

solamente un contexto de ejecucién puede estar activo en una sesién en un momento dado. Esto
resulta importante cuando un activador en una tabla causa que un activador en una segunda tabla
sea disparado. Demos un vistazo a la figura 14-1 para ayudar a ilustrar este punto.

Observe que la figura contiene tres tablas. Un activador de actualizacién se define en la tabla 1,
y un activador de insercion se define en la tabla 2. Cuando se ejecuta una instruccion UPDATE hacia
la tabla 1, el activador de actualizacién se dispara, creando que un contexto de ejecucién del activa-
dor se vuelva activo. Sin embargo, el activador de actualizacién, que estd definido para insertar datos
en la tabla 2, invoca al activador de insercién en la tabla 2 cuando el primer activador intenta insertar
datos en esa tabla. Como resultado, un segundo contexto de ejecucion es creado, el cual se convierte
en el activo. Cuando la segunda ejecucién del activador se ha completado, el segundo contexto de
ejecucion es destruido, y el primer contexto de ejecucion se vuelve activo una vez mas. Cuando la
primera ejecucion del activador se ha completado, el primer contexto de ejecucién del activador es
destruido.

Un contexto de ejecucion del activador contiene la informacién necesaria para que el activa-
dor sea ejecutado correctamente. Esta informacién incluye detalles acerca del activador en sy de
la tabla en la cual el activador fue definido, a la que se denomina tabla en cuestion. Ademads, el
contexto de ejecucion incluye una o mas tablas de transicién, como se muestra en la figura 14-1.
Las tablas de transicién son tablas virtuales que albergan datos que son actualizados en, inser-
tados hacia o eliminados de la tabla en cuestion. Si los datos son actualizados, entonces se crean
dos tablas de transicion, una para los datos antiguos y otra para los datos nuevos. Si los datos son
insertados, se crea solamente una tabla de transicién para los nuevos datos. Si los datos son elimi-
nados se crea solamente una tabla de transicién para los datos antiguos. Las tablas de transicién y
algunos otros aspectos de informacién en el contexto de ejecucién del activador son utilizadas por
las instrucciones SQL que realizan la accién del activador. Aprenderemos mas acerca de cémo es
utilizada esta informacidn en la siguiente seccién, cuando veamos la sintaxis CREATE TRIGGER.

Capitulo 14: Crear activadores SQL - 333

Crear activadores SQL

Ahora que se tiene una idea general acerca de los activadores, demos un vistazo a la sintaxis que
se utiliza para crearlos. La mayor parte de la sintaxis estd destinada a definir las caracteristicas del
activador, por ejemplo el nombre y el tipo del activador. Es hasta el final de la instruccién donde
se definen las instrucciones SQL activadas que especifican las acciones tomadas por el activador
cuando sea invocado.

La sintaxis basica para crear una definicién de activador es la siguiente:

CREATE TRIGGER <nombre del activador>

{ BEFORE | AFTER }

{ INSERT | DELETE | UPDATE [OF <lista de la columna> | }

ON <nombre de la tabla> [REFERENCING <opciones para alias>]
[FOR EACH { ROW | STATEMENT }]

[WHEN (<condicién de busqueda>)]

<instrucciones SQL activadas>

Observemos cada linea de la sintaxis. La primera linea resulta muy sencilla. Simplemente se
proporciona un nombre para el activador que sigue a las palabras clave CREATE TRIGGER. En
la segunda linea se debe designar si el activador serd invocado antes o después de que se aplique la
instruccién de modificacion de datos a la tabla en cuestion. Por ejemplo, si se estd definiendo un
activador de insercidn, se puede especificar si las instrucciones SQL activadas se ejecutaran antes
de que los datos sean insertados en la tabla en cuestion (utilizando la palabra clave BEFORE) o
después de que los datos sean insertados en la tabla en cuestion (utilizando la palabra clave AF-
TER). Esta caracteristica resulta particularmente ttil cuando una de las tablas estd configurada con
una restriccion de integridad referencial y no puede contener datos antes de que esos datos existan
en la otra tabla. (Para mayor informacién acerca de la integridad referencial, véase el capitulo 4.)
Dependiendo de la naturaleza de la accién activada que sea definida, puede no ser relevante desig-
nar BEFORE o AFTER debido que la accién activada puede no tener relacién directa con los datos
modificados en la tabla en cuestion.

En la tercera linea de la sintaxis se especifica si el activador es de insercion, de eliminacion
o de actualizacidn. Si es un activador de actualizacidn, se tiene la opcidn de aplicar el activador a
una o mads columnas especificas. Si se especifica mas de una columna, los nombres de las colum-
nas deben estar separados por comas. En la siguiente linea de la sintaxis se debe especificar una
cldusula ON que incluya el nombre de la tabla en cuestién. Esta es la tabla en la cual es aplicado el
activador. El activador sdlo puede ser aplicado a una tabla.

Hasta este punto, toda la sintaxis que se ha visto es obligatoria, excepto para especificar los
nombres de columna en las definiciones del activador de actualizacioén, lo cual si es opcional. Sin
embargo, las varias cldusulas siguientes no son obligatorias, pero agregan importantes capacidades
al activador. La primera de estas cldusulas es la cldusula REFERENCING. Esta cldusula permite
especificar como se referencian los datos que son albergados en el contexto de ejecucién del acti-
vador dentro de la clausula WHEN o las instrucciones SQL activadas. Se vera con mas detalle la
cldusula REFERENCING en la siguiente seccion, ‘“Referenciar valores antiguos y nuevos”.

La siguiente linea de la sintaxis contiene la clausula FOR EACH, que incluye dos opciones:
ROW o STATEMENT. Si se especifica ROW, el activador es invocado cada vez que una fila es inser-
tada, actualizada o eliminada. Si se especifica STATEMENT, el activador se invoca solamente una

334

Fundamentos de SQL

vez por cada instruccién de modificacion de datos aplicable que sea ejecutada, sin importar cuantas
filas seran afectadas. Si no se incluye esta cldusula en la definicién del activador, la opcién STATE-
MENT se asume automaticamente, y el activador se dispara sélo una vez por cada instruccion.

Posteriormente en la sintaxis esta la clausula opcional WHEN. Esta cldusula permite definir
una condicién de bisqueda que limita el alcance de cuando es invocado el activador. La cldusula
WHEN es similar a la clausula WHERE de una instruccion SELECT. Se especifican uno o mas
predicados que definan una condicién de busqueda. Si la clausula WHEN se evalia como verda-
dera, el activador se dispara; de otra manera, ninguna accion del activador es llevada a cabo. Sin
embargo, esto no afecta la instruccién de modificacién de datos inicial que fue ejecutada hacia la
tabla en cuestion; solamente las instrucciones SQL activadas precisadas en la definicién del activa-
dor son afectadas.

Finalmente, el dltimo componente que debe incluir la instruccion CREATE TRIGGER es una
0 mas instrucciones SQL (a menudo llamadas el cuerpo del activador) que sean ejecutadas cuando
el activador sea invocado y, si se incluye una clausula WHEN, que esa cldusula se evalie como
verdadera. Si la definicién del activador incluye mas de una instrucciéon SQL activada, o si se estd
utilizando Oracle, esas instrucciones deberdn estar encerradas en un bloque BEGIN...END, como
aquellas que se vieron en el capitulo 13. Sin embargo, existe una diferencia de lo que se vio ante-
riormente. Cuando se utiliza en una definicién de activador, la palabra clave BEGIN debe estar se-
guida por la palabra clave ATOMIC para notificar a la implementacién SQL que las instrucciones
dentro del bloque deben ser manejadas como una unidad. En otras palabras, todas las instrucciones
deben ser ejecutadas exitosamente, o ninguno de los resultados de ninguna de las instrucciones
podra persistir. Sin la palabra clave ATOMIC, probablemente algunas instrucciones podrian ser
ejecutadas mientras que otras podrian fallar.

NOTA

Muchas implementaciones no soportan el uso de la palabra clave ATOMIC en el bloque
BEGIN...END de las instrucciones SQL activadas. Esto incluye tanto a SQL Server como a
Oracle. Adicionalmente, con Oracle, todos los activadores y cuerpos de procedimiento deben
estar encerrados en los bloques BEGIN...END.

Aparte del hecho de la palabra clave ATOMIC, las instrucciones SQL activadas, incluyendo
el bloque BEGIN...END, puede consistir de casi cualquier instrucciéon SQL, dependiendo de las
limitaciones de la implementacién SQL. Asegtirese de revisar la documentacién del producto para
determinar cudles limitaciones pueden ser colocadas en las instrucciones SQL activadas y como
los activadores son generalmente creados e implementados.

Referenciar valores antiguos y nuevos

Ahora regresemos a la cldusula REFERENCING de la instruccién CREATE TRIGGER. El prop6-
sito de esta cldusula es permitir la definicién de nombres de correlacion para las filas almacenadas
en las tablas de transicién o para las tablas de transicién como un todo. Como se recordard de la
seccién “Entender los activadores SQL” anterior en este capitulo, las tablas de transicién albergan
los datos que han sido actualizados, insertados o eliminados de la tabla en cuestién. Los nombres
de correlacion, o alias, pueden por lo tanto ser utilizados en las instrucciones SQL activadas para
hacer referencia a los datos que estan siendo albergados en las tablas de transicion. Esto puede

ser particularmente util cuando se intenta modificar los datos en una segunda tabla basados en los

Capitulo 14: Crear activadores SQL - 335

datos modificados en la tabla en cuestién. (Esto se volvera mucho mas claro cuando veamos ejem-
plos posteriormente en este capitulo.)

Si se recuerda la sintaxis de la seccion anterior, notaremos que la cldusula opcional REFE-
RENCING incluye el marcador de posicion <opciones para alias>. SQL soporta cuatro opciones
para esta cldusula:

REFERENCING OLD [ROW] [AS] <alias>

REFERENCING NEW [ROW] [AS] <alias>
REFERENCING OLD TABLE [AS] <alias>
REFERENCING NEW TABLE [AS] <alias>

Observe que, en las primeras dos opciones, la palabra clave ROW no resulta obligatoria. Si no
se especifica la palabra clave ROW, se asume automdticamente. Observe también que la palabra
clave AS es opcional en todos los casos. Sin embargo, para los propdsitos de mantener un c6digo
claro y de autorreferencia, se recomienda utilizar la opcién completa cada que se incluya en una
definicion de activador.

Dependiendo del tipo de activador (de actualizacién, de insercién o de eliminacién) y de la
opciéon FOR EACH (ROW o STATEMENT), se pueden incluir hasta cuatro opciones REFEREN-
CING en la definicion del activador, una para cada tipo. Sin embargo, no se puede incluir mas de
una de un solo tipo. Por ejemplo, no se pueden incluir dos opciones OLD ROW en la definicién
del activador. Al agregar opciones REFERENCING a la definicion del activador, se deben seguir
estos lineamientos:

No se pueden utilizar las opciones NEW ROW y NEW TABLE para eliminar activadores debi-
do a que ningtin dato nuevo se estd creando.

No se pueden utilizar las opciones OLD ROW y OLD TABLE para insertar activadores debido
a que no existen datos antiguos.

Se pueden utilizar todas las cuatro opciones en un activador de actualizacién debido a que
existen datos antiguos y datos nuevos cuando se actualiza una tabla.

Se pueden utilizar las opciones OLD ROW y NEW ROW solamente cuando se especifica la
clausula FOR EACH ROW en la definicion del activador.

Una vez que se definen las cldusulas REFERENCING y se asignan los alias apropiados, todo
estd listo para utilizar esos alias en las instrucciones SQL activadas, de la misma manera que se
utilizaban los nombres de correlacion en las instrucciones SELECT.

Quitar activadores SQL

A pesar de que el estdndar SQL no soporta ninguna clase de instrucciéon que permite alterar un ac-
tivador, si soporta una forma de eliminar un activador, que se logra utilizando la instrucciéon DROP
TRIGGER. Como se puede ver en la siguiente sintaxis, esta instruccién es muy basica:

DROP TRIGGER <nombre>

Todo lo que se necesita hacer es proporcionar el nombre del activador, junto con las palabras
clave DROP TRIGGER. Debido a que ningtn otro objeto es dependiente del activador, no es

336 Fundamentos de SQL

necesario especificar ninguna palabra clave adicional, por ejemplo CASCADE o RESTRICT.
Cuando se ejecuta la instrucciéon DROP TRIGGER, la definicién del activador es eliminada del
esquema.

Crear activadores de insercién

Hasta ahora en este capitulo se ha proporcionado informacién importante acerca de los activadores
y la sintaxis utilizada para crearlos. Ahora veremos algunos ejemplos de cémo son creados los
activadores y qué sucede cuando son invocados. Comenzaremos con el activador de insercion, el
cual, como ya se sabe, es invocado cuando una instruccién INSERT se ejecuta hacia la tabla en
cuestion (la tabla en la cual ha sido definido el activador). En el primer ejemplo crearemos un acti-
vador en la tabla INVENTARIO_MENUDEO (la tabla en cuestién), mostrada en la figura 14-2. El
activador, cuando se invoca, insertara los datos a la tabla REGISTRO_INVENTARIO.

La siguiente instrucciéon CREATE TRIGGER define un activador INSERT que se dispara des-
pués de que los datos son insertados en la tabla en cuestién:

CREATE TRIGGER INSERTAR REGISTRO
AFTER INSERT ON INVENTARIO MENUDEO
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO REGISTRO INVENTARIO (TIPO_ACCION)
VALUES ('INSERT') ;

END;
INVENTARIO_MENUDEO REGISTRO_INVENTARIO
NOMBRE_CD: P_MENUDEO: | CANTIDAD: | | TIPO_ACCION:| FECHA_MODIFICACION:
VARCHAR (60) NUMERIC (5,2)| INT CHAR (6) TIMESTAMP
Famous Blue Raincoat 16.99 5 INSERT 2002-12-22 10:58:05.120
Blue 14.99 10 UPDATE 2002-12-22 12:02:05.033
Court and Spark 14.99 12 UPDATE 2002-12-22 16:15:22.930
Past Light 15.99 11 DELETE 2002-12-23 11:29:14.223
Kojiki 15.99 4 INSERT 2002-12-23 13:32:45.547
That Christmas Feeling 10.99 8 INSERT 2002-12-23 15:51:15.730
Patsy Cline: 12 Greatest Hits| 16.99 14 UPDATE 2002-12-23 17:01:32.270
UPDATE 2002-12-24 10:46:35.123
DELETE 2002-12-24 12:19:13.843
UPDATE 2002-12-24 14:15:09.673

Figura 14-2 Crear un activador de insercién en la tabla INVENTARIO_MENUDEO.

Capitulo 14: Crear activadores SQL 337

NOTA

Como se mencioné al inicio del capitulo, las implementaciones SQL pueden variar ampliamen-
te con respecto a la seméntica de la instruccién CREATE TRIGGER. Por ejemplo, SQL Server
no permite especificar una cléusula FOR EACH, ni soporta el uso de la palabra clave ATOMIC
en la instruccién BEGIN...END. Por ofro lado, la definicién basica del activador en Oracle es
mucho mds cercana al esténdar SQL, a pesar de que Oracle tampoco soporta el uso de la pa-
labra clave ATOMIC en una definicién de activador.

Veamos esta instruccién un elemento a la vez. En la primera linea, la clausula CREATE TRI-
GGER define un activador llamado INSERTAR_REGISTRO. En la siguiente, la palabra clave
AFTER se utiliza para especificar que las instrucciones SQL activadas serdn ejecutadas después de
que los datos hayan sido insertados en la tabla en cuestion. La palabra clave AFTER es seguida de
la palabra clave INSERT, que define al activador como un activador de insercién. Después esta la
clausula ON, que especifica el nombre de la tabla en cuestion. En este caso, la tabla en cuestién es
INVENTARIO_MENUDEO.

Al movernos a través de la instruccién, llegamos a la cldusula FOR EACH, que especifica la
palabra clave ROW. Esta cldusula, cuando se utiliza con ROW, indica que el activador serd invoca-
do para cada fila que sea insertada en la tabla, en lugar de para cada instrucciéon INSERT que sea
ejecutada hacia la tabla. Siguiendo a la instruccion FOR EACH, se encuentran las instrucciones
SQL activadas.

Las instrucciones SQL activadas incluyen una instrucciéon BEGIN...END y una instruccién
INSERT. No es necesario incluir la instruccion BEGIN...END en la definicion del activador debi-
do a que, sin ella, solamente existe una instruccién SQL activada. Sin embargo, por ahora es pre-
ferible demostrar como seria utilizado el bloque si hubiera mas de una instrucciéon. Observe que el
bloque incluye una palabra clave ATOMIC que sigue a la palabra clave BEGIN. De acuerdo con
el estandar SQL, ATOMIC es obligatoria, a pesar de que dependerd de la instruccion SQL si es
que esta palabra clave es soportada.

El bloque BEGIN...END encierra una instruccién INSERT que agrega datos a la tabla RE-
GISTRO_INVENTARIO cuando el activador es invocado. Cada vez que se inserta una fila en la
tabla INVENTARIO_MENUDEO, una fila se inserta en la tabla REGISTRO_INVENTARIO. La
fila REGISTRO_INVENTARIO contendré el valor INSERT para la columna TIPO_ACCION. Un
valor de marca de tiempo es agregado automaticamente a la columna FECHA_MODIFICACION,
que estd definida de manera predeterminada con CURRENT_TIMESTAMP.

Es posible, si se desea, crear otros activadores en la tabla INVENTARIO_MENUDEQO. Por
ejemplo, se podria requerir la creacién de activadores de actualizacién y de eliminacién que inser-
ten filas en la tabla REGISTRO_INVENTARIO cuando sean hechas las modificaciones de datos
aplicables. En ese caso, simplemente se creard una definicién de activador para cada activador
adicional que se necesite.

NOTA

El esténdar SQL no coloca un limite en el nimero de activadores que pueden ser definidos en
cualquier tabla; sin embargo, las implementaciones SQL pueden tener muchas restricciones,
por lo que es mejor revisar la documentacién del producto. Ademds de esas limitaciones, va-
rias implementaciones pueden soportar diferentes formas en la cual pueden ser implementados
moltiples activadores. Por ejemplo, SQL Server permite definir un activador de insercién, uno
de actualizacién y uno de eliminacién en una sola instruccién.

338 Fundamentos de SQL

Ahora demos un vistazo a lo que sucede cuando se inserta una fila en la tabla INVENTA-
RIO_MENUDEO. Supongamos que se quiere insertar informacién acerca del CD Fundamental.
Se debera crear una instruccion INSERT de la forma que se haria normalmente, como se muestra
en el siguiente ejemplo:

INSERT INTO INVENTARIO MENUDEO
VALUES ('Fundamental', 15.99, 18);

Si se ejecutara la instruccidn, la fila seria insertada en la tabla INVENTARIO_MENUDEO.
Para verificar esto, se puede ejecutar la siguiente instrucciéon SELECT:

SELECT * FROM INVENTARIO MENUDEO;

La instrucciéon SELECT arrojard los mismos resultados mostrados en la tabla INVENTARIO_
MENUDEDO de la figura 14-2, ademads de una fila adicional para el CD Fundamental, exactamente
de la forma en que se esperaria. El activador no tiene efecto sobre las modificaciones de datos que
se hagan a la tabla INVENTARIO_MENUDEO. Sin embargo, como se recordara de la definicién
de activador que fue definida en la tabla INVENTARIO_MENUDEDO, las instrucciones SQL
activadas deberdn insertar datos en la tabla REGISTRO_INVENTARIO cuando el activador sea
invocado, lo cual debera haber ocurrido cuando se inserte una fila en la tabla INVENTARIO_ME-
NUDEO. Para verificar esto, se puede ejecutar la siguiente instrucciéon SELECT:

SELECT * FROM REGISTRO_INVENTARIO;

Los resultados de la consulta deberan incluir no solamente las filas mostradas en la tabla RE-
GISTRO_INVENTARIO en la figura 14-2, sino también una fila adicional que incluya el valor
TIPO_ACCION de INSERT y un valor FECHA_MODIFICACION para la fecha y hora actuales.
Cada vez que se inserte una fila en la tabla INVENTARIO_MENUDEO, una fila serd insertada en
la tabla REGISTRO_INVENTARIO. Se pudieron haber definido las instrucciones SQL activadas
para tomar cualquier tipo de accién, no solamente eventos de registro en una tabla de registro.
Dependiendo de las necesidades y de la base de datos en la cual se trabaje, se tiene un sinfin de
posibilidades para el tipo de acciones que los activadores pueden soportar.

Crear activadores de actualizacién

Ahora que hemos visto un ejemplo de un activador de insercién, demos un vistazo a un par de acti-
vadores de actualizacion. El activador de actualizacién es invocado cuando una instruccién UPDA-
TE se ejecuta hacia la tabla en cuestion. Al igual que con cualquier otro tipo de activador, cuando
el activador es invocado, las instrucciones SQL activadas se ejecutan y una accion se lleva a cabo.
Para ilustrar como funciona el activador de actualizacion, utilizaremos las tablas TITULOS_EN _
EXISTENCIA y COSTOS_TITULO mostradas en la figura 14-3.

El primer ejemplo que veremos esta creado sobre la tabla TITULOS_EN_EXISTENCIA e in-
cluye instrucciones SQL activadas que actualizan la tabla COSTOS_TITULO, como se muestra en
la siguiente instruccion CREATE TRIGGER:

CREATE TRIGGER ACTUALIZAR COSTOS_TITULO
AFTER UPDATE ON TITULOS EN EXISTENCIA
REFERENCING NEW ROW AS Nueva
FOR EACH ROW

Capitulo 14: Crear activadores SQL 339

TITULOS EN EXISTENCIA COSTOS_TITULO

TITULO_CD: TIPO_CD: | INVENTARIO: TITULO_CD: MAYOREO: MENUDEO:
VARCHAR (60) CHAR (20) | INT VARCHAR (60) NUMERIC (5,2) | NUMERIC (5,2)
Famous Blue Raincoat| Folk 12 Famous Blue Raincoat| 8.00 16.99

Blue Popular 24 Blue 7.50 15.99

Past Light New Age |9 Past Light 6.00 14.99

Blues on the Bayou Blues 19 Blues on the Bayou 7.25 15.99

Luck of the Draw Popular 25 Luck of the Drive 7.50 15.99

Deuces Wild Blues 17 Deuces Wild 7.45 14.99

Nick of Time Popular 11 Nick of Time 6.95 14.99

Figura 14-3 Crear un activador de actualizacién en la tabla TITULOS_EN_EXISTENCIA.

BEGIN ATOMIC
UPDATE COSTOS TITULO c
SET MENUDEO = MENUDEO * 0.9
WHERE c¢.TITULO _CD = Nuevo.TITULO CD;
END;

Como se puede ver, la definicién de este activador es similar en muchas formas al activador
de insercion que vimos en el ejemplo anterior. La definicién del activador de actualizacion incluye
el nombre del activador (UPDATE_COSTOS_TITULO) y especifica las condiciones AFTER y
UPDATE. Luego la cldusula ON sigue a la palabra clave UPDATE y proporciona el nombre de la
tabla destino. Siguiendo a todo esto estd una linea de c6digo que no se vio en el ejemplo anterior
(una cldusula REFERENCING).

La clausula REFERENCING utiliza la opcion NEW ROW para definir un nombre de correla-
cién para la fila que ha sido actualizada en la tabla TITULOS_EN_EXISTENCIA. Sin embargo, la
clausula REFERENCING, y subsecuentemente la condicién de buisqueda o las instrucciones SQL
activadas que puedan referirse al alias definido en esta cldusula, no hacen referencia directa a la
tabla TITULOS_EN_EXISTENCIA. En su lugar, hacen referencia a la tabla de transicién para los
nuevos datos en el contexto de ejecucion del activador. En otras palabras, el nombre de correlacion
definido en la clausula REFERENCING hace referencia a la fila actualizada que es copiada a la ta-
bla de transicion. En este caso, el nombre de correlacion es Nuevo. Como resultado, el nombre de
correlacion Nuevo puede ser utilizado en la condicién de busqueda en la clausula WHEN o en las
instrucciones SQL activadas para referirse a los datos en la tabla de transicion.

Una vez que se ha definido el nombre de correlacion en la cldusula REFERENCING, debe
utilizarsele para cualificar los nombres de columna de la fila modificada cuando se haga referen-
cia a ella en la clausula WHEN o en las instrucciones SQL activadas. En la instruccion CREATE
TRIGGER del ejemplo anterior se puede ver que el alias es utilizado en la cldusula WHERE de la
instruccién UPDATE. Observe que la palabra Nuevo precede al nombre de columna y que los dos
estdn separados por un punto.

340

Fundamentos de SQL

Esto resulta caracteristico acerca de como se cualificaria un nombre. Es similar a la forma en la
cual se utiliza el nombre cualificado ¢. TITULO_CD para la columna TITULO_CD en la tabla
COSTOS_TITULO. Si se hubiera especificado un nombre de correlacion NEW ROW diferente o
utilizado el nombre en la cldusula WHEN o en alguna otra parte de la instrucciéon SQL activada, de
todas maneras se habria cualificado el nombre de la columna con el alias que hace referencia a las
filas en la tabla de transicion o la tabla en si.

NOTA

SQL Server no soporta la cldusula REFERENCING. Sin embargo, soporta una funcionalidad
similar al asignar automdticamente los nombres Inserted y Deleted a las tablas de transicién
(Inserted para los nuevos datos y Deleted para los datos antiguos). Ademds, existen algunos
casos en los cuales se debe declarar una variable que utilice valores de las tablas Inserted y
Deleted, en lugar de cualificar los nombres de columna, como se hace en el estandar SQL.
Oracle, por ofro lado, si soporta la cléusula REFERENCING, pero también asigna automdti-
camente los nombres New y Old a las tablas de transicién, las cuales pueden utilizarse en la
cléusula WHEN y en las instrucciones SQL activadas sin especificar una cléusula REFEREN-
CING. Cuando se utilizan los alias en las instrucciones SQL activadas de una definicién de
activador de Oracle, se debe preceder el nombre alias con dos puntos, como en :Nuevo. Este
no es el caso para la cléusula WHEN, en la cual el nombre alias se utiliza sin los dos puntos.
Asimismo, no se puede utilizar la palabra clave ROW en la cléusula REFERENCING de una
definicién de activador de Oracle.

Ademas de la clausula REFERENCING, la instruccion CREATE TRIGGER también incluye
una clausula FOR EACH, que especifica la opcién ROW. Observe también que las instrucciones
SQL activadas incluyen una instruccién BEGIN...END, que encierra una instrucciéon UPDATE.
Como se puede ver, la instrucciéon UPDATE modifica el valor MENUDEO en la tabla COSTOS _
TITULO para el CD que fue actualizado en la tabla TITULOS_EN_EXISTENCIA.

Ahora demos un vistazo a lo que sucede cuando se actualiza la columna TITULOS_EN_
EXISTENCIA. La siguiente instruccion UPDATE cambia el valor INVENTARIO para la fila Fa-
mous Blue Raincoat:

UPDATE TITULOS_EN_ EXISTENCIA
SET INVENTARIO = 30
WHERE TITULO CD = 'Famous Blue Raincoat';

Cuando se ejecuta la instruccién UPDATE, el activador UPDATE_COSTOS_TITULO es in-
vocado, causando que la tabla COSTOS_TITULO sea actualizada. Como resultado, no solamente
el valor INVENTARIO en la tabla TITULOS_EN_EXISTENCIA es cambiado a 30, sino que el
valor MENUDEQO en la tabla COSTOS_TITULO se reduce a 15.29 (RETAIL * 0.9). Cada vez
que se actualice la tabla TITULOS_EN_EXISTENCIA, la fila o filas correspondientes en la tabla
COSTOS_TITULO seran reducidas en 10 por ciento.

A veces se puede necesitar limitar cudndo las instrucciones SQL activadas seran ejecutadas.
Por ejemplo, se puede requerir reducir el precio de los CD solamente cuando el inventario exceda
una cierta cantidad. Como resultado, puede decidirse cambiar la definicidn del activador para in-
cluir una cldusula WHEN que defina la condicién de biisqueda necesaria. Sin embargo, como se
dijo anteriormente, SQL no soporta una instrucciéon ALTER TRIGGER (a pesar de que Oracle so-
porta la sintaxis CREATE OR REPLACE TRIGGER que puede ser utilizada para reemplazar com-

Capitulo 14: Crear activadores SQL 341

pletamente un activador existente), por lo que podria ser necesario eliminar primero el activador de
la base de datos. La forma de hacer eso es utilizar la siguiente instruccion DROP TRIGGER:

DROP TRIGGER ACTUALIZAR COSTOS_ TITULO;

Cuando se ejecuta esta instruccion, la definicién del activador es eliminada del esquema y
ahora es posible volver a crear el activador con las modificaciones necesarias. El siguiente ejemplo
creard una vez mas el activador ACTUALIZAR_COSTOS_TITULO, pero esta vez se ha afiadido
una cldusula WHEN a la instruccién:

CREATE TRIGGER ACTUALIZAR COSTOS TITULO
AFTER UPDATE ON TITULOS EN EXISTENCIA
REFERENCING NEW ROW AS Nuevo
FOR EACH ROW
WHEN (Nuevo.INVENTORY > 20)

BEGIN ATOMIC
UPDATE COSTOS_TITULO c
SET MENUDEO = MENUDEO * 0.9
WHERE c.TITULO CD = Nuevo.TITULO CD;
END;

Como se puede ver, la clausula WHEN especifica que el valor INVENTARIO debe ser mayor
a 20; de otra manera, las instrucciones SQL activadas no serdn invocadas. Observe que el nombre
de columna CD_TITLE es cualificado en la clausula WHERE de la instruccion UPDATE. Como
resultado, la clausula WHEN har4 referencia a la tabla de transicién para los nuevos datos en el
contexto de ejecucion del activador cuando se comparen los valores.

Ahora demos un vistazo a lo que sucede cuando se actualiza la tabla TITULOS_EN_EXIS-
TENCIA. La siguiente instruccién UPDATE cambia el valor INVENTARIO para la fila Past Light:

UPDATE TITULOS EN EXISTENCIA
SET INVENTARIO = 25
WHERE TITULO CD = 'Past Light';

Como se pudiera esperar, el valor INVENTARIO en la columna TITULOS_EN_EXISTEN-
CIA es cambiado a 25. Ademds, debido a que se cumple la condicién especificada en la cldusula
WHEN (Nuevo.INVENTARIO > 20), las instrucciones SQL activadas son ejecutadas y la tabla
COSTOS_TITULO es actualizada. Si se consultara la tabla COSTOS_TITULO, se veria que el
valor MENUDEO para la fila Past Light ha sido cambiado a 13.49.

Ahora demos un vistazo a una instrucciéon UPDATE que establece el valor INVENTARIO a
una cantidad menor a 20:

UPDATE TITULOS EN EXISTENCIA
SET INVENTARIO = 10
WHERE TITULO CD = 'Past Light';

Esta instruccion actualizara el valor INVENTARIO en la tabla TITULOS_EN_EXISTENCIA,
pero no provocard que se ejecuten las instrucciones SQL activadas debido que no se cumple la
condicién de bisqueda en la clausula WHEN. Como resultado, ningtin cambio se realiza en la ta-
bla COSTOS_TITULO, a pesar de que la tabla TITULOS_EN_EXISTENCIA es de todas maneras
actualizada.

342 Fundamentos de SQL

Pregunta al experto

P:

Cuando se describian los contextos de ejecucion del activador, se analizé cémo un activa-
dor puede causar que otro activador sea invocado. ;Existe un punto en el cual maltiples
activadores puedan convertirse en un problema si demasiados de ellos son invocados?

Pueden surgir problemas cuando multiples activadores son invocados y éstos causan un efecto
de cascada de una tabla a la siguiente. Por ejemplo, un intento de actualizar una tabla puede
invocar un activador que actualiza otra tabla. Esa actualizacién, en turno, podria invocar a otro
activador que modifique datos en una tabla mds. Este proceso puede continuar mientras un
activador siga invocando a uno més, creando resultados indeseables y modificaciones de datos
no planeadas. La condicién puede todavia empeorar si se crea una repeticion en la cual un ac-
tivador cauce la modificacion de datos en una tabla para la cual se haya disparado otro activa-
dor. Por ejemplo, la modificacién de datos en una tabla puede invocar un activador que cause
una segunda modificacion. Esa modificacion pudiera invocar otro activador, que en su curso
invoque a otro activador, y que éste invoque a uno més. El dltimo activador pudiera modificar
datos en la tabla original, causando que el primer activador se dispare otra vez, y asf repetir sin
fin todo el proceso desde el principio hasta que el sistema falle o un proceso especifico de la
implementacidn finalice la repeticién. La mejor manera de prevenir modificaciones no desea-
das o repeticiones de activadores es a través de la planeacion cuidadosa en el disefio de la base
de datos. Los activadores no deben ser implementados a menos que se esté seguro de su im-
pacto. Ademds de la planeacion cuidadosa, deberd revisarse la implementacion SQL para de-
terminar cudles redes de seguridad puedan colocarse para prevenir la repeticion de activadores
o un indeseado efecto de cascada. Por ejemplo, algunas implementaciones permiten controlar
si es que se aprobardn los activadores de cascada, y algunas limitan el niimero de activadores
de cascada que se pueden disparar. Asegirese de leer la documentacién del producto antes de
crear multiples activadores en su base de datos.

Anteriormente, se mencioné que SQL permite definir miltiples activadores en una tabla.
;Como se procesan los activadores si se invocan miultiples activadores?

En SQL, procesar miiltiples activadores constituye una preocupacion solamente si los activa-
dores estdn definidos para dispararse al mismo tiempo (BEFORE o AFTER) y si son el mismo
tipo de activador (INSERT, UPDATE o DELETE). Por ejemplo, un escenario de mdltiples ac-
tivadores existiria si dos o mds activadores estdn definidos (en la misma tabla) con las palabras
clave AFTER UPDATE. Si esta condicion existe, entonces los activadores son invocados en el
mismo orden en el cual fueron definidos. Veamos un ejemplo para mostrar lo que esto quiere
decir. Si se crea Triggerl, después Trigger2 y luego Trigger3, Triggerl se invoca primero,
después Trigger2 y luego Trigger3. El problema con esto es que SQL no define ninguna forma
en la cual se puede cambiar ese orden. Por ejemplo, si se decide que se desea invocar Trigger3
antes de Triggerl, la dnica opcién (basdndose en el estdndar SQL) es eliminar Trigger] y Trig-
ger2 del esquema y luego volver a crear los activadores en el orden en que se quieren invocar.
Debido a que no se elimin6 Trigger3, éste se movera al punto superior y serd el primero en
invocarse debido a que serd visto como el primero en haber sido creado.

Capitulo 14: Crear activadores SQL - 343

Crear activadores de eliminacién

El dltimo tipo de activador que veremos es el activador de eliminacién. Como se puede esperar, el
activador de eliminacion se invoca cuando se ejecuta una instruccion DELETE hacia la tabla en
cuestion, y al igual que con los otros activadores, las instrucciones SQL activadas se ejecutan y se
lleva a cabo una accién. Ahora demos un vistazo a un ejemplo que utilice la tabla EXISTENCIA _
CD y la tabla CD_AGOTADO, como se muestra en la figura 14-4.

Supongamos que se quiere crear un activador en la tabla EXISTENCIA_CD. Se requiere que
el activador inserte los valores eliminados en la tabla CD_AGOTADO. La siguiente instruccién
CREATE TRIGGER utiliza una cldusula REFERENCING para permitir a la instruccién SQL acti-
vada conocer cuales datos serdn insertados en la tabla CD_AGOTADO:

CREATE TRIGGER INSERTAR CD AGOTADO
AFTER DELETE ON EXISTENCIA CD
REFERENCING OLD ROW AS Antigua
FOR EACH ROW
INSERT INTO CD_AGOTADO
VALUES (Antigua.NOMBRE CD, Antigua.TIPO CD);

En esta instruccion se estd creando un activador llamado INSERTAR_CD_LANZADO. La
instruccion es definida con las palabras clave a AFTER DELETE, lo que significa que los valores
antiguos serdn insertados a la tabla CD_AGOTADO después que hayan sido eliminados de la tabla
EXISTENCIA_CD. La cldusula ON identifica la tabla EXISTENCIA_CD, la tabla en cuestion.

Siguiendo a la cldusula ON se encuentra la cldusula REFERENCING. La cldusula REFE-
RENCING utiliza la opcién OLD ROW para asignar el nombre de correlacién Antigua. Recuerde
que puede utilizar solamente las opciones OLD ROW y OLD TABLE en la cldusula REFEREN-
CING de una definicion de activador de eliminacién. Esto se debe a que no existen datos nuevos,
solamente los datos antiguos que estin siendo eliminados.

EXISTENCIA_CD CD_AGOTADO

NOMBRE_CD: TIPO_CD: | EN_EXISTENCIA: NOMBRE_CD: TIPO_CD:
VARCHAR (60) CHAR (4) | INT VARCHAR (60) CHAR (4)
Famous Blue Raincoat| FROK 19 Court and Spark FROK
Blue CPOP 28 Kojiki NEWA
Past Light NEWA 6 That Christmas Feeling XMAS
Out of Africa STRK 8 Patsy Cline: 12 Greatest Hits CTRY
Fundamental NPOP 10 Leonard Cohen The Best of FROK
Blues on the Bayou BLUS 11 Orlando STRK

Figura 14-4 Crear un activador de eliminacién en la tabla EXISTENCIA_CD.

344

Fundamentos de SQL

La clausula FOR EACH sigue a la clausula REFERENCING. La cldusula FOR EACH utiliza
la opcién ROW. Como resultado, una fila es insertada en la tabla CD_AGOTADO por cada fila eli-
minada de la tabla EXISTENCIA_CD.

Después esta la instrucciéon SQL activada. Observe que en este ejemplo no se utiliza una ins-
truccion BEGIN...END. Debido a que s6lo hay una instruccién activada, no se necesita utilizar el
bloque BEGIN...END (excepto en Oracle, que siempre requiere de un bloque). La instruccién acti-
vada en este caso es una instruccion INSERT que especifica dos valores, cada uno de ellos basado
en los valores eliminados de la tabla EXISTENCIA_CD. Se utiliza el alias Antigua para cualificar
cada nombre de columna. Como resultado, los valores eliminados pueden ser insertados directa-
mente en la tabla CD_AGOTADO.

Ahora demos un vistazo a un ejemplo de lo que sucede cuando se elimina una fila de la tabla
EXISTENCIA_CD. La siguiente instruccion DELETE elimina la fila Past Light de la tabla:

DELETE EXISTENCIA CD
WHERE NOMBRE CD = 'Past Light';

Una vez que se ejecuta esta instruccion, la fila es eliminada y el activador es invocado. La fila
es entonces insertada en la tabla CD_AGOTADO. Se puede verificar la eliminacién utilizando la
siguiente instruccion SELECT para ver los contenidos de la tabla EXISTENCIA_CD:

SELECT * FROM EXISTENCIA CD;

Los resultados de la consulta de esta instruccién ya no deberdn incluir la fila Past Light. Sin
embargo, si se ejecuta la siguiente instruccién SELECT, se verd que una fila ha sido afiadida a la
tabla CD_AGOTADO:

SELECT * FROM CD_AGOTADO;

Cada vez que una fila sea eliminada de la tabla EXISTENCIA_CD, dos valores de esa fila
seran insertados a la tabla CD_AGOTADO. Al igual que con otras definiciones de activadores, se
pudo haber incluido una clausula WHEN en la instruccion CREATE TRIGGER para que las ins-
trucciones SQL activadas sean ejecutadas solamente cuando la condicién de busqueda especificada
en la clausula WHEN se evalie como verdadera. De otra manera, las instrucciones no seran ejecu-
tadas. La fila atin serd eliminada de la tabla EXISTENCIA_CD, pero nada serd insertado a la tabla
CD_AGOTADO.

LY RVAL - Crear activadores SQL

A lo largo de este capitulo se ha visto cdmo crear los tres tipos bdsicos de activadores (de inser-
cion, de actualizacién y de eliminacién). Ahora usted creard sus propios activadores (uno para
cada uno de los tres tipos) en la base de datos INVENTARIO. Los activadores serdn definidos para
registrar la actividad de modificacién de datos que ocurra en la tabla ARTISTAS. Cada vez que los
datos en la tabla ARTISTAS sean modificados, una fila serd insertada en una tabla de registro, la
cual creard usted mismo. La tabla de registro guardard el tipo de accién tomada (insercion, actua-
lizacion, eliminacidn), el valor ID_ARTISTA para la fila modificada, y una marca de tiempo de
cudndo la fila fue insertada en la tabla. Como resultado, cada vez que se ejecute una instruccién

Capitulo 14: Crear activadores SQL 345

INSERT, UPDATE o DELETE hacia la tabla ARTISTS, una fila serd insertada en la nueva tabla
para cada fila que sea modificada. Al igual que con otros ejercicios en este libro (particularmente
en el capitulo 13, cuando se crearon los procedimientos almacenados), deberd referirse a la do-
cumentacion de su implementacién SQL al crear activadores para asegurarse que esta siguiendo
los estandares del producto. Existen muchas variaciones entre las implementaciones SQL. Puede
descargar el archivo Try_This_14.txt (en inglés), que contiene las instrucciones SQL utilizadas en
este ejercicio.

Paso a paso

1.
2.

Abra la aplicacién de cliente para sus RDBM y conéctese con la base de datos INVENTARIO.

Antes de crear los activadores reales en la tabla ARTISTAS, deberd crear una tabla que registre
las modificaciones de datos que se hagan en la tabla ARTISTAS. La tabla de registro, llamada
REGISTRO_ARTISTA, incluird tres columnas para registrar los eventos de modificacién de da-
tos. Una de las columnas serd configurada con un valor por defecto que registre la fecha y hora
actuales. Ingrese y ejecute la siguiente instruccién SQL:

CREATE TABLE REGISTRO_ARTISTA
(TIPO ACCION CHAR(6),
ID ARTISTA INT,
FECHA MOD TIMESTAMP DEFAULT CURRENT TIMESTAMP) ;

Debera recibir un mensaje indicando que la tabla fue creada exitosamente.

Ahora se creard un activador de insercion en la tabla ARTISTAS. La definicién del activador
incluird una cldusula REFERENCING que especifique un nombre de correlacién (Nueva) para
cada nueva fila que sea insertada en la tabla ARTISTAS. Ese nombre de correlacién serd luego
utilizado en la instruccién SQL activada como un valor insertado en la tabla REGISTRO_AR-
TISTA. Ingrese y ejecute la siguiente instruccién SQL:

CREATE TRIGGER INSERTAR REGISTRO
AFTER INSERT ON ARTISTAS
REFERENCING NEW ROW AS Nueva
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO REGISTRO ARTISTA (TIPO ACCION, ID ARTISTA)
VALUES ('INSERT', Nueva.ID ARTISTA);
END;

Debera recibir un mensaje indicando que el activador fue creado exitosamente.

Ahora se creard un activador de actualizacion. Esta definicion del activador es similar a la del
paso 3, excepto que aqui se estd especificando que es un activador de actualizacion. Ingrese y
ejecute la siguiente instruccién SQL:

CREATE TRIGGER ACTUALIZAR REGISTRO

AFTER UPDATE ON ARTISTAS

REFERENCING NEW ROW AS Nueva

FOR EACH ROW '
BEGIN ATOMIC (continda)

346 Fundamentos de SQL

S.

INSERT INTO REGISTRO ARTISTA (TIPO ACCION, ID ARTISTA)
VALUES ('UPDATE', Nueva.ID ARTISTA);
END;

Debera recibir un mensaje indicando que el activador fue creado exitosamente.

Ahora se creard un activador de eliminacién. Esta definicidn del activador es un poco diferente
a las de los tultimos activadores debido a que la clausula REFERENCING especifica un nombre
de correlacion para los valores antiguos, en lugar de para los nuevos. Esto se debe a que los
nuevos valores no son creados cuando se eliminan los datos de una tabla. El nombre de corre-
lacién (Antigua) es por lo tanto utilizado en la clausula VALUES de la instrucciéon INSERT.
Ingrese y ejecute la siguiente instruccién SQL:

CREATE TRIGGER ELIMINAR REGISTRO
AFTER DELETE ON ARTISTAS
REFERENCING OLD ROW AS Antigua
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO REGISTRO ARTISTA (TIPO ACCION, ID ARTISTA)
VALUES ('DELETE', Antigua.ID ARTISTA);
END;

Debera recibir un mensaje indicando que el activador fue creado exitosamente.

Ahora es posible comenzar a probar los activadores que se han creado. El primer paso es inser-
tar datos en la tabla ARTISTAS. En esta instruccion, los valores son especificados por la colum-
na ID_ARTISTA en la columna NOMBRE_ARTISTA, pero no por la columna LUGAR_DE _
NACIMIENTO. Como resultado, el valor predeterminado de Desconocido serd insertado en esa
columna. Ingrese y ejecute la siguiente instruccién SQL:

INSERT INTO ARTISTAS (ID ARTISTA, NOMBRE ARTISTA)
VALUES (2019, 'John Lee Hooker');

Debera recibir un mensaje indicando que la fila fue insertada exitosamente en la tabla AR-
TISTAS.

Ahora se actualizard la fila que acaba de insertarse proporcionando un valor para la columna
LUGAR_DE_NACIMIENTO. Ingrese y ejecute la siguiente instruccion SQL:

UPDATE ARTISTAS
SET LUGAR DE NACIMIENTO = 'Clarksdale, Mississippi, Estados Unidos'
WHERE ID_ARTISTA = 2019;

Deber4 recibir un mensaje indicando que la fila fue actualizada exitosamente en la tabla AR-
TISTAS.

El siguiente paso es eliminar la fila que acaba de crearse. Ingrese y ejecute la siguiente instruc-
cién SQL:

DELETE ARTISTAS
WHERE ID ARTISTA = 2019;

Capitulo 14: Crear activadores SQL 347

Deber4 recibir un mensaje indicando que la fila fue eliminada exitosamente de la tabla AR-
TISTAS.

9. Ahora que se han modificado los datos en la tabla ARTISTAS, se revisara la tabla REGISTRO_
ARTISTA para verificar que las filas hayan sido ingresadas en la tabla registrando las modifica-
ciones de datos de la tabla ARTISTAS. Ingrese y ejecute la siguiente instrucciéon SQL:

SELECT * FROM REGISTRO_ARTISTA;

Los resultados de la consulta deberdn incluir tres filas, una para cada tipo de accién (INSERT,
UPDATE y DELETE). Todas las filas deberdn tener el mismo valor ID_ARTISTA (2019) e in-
cluir las fechas y horas actuales.

10

El siguiente paso serd quitar los activadores de la base de datos. El primer activador que debe
quitarse es el activador de insercion. Ingrese y ejecute la siguiente instrucciéon SQL:

DROP TRIGGER INSERTAR REGISTRO;

Debera recibir un mensaje indicando que el activador fue eliminado exitosamente de la base de
datos.

11. Después se eliminard el activador de actualizacion. Ingrese y ejecute la siguiente instruccion
SQL:

DROP TRIGGER ACTUALIZAR REGISTRO;

Debera recibir un mensaje indicando que el activador fue eliminado exitosamente de la base de
datos.

12. Ahora abandone el activador de eliminacién. Ingrese y ejecute la siguiente instruccién SQL:
DROP TRIGGER ELIMINAR REGISTRO;

Debera recibir un mensaje indicando que el activador fue eliminado exitosamente de la base de
datos.

13. Finalmente, se eliminard la tabla REGISTRO_ARTISTA que se cre6 en el paso 2. Ingrese y eje-

cute la siguiente instruccion SQL:

DROP TABLE REGISTRO ARTISTA;

Deberd recibir un mensaje indicando que la tabla fue eliminada exitosamente de la base de
datos.

14. Cierre la aplicacion de cliente.

Resumen de Pruebe esto

En este ejercicio se cred la tabla REGISTRO_ARTISTA, que fue determinada para almacenar in-
formacioén acerca de las modificaciones de datos a la tabla ARTISTAS. Después se crearon tres ac-
tivadores sobre la tabla ARTISTAS (un activador de insercion, un activador de actualizacién y un
activador de eliminacién). Los tres activadores utilizaron clausulas REFERENCING para permitir
pasar el valor ID_ARTISTA de la fila modificada a la tabla REGISTRO_ARTISTA. Después de

(continda)

348 Fundamentos de SQL

haber creado los activadores, se insertaron, actualizaron y eliminaron datos en la tabla ARTISTAS
para probar los activadores. Luego se revisé el contenido de la tabla REGISTRO_ARTISTA para
verificar que todas las modificaciones de datos hubieran sido registradas adecuadamente. Después
de eso, se abandonaron los tres activadores y la tabla REGISTRO_ARTISTA. Al momento de
completar el ejercicio, la base de datos INVENTARIO debera haber sido regresada a su estado ori-
ginal tal como estaba al principio.

Y Autoexamen Capitulo 14

(Qué es un activador?

(Cudles son los tres tipos de activadores?

(Qué tipo de acciones pueden ser realizadas por las instrucciones SQL activadas?
(Cudles acciones puede invocar un activador?

A Actualizacién de datos

B Consulta de datos

C Eliminacién de datos

D Insercion de datos

(Cuéndo es invocado un activador de inserciéon?
(En cudntas tablas puede ser definido un activador?
A Solamente una

B Unaomis

C Deunaatres

D Cualquier niimero de tablas

Un(a) es un espacio creado en la memoria que alberga un proceso de activador
durante la ejecucion de ese activador.

Se insertan datos en la tabla 1, que invoca un activador de insercién definido en esa tabla. El ac-
tivador actualiza la informacién en la tabla 2, que invoca un activador de actualizacién definido
en esa tabla. El activador de actualizacion elimina informacién en la tabla 3, que invoca un acti-
vador de eliminacién definido en esa tabla. ;Cudl contexto de ejecucion de activador estd activo
en este punto?

A El contexto de ejecucion de activador para el activador de insercion
B El contexto de ejecucion de activador para el activador de actualizacion

C El contexto de ejecucion de activador para el activador de eliminacién

Capitulo 14: Crear activadores SQL 349

9.

100
11.

12.

13.

14

15

16.

Si tres activadores son invocados durante una sesion, ;cudntos contextos de ejecucion de activa-
dor son creados en esa sesién?

(Qué informacion es incluida en un contexto de ejecucién de activador?

(En cudl clausula de la instruccion CREATE TRIGGER se asignan nombres de correlacién a
los datos antiguos y nuevos?

A FOR EACH

B ON
C REFERENCING
D WHEN

(En cudl cldusula de la instruccion CREATE TRIGGER se especifica si las instrucciones SQL
activadas serdn ejecutadas una vez para cada fila o una vez para cada instruccién?

A FOR EACH

B ON
C REFERENCING
D WHEN

Se estd creando una definicion de activador para un activador de insercién. ;Cudles clausulas
REFERENCING se pueden incluir en la instruccion CREATE TRIGGER?

A REFERENCING OLD ROW AS Old

B REFERENCING NEW ROW AS New
C REFERENCING OLD TABLE AS Old
D REFERENCING NEW TABLE AS New

Un activador permite especificar los nombres de columna de una tabla en cues-
tion.
(Cudles palabras clave pueden utilizarse para designar si las instrucciones SQL activadas seran

ejecutadas antes o después de que la instruccién de modificacién de datos sea aplicada a la tabla
en cuestion?

Se estd creando un activador de actualizacion en la tabla INVENTARIO_CD. La tabla incluye
una columna llamada EN_EXISTENCIA. Se requiere que las instrucciones SQL activadas sean
ejecutadas solamente cuando el valor EN_EXISTENCIA de la fila actualizada exceda 20. ;Cudl
cldusula deberd incluirse en la instruccion CREATE TRIGGER para restringir cudndo son eje-
cutadas las instrucciones?

A WHERE

B HAVING

C FOREACH
D WHEN

350 Fundamentos de SQL

17. ;Qué instruccion debe incluirse en la instruccion CREATE TRIGGER si la definicién del acti-
vador incluye mds de una instruccién SQL activada?

18. ;Cuadl instruccién puede utilizarse para eliminar un activador del esquema?

19. ;Cuadl instruccién SQL se utiliza para alterar una definicién de activador?

Capitulo 15

Utilizar cursores SQL

352 Fundamentos de SQL

Habilidades y conceptos clave

Entender los cursores SQL

Declarar un cursor

Abrir y cerrar un cursor

Recuperar datos desde un cursor

Utilizar instrucciones UPDATE y DELETE posicionadas

Las veces que se han analizado los diferentes aspectos de SQL a través de este libro, se ha utiliza-
do una invocacidn directa para crear y acceder a diferentes objetos de datos. La invocacion di-
recta, o SQL interactivo, es un método de acceso de datos que soporta la ejecucion ad hoc de ins-
trucciones SQL, usualmente a través de algun tipo de aplicacién de cliente. Por ejemplo, se puede
utilizar SQL Server Management Studio o iSQL*Plus de Oracle para interactuar directamente con
una base de datos SQL. Sin embargo, la invocacién directa generalmente representa solamente

un pequefio porcentaje de todo el uso de una base de datos. Un método mucho mds comiin que se
utiliza para acceder a las bases de datos SQL es el SQL incrustado, un modelo de acceso de datos
en el cual las instrucciones SQL estan incrustadas en una aplicacién de lenguaje de programacion,
por ejemplo C, Java y COBOL. Para soportar SQL incrustado, el estindar SQL permite declarar
cursores que actian como sefialadores para especificar filas de datos en los resultados de la con-
sulta. Este capitulo explica por qué se utilizan los cursores y cémo pueden ser declarados, abiertos
y cerrados, dentro de una sesién SQL. También se aprenderd cémo recuperar datos utilizando el
cursor para que el lenguaje de programacién pueda trabajar con los datos SQL en un formato que
la aplicacién puede procesar.

Entender los cursores SQL

Una de las caracteristicas que definen a SQL es el hecho de que los datos en una base de datos SQL
pueden ser manejados en conjuntos. De hecho, a menudo se hace referencia a los resultados de una
consulta arrojados por las instrucciones SELECT como conjuntos de resultados. Cada uno de estos
conjuntos de resultados estd conformado por una o més filas extraidas desde una o mas tablas.
Cuando se trabaja con los datos SQL de forma interactiva, tener los datos arrojados en conjun-
tos raramente representa un problema debido a que normalmente es posible desplazarse a través
de los resultados de la consulta para encontrar la informacién que se necesita. Si el tamafio de
los resultados es demasiado extenso para desplazarse facilmente, es posible hacer mas preciso el
enfoque de la expresién de bisqueda para arrojar un conjunto de resultados mds manejable. Sin
embargo, la mayoria de los accesos de datos se hace a través de medios diferentes a la invocacién
directa (a pesar del hecho de que accedemos a los datos de forma interactiva a través de todo el li-
bro). Uno de los métodos mas comunes, el SQL incrustado, accede a los datos a través de instruc-
ciones SQL incrustadas en un programa de aplicacién. Los elementos de datos arrojados por las
instrucciones SQL son utilizados por un lenguaje de programacion externo (el lenguaje host) para
soportar procesos de aplicacién especificos.

Capitulo 15: Utilizar cursores SQL 353

El problema caracteristico que se encuentra con esta disposicién es que los lenguajes de pro-
gramacion de aplicacién generalmente no estidn equipados para tratar con los datos arrojados en
conjuntos. Como resultado, existe una incongruencia en la impedancia entre SQL y los lenguajes
de programacion. La incongruencia de la impedancia se refiere a las diferencias entre SQL y otros
lenguajes de programacién. Como se puede recordar del capitulo 3, un ejemplo de incongruencia
en la impedancia es la forma en la cual los tipos de datos SQL difieren de los tipos de datos en
otros lenguajes de programacién. Estas diferencias pueden llevar a la pérdida de informacién cuan-
do una aplicacién extrae datos desde una base de datos SQL. Otro ejemplo de esta incongruencia
es el hecho de que SQL arroja datos en conjuntos, pero otros lenguajes de programacién no pue-
den manejar los conjuntos. Generalmente, éstos solamente pueden procesar partes pequefias de
datos (un unico registro) a la vez. La forma en que SQL puede corregir este tipo de incongruencia
en la impedancia es mediante el uso de cursores.

Un cursor funciona como un sefialador que permite al lenguaje de programacion de aplica-
cion tratar a los resultados de la consulta una fila a la vez, de manera muy parecida a la que estos
lenguajes de programacién manejan los registros desde archivos de datos tradicionales (planos).

A pesar de que el cursor puede recorrer todas las filas de los resultados de la consulta, se enfoca
solamente en una fila a la vez. Un cursor aun asf arroja un conjunto de resultados completo, pero
permite al lenguaje de programacién convocar solamente una fila de ese conjunto. Por ejemplo,
supongamos que los resultados de la consulta se derivan de la siguiente instruccion SELECT:

SELECT NOMBRE INTERPRETE, LUGAR_DE NACIMIENTO
FROM INTERPRETES;

Los resultados de la consulta de esta instruccidn arrojaran filas de la tabla INTERPRETES,
que incluyen la columna NOMBRE_INTERPRETE y la columna LUGAR_DE_NACIMIENTO.
Sin embargo, el lenguaje de programacion de aplicacién puede tratar solamente con una fila a la
vez, por lo que el cursor se declara como una instrucciéon SQL incrustada dentro del lenguaje de
programacion de aplicacion. Entonces se abre el cursor, de una forma muy parecida a la que estos
lenguajes de aplicacién abren archivos, y se recupera una fila de los resultados de la consulta. La
figura 15-1 ilustra cémo un cursor actia como un sefialador para recuperar solamente una fila de
datos.

En este caso, la fila que se recupera a través del cursor es la fila Bing Crosby. Sin embargo,
se puede recuperar cualquier fila de los resultados de la consulta, o continuar recuperando
filas, siempre y cuando las filas sean recuperadas una a la vez y el cursor permanezca abierto. Una
vez que el cursor es cerrado, ya no es posible recuperar ninguna fila de los resultados de la con-
sulta.

Declarar y abrir cursores SQL

La mayoria de los lenguajes de programacién de aplicacién soportan el uso de cursores para recu-
perar datos de una base de datos SQL. El lenguaje del cursor estd incrustado en el cédigo de pro-
gramacion de una forma muy parecida a la que se incrustaria cualquier instruccién SQL. Cuando
se utiliza un cursor en un lenguaje de programacion, primero se debe declarar el cursor (similar a
como se declararia una variable) y luego utilizar el nombre de la instruccién (el nombre que se le
asign6 al cursor) en otras instrucciones SQL incrustadas para abrir el cursor, recuperar filas indivi-
duales a través del cursor y cerrar el cursor.

354 Fundamentos de SQL

NOMBRE_INTERPRETES: | LUGAR_DE_NACIMIENTO
VARCHAR (60) VARCHAR (60)

Jennifer Warnes Seattle, Washington, USA

Joni Mitchell Fort MacLeod, Alberta, Canada
William Ackerman Germany

Kitaro Toyohashi, Japan

Bing Crosby Tacoma, Washington, United States
Patsy Cline Winchester, Virginia, United States
Jose Carreras Barcelona, Spain

Luciano Pavarotti Modena, Italy

Placido Domingo Madrid, Spain

Figura 15-1 Utilizar un cursor para acceder a la tabla INTERPRETES.

NOTA

También es posible utilizar cursores en médulos cliente SQL, que son conjuntos de instruccio-
nes SQL que pueden ser convocados desde dentro de un lenguaije de programacién de aplica-
cién. Los médulos cliente, en conjunto con SQL incrustado y SQL interactivo, proporcionan un
método més para invocar instrucciones SQL. Debido a que los médulos cliente no estan imple-
mentados tan ampliamente como SQL incrustado, nos enfocaremos a utilizar cursores en SQL
incrustado. Para mayor informacién acerca de los médulos cliente SQL, ver el capitulo 17.

A pesar de que declarar un cursor es fundamental al utilizar ese cursor en la aplicacion, la ins-
truccion por si sola no es suficiente para extraer los datos de una base de datos SQL. De hecho, la
funcionalidad completa del cursor es soportada mediante el uso de cuatro instrucciones SQL, cada
una de las cuales es incrustada en el lenguaje de programacion de aplicacién, o lenguaje host. Las
siguientes descripciones proporcionan una idea general de estas cuatro instrucciones:

DECLARE CURSOR Declara el cursor SQL al definir el nombre del cursor, sus caracteris-
ticas y una expresion de consulta que es invocada cuando se abre el cursor.

OPEN Abre el cursor e invoca la expresion de consulta, haciendo que los resultados de con-
sulta estén disponibles para las instrucciones FETCH.

FETCH Recupera datos en las variables que pasan los datos al lenguaje de programacién
host 0 a otras instrucciones SQL incrustadas.

CLOSE Cierra el cursor. Una vez que el cursor es cerrado, no pueden recuperarse datos de
los resultados de la consulta del cursor.

Las cuatro instrucciones son convocadas desde dentro del lenguaje host. La figura 15-2 ilustra
como se utilizan las instrucciones relacionadas con el cursor. Las instrucciones SQL incrustadas se
muestran en los cuadros sombreados en color gris.

Como se puede ver, primero se debe declarar el cursor y luego abrirlo. Una vez que se ha
abierto el cursor, se puede utilizar la instruccién FETCH para recuperar filas de datos. Se puede

Capitulo 15: Utilizar cursores SQL 355

Instrucciones del
lenguaje host

Instruccion DECLARE CURSOR

Instrucciones del
lenguaje host

Instruccion OPEN

Instrucciones del
lenguaje host

Instrucciones FETCH
| > repetidas dentro de una

Instruccion FETCH estructura de repeticion

del lenguaje host

Instrucciones del
lenguaje host

Instruccion CLOSE

Instrucciones del
lenguaje host

Figura 15-2 Incrustando instrucciones SQL relacionadas con el cursor.

utilizar esta instruccién tantas veces como sea necesario, usualmente dentro de algun tipo de es-
tructura de repeticion definida por el lenguaje host. Una vez que se han recuperado todos los datos
necesarios, se debera cerrar el cursor.

NOTA

Para la mayoria de los lenguajes de programacién de aplicacién, una instruccién SQL incrus-
tada es precedida por EXEC SQL. Esto sefiala a un preprocesador que la siguiente instruccién
es SQL y que debe ser procesada separadamente del lenguaie host. El preprocesador, pro-
porcionado por el proveedor de RDBMS, andliza el cédigo SQL y lo convierte a una forma
que pueda ser utilizada por la implementacién SQL. El lenguaije host se compila de la forma
normal. Para mayor informacién acerca de SQL incrustado, ver el capitulo 17.

Declarar un cursor

La primera instruccién que veremos serd la instrucci6on DECLARE CURSOR. El cursor debe ser
declarado antes de que pueda utilizarse para recuperar datos. Se puede declarar un cursor en cual-
quier punto del cédigo de aplicacién, siempre y cuando sea declarado antes de que se haga refe-
rencia al cursor por medio de cualquier otra instruccion.

356

Fundamentos de SQL

NOTA

Muchos programadores prefieren declarar todos los cursores y variables al inicio del progra-
ma para que se conserven junfas todas las instrucciones. Por lo tanto, se puede hacer referen-
cia a los cursores y variables en cualquier punto del programa.

La sintaxis para una instruccion de cursor incluye muchos elementos, como se muestra en la
siguiente sintaxis:

DECLARE <nombre del cursor>

[SENSITIVE | INSENSITIVE | ASENSITIVE]

[SCROLL I NO SCROLL] CURSOR

[WITH HOLD | WITHOUT HOLD]

[WITH RETURN | WITHOUT RETURN]

FOR <expresion de consulta>

[ORDER BY <especificacion del tipo>]

[FOR { READ ONLY | UPDATE [OF <lista de la columna>] }]

NOTA

Oracle utiliza la palabra clave 1S en lugar de FOR precediendo la expresién de consulta en la
instruccion del cursor.

Como se puede ver, la mayoria de los elementos que conforman la instruccién son opcionales.
Y como siempre, es necesario revisar la documentacién de su implementaciéon SQL para verificar
cudles de éstos son soportados. Se verdn estos elementos con mucho mayor detalle en la siguiente
seccién. Por ahora nos enfocaremos en aquellos elementos que son obligatorios. Para hacerlo,
podemos sintetizar la sintaxis hasta los siguientes elementos basicos:

DECLARE <nombre del cursor> CURSOR FOR <expresion de consulta>

Esta sintaxis solamente permite aquellas partes de la instruccion del cursor que son obliga-
torias. Como se puede ver, ésta es una parte de cdigo mucho mds manejable. Todo lo que se
necesita proporcionar es un nombre para el cursor y la expresion de consulta que serd invocada
cuando el cursor sea abierto. El nombre debe ser diferente de cualquier otro nombre de cursor
declarado dentro del mismo programa. La expresion de consulta es basicamente una instruccién
SELECT, como las que se han visto a lo largo de este libro.

Eso es todo respecto a la sintaxis bdsica. En la siguiente seccién daremos un vistazo a cada
uno de los elementos opcionales que conforman la instruccién del cursor. Después de eso, analiza-
remos algunos ejemplos.

Trabajar con elementos opcionales de la sintaxis

Si recordamos la sintaxis completa de la instruccion de un cursor (mostrada en la seccion ante-
rior), se vera que la mayoria de los elementos son opcionales. En esta seccién analizaremos cada
uno de esos elementos. Posteriormente en este capitulo, después de que se haya completado esta
discusidn, encontrard que es necesario regresar a esta seccion para detalles acerca de las opciones
especificas.

Capitulo 15: Utilizar cursores SQL 357

Sensibilidad del cursor
El primer elemento opcional de la instruccion DECLARE CURSOR que veremos es la sensibili-
dad del cursor, que se representa en la siguiente sintaxis:

[SENSITIVE | INSENSITIVE | ASENSITIVE]

La sensibilidad del cursor estd relacionada con las instrucciones fuera del cursor que afectan a
las mismas filas que aquellas arrojadas por el cursor. Por ejemplo, supongamos que el cursor arroja
filas de la tabla CDS_EN_EXISTENCIA. Mientras el cursor esta abierto, otra instruccion dentro
de la misma transaccién elimina algunas de las mismas filas en la tabla CDS_EN_EXISTENCIA
que fueron arrojadas por el cursor. De la sensibilidad del cursor dependerd si es que el cursor pue-
de o no captar estas eliminaciones.

Como se puede ver en la sintaxis, SQL soporta tres opciones de sensibilidad del cursor:

SENSITIVE Cambios significativos hechos por las instrucciones fuera del cursor afectan
inmediatamente a los resultados de la consulta dentro del cursor.

INSENSITIVE Cambios significativos hechos por las instrucciones fuera del cursor no
afectan a los resultados de la consulta dentro del cursor.

ASENSITIVE La sensibilidad del cursor es definida por la implementacion. Los cambios
significativos pueden o no ser captados dentro del cursor.

Si no se especifica ninguna opcién de sensibilidad del cursor, la opcién ASENSITIVE se toma
de manera preestablecida, en cuyo caso la implementaciéon SQL puede llevar a cabo cualquier ac-
cion para la que haya sido disefiada.

NOTA

Algunas implementaciones SQL proporcionan una inicializacién o pardmetro del sistema que
altera el comportamiento de los cursores. Por ejemplo, Oracle proporciona el parédmetro de
inicializacién CURSOR_SHARING que especifica qué tipo de instrucciones SQL pueden com-
partir los mismos cursores. Como siempre, deberd consultar la documentacién de su imple-
mentacién en particular.

Capacidad de desplazamiento del cursor
El siguiente elemento opcional en la instruccion DECLARE CURSOR que veremos es la capaci-
dad de desplazamiento del cursor, como muestra la siguiente sintaxis:

[SCROLL I NO SCROLL]

El desplazamiento estd directamente relacionado con la instruccién FETCH y las opciones que
dicha instruccién puede utilizar para recuperar los datos. Si se especifica la opciéon SCROLL, la
instruccién FETCH puede ser definida con una de muchas opciones que extienda su habilidad para
moverse a través de los resultados de la consulta y arrojar filas especificas. La opcion SCROLL
permite a la instrucciéon FETCH brincar a través de los resultados de la consulta segiin sea necesario
para recuperar la fila especifica. Si se especifica NO SCROLL en la instruccién del cursor, la ins-
trucciéon FETCH no puede utilizar las opciones de desplazamiento adicionales y solamente puede
recuperar la siguiente fila disponible de los resultados de la consulta. Si no se especifica ninguna
opcion, se toma de modo predeterminado NO SCROLL. Para mayor informacién acerca de las op-
ciones FETCH, véase la seccidn “Recuperar datos desde un cursor”, mas adelante en este capitulo.

358

Fundamentos de SQL

Capacidad para mantener abierto el cursor
El siguiente elemento que veremos en la sintaxis DECLARE CURSOR estd relacionado con la ca-
pacidad para mantener abierto el cursor, como se muestra en la siguiente sintaxis:

[WITH HOLD | WITHOUT HOLD]

La capacidad para mantener abierto el cursor hace referencia a una caracteristica en los cursores
que estd relacionada con la condicién de cerrar o no un cursor automaticamente cuando la transaccién
en la que el cursor fue abierto es completada. Una transaccion es una unidad atémica de trabajo. Esto
significa que todas las instrucciones dentro de la transaccién deben ser exitosas o ninguna de ellas
podré tener algtin efecto. Si ciertas instrucciones dentro de la transaccién son ejecutadas y luego una
de ellas falla, ninguna de las instrucciones ejecutadas tendrd efecto y la base de datos permanecera sin
cambios. (Las transacciones se analizan con mayor detalle en el capitulo 16.)

SQL proporciona dos opciones a elegir al activar la definicién de la capacidad para mantener
abierto el cursor: WITH HOLD y WITHOUT HOLD. Si se especifica WITH HOLD, el cursor
permanecerd abierto después de completar la transaccion, hasta que el usuario explicitamente lo
cierre. Si se especifica WITHOUT HOLD, el cursor serd cerrado automaticamente cuando la tran-
saccién sea completada. Si no se especifica ninguna de estas opciones, se toma de manera preesta-
blecida WITHOUT HOLD vy el cursor es cerrado automaticamente.

NOTA

Incluso si el cursor se define como un cursor WITHOUT HOLD (ya sea explicitamente o de modo
predeterminado), por lo general se considera una buena practica cerrar el cursor explicitamen-
te cuando ya no sea necesario. Esto puede liberar recursos del sistema, y ayuda a asegurarse
de que el cédigo se esté autodocumentando claramente. En SQL Server, un cursor deberd tam-
bién perder sus asignaciones después de haberse cerrado para liberar todos sus recursos.

La ventaja de ocupar un cursor que permanece abierto (uno que esté definido con la opcién
WITH HOLD) es que pueden existir ocasiones, después de que una transaccion es completada, en
que se necesite que el cursor persista con tal de mantener su posicién dentro de los resultados de
la consulta arrojados por ese cursor. Cerrar un cursor y volver a abrirlo puede a veces hacer mas
dificil restaurar las condiciones, incluyendo la posicion del cursor en los resultados de la consulta,
a como estaban exactamente antes de que se cerrara el cursor.

Capacidad del cursor para arrojar resultados
La capacidad del cursor para arrojar resultados es la siguiente opcién que veremos en la definicion
de la instruccion del cursor, y utiliza la siguiente sintaxis:

[WITH RETURN | WITHOUT RETURN]

Las opciones para arrojar resultados aplican solamente a los cursores que son abiertos en un
procedimiento invocado por SQL. Como se podra recordar del capitulo 13, un procedimiento invo-
cado por SQOL es un tipo de rutina que es invocado utilizando la instruccién CALL. La instruccién
CALL es una instruccién SQL que invoca procedimientos y permite pasar valores de pardmetros a
esos procedimientos. Si el cursor no es abierto dentro de un procedimiento, la opcién para arrojar
resultados no tiene ningtin efecto.

Como muestra la sintaxis, SQL soporta dos opciones del cursor para arrojar resultados WITH
RETURN y WITHOUT RETURN. Si se especifica WITH RETURN, el cursor es considerado
un cursor del conjunto de resultados. Por lo tanto, si se abre el cursor dentro de un procedimiento

Capitulo 15: Utilizar cursores SQL 359

invocado por SQL, el conjunto de resultados del cursor es arrojado hacia lo que haya invocado el
procedimiento, que puede ser otra rutina invocada por SQL o un programa de lenguaje host. Si se
especifica WITHOUT RETURN, el conjunto de resultados del cursor es arrojado de la forma nor-
mal, sea abierto o no con un procedimiento invocado por SQL. Si no se especifica ninguna opcidn,
se asume de manera preestablecida WITHOUT RETURN.

Capacidad de ordenamiento del cursor
La instrucciéon DECLARE CURSOR incluye una cldusula opcional ORDER BY, como muestra la
siguiente sintaxis:

[ORDER BY <especificacién de clasificacion> |

Sin duda reconocerd esta cldusula del capitulo 7, cuando se vieron todas las cldusulas bédsicas
de la instruccién SELECT. También se recordard que la cldusula ORDER BY puede ser utilizada
cuando se invoca directamente SQL, pero no en una instruccion SQL incrustada, a menos que esa
instruccioén esté contenida dentro de una instruccion de cursor.

La cldusula ORDER BY permite clasificar los resultados de la consulta arrojados por la es-
pecificacion de la consulta. En la cldusula se puede especificar cudles columnas forman la base
para clasificar las filas. Se debe tener cuidado respecto al rendimiento debido que un cursor con
una cldusula ORDER BY puede forzar al motor SQL a recuperar y clasificar el conjunto completo
de resultados antes de que la primera fila pueda ser arrojada, y esto puede ser desastroso para el
rendimiento de conjuntos con resultados muy grandes. Si se utiliza una cldusula ORDER BY, la
instruccién SELECT del cursor no puede contener una cldusula GROUP BY o una cldusula HA-
VING. Ademds, la porcién de la clausula SELECT de la instruccién NULL no puede especificar la
palabra clave DISTINCT o utilizar una funcion set.

Si la cldusula ORDER BY incluye columnas calculadas en los resultados de la consulta (por
ejemplo COLUMNA_A + COLUMNA_B), se debera definir un alias para la columna resultante,
como en (COLUMNA_A + COLUMNA_B) AS TOTALES_COLUMNAS. Adicionalmente, pue-
den también utilizarse las palabras clave ASC y DESC para cualquier columna incluida en la espe-
cificacion de la clasificacion para especificar si la columna serd clasificada en orden ascendente o
descendente, respectivamente, en donde ASC es el valor preestablecido. (Para mayor informacién
acerca de la clausula ORDER BY, ver el capitulo 7.)

Capacidad de actualizacién del cursor
El dltimo elemento opcional de la instruccion DECLARE CURSOR que veremos es la capacidad
de actualizacién del cursor, como se muestra en la siguiente sintaxis:

[FOR { READ ONLY | UPDATE [OF <lista de la columna>] } |

La capacidad de actualizacién del cursor se refiere a la habilidad de utilizar una instruccién
UPDATE o DELETE para modificar los datos arrojados por la instruccién SELECT del cursor.
Como puede verse en la sintaxis, se debe utilizar la palabra clave FOR junto con la opcién READ
ONLY o UPDATE. Veamos primero la opcién READ ONLY. Si se especifica READ ONLY, no es
posible ejecutar una instruccién UPDATE o DELETE para los resultados de la consulta arrojados
por la instruccién SELECT del cursor. Por otro lado, si se especifica UPDATE, si es posible ejecu-
tar las instrucciones. Si no se especifica ninguna opcién, se toma UPDATE de forma predermina-
da, a menos que otra opcidn la sobrescriba.

360 Fundamentos de SQL

NOTA

En algunos casos, incluso si no se especifica una opcién de actualizacién, el cursor se define
como un cursor de sélo lectura debido a que otras opciones pueden evitar que el cursor sea
actualizado. Por ejemplo, si se especifica la opcién INSENTITIVE, el cursor quedard como de
sélo lectura. Se obtiene el mismo resultado si se especifica una cléusula ORDER BY o una pala-
bra clave SCROLL.

Notard que la opciéon UPDATE también permite especificar cudles columnas pueden ser actua-
lizadas en la tabla subyacente. Para hacer esto debe incluirse la palabra clave OF, seguida de uno o
mds nombres de columna. Si se especifica mas de una columna, los nombres de columna deberdn
estar separados por comas. Si no se especifica ningtin nombre de columna (con la palabra clave
OF), 1a opcién UPDATE se aplica a todas las columnas en la tabla subyacente.

Crear una instruccién de cursor

Ahora que hemos visto cada componente de la instruccion DECLARE CURSOR, demos un vista-
zo a algunos ejemplos que pueden ayudar a ilustrar cémo declarar un cursor. Para estos ejemplos
utilizaremos la tabla INVENTARIO_CD, mostrada la figura 15-3.

DISCO_COMPACTO: CATEGORIA: PRECIO: A_LA _MANO:
VARCHAR (60) VARCHAR (15) NUMERIC (5,2) INT
Famous Blue Raincoat Vocal 16.99 13
Blue Vocal 14.99 42
Court and Spark Vocal 14.99 22
Past Light Instrumental 15.99 17
Kojiki Instrumental 15.99 6
That Christmas Feeling Vocal 14.99 8
Patsy Cline: 12 Greatest Hits Vocal 16.99 32
Carreras Domingo Pavarotti in Concert Vocal 15.99 27
After the Rain: The Soft Sounds of Erik Satie Instrumental 16.99 21
Out of Africa Instrumental 16.99 29
Leonard Cohen The Best of Vocal 15.99 12
Fundamental Vocal 15.99 34
Blues on the Bayou Vocal 14.99 27
Orlando Instrumental 14.99 5

Figura 15-3 Declarar cursores en la tabla INVENTARIO_CD.

Capitulo 15: Utilizar cursores SQL 361

El primer ejemplo que veremos es una instruccién de cursor basica que incluye solamente los
elementos obligatorios mds una cldusula ORDER BY, como se muestra en la siguiente instruccién
DECLARE CURSOR:

DECLARE CD_1 CURSOR
FOR
SELECT *
FROM INVENTARIO CD
ORDER BY DISCO_COMPACTO;

En esta instruccion se ha declarado un cursor llamado CD_1 y se ha definido una instruccién
SELECT. El nombre del cursor sigue a la palabra clave DECLARE. Después del nombre del cur-
sor, se ha incluido la palabra clave CURSOR vy la palabra clave FOR. El tnico elemento adicional
es la instrucciéon SELECT, que incluye una clausula ORDER BY. La instruccién arroja todas las
filas y columnas para la tabla INVENTARIO_CD. Entonces las filas son ordenadas de acuerdo con
los valores en la columna DISCO_COMPACTO. Debido a que no se especificaron las palabras
clave ASC o DESC, las filas son arrojadas en orden ascendente.

NOTA

En el capitulo 7, cuando se analizé la instruccién SELECT, se explicé que a pesar de que un
asterisco puede ser utilizado para arrojar todas las columnas de una tabla, es una mejor préc-
tica identificar cada una de las columnas que se quieran arrojar. Esto es especialmente im-
portante en SQL incrustado debido a que el lenguaije host depende de que ciertos valores (un
nimero especifico en un orden especifico) sean arrojados de la base de datos. Si se tuviera
que hacer cambios en la base de datos, la aplicacién podria no operar apropiadamente, y el
cédigo de aplicacién tendria que ser modificado. Para los ejemplos de este capitulo, a menu-
do se utilizé un asterisco para simplificar el cédigo y conservar espacio, pero tenga en cuenta
que, en casos reales, usualmente se especificaria cada columna.

La cldusula ORDER BY es un elemento importante debido a que el orden en el cual las filas
son arrojadas afecta cudles filas son recuperadas cuando se utiliza una instruccién FETCH. (Se
analizard la instruccién FETCH posteriormente en este capitulo, en la seccién “Recuperar datos
desde un cursor”.) Esto resulta de esta manera especialmente si se define un cursor con capacidad
de desplazamiento, como el que se muestra en el siguiente ejemplo:

DECLARE CD_2 SCROLL CURSOR
FOR
SELECT *
FROM INVENTARIO CD
ORDER BY DISCO_COMPACTO
FOR READ ONLY;

Observe que se han afadido dos elementos a esta instruccién: la palabra clave SCROLL y
la clausula FOR READ ONLY. La palabra clave SCROLL sefiala a la instruccién FETCH que el
cursor tiene capacidad de desplazamiento. Como resultado, opciones adicionales pueden ser utili-
zadas dentro de la instruccién FETCH que extienden como la aplicacién puede moverse a través
de los resultados del cursor. La cldusula FOR READ ONLY indica que no pueden ser utilizadas ni
la instruccién UPDATE ni la instruccién DELETE para modificar los datos arrojados por el cursor.
Sin embargo, esta cldusula no es necesaria. Debido que la instruccién del cursor incluye la palabra

362

Fundamentos de SQL

clave SCROLL, y la instruccién SELECT incluye una clausula ORDER BY, el cursor es automa-
ticamente limitado a operaciones de sélo lectura. El uso de cualquiera de estas dos opciones (o el
uso de la opcion INSENSITIVE) automaticamente sobrescribe la capacidad de actualizacion del
cursor de manera predeterminada.

El siguiente tipo de instruccién de sélo lectura que veremos también incluye la palabra clave
INSENSITIVE, como muestra el siguiente ejemplo:

DECLARE CD_3 SCROLL INSENSITIVE CURSOR
FOR
SELECT *
FROM INVENTARIO CD
ORDER BY DISCO_COMPACTO
FOR READ ONLY;

La instruccién de cursor CD_3 es exactamente igual que la instruccién de cursor CD_2, ex-
cepto que CD_3 también ha sido definida como un cursor no sensitivo. Esto significa que, mien-
tras el cursor esté abierto, ninguna modificacién hecha a los datos en la tabla subyacente ser4 re-
flejada en los resultados de la consulta arrojados por el cursor. Desde luego, si se cierra el cursor y
vuelve a abrirse, ninguna modificacién hecha mientras el cursor estaba abierto originalmente serd
reflejada en los datos arrojados por el cursor que volvid a abrirse.

Las tres instrucciones de cursor anteriores que hemos visto han sido de sélo lectura.

Ahora demos un vistazo a un cursor actualizable. En la siguiente instruccién de cursor, la ins-
trucciéon SELECT arroja una vez mds todas las filas y columnas para la tabla INVENTARIO_CD:

DECLARE CD_4 CURSOR
FOR
SELECT *
FROM INVENTARIO CD
FOR UPDATE;

Observe que esta instruccion DECLARE CURSOR no incluye la palabra clave SCROLL, la
palabra clave INSENSITIVE o una cldusula ORDER BY, ya que cualquiera de éstas hubiera evi-
tado crear un cursor con capacidad de actualizacién. Se pudieron haber especificado las opciones
NO SCROLL y SENSITIVE, pero no son necesarias. Observe también, sin embargo, que la ins-
truccién de cursor si incluye la cldusula FOR UPDATE. La cldusula en si tampoco es necesaria en
esta instruccion en particular debido a que el cursor es actualizable de manera preestablecida, ya
que no contiene ninguna opcion para limitar su capacidad de actualizacion.

Sin embargo, si se desea que el cursor sea actualizable solamente para cierta columna, se de-
berd incluir la cldusula FOR UPDATE, junto con el nombre de la columna, como se muestran en el
siguiente ejemplo:

DECLARE CD 5 CURSOR
FOR B
SELECT *

FROM INVENTARIO CD
FOR UPDATE OF DISCO_COMPACTO;

Ahora la cldusula FOR UPDATE incluye la palabra clave OF y el nombre de columna, DIS-
CO_COMPACTO. Si se intentara modificar los datos en los resultados del cursor en las columnas
diferentes a la columna DISCO_COMPACTO, se recibiria un error.

Capitulo 15: Utilizar cursores SQL - 363

Una vez que se ha declarado el cursor, puede abrirse y recuperar con €l los datos de los resul-
tados de la consulta. Sin embargo, como se ha visto en las instrucciones de cursor anteriores, las
acciones que se pueden llevar a cabo estdn limitadas por las restricciones definidas usando la ins-
truccion DECLARE CURSOR.

Abrir y cerrar un cursor

El proceso para abrir un cursor es bastante sencillo. Solamente es necesario proporcionar la pala-
bra clave OPEN y el nombre del cursor, como se muestra en la siguiente sintaxis:

OPEN <nombre del cursor>
Por ejemplo, para abrir el cursor CD_1 se invoca la siguiente instruccién SQL:
OPEN CD 1;

No es posible abrir un cursor hasta que se haya declarado. Una vez declarado, puede abrirse
en cualquier lugar dentro del programa. La instruccién SELECT dentro del cursor no es invocada
hasta que realmente se abra el cursor. Eso significa que ninguna modificacién a los datos hecha en-
tre el momento en que el cursor es declarado y el momento en el que el cursor es abierto se refleja
en los resultados de la consulta arrojados por el cursor. Si se cierra el cursor y vuelve a abrirse, las
modificaciones de datos que se llevardn a cabo entre el momento en que se cerré y el momento en
que volvio a abrirse se reflejan en los nuevos resultados de la consulta.

Una vez que se ha terminado de utilizar el cursor, éste deberd cerrarse para que puedan libe-
rarse los recursos del sistema. Para cerrar un cursor se puede utilizar la instruccion CLOSE, como
se muestra en la siguiente sintaxis:

CLOSE <nombre del cursor>

La instruccién CLOSE no realiza otra funcién que cerrar el cursor, lo que significa que los
resultados de la consulta de la instruccién SELECT del cursor son liberados. Por ejemplo, para ce-
rrar el cursor CD_1 se utiliza la siguiente instruccién SQL:

CLOSE CD_1;

Una vez que se cierra el cursor, no es posible recuperar ninguna otra fila desde los resultados de
la consulta del cursor. En otras palabras, no se puede utilizar una instruccién FETCH para recuperar
datos desde un cursor cerrado. Si vuelve a abrirse el cursor, es posible recuperar datos una vez mas,
pero se obtendra un nuevo conjunto de resultados y (asumiendo que no hay ninguna opcién de des-
plazamiento) se comenzara con la primera fila de los resultados de la consulta, lo que puede significar
recuperar filas que ya hayan sido procesadas por una invocacién anterior del cursor.

Recuperar datos desde un cursor

Hasta ahora hemos aprendido a declarar un cursor, a abrirlo y a cerrarlo. Sin embargo, estas ac-
ciones por si solas no permiten recuperar ninguno de los datos proporcionados por el cursor. Para
poder hacer eso se debe utilizar una instruccién FETCH.

364

Fundamentos de SQL

Antes de dar un vistazo a la sintaxis para la instruccién FETCH, repasemos brevemente el
propdsito de un cursor y sus instrucciones relacionadas. Como se dijo anteriormente, uno de los
problemas al incrustar instrucciones SQL en un lenguaje host de programacién es la incongruencia
en la impedancia. Una forma de esta incongruencia es que SQL arroja datos en conjuntos y los
lenguajes de programacion de aplicacién tradicionales no pueden manejar conjuntos de datos. En
general, éstos pueden tratar solamente con valores individuales. Para poder resolver esta forma de
incongruencia en la impedancia, se pueden utilizar cursores para recuperar datos una fila a la vez
(sin importar cudntas filas sean arrojadas) desde los cuales se pueden extraer valores individuales
que pueden ser utilizados por el lenguaje host.

Como ya hemos visto, una instruccién de cursor incluye una instruccién SELECT que arroja
un conjunto de datos. La instruccién OPEN ejecuta la instrucciéon SELECT, y la instruccién CLO-
SE libera los resultados de la consulta de la instruccién SELECT. Sin embargo, es la instruccién
FETCH la que identifica las filas individuales dentro de ese conjunto de datos y extrae los valores
individuales de esas filas, que pasan entonces a las variables host. Una variable host es un tipo de
parametro que pasa un valor al lenguaje host.

Una o mas instrucciones FETCH pueden ser ejecutadas mientras un cursor estd abierto. Cada
instruccién apunta a una fila especifica en los resultados de la consulta, y los valores son entonces
extraidos de esas filas. La siguiente sintaxis muestra los elementos basicos que conforman la ins-
truccion FETCH:

FETCH [[<orientacién para bisqueda>] FROM]
<nombre del cursor> INTO <variables host>

Como puede verse en la sintaxis, se debe especificar la palabra clave FETCH, el nombre del
cursor y una cldusula INTO que identifique las variables host que recibirdn los valores arrojados por
lainstruccion FETCH. Esos valores se derivan de los resultados de consulta que son generados por la
instruccién SELECT del cursor cuando éste estd abierto. Si la instrucciéon FETCH incluye mas de una
variable host, las variables deberan estar separadas por comas.

Ademéds de los componentes obligatorios de la instrucciéon FETCH, la sintaxis también inclu-
ye el marcador de posicion opcional <orientacién para bisqueda> y la palabra clave FROM. Si se
especifica una opcion de orientacion para busqueda en la instrucciéon FETCH, se debe incluir la
palabra clave FROM, o se puede especificar FROM sin la orientacion para busqueda.

SQL soporta seis opciones de orientacion para busqueda que identifican cudl fila es seleccio-
nada de los resultados de la consulta del cursor. La mayoria de estas opciones estdn disponibles
solamente si se declara el cursor como desplazable. Un cursor con capacidad de desplazamiento,
como podrd recordar, es uno que extiende la habilidad de la instrucciéon FETCH para moverse a
través de los resultados de la consulta del cursor. Un cursor tiene la capacidad de desplazamiento
si la instruccién del cursor incluye la palabra clave SCROLL. Si se incluye una orientacién para
busqueda en la instruccion FETCH, es posible escoger una de las siguientes opciones:

NEXT Recupera la siguiente fila de los resultados de la consulta. Si se utiliza NEXT en la
primera instruccién FETCH después de que se abre el cursor, serd arrojada la primera fila en
los resultados de la consulta. Una segunda instruccion FETCH NEXT arrojard la segunda fila.

PRIOR Recupera directamente la fila anterior a la Gltima que se habia recuperado. Si se

utiliza PRIOR en la primera instruccién FETCH después de abrir el cursor, ninguna fila serda
arrojada debido a que ninguna fila precede a la primera fila.

Capitulo 15: Utilizar cursores SQL 365

FIRST Recupera la primera fila de los resultados de la consulta del cursor, sin
importar cudntas instrucciones FETCH hayan sido ejecutadas desde que se abri6 el
Cursor.

LAST Recupera la dltima fila de los resultados de la consulta del cursor, sin importar cudn-
tas instrucciones FETCH hayan sido ejecutadas desde que se abri6 el cursor.

ABSOLUTE <valor> Recupera la fila especificada por el marcador de posicion <valor>. El
valor debe ser un numeérico exacto, a pesar de que puede ser derivado de una variable host. El
numérico identifica cudl fila es arrojada por la instrucciéon FETCH. Por ejemplo, ABSOLUTE 1
arroja la primera fila, ABSOLUTE 2 arroja la segunda fila y ABSOLUTE -1 arroja la tiltima
fila.

RELATIVE <valor> Recupera la fila especificada por el marcador de posicion <valor>,
relativo a la posicion actual del cursor. Si se utiliza RELATIVE en la primera instruccién
FETCH después de abrir el cursor, RELATIVE 1 arroja la primera fila de los resultados de la
consulta del cursor, y RELATIVE -1 arroja la tltima fila. Sin embargo, si el cursor no esta al
comienzo de los resultados de la consulta, como lo esta cuando se abre el cursor por primera
vez, RELATIVE 1 y RELATIVE -1 arrojan filas relativas a la posicién del cursor donde se
quedd después de la dltima instruccion FETCH ejecutada.

En cualquier momento que se abre un cursor, el cursor apunta al comienzo de los resultados
de la consulta. La instruccién FETCH mueve el cursor a la fila designada por la opcién de orienta-
cidén para bisqueda. Si no se especifica ninguna opcion, se asume NEXT de manera preestableci-
da, y el cursor siempre apunta a la siguiente fila en los resultados de la consulta.

Para ayudar a ilustrar cémo funcionan las opciones de orientacion para bisqueda, veamos otra
vez el cursor que declaramos anteriormente en este capitulo:

DECLARE CD_2 SCROLL CURSOR
FOR
SELECT *
FROM INVENTARIO CD
ORDER BY DISCO_COMPACTO
FOR READ ONLY;

Observe que la palabra clave SCROLL esta especificada y que la instrucciéon SELECT recu-
pera todas las filas y columnas de la tabla INVENTARIO_CD. Observe también que la instruccion
SELECT incluye una cldusula ORDER BY que ordena los resultados de la consulta en un orden
ascendente de acuerdo con los valores en la columna DISCO_COMPACTO. Esto es importante
debido a que las instrucciones FETCH se mueven a través de las filas en los resultados de la con-
sulta en el orden especificado por la clausula ORDER BY, sin importar cudntas filas sean ordena-
das en la tabla subyacente.

Ahora demos otro vistazo a los resultados de la consulta arrojados por la instruccién SELECT
en el cursor CD_2. Los resultados de la consulta se muestran en la figura 15-4 en forma de una
tabla virtual. Observe que la ilustracién incluye sefialadores que representan los diferentes tipos de
instrucciones FETCH (basandose en su orientacién para bisqueda). En cada caso, el sefialador esta
basado en una instruccién FETCH que es la primera en ejecutarse después de que el cursor ha sido
abierto.

366 Fundamentos de SQL

DISCO_COMPACTO CATEGORIA | PRECIO | A LA MANO

FETCH PRIOR

’ After the Rain: The Soft Sounds of Erik Satie| Instrumental| 16.99 | 21

Blue Vocal 14.99 42
Blues on the Bayou Vocal 14.99 27
Carreras Domingo Pavarotti in Concert Vocal 15.99 27

FETCH ABSOLUTE 5)| Court and Spark Vocal 14.99 22
Famous Blue Raincoat Vocal 16.99 13
Fundamental Vocal 15.99 34
Kojiki Instrumental| 15.99 6
Leonard Cohen The Best of Vocal 15.99 12

FETCH RELATIVE 10>| Orlando Instrumental| 14.99 5
Out of Africa Instrumental| 16.99 29
Past Light Instrumental| 15.99 17
Patsy Cline: 12 Greatest Hits Vocal 16.99 32
That Christmas Feeling Vocal 14.99 8

Figura 15-4 Los resultados de la consulta (tabla virtual) arrojados por el cursor CD_2.

Observe que cada uno de los sefialadores FETCH FIRST y FETCH NEXT apuntan hacia
la fila After the Rain. Esta es la primera fila en los resultados de la consulta del cursor. FETCH
FIRST siempre sefialard a esta fila, asumiendo que los datos en las tablas subyacentes no
cambien. FETCH NEXT siempre sefialard a la primera fila cada vez que sea la primera instruc-
ciéon FETCH ejecutada después de que el cursor es abierto. Adicionalmente, el sefialador FETCH
LAST siempre sefialard a la fila That Christmas Feeling. Sin embargo, el sefialador
FETCH PRIOR no sefiala hacia ninguna fila. En su lugar, sefiala hacia un espacio anterior
a la primera fila de los resultados de la consulta. Esto se debe a que PRIOR no puede recuperar
una fila si estd siendo utilizada en la primera instruccién FETCH después de que el cursor es
abierto.

Ahora demos un vistazo al sefialador FETCH ABSOLUTE 5. Como se puede ver, éste apunta
a la fila Court and Spark, que es la quinta fila en los resultados de la consulta del cursor. FETCH
ABSOLUTE 5 siempre arrojara esta fila. Por otro lado, FETCH RELATIVE 10 sefiala a la fila Or-
lando, que es la décima fila en los resultados de la consulta del cursor. Sin embargo, si RELATIVE

Capitulo 15: Utilizar cursores SQL - 367

fuera utilizada en una instruccién FETCH diferente a la primera, FETCH RELATIVE 10 probable-
mente estarfa seflalando a una fila diferente.

Como se puede ver, las opciones de la sexta orientacion para bisqueda proporcionan una gran
flexibilidad al moverse a través de los resultados de la consulta del cursor. Tenga en mente, sin
embargo, que la mayoria de estas opciones pueden ser utilizadas solamente en cursores de s6lo
lectura, como el cursor CD_2 que hemos estado viendo. La tinica opcién que puede ser utilizada
para cursores actualizables es NEXT, que es la orientacién para bisqueda predeterminada. Ahora
veamos algunos ejemplos de las instrucciones FETCH para demostrar como pueden ser utilizadas
para recuperar datos de los resultados de la consulta de un cursor.

La primera instruccién FETCH que veremos utiliza la opcién de orientacién para busqueda
NEXT para recuperar una fila del cursor CD_2:

FETCH NEXT
FROM CD_2
INTO :CD, :Categoria, :Precio, :A la mano;

La instruccion identifica la orientacion para bisqueda y el nombre del cursor. Como
puede recordarse, la palabra clave NEXT es opcional debido a que NEXT es la orientacién
para bisqueda predeterminada. La instruccion también incluye una cldusula INTO, que identifica
las variables host que recibirdn los valores arrojados por la instruccion FETCH. Existen cuatro
variables host que coinciden con el nimero de variables arrojadas por la instruccion FETCH.

El ndmero de variables debe ser el mismo que el nimero de columnas arrojadas por la
instruccién SELECT del cursor, y las variables deben ser listadas en el mismo orden

que las columnas arrojadas. Observe que las variables host estdn separadas por comas y sus nom-
bres empiezan con dos puntos. De acuerdo con el estindar SQL, las variables host deben
comenzar con dos puntos, a pesar de lo cual puede variar entre una implementacién SQL

y otra.

Ahora que se ha visto como trabaja la instruccién FETCH NEXT, se puede crear cualquier
instruccién FETCH para cualquier orientaciéon FETCH que se quiera especificar. Simplemente es
necesario reemplazar una opcion con la otra. Por ejemplo, la siguiente instrucciéon FETCH utiliza
la orientacién para bisqueda ABSOLUTE:

FETCH ABSOLUTE 5
FROM CD_2
INTO :CD, :Categoria, :Precio, :A la mano;

Observe que con la opcién ABSOLUTE, al igual que con la opcién RELATIVE, se debe
especificar un valor numérico. En este caso, el cursor recuperard la quinta fila de los resultados
de la consulta del cursor. Las opciones ABSOLUTE, FIRST y LAST son las tinicas opciones de
orientacién para buisqueda que arrojaran siempre la misma fila para lo resultados de la consulta del
cursor, asumiendo que los datos en la tabla subyacente no han cambiado. Por otro lado, las opcio-
nes NEXT, PRIOR y RELATIVE arrojan filas basadas en la tltima posicién del cursor. Como re-
sultado, es necesario estar seguro acerca del disefio de los cursores y de las instrucciones FETCH
teniendo la posicién en mente.

368 Fundamentos de SQL

Pregunta al experto

P: Se ha mencionado que una instrucciéon SELECT de un cursor no se ejecuta hasta que el
cursor esté abierto. ; Céomo afecta esto a valores especiales como CURRENT_USER o
CURRENT_TIME?

R: Debido a que una instruccién SELECT de un cursor no se ejecuta hasta que el cursor esté
abierto, no se asignan valores a los valores especiales sino hasta que el cursor es abierto, y no
cuando el cursor es declarado. Por ejemplo, si se incluye el valor especial CURRENT_TIME
en la instruccién SELECT del cursor y se declara ese cursor al inicio del cédigo del programa,
la hora asignada al valor CURRENT_TIME sera el momento en que el cursor sea abierto, y
no la hora de cuando el cursor sea declarado. Adicionalmente, si se cierra el cursor y vuelve a
abrirse, el valor CURRENT_TIME tendr4 la hora de cuando el cursor volvi6 a abrirse, y no de
cuando fue abierto por primera vez.

P: se dijo que las variables host son un tipo de parametro que se utiliza en SQL incrustado.
. Como difieren las variables host de otros tipos de parametros?

R: Para todo propdsito practico, una variable host es igual que cualquier otro pardmetro. La prin-
cipal diferencia es que una variable host es utilizada en SQL incrustado para pasar valores en-
tre el lenguaje host y SQL. La otra distincién real es que el simbolo dos puntos debe ser afia-
dido al nombre de la variable. La razén por la que los dos puntos deben ser incluidos cuando
se utiliza una instruccién SQL incrustada es para indicar que el nombre es de una variable host
y no de una columna. Como resultado, se pueden utilizar nombres de variable que sean sig-
nificativos a la aplicacion sin preocuparse por nombrar accidentalmente a una variable con el
mismo nombre que una columna. Los dos puntos no tienen nada que ver con la variable en si
misma, pero si para distinguirla como una variable. Los dos puntos deben ser utilizados en los
mddulos cliente SQL. Sin embargo, los valores son pasados hacia los médulos a través de pa-
rdmetros, en lugar de a través de variables host. Los pardmetros de médulo son esencialmente
lo mismo que las variables host; solamente los nombres son diferentes. Si quisiera referirse a
todos ellos como pardmetros, no se estaria muy equivocado.

Utilizar instrucciones UPDATE y DELETE
posicionadas

Una vez que se busca una fila desde los resultados de la consulta de un cursor actualizable, es po-
sible que sea necesario que la aplicacién actualice o elimine esa fila. Para hacerlo se debe utilizar
una instruccién UPDATE o DELETE posicionada. Las instrucciones UPDATE y DELETE posi-
cionadas contienen una cldusula especial WHERE que hace referencia al cursor abierto. Demos un
vistazo a cada una de estas dos instrucciones para mostrar como pueden utilizarse para modificar
los datos arrojados por el cursor.

Capitulo 15: Utilizar cursores SQL 369

Utilizar la instruccién UPDATE posicionada

La instruccién UPDATE posicionada es, en su mayor parte, igual que una instruccién UPDATE
regular, excepto que ésta requiere una cldusula especial WHERE, como se muestra en la siguiente
sintaxis:

UPDATE <nombre de la tabla>
SET <lista de conjunto>
WHERE CURRENT OF <nombre del cursor>

Una instruccién UPDATE regular, como sin duda recordard, contiene la clausula UPDATE
y la cldusula SET, al igual que como se ve en la sintaxis para una instruccién UPDATE posicio-
nada. Sin embargo, en la instruccién UPDATE regular la clausula WHERE es opcional, mientras
que en una instruccién UPDATE posicionada es obligatoria. Ademas, la clausula WHERE debe
estar definida con la opcién CURRENT OF, que identifica al cursor abierto. Al utilizar la opcién
CURRENT OF, se esta avisando a la aplicacién que utilice los valores arrojados por la instruccién
FETCH mas reciente para el cursor al que hace referencia. Por ejemplo, si el cursor esta
sefialando a la fila Past Light de la tabla INVENTARIO_CD (la fila arrojada mas recientemente
por la instruccién FETCH), es esa fila a la que se estd haciendo referencia con la clausula WHERE
de la instruccién UPDATE posicionada.

Demos un vistazo a un ejemplo para demostrar como funciona esto. El siguiente conjunto de
instrucciones SQL declara el cursor CD_4, abre ese cursor, busca una fila desde los resultados de
la consulta del cursor, actualiza esa fila y luego cierra el cursor:

DECLARE CD_ 4 CURSOR
FOR
SELECT *
FROM INVENTARIO CD
FOR UPDATE;

OPEN CD 4;

FETCH CD_4

INTO :CD, :Categoria, :Precio, :A la mano;
UPDATE INVENTARIO CD

SET A LA MANO = :A la mano * 2
WHERE CURRENT OF CD 4;

CLOSE CD _4;

Se afiadieron algunas lineas vacias para hacer la lectura mas facil, pero desde luego que no
son necesarias, y si se incluyeran, el motor SQL simplemente las ignorarfa. La primera instruccién
declara el cursor CD_4 y define la instruccién SELECT que arroja todas las filas y columnas de la
tabla INVENTARIO_CD. Luego se abre el cursor y se realiza la busqueda en la siguiente fila, que
en este caso es la primera fila, Famous Blue Raincoat. Después de realizar la busqueda y la fila,
se utiliza una instruccién UPDATE posicionada para duplicar la cantidad del valor A_LA_MANO
para esa fila. Observe que la instruccién UPDATE incluye una cldusula WHERE que contiene la
opciéon CURRENT OF, que identifica al cursor CD_4. Después de actualizar la fila, se cierra el
Cursor.

370

Fundamentos de SQL

NOTA

Tenga en mente que las instrucciones mostradas en el ejemplo anterior podrian estar incrus-
tadas en un lenguaje host, por lo que no es muy probable que estén agrupadas tan cercana-
mente y a su vez es muy probable que tengan otros elementos del lenguaije host, como instruc-
ciones de variables, estructuras de repeticidn e instrucciones condicionales.

En el ejemplo anterior fue posible actualizar la columna A_LA_MANO debido a que estaba
incluida implicitamente en la clausula FOR UPDATE de la instruccién SELECT del cursor. Cuan-
do no se especifican nombres de columna, todas las columnas son actualizables. Sin embargo,
veamos otro ejemplo que define explicitamente una columna. En el siguiente conjunto de ins-
trucciones SQL, se declara el cursor CD_5 y se utiliza para intentar actualizar una fila en la tabla
INVENTARIO_CD:

DECLARE CD_5 CURSOR
FOR
SELECT *
FROM INVENTARIO CD
FOR UPDATE OF DISCO_COMPACTO;

OPEN CD_5;

FETCH CD_5
INTO :CD, :Categoria, :Precio, :A la mano;

UPDATE INVENTARIO_ CD
SET A LA MANO = :A la mano * 2
WHERE CURRENT OF CD_5;

CLOSE CD_5;

Como se puede ver, la instruccién del cursor especifica la columna DISCO_COMPACTO en la
clausula FOR UPDATE. Si se intenta ejecutar la instruccién UPDATE, se recibird un error indicando
que lacolumna A_LA_MANO no es una de las columnas especificadas en la instruccién del cursor.

Utilizar la instruccién DELETE posicionada

La instrucciéon DELETE posicionada, al igual que la instruccién UPDATE posicionada, requiere
una cldusula WHERE que debe incluir la opcién CURRENT OF. (Una instrucciéon DELETE re-
gular, como puede recordarse, no requiere de una cldusula WHERE.) Una instruccién DELETE
posicionada utiliza la siguiente sintaxis:

DELETE <nombre de la tabla>
WHERE CURRENT OF <nombre del cursor>

Como se puede ver, es necesario definir una cldusula DELETE que identifique a la tabla
y una cldusula WHERE que identifique al cursor. La clausula WHERE, en una instrucciéon
DELETE posicionada, funciona de la misma manera que la clausula WHERE en una instruccién
UPDATE posicionada: la fila arrojada por la dltima instruccién FETCH es la fila que se modifica.
En este caso, la fila es eliminada.

Ahora veamos un ejemplo de una instruccion DELETE posicionada. Las siguientes instruc-
ciones SQL declaran el cursor CD_4, abren el cursor, arrojan una fila desde el cursor, eliminan esa
fila y cierran el cursor:

Capitulo 15: Utilizar cursores SQL 371

DECLARE CD_4 CURSOR
FOR
SELECT *
FROM INVENTARIO CD
FOR UPDATE;

OPEN CD_4;

FETCH CD 4
INTO :CD, :Categoria, :Precio, :A la mano;

DELETE INVENTARIO CD
WHERE CURRENT OF CD 4;

CLOSE CD _4;

Todas estas instrucciones han sido utilizadas antes. El inico elemento nuevo es la instruccién
DELETE posicionada. Esta instruccién elimina la fila arrojada por la instruccién FETCH, que es
la fila Famous Blue Raincoat. Una vez que la fila es eliminada, el cursor es cerrado utilizando una
instruccién CLOSE. Como ya se dijo anteriormente, siempre es una buena idea cerrar explicita-
mente los cursores cuando ya no sean necesarios.

Pruebe esto 15-1 Trabo]or con cursores SQL

En este capitulo se vio cémo declarar cursores, abrir esos cursores, recuperar datos desde ellos y
luego como cerrarlos. Ademads, se repasaron las instrucciones UPDATE y DELETE posicionadas.
Sin embargo, como se menciondé anteriormente, los cursores son utilizados principalmente en SQL
incrustado, lo cual hace dificil probar por completo la funcionalidad del cursor si se estd limitado a
invocar de manera directa las instrucciones SQL (como se estd en este ejercicio). Idealmente, seria
mejor incrustar las instrucciones SQL relacionadas con el cursor en un lenguaje host, pero esto ex-
cede el campo de accién de este libro. Lo que complica incluso mds este tema es el hecho de que
diferentes implementaciones SQL soportan de diferente forma el uso de cursores en un ambiente
interactivo, lo que hace muy dificil invocar directamente las instrucciones relacionadas con el cur-
sor. A pesar de eso, debera ser posible ejecutar la mayoria de las instrucciones relacionadas con

el cursor de manera interactiva, pero habra que tener en mente que los cursores estan disefiados
para utilizarse en SQL incrustado y en los médulos de cliente SQL, por lo que puede ser necesario
modificar las instrucciones en un grado alto para poder ejecutarlas. Puede descargar el archivo
Try_This_15.txt (en inglés), que contiene las instrucciones SQL utilizadas en este ejercicio.

NOTA

Lo ideal seria llevar al lector a través de cada paso para declarar y abrir un cursor, recuperar
los datos y cerrar un cursor, pero debido a la naturaleza de la invocacién directa, utilizaremos
menos pasos y bloques mds largos de instrucciones.

Paso a paso

1. Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2, El primer cursor que se declarard y accederd es un cursor bdsico de sélo lectura que recupera
datos desde la tabla DISCO_COMPACTO. Lo primero que notard de este conjunto de ins-
(continda)

372 Fundamentos de SQL

trucciones a crear es que se declarard una variable llamada v_NOMBRE_CD. Se creara esta
variable para poder probar completamente la instruccion FETCH. Se debe tener en mente que,
dependiendo de la situacidn, el lenguaje host, y el producto, puede o no utilizarse este método
para definir la variable. Observe también que el nombre de la variable en la instruccion FETCH
no esta precedido por dos puntos. Esto se debe a que se estara utilizando invocacién directa
para ejecutar estas instrucciones y, para la mayoria de las implementaciones, el nombre de la
variable en la instruccion FETCH tendra que ser el mismo que el nombre que se declaré al prin-
cipio de este conjunto de instrucciones.

Al igual que con cualquier instruccién SQL, se encontrara que el lenguaje exacto a
utilizar para crear las instrucciones varia de un producto al otro. Ademads, el hecho de estar in-
vocando las instrucciones directamente en lugar de incrustandolas puede llevar a otras variacio-
nes entre SQL y la implementacién (por ejemplo, a no utilizar un simbolo de punto y coma en
el nombre de la variable). Como ejemplo, si se ejecutan estas instrucciones en SQL Server, se
tendra que preceder los nombres de la variable con el cardcter arroba (@). Oracle se desvia
aun mds del estdndar. En Oracle se declara el cursor y la variable en un bloque de instrucciones.
Ademas, la palabra clave CURSOR precede al nombre del cursor, y se debe utilizar la palabra
clave IS en lugar de la palabra clave FOR. También se deben encerrar las instrucciones OPEN,
FETCH y CLOSE en un bloque BEGIN...END. De la misma manera, se encontrara
que no todas las opciones SQL son soportadas en todas las implementaciones SQL, y muchos
productos incluyen caracteristicas adicionales no definidas en el estdndar SQL. Asegtirese
de revisar la documentacion de su producto antes de intentar declarar y acceder a cualquier
Cursor.

Ahora vamos a crear las instrucciones relacionadas con el cursor. Ingrese y ejecute las si-
guientes instrucciones SQL:

DECLARE v_NOMBRE CD VARCHAR (60) ;

DECLARE CD cursor 1 CURSOR
FOR
SELECT TITULO CD
FROM DISCOS COMPACTOS
ORDER BY TITULO CD ASC;

OPEN CD_cursor_1;
FETCH CD_cursor_ 1 INTO v_NOMBRE_CD;

CLOSE CD_cursor 1;

En estas instrucciones, primero se declaré una variable llamada v_NOMBRE_CD. Después, se
declard un cursor llamado CD_cursor_1. La definicion del cursor contenia una instruccion SE-
LECT que fue cualificada con la cldusula ORDER BY. Debido a que se incluyo la cldusula OR-
DER BY, el cursor fue de sélo lectura. Después de que se declard el cursor, fue abierto, se bus-
c6 una fila de los resultados de la consulta del cursor y luego se cerré el cursor. La instruccién
FETCH arroj6 el valor After the Rain: The Soft Sounds of Erik Satie, que pudo entonces haber
sido utilizada en alguna otra operacion, que hubiera incrustado estas instrucciones. Después de
haber ejecutado las instrucciones, se deberd recibir un mensaje indicando que las instrucciones
fueron ejecutadas exitosamente.

Capitulo 15: Utilizar cursores SQL 373

3. Ahora se declarard y accedera a un segundo cursor. Esta vez se especificard que el cursor sea
no sensitivo y con capacidad de desplazamiento. Ademds, se especificard que el cursor sea de
sélo lectura, aunque esta cldusula es opcional debido a que se estd haciendo que el cursor sea
no sensitivo y con capacidad de desplazamiento. También se buscard la dltima fila de los resul-
tados de la consulta del cursor en lugar de la primera. Ingrese y ejecute la siguiente instruccion
SQL:

DECLARE v_NOMBRE CD VARCHAR (60) ;

DECLARE CD cursor 2 SCROLL INSENSITIVE CURSOR
FOR
SELECT TITULO CD
FROM DISCOS_ COMPACTOS
ORDER BY TITULO_CD ASC
FOR READ ONLY;

OPEN CD_cursor_2;
FETCH LAST FROM CD_cursor_2 INTO v_NOMBRE_CD;
CLOSE CD_cursor_2;

Esta vez la instruccion FETCH recuperé el valor That Christmas Feeling debido a que se es-
pecificé LAST. Este valor fue insertado en la variable v.NOMBRE_CD. Después de haber
ejecutado las instrucciones, se debera recibir un mensaje indicando que las instrucciones fueron
ejecutadas exitosamente.

4, El siguiente cursor tendrd capacidades de actualizacidn, lo que significa que no puede incluir
una cldusula ORDER BY y no puede ser definido como no sensitivo o con capacidad de despla-
zamiento. Debido a que el cursor es actualizable, también se creard una instruccion UPDATE
que duplique el valor de la columna EN_EXISTENCIA para la fila arrojada por la instruccién
FETCH. Ingrese y ejecute la siguiente instruccién SQL:

DECLARE v_NOMBRE CD VARCHAR (60) ;

DECLARE CD cursor_ 3 CURSOR
FOR
SELECT TITULO_CD
FROM DISCOS_COMPACTOS
FOR UPDATE;

OPEN CD_cursor 3;
FETCH CD_cursor_3 INTO v_NOMBRE_CD;

UPDATE DISCOS_COMPACTOS
SET EN_EXISTENCIA = EN_EXISTENCIA * 2
WHERE CURRENT OF CD cursor 3;

CLOSE CD_cursor_ 3;

(continda)

374 Fundamentos de SQL

Observe que esa instruccion UPDATE incluye una clausula WHERE que contiene la opcion
CURRENT OF, que especifica el cursor CD_cursor_3. Esta cldusula es obligatoria. Debido a
que no se utilizé una cldusula ORDER BY, la primera fila en los resultados de la consulta del
cursor fue Famous Blue Raincoat. Esta es la fila que fue actualizada. Después de haber ejecuta-
do las instrucciones, se debera recibir un mensaje indicando que una fila ha sido actualizada.

5. Ahora demos un vistazo a la tabla DISCOS_COMPACTOS para verificar que el cambio que se
ha hecho es correcto. Ingrese y ejecute la siguiente instruccién SQL:

SELECT * FROM DISCOS_ COMPACTOS;

El valor IN_STOCK de la fila Famous Blue Raincoat debera ser ahora de 26, el doble de su
cantidad original.

6. Ahora regresemos la base de datos a su estado original. Ingrese y ejecute la siguiente instruc-
cién SQL:

UPDATE DISCOS_COMPACTOS
SET EN_EXISTENCIA = 13
WHERE ID DISCO_COMPACTO = 101;

Se debera recibir un mensaje indicando que la fila ha sido actualizada.

7. Cierre la aplicacion cliente.

Resumen de Pruebe esto

En este ejercicio se declararon y se accedio a tres cursores, dos que eran de sélo lectura y uno
que era actualizable. Para cada uno de los tres cursores se declard una variable. La variable fue
luego utilizada en la instrucciéon FETCH para recibir el valor arrojado por esa instruccién. Para el
cursor con capacidades de actualizacion, se cred una instrucciéon UPDATE que modific6 el valor
EN_EXISTENCIA para la fila arrojada por la instruccion FETCH. Después se actualizé la tabla
DISCOS_COMPACTOS, y se actualizé una vez mds para arrojar la base de datos a su estado ori-
ginal. Debido a que ningtin otro cambio fue realizado a la base de datos, éstos deberdn estar de la
misma manera que cuando se comenzo este ejercicio.

v Aot Capitulo 15

1. /Qué es un cursor?
2, ;Cudles métodos de invocacidén soportan el uso de cursores?
3. (Cudl forma de incongruencia en la impedancia es cubierta a través del uso de cursores?

4, Un(a) funciona como un sefialador que permite al lenguaje de programacion
de aplicacion tratar con los resultados de la consulta una fila a la vez.

5.

9‘
10.

12.

13.

14.

15.

Capitulo 15: Utilizar cursores SQL - 375

Cuando se utilizan cursores en SQL incrustado, ;cudl es el primer paso que se debe tomar antes
de que se puedan recuperar datos a través de ese cursor?

A Buscar el cursor.
B Declarar el cursor.
C Cerrar el cursor.
D Abrirel cursor.

(Cudles son las cuatro instrucciones relacionadas con el cursor que pueden ser incrustadas en
un lenguaje host?

(Cudles opciones pueden ser utilizadas en las instrucciones de cursor de sélo lectura?
A SCROLL

B WITHHOLD

C ORDERBY

D INSENSITIVE

(Cudles son los elementos obligatorios de una instruccion DECLARE CURSOR?
(Qué tipo de cursor no ve los cambios hechos por instrucciones fuera del cursor?

(Cudl opcién deberd utilizarse en una instruccién de cursor para extender las capacidades de
recuperacién de una instruccién FETCH?

A WITHOUT HOLD
B ASENSITIVE

C SCROLL

D FOR UPDATE

La capacidad para el cursor hace referencia a una caracteristica en los
cursores que estd relacionada con la condicién de cerrar o no un cursor automdticamente cuan-
do la transaccidn en la que el cursor fue abierto es completada.

Se esta creando una instruccién de cursor. La instruccion SELECT incluye una clausula OR-
DER BY. ;Cuales cldusulas no pueden ser incluidas en la instruccion SELECT?

A SELECT

B HAVING

C GROUPBY

D WHERE

(Cudl opcion deberd incluirse en una instruccioén de cursor para definir que ese cursor tiene ca-

pacidades para mantenerse abierto?

La instruccién de cursor incluye una clausula FOR UPDATE que no especifica ninguna colum-
na. ;Cudles columnas en la tabla subyacente pueden ser actualizadas?

(Cudl instruccién SQL debera utilizarse si se quiere abrir el cursor ARTISTAS_CD?

376 Fundamentos de SQL

16. ;Cudl instruccién SQL ejecuta la instruccién SELECT en un cursor?

17. Una instruccién recupera filas desde los resultados de la consulta del cursor
una vez que se abre ese cursor.

18. ;Qué tipo de cursor permite utilizar todas las opciones de orientacién para bisqueda en la ins-
trucciéon FETCH?

19. ;Cudl opcién de orientacion para bisqueda deberd utilizarse en una instruccién FETCH si se
requiere asegurarse de recuperar la primera fila en los resultados de la consulta del cursor?

A PRIOR

B NEXT

C ABSOLUTE-1
D FIRST

20. ;Cuidl cldusula es requerida en una instruccion UPDATE posicionada para poder actualizar una
fila arrojada por la instruccién FETCH mas reciente?

Capitulo 16

Manejar transacciones
SQL

378 Fundamentos de SQL

Habilidades y conceptos clave

Entender las transacciones SQL

Configurar las propiedades de la transaccion
Iniciar una transaccion

Determinar el aplazamiento de una restriccion
Crear puntos de recuperacion en una transaccion

Finalizar una transaccién

En el capitulo 4 se utilizé una cantidad considerable de tiempo para analizar la integridad de los
datos y los métodos soportados por SQL para poder asegurar tal integridad. Estos métodos in-
cluyen la creacién de restricciones, dominios y afirmaciones, todos ellos utilizados por la base de
datos de una manera u otra para asegurar que los datos SQL permanezcan bien fundamentados.
Sin embargo, por si solos, estos métodos no son siempre suficientes para mantener la integridad de
esos datos. Tomemos, por ejemplo, la situacién que puede surgir cuando mas de un usuario intenta
acceder y modificar datos en la misma tabla al mismo tiempo, o cuando sus acciones se superpo-
nen e impactan los mismos datos. Algunas acciones pueden ser tomadas por un usuario basandose
en los datos que ya no son validos como resultado de las acciones tomadas por el otro usuario. Los
datos pueden convertirse en inconsistentes o inexactos, sin que ninguno de los dos usuarios se dé
cuenta de que el problema existe. Para encargarse de las situaciones de este tipo, SQL soporta el
uso de transacciones para asegurarse que las acciones actuales no impacten la integridad de los
datos que estan siendo revisados por cualquier usuario. En este capitulo se describird como se im-
plementan las transacciones en un ambiente SQL y cémo puede controlarse su comportamiento.
El usuario aprenderd cémo configurar las propiedades de las transacciones, iniciar transacciones,
finalizarlas y utilizar otras opciones que extiendan su funcionalidad.

Entender las transacciones SQL

Relativamente, existen muy pocas bases de datos en las cuales solamente un usuario esté intentan-
do acceder a los datos contenidos en ellas en algiin momento dado. La mayoria de las veces, las
bases de datos son utilizadas por diferentes tipos de usuarios para muy distintos propésitos, y a
menudo estos usuarios estdn intentando acceder a los datos al mismo tiempo. Mientras mayor sea
el nimero de usuarios, mayor serd la probabilidad de que existan problemas cuando los usuarios
intenten ver o modificar los mismos datos en el mismo momento. Sin embargo, dependiendo de la
naturaleza de las operaciones, los problemas pueden surgir incluso si solamente dos usuarios estan
accediendo a los datos al mismo tiempo. Por ejemplo, un usuario pudiera estar viendo los datos en
una tabla, tomar cierto tipo de accién basada en esos datos, y luego arrojarlos a la tabla para veri-
ficar los datos una vez mds. Sin embargo, si otro usuario actualiza la tabla entre los dos momentos
que el primer usuario la visualiza, el primer usuario encontrara datos diferentes la segunda vez que

Capitulo 16: Manejar transacciones SQL 379

lo hace, y pudiera incluso notar que la accién tomada por el segundo usuario invalidé los cambios
que ambos hicieron después de haber visto la tabla por primera vez. Por ejemplo, el primer usua-
rio pudiera haber notado que el nimero telefénico de un cliente es incorrecto y quisiera aplicar la
correccioén. Sin embargo, un segundo usuario pudiera estar buscando los datos del mismo cliente,
y mientras éste actualiza el estatus del crédito del cliente, pudiera sin darse cuenta regresar el an-
terior nimero telefénico al registro de la base de datos (debido a que los datos que se estaban bus
cando contenian el nimero anterior), sobrescribiendo los cambios que realizé el primer usuario.

Para encargarse de este tipo de inconsistencias en los datos, SQL utiliza transacciones para
controlar las acciones de los usuarios individuales. Una transaccion es una unidad de trabajo que
se compone de una o mds instrucciones SQL que realizan un conjunto de acciones relacionadas.
Por ejemplo, la aplicacion podria utilizar una transaccién para cambiar el nimero de CD de las
existencias. El proceso de actualizar la tabla o tablas aplicables y reportar la informacién actualiza-
da de regreso al usuario es tratado como una sola transaccién. La transaccién puede incluir varias
instrucciones SQL, realizando cada una de ellas una tarea especifica.

Para que un conjunto de acciones califique como una transaccion, debe pasar la prueba ACID.
ACID es el acrénimo cominmente utilizado para referirse a los nombres en inglés de las cuatro
caracteristicas de una transaccion (Atomic, Consistent, Isolated y Durable, respectivamente) que
veremos a continuacion:

Atémica Esta caracteristica se refiere a la naturaleza todo-o-nada de una transaccion. Se rea-
lizan ya sea todas las operaciones en una transaccién, o ninguna de ellas. Aunque algunas ins-
trucciones sean ejecutadas, los resultados de éstas regresan a su punto inicial si la transaccién
falla en cualquier punto antes de ser completada. Solamente cuando todas las instrucciones se
ejecutan apropiadamente y todas las acciones se realizan, se considera completa una transac-
cién y sus resultados se aplican a la base de datos.

Consistente La base de datos debe ser consistente al inicio y al final de la transaccion. De
hecho, se puede considerar una transacciéon como un conjunto de acciones que lleva a la base
de datos de un estado consistente a otro. Todas las reglas que definen y limitan los datos deben
ser aplicadas a esos datos como resultado de cualquier cambio que ocurra durante la transac-
cion. Ademas, todas las estructuras dentro de la base de datos deben estar correctas al final de
la transaccion.

Aislada (Isolated) Los datos que pudieran encontrarse en un estado inconsistente temporal-
mente durante una transaccién no deberdn estar disponibles a otras transacciones hasta que los
datos sean consistentes una vez mas. En otras palabras, ningtin usuario debera ser capaz de ac-
ceder a los datos inconsistentes durante una transaccién implementada por otro usuario cuando
los datos impactados por esa transaccién estan en un estado inconsistente. Ademas, cuando
una transaccion se encuentra aislada, ninguna otra transaccién puede afectarla.

Durable Una vez que los cambios hechos en una transaccién sean completados, esos cam-
bios deberdn ser preservados, y los datos deberdn estar en un estado confiable y consistente,
incluso si ocurren errores de aplicacién o de hardware.

Si surge cualquier problema en cualquier momento durante una transaccion, la transaccién
completa regresa a su punto inicial y la base de datos regresa al estado en que se encontraba antes
de que la transaccién iniciara. Cualquier accion que se tome es cancelada y los datos se restauran a
su estado original. Si la transaccidn se completa exitosamente, entonces todos los cambios son im-

380

Fundamentos de SQL

plementados. A través de todo el proceso, la transaccion siempre asegura la integridad de la base
de datos, sin importar si la transaccién fue completada exitosamente o debi6 regresar a su punto
inicial.

SQL soporta diferentes instrucciones relacionadas con el proceso de transaccion. Estas tran-
sacciones pueden ser utilizadas para iniciar y finalizar transacciones, configurar sus propiedades,
aplazar la ejecucion de las restricciones durante la transaccion e identificar los puntos dentro de
una transaccién que actian como puntos de recuperacion cuando las transacciones vuelven a su
punto inicial. En el resto de este capitulo examinaremos cémo se utiliza cada una de estas instruc-
ciones dentro de una transaccién. Sin embargo, antes de ir a una discusién mds detallada de las
instrucciones, seria mejor proporcionar un breve repaso de cada una de ellas para tener un mejor
entendimiento de cémo funcionan las transacciones.

El estandar SQL:2006 define siete instrucciones relacionadas al proceso de transaccion:

SET TRANSACTION Configura las propiedades de la siguiente transaccion que debera ser
ejecutada.

START TRANSACTION Configura las propiedades de una transaccion e inicia esa tran-
saccion.

SET CONSTRAINTS Determina el modo de restriccién dentro de una transaccion actual.
El modo de restriccion se refiere a si una restriccién es aplicada inmediatamente a los datos
cuando éstos son modificados o si la aplicacion de la restriccion es aplazada hasta un punto
posterior en la transaccién.

SAVEPOINT Crea un punto de recuperacion dentro de una transaccioén. Un punto de re-
cuperacion marca una zona dentro de la transaccién que actia como un punto para detenerse
cuando una transaccion tiene que regresar a su punto inicial.

RELEASE SAVEPOINT Libera un punto de recuperacion.

ROLLBACK Finaliza una transaccién y reinvierte todos los cambios al comienzo de la
transaccién o a un punto de recuperacion.

COMMIT Finaliza una transaccién y permite completar todos los cambios a la base de datos.

A pesar de que todas estas siete instrucciones seran vistas con mds detalle, algunas de ellas
son esenciales para entender la naturaleza de una transacciéon. Veamos la figura 16-1 para ayudar a
ilustrar este punto.

SET TRANSACTION

Base de datos al inicio
START TRANSACTION |::> de la transaccion
Instrucciones SQL

Ejecucion existosa Ejecucién no exitosa
de la instruccion de la instruccion [ROLLBACK

\ Base de datos
commIT |::> @ actualizada

Figura 16-1 Una transaccién SQL bdsica.

Capitulo 16: Manejar transacciones SQL 381

Observe que la figura incluye cuatro de las instrucciones SQL relacionadas con las transaccio-
nes: SET TRANSACTION, START TRANSACTION, COMMIT y ROLLBACK. Si se utiliza una
instrucciéon SET TRANSACTION, ésta se ejecuta antes de que la transaccion inicie. Después de
eso, una instruccion START TRANSACTION inicia la transaccion.

NOTA

Como se verd posteriormente en este capitulo, seria raro en un ambiente SQL puro que se
quisieran utilizar ambas instrucciones: SET TRANSACTION y START TRANSACTION, debido a
que ambas instrucciones establecen las mismas propiedades. Sin embargo, se encontrard que
las implementaciones SQL varian respecto a cudles instrucciones relacionadas con las transac-
ciones soportan y cémo implementan esas instrucciones. Se sefialardn diferencias especificas a
lo largo de este capitulo.

Cuando se inicia la transaccién, la base de datos se encuentra en su estado original (los datos
son consistentes y correctos). Después se procesan las instrucciones SQL dentro de la transaccién.
Si este proceso es exitoso, se ejecuta una instruccion COMMIT. La instruccién COMMIT provoca
que la implementacién SQL actualice la base de datos y finalice la transaccion. Si el proceso de
ejecucion de la instruccién no es exitoso, se ejecuta una instrucciéon ROLLBACK y la implementa-
cion regresa la base de datos a su estado original. Una ejecucion no exitosa no significa necesaria-
mente que las instrucciones hayan fallado. Una instruccién ROLLBACK puede ser ejecutada de
acuerdo con las condiciones de una cldusula WHERE, un error predefinido, o por cualquier otra
condicién que sea definida dentro de la transaccién. El punto es que, bajo ciertas circunstancias, se
ejecuta la instruccién ROLLBACK, y bajo otras circunstancias se ejecuta la instruccion COMMIT.

Configurar las propiedades de la transaccién

La primera instruccién que veremos a detalle es la instruccion SET TRANSACTION. La instruc-
ciéon SET TRANSACTION permite configurar la mayoria de las propiedades asociadas con el
proceso de transaccidn. Se puede ejecutar esta instruccion solamente cuando ninguna transaccion
estd activa (o en el caso de Oracle, s6lo como la primera instruccién después de COMMIT o RO-
LLBACK). Cuando si se utiliza una instruccién SET TRANSACTION, las propiedades configura-
das dentro de la instruccién son aplicadas solamente a la siguiente transaccién que es iniciada. Las
propiedades no se trasladan de una transaccién a la otra.

La instrucciéon SET TRANSACTION no es obligatoria para iniciar una transaccion. Si la ins-
truccion no es ejecutada, la transaccion utiliza ya sea las propiedades de manera predeterminada,
o las propiedades suministradas en la instrucciéon subsecuente START TRANSACTION. Si se eje-
cuta la instruccién SET TRANSACTION, la transaccion utiliza las propiedades especificadas en
esa instruccion. Si la instruccion se ejecuta pero no se definen todas las propiedades, la transaccion
utiliza los valores de forma preestablecida para las propiedades no definidas. Sin importar cudles
propiedades sean configuradas, ninguna de ellas es aplicable a ninguna transaccion, excepto a la
primera iniciada después de que SET TRANSACTION es ejecutada.

Ahora demos un vistazo a la sintaxis utilizada para una instruccién SET TRANSACTION. En
su forma mds bdsica, la sintaxis luce de la siguiente manera:

SET [LOCAL | TRANSACTION <modo> [{ , <modo> } ...]

382 Fundamentos de SQL

El primer aspecto que debera notar acerca de esta sintaxis es la palabra clave opcional LO-
CAL. La palabra clave LOCAL aplica solamente a las transacciones que comprenden multiples
implementaciones SQL. Si se estd trabajando con este tipo de transacciones, se puede utilizar la
opcién LOCAL para aplicar las propiedades a la porcion local de la transaccion. Para poder uti-
lizar la opcion LOCAL, la transaccion debe haber sido iniciada en un servidor SQL diferente a
aquél donde las propiedades de transaccion locales sean configuradas.

NOTA

El tema de abarcar transacciones y propiedades locales excede el campo de accién de este
libro. Se mencionan aqui solamente para proporcionar una imagen completa de la instruccién
SET TRANSACTION. Como un programador SQL principiante, es muy probable que no tenga
que preocuparse por abarcar las transacciones. Ademés, el soporte para abarcar las tran-
sacciones varia a través de las diferentes implementaciones SQL. Por ejemplo, Oracle no las
soporta, y mientras que MySQL si, sélo utiliza los términos global y sesién.

Regresando a la sintaxis de SET TRANSACTION, se puede ver que el tnico tipo diferente
de opcién que se necesita especificar es aquel representado por el marcador de posicién <modo>.
Existen tres tipos de modos de transaccion que se pueden especificar:

Nivel de acceso
Nivel de aislamiento

Tamaiio de diagnéstico

Se deben especificar uno o mas modos de transaccién. Si se especifica mas de uno, deben
quedar separados por comas. Ademads, no se puede incluir mas de uno del mismo tipo de los mo-
dos de transaccién. Por ejemplo, es posible especificar un nivel de acceso y un nivel de aislamien-
to, pero no es posible especificar dos niveles de aislamiento.

La instrucciéon SET TRANSACTION soporta dos opciones del nivel de acceso: READ ONLY
y READ WRITE. Si se selecciona la opcién READ ONLY, no se puede incluir ninguna instruc-
cion dentro de la transaccion que modifique la base de datos. Esto incluye a las instrucciones que
modifican datos (por ejemplo, la instruccién UPDATE) y a las instrucciones que modifican la
estructura de la base de datos (por ejemplo, la instruccion CREATE TABLE). Si se selecciona la
opciéon READ WRITE, se pueden ejecutar ambos tipos de instrucciones en la transaccién. Como
se verd en la siguiente seccion, “Especificar un nivel de aislamiento”, el nivel de acceso depende
predeterminadamente del nivel de aislamiento. Sin embargo, si no se especifica ningtin nivel de
aislamiento y ningin nivel de acceso, el nivel de acceso por defecto es READ WRITE.

Especificar un nivel de aislamiento

Cuando se crea una instrucciéon SET TRANSACTION, se pueden especificar los niveles de ais-
lamiento cero o uno. Un nivel de aislamiento define como seria aislar una transaccién desde las
acciones de otras transacciones. Una instruccién SET TRANSACTION soporta cuatro opciones
del nivel de aislamiento:

READ UNCOMMITTED
READ COMMITTED

Capitulo 16: Manejar transacciones SQL 383

REPEATABLE READ
SERIALIZABLE

Los niveles de aislamiento estdn enlistados del menos restrictivo al mas restrictivo, siendo la
opcion READ UNCOMMITTED la menos efectiva en términos de aislar los datos, y la opcién
SERIALIZABLE la més efectiva. Si no se especifica ningtin nivel de aislamiento, se asume SE-
RIALIZABLE de manera preestablecida.

NOTA

El soporte para los niveles de aislamiento varia entre las diferentes implementaciones de SQL.
Por ejemplo, Oracle soporta solamente las opciones READ COMMITTED y SERIALIZABLE,
mientras que SQL Server soporta las cuatro opciones definidas en el esténdar SQL, ademds de
afiadir una nueva llamada SNAPSHOT que proporciona consistencia de lectura para todas las
instrucciones en una transaccién al igual que al inicio de la transaccién.

Irregularidades de los datos

La mejor manera de comprender los niveles de aislamiento es dar un vistazo a los tipos bdsicos de
irregularidades que pueden ocurrir a los datos, dependiendo de qué tan aislada estd una transaccién
de la otra. En general, pueden ocurrir tres tipos de irregularidades:

Lecturas sucias
Lecturas no repetibles

Lecturas fantasma

El tipo de irregularidad de datos que puede experimentarse durante una transaccién depende
de cudl nivel de aislamiento se configure para la transaccién. Sin embargo, antes de internarnos en
mayores especificaciones acerca de los niveles de aislamiento, demos un vistazo a estos tres tipos
de irregularidades.

Lecturas sucias La primera irregularidad que veremos es la lectura sucia. Una lectura sucia
puede ocurrir cuando una transaccién modifica los datos, una segunda transaccion ve esas modifi-
caciones antes de que sean realmente completadas en la base de datos, y después la primera trans-
accidn retira las modificaciones, regresando a la base de datos a su estado original. Sin embargo,
la segunda transaccién, habiendo leido los datos modificados, pudo haber tomado alguna accién
basada en los datos incorrectos. Para ayudar a ilustrar el concepto de una lectura sucia, veamos la
figura 16-2, que muestra dos transacciones operando al mismo tiempo.

Cuando comienza Transaccién 1, ésta lee la tabla en su estado original. Luego, la transaccién
actualiza la tabla, cambiando el valor EXISTENCIA de cada fila. Después de que se realizan los
cambios, Transaccién 2 es iniciada y lee los datos actualizados. Por ejemplo, Transaccién 2 verd
que el valor EXISTENCIA para la fila Past Light es 11. Basada en esa informacién, Transaccién 2
toma algtn tipo de accién, por ejemplo, ordenar los CD adicionales de Past Light. Después de que
Transaccion 2 ha leido los datos de la tabla, Transaccion 1, por una u otra razdn, reinvierte la ac-
tualizacion, y la base de datos regresa a su estado original. Como resultado, la fila Past Light ahora
tiene en realidad un valor EXISTENCIA de 22, a pesar de que Transaccidn 2 piensa que ésta tiene
un valor de 11. Por lo tanto, se dice que Transaccién 2 ha experimentado una lectura sucia.

384 Fundamentos de SQL

NOMBRE_CD EXISTENCIA
Famous Blue Raincoat | 13
Comienza
Transaccion 1 Court and Spark 42
Past Light 22
NOMBRE_CD EXISTENCIA
v
» Famous Blue Raincoat | 12 .
Transaccion 1 Comienza
actualiza > < Transaccion 2
la tabla Court and Spark 26 y lee la tabla
Past Light 11
NOMBRE_CD EXISTENCIA Transaction 2
. tom_q alguna
. Famous Blue Raincoat | 13 accion basada
Transaction 1 en I'a lectura
reinvierte la sucia
actualizacion |:: > Court and Spark 42

Past Light 22

Figura 16-2 Transacciones simulténeas arrojando el resultado de una lectura sucia.

Lecturas no repetibles La siguiente irregularidad que puede ocurrir cuando se inician tran-
sacciones simultdneas es la lectura no repetible. La lectura no repetible puede ocurrir cuando
una transaccion lee datos desde una tabla, luego otra transaccién actualiza la tabla, y la primera
transaccion vuelve a leer los datos, s6lo para descubrir que los datos han sido cambiados. Como
resultado, la primera lectura es no repetible. Veamos la figura 16-3 para comprender mejor este
concepto.

Cuando se inicia Transaccién 1, ésta lee los datos en la tabla. En ese punto, la transaccién po-
dria estar involucrada en otros procesos o estar esperando la respuesta de un usuario. Por ejemplo,
el usuario pudiera recibir una llamada de un administrador que estd tratando de averiguar cudntas
copias hay en existencia de un CD en particular. El usuario verifica esa informacion. Entonces el
administrador pone al usuario en espera durante un corto tiempo, por lo que el usuario debe espe-
rar para completar la transaccién. Durante ese tiempo, se inicia Transaccién 2 y actualiza la tabla.
Después de la actualizacion, Transaccion 1 vuelve a leer los datos (el administrador regresa al
teléfono) y encuentra informacién diferente a la de la primera lectura, dando como resultado una
lectura no repetible.

Lecturas fantasma La tltima irregularidad que veremos es la lectura fantasma. A pesar de ser
parecida a la lectura no repetible, la lectura fantasma tiene algunas diferencias sutiles, que se con-
vierten en factores cuando se intenta determinar un nivel de aislamiento. Una lectura fantasma
puede ocurrir cuando una transaccién lee una tabla basada en algtn tipo de condicién de busqueda,
después una segunda transaccion actualiza los datos en la tabla, y la primera transaccién intenta
volver a leer los datos, s6lo que esta vez se arrojan diferentes filas debido a como estd definida la
condicion de buisqueda. Para dejar esto mds claro, demos un vistazo a la figura 16-4.

Capitulo 16: Manejar transacciones SQL - 385

NOMBRE_CD EXISTENCIA

Famous Blue Raincoat | 13

Comienz_a
Tansacoiond | oueanaspark | 42

Past Light 22
NOMBRE_CD EXISTENCIA
Famous Blue Raincoat | 12 Comienza
Transaccion 2
Court and Spark 26 <):| y actualiza la
tabla
Past Light 11
v NOMBRE_CD EXISTENCIA
Transaccion 1 Famous Blue Raincoat | 12

lee valores
diferentes a |::> Court and Spark 26
los de la

primera lectura

Past Light 11

Figura 16-3 Transacciones simultdneas resultando en una lectura no repetible.

Cuando se inicia Transaccion 1, ésta lee los datos en la tabla ejecutando una instruccién SE-
LECT que consulta los datos. La instruccién incluye una cldusula WHERE que arroja solamente
aquellas filas con un valor EXISTENCIA mayor a 20. Eso significa que la fila Court and Spark y
la fila Past Light son arrojadas. Después de que Transaccién 1 recupera (lee) los datos, se inicia
Transaccion 2 y actualiza la tabla. Ahora, cuando Transaccién 1 vuelve a leer los datos (utilizando
los mismos criterios de busqueda), solamente la fila Famous Blue Raincoat es arrojada debido a
que ahora es la unica fila con un valor EXISTENCIA mayor a 20. Como resultado, la transaccién
ha experimentado una lectura fantasma, y las filas que estd leyendo no son las mismas filas que
ésta habia visto anteriormente.

Escoger un nivel de aislamiento
Ahora que se tiene una vista mas general acerca de los tipos de irregularidades de datos con los que
es posible toparse cuando se tienen transacciones simultdneas, se deberd estar mejor preparado para
escoger un nivel de aislamiento para la transaccion. El punto importante a recordar es que mientras
mas restrictivo sea el nivel de aislamiento, mds tipos de irregularidades pueden ser eliminadas.
Demos un vistazo al nivel de aislamiento READ UNCOMMITTED, el menos restrictivo de
los cuatro niveles. Una transaccién configurada con esta opcién puede experimentar cualquiera de
las irregularidades de datos que se vieron anteriormente (lectura sucia, lectura no repetible y lectu-
ra fantasma). Como es facil imaginarse, normalmente éste no es un estado deseable. De hecho, si
se define una transaccién con la opcion READ UNCOMMITTED, la transaccién no puede incluir
instrucciones que modifiquen datos. Estas transacciones, de manera predeterminada, solamente

386 Fundamentos de SQL

NOMBRE_CD EXISTENCIA

Comienza -
Transaccion 1 Famous Blue Raincoat | 13

y arroja filas
basada en una Court and Spark 42

cqndicién de
busqueda Past Light 22

NOMBRE_CD EXISTENCIA

Famous Blue Raincoat | 42 Comienza

Transaccion 2
Court and Spark 13 y actualiza la

tabla
Out of Africa 11
NOMBRE_CD EXISTENCIA
Transaccion 1
arroja diferentes Famous Blue Raincoat | 42
filas basada en
la misma Court and Spark 13
chicién de
busqueda Out of Africa 11

Figura 16-4 Transacciones simulténeas resultando en una lectura fantasma.

tienen un nivel de acceso de sélo lectura (READ ONLY), y no es posible especificar un nivel
READ WRITE. (Todos los demds niveles de aislamiento tienen un nivel de acceso preestablecido
de READ WRITE.) El nivel de aislamiento READ UNCOMMITTED debera utilizarse solamente
para transacciones que generen informacién aproximada, por ejemplo, algunos tipos de datos esta-
disticos en los que los resultados no son muy criticos en términos de precision.

El nivel de aislamiento READ COMMITTED es sdlo ligeramente mds restrictivo que READ
UNCOMMITTED. La opcién READ COMMITTED evita las lecturas sucias, pero las lecturas no
repetibles y las lecturas fantasma adn pueden ocurrir. La siguiente opcién, REPEATABLE READ,
es mds restrictiva que READ COMMITTED. Evita las lecturas sucias y las lecturas no repetibles,
pero no evita las lecturas fantasma. La tinica opcién que evita los tres tipos de irregularidades en
los datos es SERIALIZABLE.

Una transaccion que estd definida con el nivel de aislamiento SERIALIZABLE puede aislar
completamente a esa transaccion de todas las otras transacciones. Como resultado, se dice que la
transaccion se puede serializar, lo que significa que interactda con transacciones simultdneas en
una forma en que ordena las transacciones secuencialmente para que una transaccién no pueda
impactar a la otra. Esto no significa que una transaccién deba cerrarse antes de que otra pueda
abrirse, pero si significa que los resultados de esas transacciones tienen que ser iguales a los resul-
tados de las operaciones que se realizan una a la vez. Mientras ninguna transaccién que se puede
serializar puede influir sobre otra transaccion que se puede serializar, las transacciones estardn en
conformidad con el nivel de aislamiento SERIALIZABLE.

Capitulo 16: Manejar transacciones SQL 387

Nivel de aislamiento Lectura sucia Lectura no repetible | Lectura fantasma
READ UNCOMMITTED Si Si Si

READ COMMITTED No Si Si

REPEATABLE READ No No Si

SERIALIZABLE No No No

Tabla 16-1 Posibles irregularidades de datos para los niveles de aislamiento.

La tabla 16-1 proporciona una idea general de la irregularidad que puede ocurrir para cada ni-
vel de aislamiento. Por ejemplo, observe que, para la opcion READ UNCOMMITTED, es posible
que las tres irregularidades de datos puedan ocurrir.

Como se puede observar en la tabla, el nivel de aislamiento SERIALIZABLE proporciona la
mds alta proteccion de datos, y el nivel de aislamiento READ UNCOMMITTED proporciona la
mds baja. Es por eso que SERIALIZABLE es el nivel de aislamiento predeterminado si no se defi-
ne ningtn otro nivel.

NOTA

Seguramente debe preguntarse por qué no utilizar simplemente el nivel de aislamiento SERIA-
LIZABLE para todas las transacciones. Existen pros y contras al respecto: mientras mds restricti-
vo es el nivel de aislamiento, es mayor el impacto al rendimiento, por lo que si se quiere estar
seguro de utilizar un nivel de aislamiento lo suficientemente restrictivo para cubrir las necesi-
dades, no se requiere definir un nivel que sea mds restrictivo de lo necesario.

Especificar un tamafio de diagnéstico

Como podrd recordar de la sintaxis SET TRANSACTION, uno de los tipos de modo de transac-
cion que puede definirse es el tamafio de diagndstico. El tamafio de diagnéstico se refiere a un
area de diagndstico que es utilizada para condiciones que surgen cuando se ejecuta una instruccion
SQL. Una condicion es una advertencia, una excepcion u otro tipo de mensaje generado por la eje-
cucion de una instruccién. El tamafio de diagndstico realmente se refiere al nimero de condiciones
que serdn almacenadas para la ejecucién de una instruccién SQL. Por ejemplo, si el tamafio de
diagndstico es de 10, hasta 10 condiciones serdn almacenadas para la instruccion ejecutada. Si se
generan mds de 10 condiciones para esa instruccidn, solamente 10 condiciones serdn guardadas en
el drea de diagndstico.

NOTA

No se puede asumir que serd guardado algon tipo de condicién especificado en el drea de
diagnéstico si se generan més condiciones que el nimero definido por el tamafio de diagnés-
tico. Por ejemplo, si el tamafio de diagnéstico es de 15 y la instruccién genera 20 condiciones,
no puede asumirse que serdn guardadas las primeras 15 o las Gltimas 15 condiciones. Para
mayor informacién acerca de cémo se manejan las condiciones en una implementacién SQL
en particular, véase la documentacién del producto. Dicho sea de paso, el uso de SET TRANS-
ACTION para determinar el tamafio de diagnéstico no es soportado por SQL Server, Oracle,
MySQL, ni por la mayoria de las implementaciones SQL actuales.

388

Fundamentos de SQL

Si no se especifica un tamafio de diagnéstico en la instruccion SET TRANSACTION, la im-
plementacion SQL determina el tamaiio del drea de diagnéstico.

Crear una instruccién SET TRANSACTION

Ahora que hemos visto los diferentes componentes de la instruccion SET TRANSACTION, demos
un vistazo a un par de ejemplos. El primer ejemplo define una transaccién con un nivel de acceso
READ ONLY, un nivel de aislamiento READ UNCOMMITTED y un tamafio de diagndstico de 5:

SET TRANSACTION
READ ONLY,
ISOLATION LEVEL READ UNCOMMITTED,
DIAGNOSTICS SIZE 5;

Observe que los modos de transaccidn estdn separados por comas. Observe también que la
opcidn del nivel de aislamiento incluye las palabras clave ISOLATION LEVEL, y que la opcion
del tamaiio de diagnéstico incluye las palabras clave DIAGNOSTICS SIZE. La transaccién esta
configurada con el nivel de aislamiento restrictivo mas bajo, y ésta es la razén de que el nivel de
acceso debe ser READ ONLY. No es posible definir un nivel de acceso READ WRITE para esta
instruccion. Debido a que el nivel de aislamiento es READ COMMITTED, la instruccién no tiene
que especificar el nivel de acceso READ ONLY (debido a que ya es asumido). Sin embargo, el in-
cluirlo no causa ningin problema y documenta el cdigo de mejor manera.

En el siguiente ejemplo, la instruccién SET TRANSACTION define una transaccién con un
nivel de acceso READ WRITE, un nivel de aislamiento SERIALIZABLE y un tamafio de diag-
nostico de 8:

SET TRANSACTION
READ WRITE,
ISOLATION LEVEL SERIALIZABLE,
DIAGNOSTICS SIZE 8;

Debido a que SERTALIZABLE es el nivel de aislamiento preestablecido, no es necesario
especificarlo en la instruccion SET TRANSACTION. Ademds, debido a que el nivel de acceso
READ WRITE es el nivel predeterminado para las transacciones que se pueden serializar, tampoco
es necesario especificarlo. La instruccién, por lo tanto, puede tener un aspecto como el siguiente:

SET TRANSACTION
DIAGNOSTICS SIZE 8;

Esta instrucciéon SET TRANSACTION producird los mismos resultados que la anterior.

Como se puede ver, la instrucciéon SET TRANSACTION es una instruccién relativamente
simple de ejecutar. Sin embargo, es necesario asegurarse de revisar la documentacién de la imple-
mentacién SQL para determinar la sintaxis exacta utilizada para determinar las propiedades de la
transaccién. Por ejemplo, SQL Server soporta una instruccion SET TRANSACTION ISOLATION
LEVEL que permite establecer solamente el nivel de aislamiento. No es posible establecer el nivel
de acceso o el tamafio de diagndstico. Oracle, por otro lado, soporta una instruccién SET TRANS-
ACTION que permite establecer el nivel de acceso de la transaccidn y el nivel de aislamiento (pero
no el tamafio de diagndstico) y asigna la transaccién a un segmento para poder reinvertirla, mien-
tras que MySQL solamente permite establecer el nivel de aislamiento.

Capitulo 16: Manejar transacciones SQL 389

Iniciar una transaccién

En SQL:2006, una transaccién puede ser iniciada ya sea implicita o explicitamente. Una transac-
cidn inicia implicitamente cuando ciertos tipos de instrucciones SQL son ejecutadas, por ejemplo,
las instrucciones SELECT, DELETE, UPDATE y CREATE TABLE. Estos tipos de instrucciones
deben ejecutarse dentro del contexto de una transaccion. Si ninguna transaccion estd activa, una de
ellas es iniciada.

Las transacciones también pueden ser iniciadas explicitamente utilizando la instruccién
START TRANSACTION. Esta instruccién sirve para dos propdsitos: establecer las propiedades
de la transaccion e iniciar la transaccion. En términos de establecer las propiedades, la instruccion
START TRANSACTION funciona de la misma manera que la instruccion SET TRANSACTION.
Se puede establecer el nivel de acceso, el nivel de aislamiento y el tamafio de diagndstico.

Al igual que para iniciar una transaccion, simplemente se ejecuta la instruccion START
TRANSACTION.

La sintaxis para la instruccion START TRANSACTION es similar a la de la instrucciéon SET

TRANSACTION, como se puede ver en la siguiente sintaxis:

START TRANSACTION <modo> [{ , <modo> } ...]

Después de especificar las palabras clave START TRANSACTION, se deben especificar uno
0 mds modos de transaccion. Al igual que con la instruccion SET TRANSACTION, solamente es
posible incluir un modo para cada tipo.

Ahora demos un vistazo a un ejemplo que define un nivel de acceso READ ONLY, un nivel de
aislamiento READ UNCOMMITTED y un tamafio de diagndstico de 5:

START TRANSACTION
READ ONLY,
ISOLATION LEVEL READ UNCOMMITTED,
DIAGNOSTICS SIZE 5;

Como se puede ver, esto luce practicamente idéntico a la instruccién SET TRANSACTION.
Los modos de transaccién se aplican de la misma manera, y si se especifica mas de un modo de
transaccion, éstos se separan por comas. La diferencia bédsica entre una instruccion START
TRANSACTION vy una instruccién SET TRANSACTION es que la instruccién START TRANS-
ACTION iniciard la transaccion al igual que determinard sus propiedades.

NOTA

La instruccién START TRANSACTION fue agregada a SQL con la liberacién de SQL:1999.
Como resultado, no todas las implementaciones SQL soportan una instruccién START TRANS-
ACTION o cualquier instruccién que inicie explicitamente una transaccién. Las transacciones
en Oracle, por ejemplo, pueden ser iniciadas solamente implicitamente. Por otro lado, SQL
Server soporta una instruccién BEGIN TRANSACTION, pero no permite definir ningn modo
de transaccién.

390 Fundamentos de SQL

Pregunta al experto

P: ¢Es importante si las transacciones incluyen instrucciones del lenguaje de definicion
de datos (DDL, por sus siglas en inglés) o instrucciones del lenguaje de manipulacion de
datos (DML)?

R: SQL permite incluir ambos tipos de instrucciones en la transaccion, pero éste no es el caso
para todas las implementaciones SQL. Algunas implementaciones no permiten mezclar los
dos tipos de instrucciones en una sola transaccion. Otros productos permiten mezclar los dos
tipos de instrucciones, pero limitan cudles instrucciones pueden ser combinadas en una trans-
accidn. Incluso otras implementaciones no permiten que las instrucciones del lenguaje de
definicion de datos sean ejecutadas dentro del contexto de una transaccién. Por ejemplo,
Oracle finaliza implicitamente cualquier transaccién actual cuando se encuentra con una ins-
trucciéon DDL, y nunca maneja DDL como parte de una transaccién. Las restricciones que
las diferentes implementaciones colocan al mezclar los tipos de instrucciones pueden variar
ampliamente. La razén para esto es que las interacciones entre los dos tipos de instrucciones
pueden ser complicadas, por lo que cada implementacion determina cudles mezclas de instruc-
ciones soportard en su propio ambiente de bases de datos. Asegtirese de revisar la documen-
tacion del producto para determinar cudles tipos de instrucciones pueden ser incluidos en una
transaccién y cémo pueden ser mezclados.

Determinar el aplazamiento de una restriccién

Pueden existir ocasiones en una transaccion en que se quieran modificar los datos en una tabla que
temporalmente viole una restriccion colocada en esa tabla. Por ejemplo, se puede tener una tabla
que incluya una columna configurada con la restriccion NOT NULL. Es posible que durante el
curso de la transaccidn se necesite insertar una fila en la tabla, pero no se tenga atin un valor para
la columna NOT NULL. Por esta razén, el estindar SQL permite definir una restriccién como
aplazable. Esto significa que la restriccion no tiene que ser aplicada a los datos inmediatamente
(cuando se ejecuta la instrucciéon SQL que hace modificaciones); ésta puede ser aplazada hasta un
punto posterior en una transaccién, por ejemplo, hasta que se pueda insertar un valor en la colum-
na NOT NULL.

Si una restriccion se define como aplazable, se puede utilizar la instruccién SET CONS-
TRAINTS dentro de la transaccion para aplazar la aplicacion de la restriccidn o para aplicar la
restricciéon inmediatamente. (Definir una restricciéon como aplazable no pospone autométicamente
la aplicacion de esa restriccion. Se debe aplazarla explicitamente dentro de la transaccion.) Si se
aplaza explicitamente una restriccion, entonces se puede violar de manera temporal la restriccion
aplazada hasta que la restriccion sea aplicada explicitamente o la transaccion finalice. Para una
mejor comprension de cémo funciona esto, demos un vistazo a la figura 16-5.

En esta ilustracion se notard que, después de que la transaccion ha sido iniciada, se pueden
definir las restricciones como aplazadas. No se tienen que aplazar las restricciones inmediatamente
después de que inicia la transaccidn, pero deben aplazarse antes de ejecutar cualquier otra instruc-
ciéon SQL que pudiera violar las restricciones. Una vez que las instrucciones SQL aplicables han

Capitulo 16: Manejar transacciones SQL 391

SET TRANSACTION
Base de datos
START TRANSACTION |:(> al inicio de la
transaccion

SET CONSTRAINTS (DEFERRED)

Instrucciones SQL

SET CONSTRAINTS (IMMEDIATE)

T

Ejecucion de . Ejecucion de
instrucciones exitosa instrucciones no exitosa

comMMmIT Base qe datos
actualizada

Figura 16-5 Aplazar restricciones en una fransaccién.

—— ROLLBACK

sido ejecutadas y se estd seguro de que ningtin dato SQL viola ninguna de las restricciones aplaza-
das, es posible aplicar las restricciones a los datos aplicables. Si las restricciones se violan en este
punto, la transaccién se considera no exitosa y todas las actualizaciones son reinvertidas. De otra
manera, las actualizaciones son completadas para la base de datos.

Para aplazar o aplicar las restricciones dentro de una transaccién, debe utilizarse la instruccién
SET CONSTRAINTS, como se muestra en la siguiente sintaxis:

SET CONSTRAINTS { ALL | <nombres de las restricciones> }
{ DEFERRED | IMMEDIATE }

Como puede verse en la sintaxis, se debe escoger entre dos conjuntos de opciones. El primer
conjunto de opciones permite especificar las restricciones aplazables que serdn afectadas por la
instruccién. Si la instruccién debiera aplicarse a todas las restricciones aplazables, puede usarse la
palabra clave ALL; de otra manera, se deberdn listar los nombres de las restricciones, separados
por una columna. En la instruccién SET CONSTRAINTS solamente se pueden especificar restric-
ciones aplazables.

El siguiente conjunto de opciones que se debe especificar es si se debe aplazar la aplicacién
de las restricciones identificadas (DEFERRED) o aplicarlas inmediatamente (IMMEDIATE). Se
deberdn aplazar las restricciones antes de insertar o modificar datos, y se deberan aplicar las res-
tricciones después de que sean modificados los datos.

Normalmente, se utilizard la instrucciéon SET CONSTRAINTS en conjuntos por pares: una
instruccién para aplazar las restricciones y otra para aplicarlas. Sin embargo, realmente no se nece-
sita utilizar la instruccion SET CONSTRAINTS para aplicarlas debido a que todas las restriccio-
nes se aplican antes de que se complete la transaccion, hayan sido las restricciones aplicadas expli-
citamente o no. Sin embargo, generalmente es una buena practica documentar todas las acciones
para estar seguro de aplicar explicitamente las restricciones.

392

Fundamentos de SQL

Demos ahora un vistazo a un ejemplo de la instrucciéon SET CONSTRAINTS que aplaza
RESTRICCION_1 y RESTRICCION_2:

SET CONSTRAINTS RESTRICCION_ 1, RESTRICCION 2 DEFERRED;

Como se puede ver, todo lo que se necesita hacer es listar los nombres de las restricciones y la
palabra clave DEFERRED. Si se requiere que la instruccién aplique a todas las restricciones apla-
zables, puede utilizarse la palabra clave ALL en lugar de los nombres de las restricciones.

Una vez que se ejecuten todas las instrucciones que se necesita ejecutar, con respecto a las
restricciones aplazables, se pueden aplicar las restricciones a los datos nuevos y modificados. Para
aplicar las restricciones, se utiliza la siguiente instrucciéon SET CONSTRAINTS:

SET CONSTRAINTS RESTRICCION 1, RESTRICCION 2 IMMEDIATE;

La tdnica diferencia entre esta instruccién y la que se presentd anteriormente es que se utiliza
la palabra clave IMMEDIATE en lugar de la palabra clave DEFERRED.

NOTA

Para poder utilizar la instruccién SET CONSTRAINTS, la implementacién de SQL debe so-
portar tanto esta instruccién (o una instruccién similar) y las restricciones aplazables. Si no es
posible definir restricciones aplazables en una base de datos SQL determinada, la instruccién

no resulta muy Gtil. Actualmente, Oracle soporta la instruccién SET CONSTRAINTS, pero no
asi MySQL ni SQL Server.

Crear puntos de recuperacién en una transaccién

Una vez que se han instalado todas las transacciones, se encontrard que el conjunto de acciones
que se necesita realizar resultan muy directas y sencillas cuando se tratan como una unidad. Sin
embargo, pueden existir ocasiones en que algunas de las transacciones no sean tan simples como
otras y que diferentes grados de complejidad entre las acciones hagan que tratarlas como una uni-
dad sea un poco mads dificil, a pesar de que ain se requiera mantenerlas a todas dentro de la misma
transaccién. Una forma de tratar con este tipo de situacion es a través del uso de puntos de recu-
peracion, que son marcadores designados dentro de la transaccidén que actian como puntos para
reinvertir porciones de la transaccion.

NOTA

El soporte para los puntos de recuperacién varia entre las diferentes implementaciones SQL.
Oracle y MySQL soportan la instrucciéon SAVEPOINT, pero SQL Server utiliza en su lugar una
instruccién SAVE TRANSACTION.

Digamos, por ejemplo, que la primera parte de la transaccién contiene cédigo relativamente
simple que, a pesar de no complicarse en forma particular, represente una carga pesada para el ren-
dimiento del sistema. Ahora supongamos que posteriormente en la transaccién se deben realizar
acciones mds complejas, acciones que tengan una mayor probabilidad de causar una reinversién
que el primer conjunto de acciones. A pesar de eso, no se quiere realizar la reinversién para no per-
der el trabajo realizado por el primer conjunto de acciones debido al impacto al rendimiento. Si se
inserta un punto de recuperacion entre los dos conjuntos de acciones y luego el segundo conjunto

Capitulo 16: Manejar transacciones SQL 393

necesita ser reinvertido, solamente serd reinvertido hasta ese punto de recuperacion en lugar de
hasta el principio de la transaccion, evitando la necesidad de realizar el primer conjunto de accio-
nes otra vez. Para ayudar a ilustrar cémo funcionan los puntos de recuperacién, demos un vistazo a

la figura 16-6.

Como se puede ver en el diagrama, un punto de recuperacion puede ser insertado en cualquier
lugar que se desee preservar un conjunto de acciones. Cualquier cambio realizado anteriormente
al punto de recuperacion serd guardado. En este caso, se han definido dos puntos de recuperacion,
cada uno después de un conjunto de instrucciones SQL que han sido exitosamente ejecutadas.

Si una reinversion es necesaria en cualquier parte posterior al punto de recuperacion que ha sido
definido, la base de datos puede reinvertirse a ese punto de recuperacion, sin tener que ir hasta el

SET TRANSACTION

START TRANSACTION

Instrucciones SQL

Ejecucion de las
intrucciones exitosa

Ejecucion de las
intrucciones no exitosa

—

T

SAVEPOINT
(punto de recuperacion)

Instrucciones SQL

Ejecucion de las
intrucciones exitosa

Ejecucion de las
intrucciones no exitosa

T~

SAVEPOINT

(punto de re

cuperacion)

Instrucciones SQL

Ejecucion de las
intrucciones exitosa

Ejecucion de las
intrucciones no exitosa

—

T

commIT

Figura 16-6 Aplazar restricciones en una transaccién.

—&2

ROLLBACK
(reinversion)

—&

ROLLBACK
(reinversion)

—&2

ROLLBACK
(reinversion)

=&

Base de datos
al inicio de la
transaccion

Base de datos
reinvertida al primer
punto de recuperacion

Base de datos
reinvertida al segundo
punto de recuperacion

Base de datos
actualizada al
punto final

394

Fundamentos de SQL

inicio de la transaccion, y asi las acciones anteriores a ese punto de recuperaciéon no tendran que
ser repetidas. Ademds, SQL permite nombrar los puntos de recuperacién para que, de ser necesa-
rio, se pueda reinvertir la transaccion a ese punto de recuperacion especifico, en lugar de aquél di-
rectamente anterior a la reinversién. Como resultado, se puede ser mas especifico acerca de cudles
operaciones conservar y cudles reinvertir en caso de que surjan problemas en la transaccién.

NOTA

Como se verd en la seccién “Finalizar una transaccién”, més adelante en este capitulo, una
transaccién es reinvertida a un punto de recuperacién solamente si ese punto de recuperacién
se identifica con la instruccién ROLLBACK. De ofra manera, se reinvierte la transaccién com-
pleta, la transaccién es finalizada, y la base de datos es regresada a su estado original ante-
rior a cuando la transaccién fue iniciada.

Crear un punto de recuperacion en la transaccioén es muy simple, como se muestra en la si-
guiente sintaxis:

SAVEPOINT <nombre del punto de recuperaciéon>

Todo lo que se necesita utilizar es la palabra clave SAVEPOINT, seguida del nombre del punto de
recuperacién. Por ejemplo, para crear un punto de recuperacion llamado SECCION_1, se debera
utilizar la siguiente instruccion:

SAVEPOINT SECCION 1;

Una vez que se crea el punto de recuperacion, se puede utilizar el nombre SECCION_1 para iden-
tificar el punto de recuperacion posteriormente en la transaccion.

Liberar un punto de recuperacién

Después de algunas operaciones dentro de una transaccién, se puede encontrar que se necesita
liberar un punto de recuperacién. Si un punto de recuperacion es liberado, ya no se puede reinver-
tir la transaccién a ese punto de recuperacion. Liberar un punto de recuperacion lo elimina de la
transaccién. Ademads, también son liberados todos los puntos de recuperacion definidos posterior-
mente al punto de recuperacioén liberado. Esto significa que si la transaccién incluye tres puntos de
recuperacién y se libera el primero de ellos, los tres puntos de recuperacion son eliminados de la
transaccién. La sintaxis utilizada para liberar un punto de recuperacion es la siguiente:

RELEASE SAVEPOINT <nombre del punto de recuperacién>

Como se puede ver, esta instruccién es similar a la instruccion SAVEPOINT. Por ejemplo,
para liberar el punto de recuperacion creado en el ejemplo anterior, se utilizarfa la siguiente ins-
truccion:

RELEASE SAVEPOINT SECCION_1;

Cuando se ejecuta esta instruccion, el punto de recuperaciéon SECCION_1 es eliminado de la tran-
saccién, junto con cualquier otro punto de recuperacién definido subsecuente al punto de recupera-
ciéon SECCION_1. Liberar puntos de recuperacion es una adicion relativamente nueva al estdndar
SQL, por lo que la mayoria de las implementaciones SQL no lo soportan aun.

Capitulo 16: Manejar transacciones SQL - 395

Finalizar una transaccién

Anteriormente en este capitulo se aprendi6 que una transaccién puede ser iniciada ya sea explicita
o implicitamente. Lo mismo ocurre para finalizar una transaccion. Es posible completar o rein-
vertir explicitamente una transaccion, lo que finaliza la transaccion, o la transaccion es finalizada
implicitamente cuando las circunstancias fuerzan esa finalizacion.

En SQL existen cuatro circunstancias primarias que finalizaran una transaccion:

Se define explicitamente una instruccion ROLLBACK en la transaccién. Cuando la instruccion
es ejecutada, las acciones se reinvierten, la base de datos regresa al estado en que estaba cuan-
do la transaccién fue iniciada, y la transaccion es finalizada. Si la instruccion ROLLBACK
hace referencia a un punto de recuperacion, solamente se reinvierten las acciones realizadas
posteriormente a ese punto de recuperacion y la transaccion no es finalizada.

Se define explicitamente una instruccion COMMIT en la transaccion. Cuando la instruccion es
ejecutada, todos los cambios relacionados a la transaccion se guardan en la base de datos y la
transaccion es finalizada.

Se interrumpe el programa que inici6 la transaccion, causando que el programa aborte.

En el caso de una interrupcién anormal, que puede ser resultado de problemas de hardware o
software, todos los cambios se reinvierten, la base de datos regresa a su estado original

y la transaccion es finalizada. Una transaccion finalizada de esta manera es similar a finalizar
una transaccion utilizando la instruccion ROLLBACK.

El programa completa exitosamente su ejecucioén. Todos los cambios relacionados con la
transaccién se guardan en la base de datos y la transaccidn es finalizada. Una vez que estos
cambios son completados, no pueden ser reinvertidos. Una transaccién finalizada de esta ma-
nera es similar a finalizar una transaccién con la instruccion COMMIT.

Como se puede ver, las instrucciones ROLLBACK y COMMIT permiten finalizar explici-
tamente una transaccion, mientras que una transaccion es finalizada implicitamente cuando el
programa finaliza o es interrumpido. Estos métodos de finalizacién aseguran que se mantenga la
integridad de los datos y que la base de datos esté protegida. No se realiza ningiin cambio a la base
de datos a menos que la transaccién sea completada.

Ahora demos un vistazo mds cercano a las dos instrucciones que se pueden utilizar para finali-
zar explicitamente una transaccion.

Completar una transaccién

Una vez que todas las instrucciones han sido ejecutadas en una transaccion, ésta debe ser finali-
zada. El tipo de finalizacién preferido es uno que complete todos los cambios en la base de datos.
Después de todo, ;por qué intentar realizar cambios si no se quiere completarlos? Para completar
explicitamente los cambios y finalizar la transaccién se debe utilizar la instruccion COMMIT,
como muestra la siguiente sintaxis:

COMMIT [WORK] [AND [NO] CHAIN]

396

Fundamentos de SQL

En su punto mds basico, la instruccion COMMIT requiere solamente la palabra clave COM-
MIT. Todos los demads elementos de la instruccion son opcionales. Si se desea, se puede incluir la
palabra clave WORK, que es simplemente un traslado de versiones anteriores de SQL. En otras
palabras, COMMIT y COMMIT WORK realizan la misma funcién. La tinica razén para utilizar
la palabra clave WORK es que la implementacién SQL asi lo requiera.

El siguiente elemento opcional en la instruccion COMMIT es la cldusula AND CHAIN, que
no es soportada ampliamente en las implementaciones SQL actuales. La cldusula le dice al sistema
que inicie una nueva transaccién tan pronto finalice la transaccién actual. La nueva transaccion
utiliza los mismos modos de transaccion que la transaccion actual. Si se utiliza la opcion AND
CHAIN, ya no se necesita utilizar las instrucciones SET TRANSACTION o START TRANSAC-
TION para la siguiente transaccion a menos que se quieran especificar modos diferentes.

Ademas de especificar AND CHAIN en la instruccion COMMIT, también se puede especi-
ficar AND NO CHAIN, que le dice al sistema que no inicie una nueva transaccioén basada en las
configuraciones de la transaccion actual. Si se especifica AND NO CHAIN, no serd iniciada una
nueva transacciéon automdticamente cuando la transaccion actual finalice. Se debe iniciar una nue-
va transaccion utilizando un método implicito o un método explicito. Si no se especifica la clausu-
la AND CHAIN ni tampoco la cldusula AND NO CHAIN, se toma AND NO CHAIN de manera
preestablecida.

Con toda probabilidad, la instruccion COMMIT se vera como la del siguiente ejemplo:

COMMIT;

Como se puede ver, la palabra clave COMMIT es el tnico elemento requerido. Sin embargo, si se
requiere que una nueva transaccion inicie después de la actual, se deberd utilizar la siguiente ins-
truccion COMMIT:

COMMIT AND CHAIN;

Si no se requiere que una nueva transaccion inicie, no se deberd utilizar la clausula AND CHAIN.

Reinvertir una transaccidon

A pesar de que el objetivo de cualquier transaccién es completar los cambios hechos por las ins-
trucciones en esa transaccion, no hay duda que existirdn ocasiones cuando se quiera reinvertir esos
cambios. Para poder controlar estas reinversiones, se debe utilizar una instruccién ROLLBACK
para deshacer los cambios y eliminar la transaccion, o para regresar los cambios a un punto de
recuperacion especifico. La siguiente sintaxis muestra los diferentes elementos que pueden ser in-
cluidos en una instruccion ROLLBACK:

ROLLBACK [WORK][AND [NO] CHAIN]
[TO SAVEPOINT <nombre del punto de recuperacién>]

La primera linea de la sintaxis es muy similar a la instruccion COMMIT. Se debe especificar
la palabra clave ROLLBACK. Ademds, se pueden especificar WORK, AND CHAIN o AND NO
CHAIN, las cuales funcionan de la misma manera en que lo hicieron en la instruccion COMMIT,
y una vez mas, AND NO CHAIN es el valor de manera predeterminada.

Capitulo 16: Manejar transacciones SQL - 397

Sin embargo, la instruccion ROLLBACK, a diferencia de la instruccion COMMIT, incluye la
clausula opcional TO SAVEPOINT. La clausula TO SAVEPOINT especifica un punto de recupe-
racién que se utiliza si los cambios tienen que ser reinvertidos. Esto aplica a cualquier cambio rea-
lizado después del punto de recuperacién especificado. Si se incluye la clausula TO SAVEPOINT
en la instruccion ROLLBACK, la transaccion se reinvertird a ese punto de recuperacion, pero no
serd finalizada. Si no se incluye la clausula TO SAVEPOINT, todos los cambios son reinvertidos y
la transaccion es finalizada.

El tipo mas basico de instruccion ROLLBACK es aquel que no incluye elementos opcionales,
como en el siguiente ejemplo:

ROLLBACK;

Se podria haber incluido la palabra clave WORK y la cldusula AND NO CHAIN, y de todas
maneras la instruccion habria realizado la misma funcion. Si se requiere que sea iniciada una nue-
va transaccion cuando la transaccidn actual sea finalizada, se deberd especificar la clausula AND
CHAIN. Tenga en mente, sin embargo, que no es posible especificar la clausula AND CHAIN y
también la cldusula TO SAVEPOINT debido a que AND CHAIN depende de que la transaccién
sea finalizada para poder iniciar una nueva transaccion.

Si no se especifica la clausula TO SAVEPOINT, se debe incluir el nombre del punto de recu-
peracion. Por ejemplo, la siguiente instrucciéon ROLLBACK especifica el punto de recuperacién
SECCION_1:

ROLLBACK TO SAVEPOINT SECCION 1;

Si se ejecuta esta instruccion, todos los cambios que ocurrieron después de que fue creado
el punto de recuperacién SECCION_1 son reinvertidos al punto en que se encontraba la base de
datos cuando se ejecutd la instruccién SAVEPOINT. Incluso si se crearon otros puntos de recupe-
racién después del punto de recuperacion SECCION_1, los cambios se reinvierten hasta
SECCION_1.

Pregunta al experto
P: .Existe alguna consecuencia al rendimiento al utilizar transacciones?

R: por supuesto que si. Las DBMS deben registrar cuidadosamente los efectos de cada instruc-
cién SQL dentro de una transaccién para que los cambios sean reinvertidos cuando se ne-
cesite. Y es posible llenar todas las dreas de la memoria reservadas para seguir la pista a las
transacciones. Para contrarrestar esto, los programadores SQL a veces rompen los procesos
que aplican muchos cambios a la base de datos en multiples transacciones utilizando culmina-
ciones. Revise la documentacién de su DBMS para verificar se existen restricciones al utilizar
culminaciones durante las repeticiones del programa, particularmente cuando los cursores son
abiertos.

(continua)

398 Fundamentos de SQL

P: Anteriormente en este capitulo se dijo que las instrucciones como SELECT, DELETE,
UPDATE y CREATE TABLE deben ser ejecutadas dentro del contexto de una trans-
accion. Sin embargo, no se han utilizado estas transacciones en los ejemplos ni en los
ejercicios del libro. ;Cuando son utilizadas estas transacciones?

R: Ao largo del libro se ha utilizado SQL interactivo (invocacidn directa) para comunicarse con
la base de datos. La mayoria de las instrucciones SQL que se han estado ejecutando dentro de
este ambiente se han hecho dentro del contexto de una transaccién, a pesar de que el usuario
no esté consciente de que eso suceda. Para la mayoria de las implementaciones SQL, cada ins-
truccién SQL es considerada su propia transaccién, un modo de procesamiento que a menudo
es llamado autoculminacién. Cuando se ejecuta la instruccidn, se inicia una transaccién. Si la
instruccién es exitosa, cualquier cambio es completado en la base de datos y la transaccién es
finalizada, de la misma manera que si se hubiera ejecutado una instruccion COMMIT. Si la
instruccién no es exitosa, los cambios son reinvertidos, la base de datos es regresada al estado
en el que estaba cuando la instruccion se ejecutd por primera vez y la transaccidn es finaliza-
da como si se hubiera ejecutado una instruccion ROLLBACK. A pesar de que SQL interactivo
tiende a tratar cada instruccién como su propia transaccion, usualmente se pueden ejecutar
instrucciones relacionadas con la transaccion en este ambiente. Sin embargo, cudles instruc-
ciones se pueden ejecutar y qué opciones soportan varia entre los diferentes productos; por lo
tanto, asegirese de revisar la documentacion. En general, no es necesario definir especifica-
mente una transaccién en SQL interactivo.

Pruebe esto 16-1 Traloaiar con fransacciones

En este ejercicio se creardn varias transacciones que ejecutan instrucciones para la base de datos
INVENTARIO. Para cada transaccion se iniciard explicitamente la transaccion y se ejecutardn una
o mds instrucciones SQL. Para este ejercicio se trabajara con la instrucciéon COMMIT y con la
instruccién ROLLBACK en transacciones separadas debido a que se estd trabajando con invoca-
cion directa de SQL (en la aplicacion cliente). Sin embargo, si se estuvieran iniciando las transac-
ciones desde dentro de un lenguaje de programacion de aplicacion, sin duda se estarian utilizando
COMMIT y ROLLBACK juntas en algun tipo de estructura condicional. De esa manera, ciertos
resultados causarian que la transaccidn se reinvierta, y otros resultados causarian que la transac-
cién se complete, dependiendo de como se determinen las condiciones en el lenguaje de progra-
macion. Aunque, para este ejercicio, se mantendran separadas para que pueda pasarse facilmente a
través de estos pasos. Se puede descargar el archivo Try_This_16.txt (en inglés), que contiene las
instrucciones SQL utilizadas en este ejercicio.

Paso a paso

1. Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2, La primera transaccién que se creard utiliza una instruccion START TRANSACTION para de-
terminar el nivel de aislamiento a READ UNCOMMITTED, recupera informacién de la tabla
ARTISTAS, y luego completa la transaccién. Ingrese y ejecute la siguiente instruccion SQL:

Capitulo 16: Manejar transacciones SQL 399

START TRANSACTION
ISOLATION LEVEL READ UNCOMMITTED;

SELECT *
FROM ARTISTAS;

COMMIT;

La transaccion deberd arrojar todas las filas y columnas de la tabla ARTISTAS.

La siguiente transaccion que se creard también utiliza una instruccion START TRANSACTION
para determinar el nivel de aislamiento. Pero esta vez se determinard el nivel como SERIALI-
ZABLE. Debido a que SERTALIZABLE es el nivel preestablecido, no se requiere definirlo;

sin embargo, para los propdsitos de este ejercicio, vamos a incluirlo. Después de que se inicia
la transaccion, se intentara actualizar la tabla DISCO_COMPACTO incrementando el valor
EN_EXISTENCIA por 2 para todas las filas con un valor ID_DISQUERA igual a 832. Después
de la instrucciéon UPDATE, se reinvertird la transaccion para que ningin dato sea modificado en
la base de datos. Ingrese y ejecute la siguiente instrucciéon SQL:

START TRANSACTION
ISOLATION LEVEL SERIALIZABLE;

UPDATE DISCOS_ COMPACTOS
SET EN_EXISTENCIA = EN_EXISTENCIA + 2
WHERE ID DISQUERA = 832;

ROLLBACK;

Se deberd recibir algtn tipo de mensaje avisando la finalizacién de la transaccion.

Ahora se confirmard que la actualizacidn que se intentd en el paso anterior haya sido en reali-
dad reinvertida. Ingrese y ejecute la siguiente instrucciéon SQL:

SELECT TITULO_CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISQUERA = 832;

La instruccién SELECT debera arrojar los siguientes resultados de la consulta:

TITULO_CD EN_EXISTENCIA
That Christmas Feeling 8
Patsy Cline: 12 Greatest Hits 32
Out of Africa 29
Blues on the Bayou 27

Los valores EN_EXISTENCIA mostrados en estos resultados son los que estaban contenidos
en la tabla DISCO_COMPACTO antes de que se ejecutara la transaccion. Si la transaccidon no
hubiera sido reinvertida, cada uno de estos valores se habria incrementado por 2.

(continda)

400 Fundamentos de SQL

5. Ahora vamos a agregar un punto de recuperacion a la transaccién que se cred en el paso ante-

6

rior. Se requiere asegurarse de referirse al punto de recuperacion en la instruccion ROLLBACK.
También se agregard una instrucciéon SELECT antes del punto de recuperacion. Ingrese y ejecu-
te la siguiente instruccién SQL:

START TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SELECT TITULO CD, EN_ EXISTENCIA
FROM DISCOS COMPACTOS
WHERE ID DISQUERA = 832;

SAVEPOINT SECCION 1;

UPDATE DISCOS_COMPACTOS
SET EN_EXISTENCIA = EN EXISTENCIA + 2
WHERE ID DISQUERA = 832;

ROLLBACK TO SAVEPOINT SECCION 1;

Ahora la transaccion solamente se reinvertird al punto anterior a la instruccion UPDATE.
Ademds, debido a que la transaccion inclufa una instruccion SELECT, se deberdn recibir los
resultados de la consulta que se recibieron en el paso anterior.

En la transaccidn anterior, la instruccién SELECT estaba antes del punto de recuperacién, lo
que significa que la instruccién SELECT fue ejecutada antes que la instruccién UPDATE. Si
la transaccidn no reinvirtiera la actualizacion, los resultados de la consulta no reflejarfan la in-
formacién correcta. Como resultado, se debera verificar que la instruccién UPDATE haya sido
reinvertida. Ingrese y ejecute la siguiente instruccién SQL:

SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISQUERA = 832;

Los resultados de la consulta deberdn mostrar los mismos valores EN_EXISTENCIA que los
resultados de la consulta arrojados en los dos pasos anteriores.

7. Cierre la aplicacion de cliente.

Resumen de Pruebe esto

En este ejercicio Pruebe esto se crearon e iniciaron tres transacciones. En la primera, simplemente
se consultaron los datos y se complet6 la transaccién. En las siguientes dos se actualizaron los
datos y luego se reinvirtieron esas actualizaciones. Sin embargo, como se vio en la tercera transac-
cion, es posible reinvertirla a un punto de recuperacion especifico. Esto permite proteger ciertas
porciones de la transaccidn sin tener que volver a procesar las instrucciones que habian sido eje-
cutadas exitosamente. Debido a que se reinvirtieron las actualizaciones realizadas, la base de datos
INVENTARIO debera permanecer en el mismo estado en que estaba cuando se comenz6 este
ejercicio.

Capitulo 16: Manejar transacciones SQL 401

7 Aot Canitulo 16

1. ;Cuadl caracteristica de una transaccion se refiere a la naturaleza todo-o-nada de una transac-
cién?

A Atémica

B Consistente

C Aislada
D Durable
2. Un(a) es una unidad de trabajo que consta de una o mds instrucciones SQL

que realizan un conjunto de acciones relacionado.
3. (Qué instruccién puede utilizarse para iniciar explicitamente una transaccién?
4, ;Cudles instrucciones SQL finalizardn una transaccién?

A SAVEPOINT

B SET TRANSACTION

C ROLLBACK

D COMMIT

5. ;Cuiles son los tres tipos de modo de transaccién que pueden especificarse en una instruccién
SET TRANSACTION?

6. ;Cuiles opciones del nivel de acceso pueden incluirse en una instruccion START TRANSAC-
TION?

A READ ONLY
B UPDATE

C LOCAL

D READ WRITE

7. Dos transacciones simultaneas estdn activas en el sistema. La primera transacciéon modifica los
datos en una tabla. La segunda transaccién ve esas modificaciones antes de que sean completa-
das realmente en la base de datos. Luego, la primera transaccién reinvierte las modificaciones.
(Qué tipo de irregularidad de datos ha ocurrido?

A Lectura fantasma
B Lectura repetible
C Lectura sucia
D

Lectura no repetible

402

Fundamentos de SQL

8.

9‘
10.
11.

12.

13.

14.

15‘

16.
17.

18‘

Una lectura puede ocurrir cuando una transaccion lee una tabla basada en al-
gln tipo de condicién de busqueda, después una segunda transaccion actualiza los datos en la
tabla, y la primera transaccidn intenta volver a leer los datos, s6lo que esta vez se arrojan dife-
rentes filas debido a como estd definida la condicién de bisqueda.

(Qué tipo de restriccidn puede especificarse en una instruccion SET CONSTRAINTS?
(Cudl de los niveles de aislamiento aisla por completo una transaccién de otra?

Se estd utilizando una instruccién SET TRANSACTION para configurar los modos de transac-
cion. Se requiere asegurarse de que no puedan ocurrir lecturas no repetibles ni lecturas sucias
dentro de la transaccion. Sin embargo, no es necesario preocuparse acerca de las lecturas fan-
tasma. ;Cudl nivel de aislamiento debera utilizarse?

A READ UNCOMMITTED

B READ COMMITTED

C REPEATABLE READ

D SERIALIZABLE

Se esta configurando una transaccién que aplace la aplicacién de la restriccion REST_CD_
EXISTENCIA hasta que se ejecuten varias instrucciones SQL. Después de ejecutar las instruc-

ciones, se requiere aplicar explicitamente la restriccién a los cambios que se hicieron a la base
de datos. ;Qué instruccién SQL deberad utilizarse para aplicar las restricciones?

Un(a) es un marcador designado dentro de la transaccién que actda como un
punto para reinvertir una porcién de la transaccion.

Se necesita crear un punto de recuperacion llamado svpt_Seccion2. ;Qué instruccién SQL de-
ber4 utilizarse?

Se crea una transaccién que incluye cuatro puntos de recuperacién: Seccionl, Seccion2, Sec-
cion3 y Seccion4. Cerca del final de la transaccion, posterior a los cuatro puntos de recupe-
racion, se define RELEASE SAVEPOINT, que especifica el punto de recuperacion Seccion2.
(Cual punto o cudles puntos de recuperacién son eliminados de la transaccién cuando se ejecu-
ta la instruccion RELEASE SAVEPOINT?

A Seccionl
B Seccion2
C Seccion3
D Secciond
(Qué circunstancias finalizardn una transaccién?

Se estd creando una instruccion ROLLBACK en la transaccion. Se necesita que la reinversion
deshaga los cambios hasta el punto de recuperacién svpt_Seccion2. ;Qué instrucciéon SQL de-
bera utilizarse?

Se estd creando una instruccion COMMIT en la transaccion. Después de que la transaccién
es finalizada, se requiere que inicie una nueva transaccion. La nueva transaccién deberd estar
configurada con los mismos modos de transaccién que la primera transaccion. {Cémo debera
crearse la instruccion COMMIT?

Capitulo 17

Acceder a datos SQL
desde un programa
host

404 Fundamentos de SQL

Habilidades y conceptos clave

Invocar SQL directamente
Incrustar instrucciones SQL en el programa
Crear médulos cliente de SQL

Utilizar una interfaz de nivel de llamada de SQL

Alo largo de todo el libro se han realizado ejercicios y ejemplos de prueba utilizando una apli-

cacién de cliente para trabajar interactivamente con la base de datos SQL. Por ejemplo, se
podria haber utilizado SQL Server Management Studio para acceder a una base de datos de SQL
Server, SQL*Plus 0 iISQL*Plus para acceder a una base de datos de Oracle, o quizd MySQL Com-
mand Line Client para acceder a una base de datos de MySQL. Este método de acceso de datos se
conoce como invocacién directa o SQL interactivo. El estaindar SQL:2006 también hace posible el
uso de otros tipos de acceso de datos, incluyendo SQL incrustado, médulos cliente de SQL y la in-
terfaz de nivel de llamada (CLI, por sus siglas en inglés); sin embargo, los tipos de acceso de datos
soportados por una implementacién SQL a menudo varfan de producto a producto. Algunos, por
ejemplo, no soportan SQL incrustado, y pocos soportan los médulos cliente de SQL. En este capi-
tulo se introducirdn los cuatro tipos de métodos de acceso de datos y se explicard cémo pueden ser
utilizados para recuperar y modificar datos en la base de datos SQL. Debido a que SQL y CLI son
los dos métodos mds comuinmente utilizados por los programas para acceder a los datos SQL, se
cubrirdn estos dos temas con mayor detalle que la invocacién directa y los médulos cliente SQL, a
pesar de que se proporciona una base para los cuatro tipos de acceso.

Invocar SQL directamente

Al llegar hasta este punto del libro, ya debera sentirse muy cémodo con SQL interactivo. Utilizan-
do la aplicacion cliente, que viene con la mayoria de los productos de manejo de bases de datos,
se han podido crear instrucciones SQL ad hoc que arrojan resultados inmediatos a la aplicacion.
Estos resultados normalmente son desplegados en una ventana separada de donde se ejecuto la ins-
truccién SQL. Por ejemplo, demos un vistazo a la figura 17-1, que nos muestra SQL Server Mana-
gement Studio. Observe que la ventana superior incluye una instruccién SELECT y que la ventana
inferior incluye los resultados de la consulta de haber ejecutado esa instruccién. La mayoria de las
aplicaciones cliente de invocacidn directa se comportan de manera similar a ésta.

Los tipos de instrucciones SQL soportados por el método de invocacién directa pueden
variar de una implementacién SQL a otra. A pesar de que la mayoria de las implementaciones
permitiran ejecutar los tipos basicos de instrucciones, por ejemplo SELECT o UPDATE, puede
que no permitan la ejecucién de instrucciones especificas para otro método de acceso de datos. Por
ejemplo, algunas implementaciones pudieran no permitir declarar un cursor dentro de un ambiente
interactivo.

A pesar de las diferencias entre las implementaciones SQL, el estindar SQL no define cué-
les tipos de instrucciones deberdn ser soportadas en un ambiente interactivo. Esto incluye a las

Capitulo 17: Acceder a datos SQL desde un programa host 405

‘.-:- Microsoft SOL Server Management Studio

Fle Edt Yew Query Froject Took Window Community Hep
Abewoery L D6 B DS BABE S,
5 3 M vwenrory v PEeus v B I 2 0 RO QED = FF
DIGO00SOL200,. 80LQueryl sqf* | Summary - X
SELECT * FROM ARTISTS:| =
|
A >
& Resubts |y Messages
ARTIST_|D ARTIST_NAME PLACE_OF BIRTH
1 2001 Jennifer Wames Seafile, Washington, LISA
2 2002 Joni Mitchell Fort MacLeod, Alberta, Canada
3 2003 William Ackerman Germeany
4 2004 Kitaro Toyohashs, Japan
5 2005 Bing Crosby Tacoma, Washingion, USA
B 2008 Patay Cling ‘Winchester, Virginia, LISA
7 2007 Jose Carreras Barcelona, Spain
8 2008 Luciano Pavarotti - Modena, haly
8 2008 Placido Domingo Madnid, Spain
10 2010 Pascal Roge Unknown
1 am John Barry Uriknown
12 202 Lecnard Cohen Montresl, Quebec, Canads
13 2013 Bonnie Fuaitt Burbank, Caldomia, LSA
14 2014 Bob Seger Dearborn, Michigan, LISA
15 2015 Silver Bullet Band Dwoes not apphy
16 2018 BB King Indianola, Mississippi, USA
17 2m7 Danid Motion Unknown
18 2mse Sally Potter Unknown
& Duery exacuted successhully. DIE0OCSOL2005 (30 ATM) | DIB0OMVAnchy (52) INVENTORY | 000000 18 rows
Ready n 1 Col 23 ch23 NS

Figura 17-1 SQL Server Management Studio (SQL Server 2005 y 2008).

instrucciones SELECT, INSERT, UPDATE y DELETE, y a las instrucciones relacionadas con las
definiciones de esquema, transacciones, conexiones y sesiones. También se debera ser capaz de
declarar tablas temporales en un ambiente interactivo. De hecho, practicamente cualquier accién
critica para el mantenimiento de los datos y de la estructura de la base de datos subyacente debera
ser soportada por invocacién directa.

Una de las principales ventajas de SQL interactivo (ademds de la habilidad de ejecutar ins-
trucciones ad hoc) es la eliminacién de cualquier incongruencia en la impedancia. Como se podra
recordar de andlisis anteriores, una incongruencia en la impedancia puede ocurrir debido a dife-
rencias en los tipos de datos entre SQL y los lenguajes de programacion de aplicacién, y también
debido a la forma en que son manejados los resultados de la consulta (conjuntos de resultados)
entre SQL y esos lenguajes. Sin embargo, SQL interactivo es un ambiente SQL puro, lo que sig-
nifica que solamente pueden ser utilizados los tipos de datos soportados por la implementacion,

y los conjuntos de resultados no generan ningtin problema para la aplicacién de cliente debido a
que simplemente el usuario puede desplazarse a través de los resultados de la consulta. También es
comtn para los desarrolladores de las aplicaciones utilizar SQL interactivo para probar las instruc-
ciones SQL que intentan incrustar en otros médulos. Aun con eso, la invocacion directa representa
solamente un pequefio porcentaje de usuarios. Encontrard que la mayoria de los accesos de datos
se hacen a través de SQL incrustado y de mecanismos del tipo CLI, y algunos otros a través de los
mddulos cliente SQL, pero relativamente muy pocos usuarios utilizan s6lo SQL interactivo.

406 Fundamentos de SQL

Incrustar instrucciones SQL en el programa

En el capitulo 15, cuando se analizaron los cursores SQL, se introdujo SQL incrustado. Como se
podré recordar de ese andlisis, SQL incrustado se refiere a las instrucciones SQL que estdn disper-
sas en algun tipo de lenguaje de programacién de aplicacion. Las instrucciones SQL son fusiona-
das en el lenguaje host para permitir al programa fuente acceder y modificar los datos SQL y la
estructura de la base de datos subyacente.

De acuerdo con el estandar SQL:2006 es posible incrustar instrucciones SQL en los siguientes
lenguajes de programacion:

Ada

C
COBOL
Fortran
MUMPS
Pascal
PL/T

A pesar de que el estdndar soporta instrucciones SQL incrustadas en estos lenguajes, las imple-
mentaciones SQL raramente soportan las instrucciones incrustadas en todos estos lenguajes. Una
implementacion pudiera estar limitada a solamente uno o dos lenguajes de programacion, y algu-
nas implementaciones pudieran no soportar del todo SQL incrustado (a pesar de que la mayoria
de las implementaciones proporcionan SQL incrustado para al menos un lenguaje). Ademads, mu-
chas implementaciones soportan SQL incrustado en lenguajes diferentes a aquellos especificados
en el estandar SQL. Por ejemplo, Oracle ofrece SQLJ, que soporta SQL incrustado en programas
de Java.

Cuando un programa contiene instrucciones SQL incrustadas, debe ser compilado en una
forma diferente a los programas regulares. La figura 17-2 ilustra el proceso que se sigue cuando se
compilan estos programas.

Como se puede ver en la figura, se inicia con un archivo de programa que contiene el lenguaje
de programacion host y las instrucciones SQL incrustadas. Antes de que el programa sea compila-
do, éste es sometido a un precompilador que es especifico al lenguaje de programacion host y a la
implementacién SQL. El precompilador retira las instrucciones SQL del c6digo del lenguaje host,
a menudo convirtiéndolas en comentarios para documentar las instrucciones originales, y las reem-
plaza con llamadas a las rutinas de la biblioteca proporcionada por el proveedor que acceden a las
instrucciones SQL. Como resultado, se crean dos archivos, uno para el lenguaje host y otro para
las instrucciones SQL.

Una vez que se crea un archivo para el lenguaje host, el programa fuente es compilado de
manera normal, como se esperaria de un lenguaje especifico. El resultado del compilador del
lenguaje host es el c6digo objeto, que estd vinculado a varias rutinas de biblioteca. Desde esto, se
genera un programa ejecutable que se vincula al plan de la aplicacién. Esto es creado por una utili-
dad de enlace que valida y optimiza las instrucciones SQL. El plan contiene las instrucciones SQL
y la informacién que el programa necesita para acceder a la base de datos.

Capitulo 17: Acceder a datos SQL desde un programa host 407

Programa fuente
que contiene el
lenguaje host e

instrucciones SQL

Precompilador SQL

Implementacion
especifica para SQL
y lenguaje host

Lenguaje host
con llamadas Instrucciones
a las instruc- sQL
ciones SQL
Compilador del Programa
lenguaje host de enlace
Plan de
Codigo de objeto aplicacion

Rutinas de
la biblioteca

Vinculador

Programa
ejecutable

Figura 17-2 Compilar programas que contienen SQL incrustado.

Crear una instruccién SQL incrustada

Cuando se desarrolla un programa que contiene SQL incrustado, se deben seguir convenciones es-
pecificas que determinan cémo el cédigo SQL debe ser agregado al programa. Estas convenciones
estdn basadas en una combinacién de elementos especiales del lenguaje SQL y los requerimientos
del lenguaje de programacion host. Para ser utilizada en un lenguaje host, una instruccién SQL in-
crustada debe cumplir con las siguientes pautas:

Cada instruccién SQL debe iniciar con un prefijo cualificado.

Cada instruccién SQL puede o no requerir un finalizador cualificado, dependiendo del lengua-

je host.

Las nuevas lineas dentro de la instruccion SQL deben ser manejadas de acuerdo con el estilo

del lenguaje host.

La colocacién de los comentarios debe ser manejada de acuerdo con el estilo del lenguaje host.

408 Fundamentos de SQL

Lenguaje Prefijo Finalizador
Ada EXEC SQL ;

C EXEC SQL ;

COBOL EXEC SQL END-EXEC
Fortran EXEC SQL (sin finalizador)
MUMPS 8SQl()

Pascal EXEC SQL ;

PL/I EXEC SQL .

Tabla 17-1 Iniciar y finalizar una instruccién SQL.

La mayoria de las instrucciones SQL incrustadas requieren un prefijo cualificado y un fina-
lizador. La tabla 17-1 proporciona el prefijo y el finalizador para cada lenguaje de programacion
soportado.

Como se puede ver en la tabla, los lenguajes Ada, C, Pascal y PL/I manejan las instruccio-
nes SQL incrustadas de la misma manera. Por ejemplo, supongamos que se quiere incrustar una
instruccién SELECT que recupere las columnas NOMBRE_CD y EN_EXISTENCIA de la tabla
INVENTARIO_CD. Para hacerlo, se utilizaria la siguiente instruccion:

EXEC SQL
SELECT NOMBRE CD, EN_EXISTENCIA
FROM INVENTARIO CD;

Observe que la instruccidn estd precedida por el prefijo EXEC SQL y terminada con el finali-
zador punto y coma. Si fuera a crearse una instruccién similar en otro lenguaje, ya sea el prefijo o
el finalizador podrian ser diferentes. En el caso de MUMPS, ambos serian diferentes.

NOTA

Normalmente, no tiene importancia si las instrucciones SQL incrustadas aparecen en maydscu-
las o mindsculas. Los programadores generalmente siguen las convenciones del lenguaje host.
Sin embargo, para los propésitos de este capitulo, se tratardn las instrucciones SQL incrus-
tadas al igual que se ha hecho con ofras instrucciones SQL a lo largo del libro: se utilizarén
mayuUsculas tanto para las palabras clave de SQL como para los identificadores de SQL.

Utilizar variables host en las instrucciones SQL

Para utilizar SQL incrustado de manera efectiva, debe ser posible pasar valores entre el programa
host y las instrucciones SQL. Por ejemplo, la instruccién SQL incrustada pudiera incluir una clausula
WHERE que requiera un valor especifico para poder evaluar la condicién de bisqueda. El valor pu-
diera ser proporcionado por un usuario o por una operacién dentro del programa host. En cualquiera
de los casos, el valor debera ser pasado de alguna manera del programa a la instruccién SQL.

Para pasar valores desde y hacia una instruccién SQL, se pueden utilizar las variables host.
Una variable host es un tipo de parametro que es declarado dentro del lenguaje host y que luego es
referenciado dentro de la instrucciéon SQL incrustada. Cuando una variable host es utilizada dentro
de una instruccién SQL, el nombre de la variable debera estar precedido por dos puntos. Estos le

Capitulo 17: Acceder a datos SQL desde un programa host 409

avisan al precompilador que el elemento nombrado es una variable y no un objeto de la base de da-
tos, como una tabla o una columna. Como resultado, no representa una preocupacion si la variable
host comparte el mismo nombre que un objeto de la base de datos.

Una variable host puede utilizarse en una instruccién SQL incrustada en cualquier lugar que
sea necesaria para definir un valor. Por ejemplo, la siguiente instruccién SELECT puede ser in-
crustada en un programa C:

EXEC SQL
SELECT NOMBRE_CD, EN EXISTENCIA
FROM INVENTARIO_ CD
WHERE ID CD = :v_ID CD;

Observe que la variable host v_ID_CD estd precedida por dos puntos. Estos se utilizan Gnicamente
dentro de la instruccién SQL. Cuando se declara la variable (anterior en el programa host) no se
utilizan los dos puntos.

NOTA

El ejemplo anterior inicia con EXEC SQL y termina con punto y coma. Ademds, no se requiere
ningdn carécter de continuacién especifico para indicar una nueva linea en la instruccién SQL.
Estas convenciones son consistentes con lo que se esperaria encontrar en un programa C. Para
los ejemplos en este capitulo se utilizardn instrucciones SQL incrustadas tal como aparecerian
dentro de un programa C. Varias de las implementaciones SQL soportan sin problema SQL
incrustado en C.

No se estd limitado a referenciar una variable host en la clausula WHERE de una instruccion
SELECT. Por ejemplo, se puede referenciar una variable en la clausula SET de una instruccién
UPDATE, en la clausula VALUES de una instruccién INSERT, o en la clausula WHERE de una
instrucciéon UPDATE o DELETE. Sin embargo, no se puede utilizar una variable host en lugar de
un identificador SQL. En otras palabras, no se puede pasar un nombre de objeto, por ejemplo, un
nombre de tabla o nombre de columna, a través de una variable host.

Declarar variables host
Como se mencioné anteriormente, se deben declarar las variables host dentro del programa host.
Es posible declararlas en cualquier punto del programa donde normalmente se declararian va-
riables en un lenguaje en particular. Ademds, se deben declarar las variables de acuerdo con las
convenciones del lenguaje host. La tnica diferencia es que se deben iniciar las instrucciones con
la instruccién BEGIN DECLARE SECTION Yy finalizar las instrucciones con la instruccién END
DECLARE SECTION. Estas dos instrucciones notifican al precompilador que las variables en-
cerradas en las instrucciones pueden utilizarse en otras instrucciones SQL incrustadas.

Demos un vistazo a un ejemplo de lo que se estd tratando de describir. Supongamos que se
quieren declarar dos variables, una para recibir un valor que identifique el CD y una que reciba el
nombre del CD. La instruccién de la variable en C podria lucir como la siguiente:

EXEC SQL
BEGIN DECLARE SECTION;
long v_ID CD; /* ID del disco compacto */
varchar v_NOMBRE CD[60]; /* nombre del disco compacto */
EXEC SQL

END DECLARE SECTION;

410

Fundamentos de SQL

Como se puede ver, las instrucciones de la variable estan encerradas en dos instrucciones SQL
relacionadas con las instrucciones. Observe que estas instrucciones son tratadas exactamente de la
misma manera que cualquiera otra instruccién SQL incrustada en C. Cada instruccion inicia con
EXEC SQL y finaliza con punto y coma.

Dos variables host estan siendo declaradas en esta seccion. La primera de ellas, v_ID_CD, es
declarada con el tipo de datos long, y la segunda variable, v._NOMBRE_CD, es declarada con el
tipo de datos varchar. Las dos instrucciones de variables siguen las convenciones del lenguaje host.
Observe que un comentario sigue a cada instruccién. Los comentarios también se adhieren a las
convenciones del lenguaje host.

Cuando se utilizan las variables host en instrucciones SQL, puede ocurrir una incongruencia
en la impedancia como resultado de las diferencias entre los tipos de datos del lenguaje host y los
tipos de datos SQL. Como se pudo ver en el ejemplo anterior, las variables se declaran con tipos
de datos C; sin embargo, las variables se utilizardn en instrucciones SQL para pasar datos a las co-
lumnas que estdn configuradas con tipos de datos SQL. Si los tipos de datos son compatibles, en-
tonces los datos pueden ser pasados a través de las variables; de otra manera, la incongruencia en
la impedancia entre los tipos de datos evita que los valores puedan ser pasados. Por ejemplo, la va-
riable v_ID_CD esta configurada con el tipo de datos long, que es compatible con el tipo de datos
INTEGER en SQL, y la variable v._NOMBRE_CD esta configurada con el tipo de datos varchar,
que es compatible con el tipo de datos CHARACTER VARYING (usualmente abreviado como
VARCHAR) en SQL. Como resultado, es posible pasar datos a través de estas variables siempre y
cuando las columnas que los reciban estén configuradas con tipos de datos compatibles.

Pregunta al experto

P: se dijo que los datos pueden ser pasados desde la variable hacia la instruccion SQL si los
tipos de datos son compatibles. ;Cémo seria posible pasar datos si no son compatibles?

R: La mayoria de los lenguajes de programacién contienen por lo menos algunos tipos de datos que
no coinciden con los tipos de datos en SQL. Si surge esta situacion, se puede utilizar la expresion
de valor CAST dentro de la instruccién SQL para convertir el valor de la variable en un valor que
pueda ser utilizado por la instrucciéon SQL. De manera efectiva, la expresién de valor CAST cam-
bia el tipo de datos del valor. Por ejemplo, es posible modificar la instruccién incrustada anterior
para convertir la variable host v_ID_CD, como se muestra en el siguiente ejemplo:

EXEC SQL
SELECT NOMBRE CD, EN_EXISTENCIA

FROM INVENTARIO_CD
WHERE ID CD = CAST(:v_ID CD AS INT);

Como se puede ver, se utiliza CAST para convertir el valor en la variable host a un tipo
de datos INTEGER. (Para mayor informacién acerca de CAST, véase el capitulo 10.) Para
determinar cudles tipos de datos en un lenguaje host son compatibles con los tipos de datos en
SQL, deberd referirse al estdindar SQL:2006, a la documentacién especifica del lenguaje o la
documentacioén especifica del producto.

Capitulo 17: Acceder a datos SQL desde un programa host 411

Recuperar datos SQIL

Como se ha visto lo largo de este libro, el proceso de consultar datos en una base de datos SQL invo-
lucra ejecutar una instrucciéon SELECT que en su momento recupera los datos desde la tabla o tablas
aplicables y arroja esos datos en un conjunto de resultados. Un conjunto de resultados puede estar
conformado por una o més filas y una o mas columnas. Cuando se estan consultando los datos de
forma interactiva, las filas multiples no representan ningtin problema debido a que la aplicacién de
cliente puede manejar mas de una fila. Sin embargo, cuando se consultan los datos desde una instruc-
cion SQL incrustada, las filas multiples tienen que ser manejadas a través de un cursor para poder per-
mitir que el lenguaje host trabaje con una fila a la vez. Un cursor, como se podra recordar, actia como
un sefialador para especificar las filas en el conjunto de resultados. La instruccién del cursor define la
instruccién SELECT que recupera los datos desde la base de datos, y las instrucciones relacionadas
al cursor son entonces utilizadas para recuperar las filas individuales de ese conjunto de resultados.
(Para mayor informacién acerca de los cursores, véase el capitulo 15.)

Los cursores, por lo tanto, proporcionan una solucién a un tipo de incongruencia en la impe-
dancia que pueda ocurrir entre SQL y el lenguaje host. Especificamente, SQL arroja datos en con-
juntos, y la mayoria de los lenguajes de programacién no pueden manejar conjuntos. Utilizando
algun tipo de construccion de repeticion dentro del lenguaje de programacién y luego usando la
instruccién FETCH de SQL, es posible alternar entre cada fila del conjunto de resultados para
recuperar los datos que se necesiten.

A pesar de la disponibilidad de los cursores en SQL incrustado, existen ocasiones en las que
se sabe que la consulta de la base de datos arrojard solamente una fila. Por ejemplo, pudiera re-
querirse recuperar los datos acerca de un CD especifico o de un artista especifico, en cuyo caso un
cursor es innecesario. Para facilitar las recuperaciones de una sola fila, SQL incrustado soporta la
instruccién SELECT de instancia tinica. Una instruccion SELECT de instancia dnica es similar a
una instrucciéon SELECT regular excepto por dos detalles:

No se incluye una cldusula GROUP BY, HAVING u ORDER BY.

Se incluye una cldusula INTO que especifica las variables host que recuperaran los datos arro-
jados por la instruccién SELECT hacia el programa host.

Por ejemplo, supongamos que la instrucciéon SELECT arroja el nombre del CD y el nimero
de existencias, como se muestra en la siguiente instruccion incrustada:

EXEC SQL
SELECT NOMBRE_CD, EN_ EXISTENCIA
INTO :v_NOMBRE_CD, :v_EN EXISTENCIA
FROM INVENTARIO CD
WHERE ID CD = :v_ID CD;

Como se puede ver en esta instruccidn, la variable v_ID_CD es utilizada para especificar cudl CD
deber4 ser arrojado. El valor es ingresado por el usuario, y la variable pasa ese valor del programa
host a la instruccién SELECT.

Ahora demos un vistazo a la clausula INTO. Observe que la cldusula contiene dos variables,
el mismo nimero de variables que el nimero de columnas recuperadas de la tabla INVENTA-
RIO_CD. Estas variables son declaradas de la misma forma que otras variables host que se han

412

Fundamentos de SQL

visto. Debido a que esta instruccion SELECT arroja solamente una fila y dos columnas, solamente
dos valores son arrojados. Estos valores son transferidos a las variables. Las variables deben ser
especificadas en el mismo orden que son especificados los nombres de las columnas.

NOTA

La variable v_ID_CD en la cléusula WHERE es una variable host de entrada, y las variables
v_NOMBRE_CD y v_EN_EXISTENCIA en la cldusula INTO son variables host de salida. La
Unica diferencia radica en cémo son utilizadas por la instruccién SQL (ya que son definidas
exactamente de la misma manera dentro del lenguaije host).

Manejar valores nulos

En el capitulo 4 se analizaron los valores nulos y cémo son utilizados para representar datos des-
conocidos o no disponibles. Como se recordard de esa discusion, la mayoria de las columnas SQL,
de manera predeterminada, permiten valores nulos, a pesar de que puede sobrescribirse ese valor
de forma preestablecida o al definir la restriccion NOT NULL en la columna. Sin embargo, si no
se sobrescribe el valor de manera predeterminada y los valores nulos son permitidos, se puede ge-
nerar un problema con el lenguaje host debido a que la mayoria de los lenguajes de programacién
de aplicacion no soportan los valores nulos.

Para encargarse de este tema, SQL permite declarar variables host de indicador. Una variable
host de indicador es un tipo de variable que acompafia a una variable host regular, que también se
conoce como variable host de datos. La variable de indicador contiene un valor que especifica si
un valor es o no nulo en la variable de datos asociada. Las variables de indicador son declaradas de
la misma forma que otras variables host.

Observemos un ejemplo de las variables de indicador para ilustrar cémo funcionan. En la si-
guiente instrucciéon SELECT incrustada, una variable de indicador ha sido agregada a cada una de
las variables de datos en la cldusula INTO:

EXEC SQL
SELECT NOMBRE_CD, EN_EXISTENCIA
INTO :v_NOMBRE CD :ind NOMBRE CD, :v_EN EXISTENCIA :ind EN EXISTENCIA
FROM INVENTARIO CD
WHERE ID CD = :v_ID CD;

La cldausula INTO incluye dos variables de indicador: ind_NOMBRE_CD e ind_EN_EXIS-
TENCIA. Observe que cada variable de indicador sigue a la variable de datos asociada. La co-
locacion de la variable de indicador es el unico indicio que la implementacién SQL tiene para
determinar que una variable host en particular es una variable de indicador. No existe nada en la
instruccién de la variable o en su denominacién que distinga a las variables de indicador de las
variables de datos. Cuando la implementacién ve que una variable sigue a la otra y que ninguna
coma las separa, la implementacion asigna un valor de O a la variable de indicador si la variable
asociada contiene un valor real (si no es nula). Si la variable asociada contiene un valor nulo, la
implementacion asigna un valor de —1 a la variable de indicador. Entonces el programa host toma
la accién apropiada basado en esta informacion. Es esencial que el programa host verifique las va-
riables de indicador acerca de los valores nulos antes de intentar utilizar los valores en la variable
host debido a que cuando se encuentran valores nulos, el valor de la variable host correspondiente
no cambia, y por lo tanto podria contener valores sobrantes de una instruccién anterior o datos
desconocidos que los programadores llaman basura.

Capitulo 17: Acceder a datos SQL desde un programa host 413

NOTA

Al declarar una variable de indicador, asegirese de utilizar un fipo de datos numérico que so-
porte los valores 0 y —1. El valor 0 es légicamente una condicién falsa debido a que todos los

bits serén determinados a un binario 0, mientras que el valor -1 es légicamente una condicién
verdadera debido a que todos los bits serén determinados a un binario 1.

Manejo de errores

Cuando se incrusten instrucciones SQL en el lenguaje host, se deberd proporcionar una forma
de tomar acciones especificas si se recibe un mensaje de error o de advertencia cuando se intenta
acceder a los datos. SQL proporciona un método relativamente sencillo que puede utilizarse para
monitorear los errores y advertencias y tomar acciones dependiendo de los resultados de ese moni-
toreo. Al incrustar instrucciones WHENEVER en el lenguaje host, se le otorga al programa un ni-
vel efectivo de manejo de errores que funciona lado a lado con las otras instrucciones incrustadas.
La instruccion WHENEVER incluye dos conjuntos de opciones, como se muestra en la si-
guiente sintaxis:

WHENEVER
{ SQLEXCEPTION | SQLWARNING | NOT FOUND }
{ CONTINUE | GOTO <objetivo> }

Como se puede ver, primero se debe especificar la palabra clave WHENEVER vy luego especi-
ficar las opciones necesarias. El primer conjunto de opciones indica la condicién en la cual aplica
la instruccion WHENEVER. Si se cumple esa condicién, se toma alguna accion especifica. Una
instruccion WHENEVER puede incluir una de tres condiciones:

SQLEXCEPTION Se cumple la condicién en cualquier momento que una instrucciéon SQL
genera una excepcion. Por ejemplo, una excepcion puede ser generada cuando se intenta inser-
tar datos invalidos a una columna.

SQLWARNING Se cumple la condicién en cualquier momento que una instrucciéon SQL
genera una advertencia. Por ejemplo, una instruccién puede generar una advertencia si un nu-
mero ha sido redondeado.

NOT FOUND Se cumple la condicion en cualquier momento que una instruccién SELECT
no puede arrojar los datos en los resultados de su consulta. Esto puede aplicar a una instruc-
cién SELECT de instancia tnica o a una instruccién FETCH al final del conjunto de resulta-
dos del cursor.

Una vez que se especifica una condicién en la instruccion WHENEVER, se debe especificar
una accion. La instruccion WHENEVER soporta dos acciones:

CONTINUE EI programa continuard ejecutandose en la siguiente instruccion.

GOTO <objetivo> El programa brincard a una seccién dentro del lenguaje host que sea de-
nominada en el marcador de posicidén <objetivo>.

Ahora que hemos visto las opciones disponibles en la instruccion WHENEVER, demos un
vistazo a un ejemplo. Supongamos que se requiere que las instrucciones SQL vayan a una cierta
parte del programa si ocurre un error. En la siguiente instruccion WHENEVER, una excepcion
causard que el programa se mueva a la seccioén Errorl:

414

Fundamentos de SQL

EXEC SQL
WHENEVER SQLEXCEPTION GOTO Errorl;

Observe que la opcion SQLEXCEPTION y la opcion GOTO estan especificadas en esta instruc-
cion. La opcion SQLEXCEPTION le dice al programa que tome una accién especifica si una instruc-
cion SQL genera una excepcidn. La opcion GOTO define la accidén que deberd ser tomada. En este
caso, la opcién especifica que el programa deberd moverse a la seccion Errorl del lenguaje host.

Una instruccion WHENEVER aplica a las instrucciones SQL incrustadas que le siguen. Es
posible incrustar tantas instrucciones WHENEVER en el lenguaje host como sean necesarias. La
ultima instruccidn en aparecer es la Unica que se aplica a las otras instrucciones.

LT CRVAL Incrustar instrucciones SQL

En la mayoria de los ejercicios del libro se utiliz6 una aplicacidn cliente para acceder a la base

de datos SQL de forma interactiva. Sin embargo, debido a la naturaleza del tema en este capitulo,
particularmente respecto a SQL incrustado, este ejercicio tomard un enfoque diferente que los
anteriores. Para este ejercicio se utilizard algun tipo de programa de edicion de texto (por ejemplo,
el Bloc de notas de Microsoft) para completar los pasos. Debido a que programar en un lenguaje
host estd fuera del enfoque de este libro, solamente se creardn las instrucciones SQL que estdn
incrustadas en el lenguaje host. Las instrucciones se ajustardn al lenguaje C, a pesar de que pueden
aplicarse a otros lenguajes host. Durante el ejercicio se determinaran instrucciones de variables, se
creard una instruccion para manejar errores y se incrustard una instruccion SELECT de SQL que
consulte los datos de la base de datos INVENTARIO. Se puede descargar el archivo Try_This_
17-1.txt (en ingl€s), que contiene las instrucciones SQL incrustadas utilizadas en este ejercicio.

Paso a paso

1. Abra un programa de edicién de texto como el Bloc de notas de Microsoft.

2. El primer paso es crear una variable host de entrada y dos variables host de salida. El propdsito
de la variable host de entrada es poder recibir del usuario un identificador de CD. El identificador
puede ser utilizado en la cldusula WHERE de la instruccién SELECT para determinar cudl fila de
datos serd arrojada de la tabla DISCOS_COMPACTOS. Junto con la instruccién de las variables,
se incluirdn comentarios que identifican el propésito de esas variables. Escriba las siguientes ins-
trucciones SQL incrustadas y las instrucciones de variables en el documento de texto:

EXEC SQL
BEGIN DECLARE SECTION;
long v_ID CD; /* variable de entrada para el

identificador de CD */
varchar v_TITULO_CD[60]; /* variable de salida para el titulo del
CD */
long v_EN EXISTENCIA; /* variable de salida para el valor EN_
EXISTENCIA */
EXEC SQL
END DECLARE SECTION;

Capitulo 17: Acceder a datos SQL desde un programa host 415

e

Observe que la seccién de la instruccién de variable es obligatoria, por lo que se tuvo que in-
cluir tanto la instruccion BEGIN DECLARE SECTION como la instruccion END DECLARE
SECTION. Estas instrucciones son necesarias para notificar al precompilador que las instruc-
ciones de variables seran utilizadas en las instrucciones SQL incrustadas.

Después de crear la seccion de la instruccidn, se verd que es necesario incluir las variables de indi-
cador para las variables de datos de salida. Como resultado, se deben agregar dos instrucciones a
la seccién de instruccion. Escriba las siguientes instrucciones en el documento de texto:

short ind TITULO CD; /* variable de indicador para v_TITULO CD */
short ind EN EXISTENCIA; /* variable de indicador para v_EN EXISTENCIA
*/

Es posible agregar las instrucciones en cualquier lugar de la seccién de instruccion. Sin embar-
go, para que el cédigo sea limpio, se sugiere agregarlas cerca de cada una de las variables de
datos asociadas, como se muestra en la siguiente seccién de instruccion:

EXEC SQL BEGIN DECLARE SECTION;

long v_CD ID; /* variable de entrada para el
identificador de CD */

varchar v_TITULO CDI[60]; /* variable de salida para el titulo del
CD */

short ind TITULO CD; /* variable de indicador para v_TITULO CD
*/

long v_EN_ EXISTENCIA; /* variable de salida para el valor EN_

EXISTENCIA */
short ind EN_EXISTENCIA; /* variable de indicador para v_EN
EXISTENCIA */
EXEC SQL END DECLARE SECTION;

Observe que las dos nuevas instrucciones han sido insertadas debajo de sus respectivas varia-
bles de datos.

Ahora incluiremos una instruccién de manejo de errores en el documento de texto. La instruc-
cion representard una seccion llamada Errorl en el lenguaje host. Se asumird que si una instruc-
cién SQL incrustada genera una excepcion, el programa brincard a la seccién Errorl y tomara
cualquier accién que esté definida en esa seccion. Escriba la siguiente instruccién SQL incrus-
tada en el documento de texto:

EXEC SQL
WHENEVER SQLEXCEPTION GOTO Errorl;

Observe que el cédigo SQL incrustado contiene una instruccion WHENEVER que especifica
las opciones SQLEXCEPTION y GOTO.

Ahora se esta listo para crear la instruccién SELECT incrustada. La instruccién contendrd las
variables definidas en la seccion de instruccion. Ademas, se utilizard una instruccion SELECT
de instancia tnica debido a que la instruccion recuperard solamente una fila a la vez. La cldusu-
la WHERE esta basada en un valor ID_DISCO_COMPACTO especifico, y cada valor es tinico
dentro de la tabla DISCOS_COMPACTOS. (La columna ID_DISCO_COMPACTO es la clave
primaria, por lo que los valores deben ser tinicos dentro de esa columna.) Escriba la siguiente
instruccién SQL incrustada en el documento de texto:

416 Fundamentos de SQL

EXEC SQL
SELECT TITULO CD, EN EXISTENCIA
INTO :v_TITULO CD :ind TITULO CD, :v_EN EXISTENCIA :ind EN EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISCO_COMPACTO = :v_ID_CD;

Observe que una cldusula INTO estd incluida en esta instruccion. La cldausula INTO contiene
las variables de datos de salida y sus variables de indicador asociadas. El documento de texto
deber4 ahora lucir como el siguiente cédigo:

EXEC SQL
BEGIN DECLARE SECTION;

long v_CD_ID; /* variable de entrada para el
identificador de CD */

varchar v_TITULO CD[60]; /* variable de salida para el titulo del
CD */

short ind TITULO CD; /* variable de indicador para v_TITULO
CD */

long v_EN_EXISTENCIA; /* variable de salida para el valor EN_

EXISTENCIA */
short ind EN EXISTENCIZA; /* variable de indicador para v_EN_
EXISTENCIA */
EXEC SQL
END DECLARE SECTION;
EXEC SQL
WHENEVER SQLEXCEPTION GOTO Errorl;
EXEC SQL
SELECT TITULO CD, EN_EXISTENCIA
INTO :v_TITULO CD :ind TITULO CD, :v_EN EXISTENCIA :ind EN
EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISCO COMPACTO = :v_CD ID;

Si éste fuera un programa C real, se verfa también el c6digo C rodeando a las instrucciones
SQL incrustadas. El cédigo C representaria a ese programa real y tomaria acciones apropiadas a
ese programa. Por ejemplo, el lenguaje host incluiria c6digo que permitiria al programa recibir
el identificador de CD para el usuario. El identificador serfa pasado a la variable v_ID_CD para
ser utilizado en la instruccién SELECT incrustada.

6. Guarde el archivo y cierre la aplicacion.

Resumen de Pruebe esto

En este ejercicio se cred una seccién de instruccion de variable host, se declararon cinco variables
host, se agregd una instruccién para manejo de errores y se incrusté una instruccién SELECT de
instancia dnica. Si éste fuera un programa C completo, el lenguaje host habria utilizado los datos
en las variables de salida para tomar cualquier accién apropiada para el programa. El programa

C también incluiria una seccién llamada Errorl que especificaria una accién en especifico a ser
tomada si se generara una excepcion cuando la instruccién SQL es ejecutada. Es posible, por su-
puesto, incluir muchas mads instrucciones SQL incrustadas que las que se usaron en este ejercicio,

Capitulo 17: Acceder a datos SQL desde un programa host 417

y se pueden incluir otros tipos de instrucciones, por ejemplo UPDATE o DELETE. Sin embargo,

el proposito de este ejercicio fue proporcionar una base para SQL incrustado. Para mayores deta-

lles acerca de incrustar instrucciones SQL, deberd referirse a la documentacién especifica del len-
guaje host y a la documentacion de la implementacién SQL aplicable.

Crear mdédulos cliente de SQL

Ahora que se tiene una comprension basica sobre SQL incrustado, demos un vistazo a los médu-
los cliente de SQL. Los mddulos cliente de SQL son colecciones autocontenidas de las instruc-
ciones SQL. A diferencia de SQL incrustado, en el que las instrucciones SQL se insertan en el
lenguaje de programacion host, los médulos cliente de SQL se encuentran separados del lenguaje
host. El lenguaje host contiene llamadas que invocan al médulo, que en su momento ejecuta las
instrucciones SQL dentro de ese moédulo.

Un médulo cliente de SQL consta de las propiedades que definen al médulo, las tablas tempo-
rales, los cursores y los procedimientos que contienen las instrucciones SQL. Cada procedimiento
puede contener solamente una instruccién SQL. La siguiente sintaxis proporciona los elementos
basicos de un médulo cliente de SQL:

MODULE <nombre del médulo> [NAMES ARE <conjunto de caracteres> |

LANGUAGE { ADA | C | COBOL | FORTRAN | MUMPS | PASCAL | PLI }

[SCHEMA <nombre del esquema> | [AUTHORIZATION <identificador de autorizacién>]
[<instrucciones temporales de tabla> | [<instrucciones de cursor> |

PROCEDURE <nombre del procedimiento> (<instrucciones de parametro>)

<instrucciéon SQL>;

Demos un vistazo a cada cldusula dentro de la sintaxis para que se pueda tener una mejor com-
prensién de todos los elementos que conforman un médulo cliente de SQL. La cldusula MODULE
especifica un nombre para el médulo. Esta es seguida por la cldusula opcional NAMES ARE, que
se utiliza para especificar un conjunto de caracteres para los identificadores en el médulo. Sino se
especifica la clausula NAMES ARE, se utiliza el conjunto de caracteres preestablecido para la imple-
mentacién SQL. El siguiente elemento en la sintaxis es la clausula LANGUAGE, que especifica el
lenguaje host que estard llamando al médulo. Siempre se debe especificar un lenguaje.

Después de haber definido la cldusula LANGUAGE, se debe definir una clausula SCHEMA,
una cldusula AUTHORIZATION, o ambas. La cldusula SCHEMA identifica el esquema predeter-
minado para que sea utilizado por las instrucciones SQL en el médulo. La clausula AUTHORIZA-
TION identifica al identificador de autorizacién para que sea utilizado para ejecutar las instruc-
ciones dentro del médulo. Si no se especifica ninguna clausula AUTHORIZATION, se asume el
identificador de autorizacion actual.

También es posible declarar tanto tablas como cursores temporales dentro de un médulo. Las
tablas temporales deben ser declaradas antes que cualquier cursor o procedimiento. Es posible
declarar tantas tablas temporales como sea necesario. A diferencia de las instrucciones temporales
de tablas, las instrucciones de cursor pueden ser mezcladas entre los procedimientos; sin embargo,
una instruccion de cursor siempre debe preceder al procedimiento que hace referencia a ese cursor.

La porcién final de la instruccién del médulo es el procedimiento. Como se menciond ante-
riormente, el médulo puede contener uno o mas procedimientos. Sin embargo, cada procedimiento

418

Fundamentos de SQL

puede contener solamente una instruccion SQL y debe contener por lo menos una instruccion de
pardmetro, que es el pardmetro de estatus SQLSTATE.

NOTA

A veces se hace referencia al procedimiento en un médulo cliente de SQL como un procedi-
miento invocado externamente.

El pardmetro de estatus SQLSTATE proporciona una forma de reportar errores de vuelta al len-
guaje host. Aligual que cualquier otro pardmetro host, los valores pasan entre la base de datos SQL
(el DBMS) y el programa host. En el caso de SQLSTATE, los valores estdn relacionados con el esta-
tus de la ejecucién de la instruccién SQL. Al incluir el pardmetro SQLSTATE en los médulos, se le
estd permitiendo al programa host ver el estatus de la ejecucion de la instrucciéon. Como resultado, el
programa puede monitorear los errores y tomar las acciones apropiadas si esos errores ocurren.

Ademads del pardmetro de estatus SQLSTATE, se deben declarar todos los demds pardmetros
host utilizados en la instruccién SQL del procedimiento. Los nombres de los pardmetros (excepto
SQLSTATE) deben estar precedidos por dos puntos tanto cuando son declarados como cuando son
utilizados en la instrucciéon SQL. Como se puede ver en la sintaxis, las instrucciones de parametro
deben estar encerradas en paréntesis. Ademads, si se declara mds de un pardmetro, esas instruccio-
nes deberdn estar separadas por comas.

Definir médulos cliente de SQL

Ahora que hemos repasado la sintaxis para un médulo cliente de SQL, veamos un ejemplo de
como crear uno. En la siguiente instruccion se creé un médulo que contiene un procedimiento:

MODULE CONSULTA_INVENTARIO CD
LANGUAGE C
SCHEMA INVENTARIO AUTHORIZATION Ventas
PROCEDURE CONSULTA 1
(SQLSTATE, :p ID CD INT, :p NOMBRE_CD VARCHAR (60))
SELECT NOMBRE_CD
INTO :p NOMBRE_CD
FROM INVENTARIO CD
WHERE ID CD = :p ID CD;

Como se puede ver en este ejemplo, se estd creando un modo llamado CONSULTA_INVENTA-
RIO_ CD. El médulo serd llamado desde un programa C (LANGUAGE C). La instruccién SQL den-
tro del médulo accederd a una tabla en el esquema INVENTARIO y se ejecutard bajo el contexto del
identificador de autorizacién Ventas. La instrucciéon MODULE incluye solamente un procedimiento,
que es llamado QUERY_1. Si se definiera mas de un procedimiento, cada uno de ellos estarfa finali-
zado por punto y coma. Ahora demos un vistazo mds cercano al procedimiento CONSULTA_1.

Lo primero que podra notarse es que tres parametros host han sido declarados. El parametro
SQLSTATE proporciona informacién de estatus al programa host. El pardmetro p_ID_CD es un
parametro de entrada que recibird un valor desde el programa host. El pardmetro p_ NOMBRE_CD
es un parametro de salida que tomara el valor arrojado por la instruccién SELECT y lo pasara al
programa host. Observe que tanto el pardmetro p_ID_CD como el pardmetro p_NOMBRE_CD
estan precedidos por dos puntos y declarados con un tipo de datos. El pardmetro SQLSTATE no
requiere de punto y coma ni de ningtin tipo de datos.

Capitulo 17: Acceder a datos SQL desde un programa host 419

Una vez que se declaran los parametros, es posible definir la instruccién SELECT. Como se
puede ver, el pardmetro de entrada es utilizado en la clausula WHERE, y el parametro de salida
es utilizado en la clausula INTO. El uso de los pardmetros en esta forma permite al médulo inter-
actuar con el programa host. Un valor para el pardmetro de entrada es pasado al médulo cuando
el moédulo es convocado dentro del lenguaje host, y el parametro de salida es enviado de vuelta al
lenguaje host para ser utilizado por el programa segtin sea necesario.

NOTA

El proceso de convocar un médulo dentro de un programa host y pasar un parémetro a ese
médulo es especifico de cada lenguaje. Aseguirese de revisar la documentacién para el len-
guaije de programacién especifico y para la implementacién SQL aplicable.

Como se puede ver, un médulo cliente de SQL puede ser una herramienta muy util para de-
sarrollar el componente SQL de una aplicacién sin tener que incrustar las instrucciones SQL en el
lenguaje host. Desafortunadamente, los médulos cliente de SQL no son soportados ampliamente
en las implementaciones SQL, y si lo fueran, a menudo estarfan no muy bien documentados. Sin
embargo, si estdn ampliamente implementados o no se estd volviendo irrelevante debido a que la
industria se mueve cada vez mds de SQL incrustado y los médulos cliente de SQL hacia los acce-
sos de datos CLI o del tipo de CLI, que se cubren en la siguiente seccion.

Utilizar una interfaz de nivel de llamada de SQL

Como se ha visto hasta ahora en este capitulo, un programa puede acceder a una base de datos
SQL utilizando SQL incrustado y los médulos cliente SQL. En SQL incrustado, las instruccio-
nes SQL se insertan directamente en el lenguaje de programacion host. Para los médulos cliente
de SQL, el programa host convoca los médulos que contienen instrucciones SQL ejecutables. Las
instrucciones estdn separadas del lenguaje host. SQL proporciona atn otro método para acceder a
los datos SQL desde dentro del lenguaje de programacién (la interfaz de nivel de llamada), o CLI,
por sus siglas en inglés (call-level interface).

Una CLI es una interfaz de programacién de aplicaciones (API, por sus siglas en inglés) que
soporta un conjunto de rutinas predefinidas que permiten que un lenguaje de programacién se co-
munique con una base de datos SQL. El lenguaje de programacién convoca las rutinas, que luego se
conectan a la base de datos. Las rutinas acceden a los datos y a la informacién de estatus de la base de
datos, seglin se requiera, y arrojan esa informacion al programa. La figura 17-3 proporciona la idea
general de como una CLI permite que un programa se comunique con una base de datos SQL.

El programa invoca rutinas CLI a través del uso de funciones. Cuando se convoca una fun-
cion, el programa debe especificar valores para los argumentos de la funcién. Estos valores definen
qué acciones y cudles datos serdn accedidos. La funcién pasa los valores a la rutina designada, que
actia como una interfaz entre el programa y la base de datos SQL. La CLI, en efecto, oculta los
detalles de acceder a la base de datos desde el programa, haciendo posible para el programa el ac-
ceso a las bases de datos en diferentes sistemas de administracion.

Una de las implementaciones mejor conocidas del modelo CLI es la interfaz de programacion
Open Database Connectivity de Microsoft (ODBC), a pesar de que otros fabricantes han sacado al
mercado productos del tipo CLI que soportan tipos similares de acceso a la base de datos. Ademds,
nuevas generaciones de API de acceso de datos estan ganando popularidad, por ejemplo, OLE-DB

420 Fundamentos de SQL

Programa CcLI Base de
escrito en |e"g'_~|?Je (Biblioteca de la datos SQL
de programacion base de datos)

de aplicaciones
Llamada a
la rutina

Rutina CLI

Llamada a
la rutina

Rutina CLI

Llamada a
la rutina

Rutina CLI

Figura 17-3 Utilizar una CLI para acceder a los datos en una base de datos SQL.

de Microsoft, que es més eficiente que ODBC y soporta acceso tanto a las fuentes de datos SQL
como a otros tipos de fuentes de datos. Para los programadores de Java existe una API similar 1la-
mada JDBC. También encontrard que tales productos, como ActiveX Data Object (ADO), propor-
cionan una interfaz orientada a objetos entre los lenguajes de conjunto de instrucciones o lenguajes
orientados a objetos y la API OLE-DB. Muchas herramientas de desarrollo también han hecho

que acceder a una fuente de datos SQL sea mds ficil que nunca. Por ejemplo, Visual Studio .NET
permite construir aplicaciones de manejo de datos en lenguajes como Visual Basic, C++ y C#. Al
utilizar las herramientas integradas ADO.NET se pueden crear aplicaciones que puedan acceder a
una variedad de fuentes de datos, por ejemplo SQL Server y Oracle.

NOTA

A pesar de que Microsoft recibe todo el crédito por ODBC, fue desarrollado por Microsoft en
asociacién con Simba Technologies, y esté basado en especificaciones CLI del SQL Access
Group, X/Open (ahora parte de The Open Group) y del ISO/IEC.

La clave para todos estos productos es proporcionar un método uniforme de acceso a la base
de datos desde dentro del lenguaje de programacion. Las especificaciones CLI en SQL:2006 es-
tandarizan la interfaz de acceso a la base de datos proporcionando un conjunto de funciones CLI
predefinido que permite al programa conectarse a la base de datos, modificar y recuperar datos,
pasar informacién desde y hacia la base de datos, y obtener informacién de estatus acerca de la
ejecucion de la instruccion. En esta seccion se veran muchas funciones CLI y como pueden ser
utilizadas en un lenguaje de programacién para acceder a los datos SQL.

NOTA

A pesar de que el estandar SQL:2006 ha definido extensamente el modelo CLI, las aplica-
ciones pueden variar ampliamente en los métodos que utilizan para acceder a una fuente de
datos. Como resultado, se encontraré que es necesario utilizar un método de acceso de datos
que sea soportado en el ambiente seleccionado. Por ejemplo, si se estd desarrollando una
aplicacién C que se conecta a una fuente de datos a través de ODBC, los datos especificos
para el acceso de datos descritos en esta seccién serén de mucha ayuda. Sin embargo, si se
estd desarrollando una aplicacién C# o una aplicacién de péginas de servidor activas (ASP,

Capitulo 17: Acceder a datos SQL desde un programa host 421

por sus siglas en inglés) utilizando VBScript y se estd conectando a la fuente de datos a través
de ADO, se tendré que referir a la documentacién relacionada con esa tecnologia en particu-
lar y también revisar la informacién en esta seccién.

Asignar indicadores

El primer paso que se debe tomar cuando se accede a una base de datos a través de una interfaz CLI es
establecer los indicadores de asignacion necesarios. Un indicador de asignacion es un objeto arroja-
do por la base de datos SQL cuando un recurso es asignado. El indicador es utilizado por el programa
host para acceder a la base de datos. Se deben establecer tres tipos de indicadores de asignacion en el
programa host para poder acceder a los datos SQL desde dentro del programa:

Indicador de ambiente Establece el ambiente en el cual todas las funciones CLI son convo-
cadas y proporciona un contexto en el que se establecen uno o més indicadores de conexién.

Indicador de conexion Establece un contexto de conexion a una base de datos SQL especifica.
Elindicador de conexién debe establecerse dentro del contexto del indicador de ambiente. Un in-
dicador de conexién no se conecta realmente a la base de datos. Simplemente proporciona el con-
texto para hacer posible esa conexién. Una vez que un indicador de conexién ha sido establecido,
deberd utilizarse el contexto de ese indicador para hacer la conexidn real a la base de datos.

Indicador de instruccion Establece un contexto en el cual las instrucciones SQL pueden ser
ejecutadas. Cualquier instruccion invocada a través de CLI debe ser ejecutada dentro del con-
texto de un indicador de instruccidn, y el indicador de instruccién debe estar definido dentro
del contexto de un indicador de conexidn.

Para comprender mejor cémo operan los indicadores de asignacion, demos un vistazo a la
figura 17-4. Como se puede ver en la figura, dos indicadores de conexidn se alojan dentro de un

Indicador de ambiente

Indicador de conexion

Indicador de conexion

Indicador de instruccion
Instruccion SQL
Instruccion SQL

Instruccion SQL

Instruccion SQL

Indicador de instruccién
Instruccion SQL
Instruccion SQL
Instruccion SQL

Instruccion SQL

Conexion a
la base de datos 1

Figura 17-4 Establecer indicadores de asignacién.

Conexion a
la base de datos 2

422

Fundamentos de SQL

indicador de ambiente, y un indicador de ambiente se aloja dentro de cada indicador de conexion.
Cada instruccion SQL es ejecutada dentro del contexto de un indicador de asignacion.

Establecer un indicador de ambiente

Para establecer un indicador de ambiente en el cual soportar el acceso a la base de datos, se puede
utilizar la funcién AllocHandle(), que requiere tres argumentos. El primer argumento (SQL_
HANDLE_ENV) especifica el tipo de indicador (de ambiente) que se estd asignando. El segundo
argumento (SQL_NULL_HANDLE) indica que el indicador de ambiente no depende de ningtin
indicador existente. El tercer argumento es una variable host que identifica al indicador de ambien-
te. Cuando una variable host es utilizada en este contexto, estd precedida del simbolo de unién &
(ampersand, en inglé€s).

NOTA

Las variables host son declaradas de acuerdo con las convenciones del lenguaije host. Ade-
mds, el programa host pudiera contener ofros elementos que soporten la funcionalidad CLI.
Por ejemplo, un programa C podria requerir archivos de inclusién especiales necesarios para
interactuar con la interfaz de programacién CLI. También es necesario observar que las biblio-
tecas del lenguaje pueden variar de fabricante a fabricante; por ejemplo, existen varias incon-
sistencias conocidas entre las bibliotecas C proporcionadas por Microsoft y Borland. Ademés,
el programa host puede contener funciones especiales para manejo de errores que pueden
monitorear el éxito o fracaso de una llamada de rutina CLI. Para informacién acerca de los
elementos especificos de cada lenguaje que deberdn estar incluidos en el programa host, ase-
gurese de revisar la documentacién para el lenguaije especifico, la interfaz de programacién
de aplicaciones CLl y la implementacién SQL.

Ahora que se han repasado los elementos individuales necesarios para establecer un indicador
de ambiente, demos un vistazo a la funcién AllocHandle() como si ya estuviera incluida en el pro-
grama C:

SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv);

Lo primero que notard es que la funcién AllocHandle estd precedida por el prefijo SQL. En
los programas C, el prefijo SQL es agregado a todas las funciones CLI. El prefijo puede variar de
acuerdo con el lenguaje host. También se notard en esta instruccién que los tres argumentos estdn
encerrados en paréntesis y separados por comas. Ademads, la variable host que identifica al indica-
dor esté precedida por el simbolo de unién &.

Establecer un indicador de conexién

Una vez que se ha establecido el indicador de ambiente, es posible establecer uno o mas indicado-
res de conexién dentro del contexto de ese ambiente. Para hacerlo, se utilizara una vez mas la fun-
cién AllocHandle(), junto con los tres argumentos. El primer argumento (SQL_HANDLE_DBC)
especifica el tipo de indicador (de conexidn) que se estd asignando. El segundo argumento identifi-
ca el ambiente en el cual la conexién estd siendo establecida. (Esta es la variable host identificada
cuando se estableci6 el indicador de ambiente.) El tercer argumento es una variable host que iden-
tifica al indicador de conexién. Una vez mds, éste estd precedido por el simbolo de unién &, como
se muestra en la siguiente instruccién de funcién:

SQLAllocHandle (SQL HANDLE DBC, henv, &hdbc);

Capitulo 17: Acceder a datos SQL desde un programa host 423

Después de establecer el indicador de conexion es necesario explicitamente conectarse a la
base de datos dentro del contexto del indicador. Para hacer esto se debe utilizar la funcién SQL-
Connect(), que utiliza siete argumentos: el indicador de conexion, el servidor SQL objetivo, la
longitud del nombre del servidor, el usuario de conexién, la longitud del nombre del usuario,
la contrasefia de conexion y la longitud de la contrasefia. Para las cadenas C se puede utilizar
SQL_NTS en lugar de los argumentos de longitud para indicar que una longitud no tiene que ser
especificada por la cadena anterior, como se muestra en el siguiente ejemplo:

SQLConnect (hdbc, servidor0l, SQL NTS, AdminVentas, SQL NTS, CVentas,
SQL_NTS) ;

Como se puede ver, la funcidn especifica al indicador de conexién hdbc y al servidor SQL ser-
vidorO1. La conexidn serd establecida utilizando la cuenta de usuario AdminVentas y la contrasefia
CVentas. Se utiliza SQL_NTS en lugar de especificar la longitud de cualquiera de las cadenas.

Una vez que se estd conectado con la base de datos, es posible crear indicadores de instruc-
cién y ejecutar instrucciones SQL.

Establecer un indicador de instruccién
Para poder ejecutar una instruccién SQL desde dentro del programa host, se debe crear un indica-
dor de instruccidn dentro del contexto del indicador de conexién. Al igual que con otros tipos de
indicadores, se puede utilizar la funciéon AllocHandle() para establecer el indicador de instruccién.
Como se ha visto, la funcién AllocHandle() requiere tres argumentos. En el caso de un indi-
cador de instruccion, esos argumentos son SQL._HANDLE_STMT, la variable host que identifica
al indicador de conexién y la variable host que identifica al indicador de instruccién. La variable
host que identifica al indicador de instruccion estd precedida por el simbolo de unién &, como se
muestra en el siguiente ejemplo:

SQLAllocHandle (SQL HANDLE STMT, hdbc, &hstmt);

En esta funcion el indicador de conexién referenciado es hdbc, y la variable que identifica al indi-
cador de instruccién es hstmt.

Ejecutar instrucciones SQL

Ahora que se han establecido los indicadores de asignacion y la conexién a la base de datos, es po-
sible establecer funciones que permitan ejecutar las instrucciones SQL. El modelo CLI soporta dos
métodos que pueden utilizarse para ejecutar instrucciones SQL. El primero es la ejecucién directa
y el segundo es la preparacién de la instruccion para su ejecucion posterior.

Utilizar la funcién ExecDirect()

El primer método que puede utilizarse para ejecutar una instruccién SQL es la funcién ExecDi-
rect(). Esta funcién utiliza tres argumentos. El primer argumento es el nombre del indicador de
instruccién en cuyo contexto se estard ejecutando la instruccién. El segundo argumento es la ins-
truccién SQL en si, encerrada entre comillas. El tercer argumento es la longitud de la instruccion.
En un programa C, generalmente se utiliza SQL_NTS para indicar que no es necesario especificar
la longitud de la cadena.

424

Fundamentos de SQL

Demos un vistazo a un ejemplo de la funcién ExecDirect() para demostrar cémo puede ser
utilizada para ejecutar una instruccién SQL. La siguiente funcién hace referencia al indicador de
instruccién hstmt y define una instruccién DELETE:

SQLExecDirect (hstmt, "DELETE FROM INVENTARIO CD WHERE ID CD = 5731",
SQL NTS) ;

Como se puede ver, la instruccién SQL es pasada como un argumento a la rutina CLI. En este
caso, cualquier fila con un valor ID_CD de 5731 serd eliminada de la tabla INVENTARIO_CD.
Observe que el valor SQL_NTS es utilizado para indicar que no es necesario especificar la longi-
tud de la cadena (la instruccién SQL en si).

Utilizar las funciones Prepare() y Execute)

Otro método que puede utilizarse para ejecutar una instruccion es preparar primero la instruccién
y ejecutarla después. Este método puede utilizarse si es necesario ejecutar la instruccién mas de
una vez.

La primera funcién que se utiliza en este proceso de dos pasos es la funcién Prepare(), que
requiere los mismos tres argumentos que la funcién ExecDirect(), como se muestra en el siguiente
ejemplo:

SQLPrepare (hstmt, "DELETE FROM INVENTARIO CD WHERE ID CD = 5731", SQL NTS) ;

Observe que se hace referencia al mismo indicador de instruccién y se define la misma ins-
truccién SQL que en el ejemplo anterior sobre ExecDirect(). La dnica diferencia es que, en el
caso de la funcién Prepare(), la instruccion no es ejecutada en realidad, sino que solamente es pre-
parada para su ejecucién. Cuando una instruccién debe ser ejecutada multiples veces, este proceso
ayuda a evitar la sobrecarga de informacién debido a que la instruccién tiene que ser analizada y
optimizada solamente una ocasion.

Una vez que se ha preparado la instruccién, puede entonces utilizarse la funcién Execute()
para ejecutar la instruccién. La funcién Execute() solamente ocupa un argumento (el indicador de
instruccién que contiene la instruccion preparada), como se muestra en el siguiente ejemplo:

SQLExecute (hstmt);

Debido que la instruccion ya estaba preparada, simplemente se necesita hacer referencia al
indicador de instruccién para ejecutar la instruccidon. Puede ejecutarse la instruccion de manera tan
frecuente como sea necesario simplemente al invocar la funcién Execute() y especificar el indica-
dor de instruccion.

Trabajar con variables host

En los ejemplos anteriores, las instrucciones SQL que se han ejecutado eran relativamente senci-
llas debido a que no se utilizaron variables host en la instruccién. Sin embargo, si se planea pasar
valores de variable host desde o hacia una instruccién SQL, se debe tomar un paso extra para enla-
zar esas variables host a la instrucciéon SQL.

Por ejemplo, supongamos que se quiere determinar una instruccién DELETE que tome una
variable de entrada identificando a la fila que va a ser eliminada. La funcién Prepare() seria simi-
lar a la siguiente:

SQLPrepare (hstmt, "DELETE FROM INVENTARIO CD WHERE ID CD = ?", SQL NTS);

Capitulo 17: Acceder a datos SQL desde un programa host 425

Observe que se utilizan las comillas para indicar la posicion de la variable. Se utiliza el signo de
interrogacion en el lugar de la variable host. Esto a menudo se denomina como marcador de posi-
cion.

Una vez que se ha preparado la instruccion SQL, ahora debe enlazarse la variable host a la
instruccién. Para hacer eso en un programa C, se debe utilizar una funcién BindParameter() que
identifique al indicador de instruccidn, la posicién de la variable host dentro de la instruccién
SQL, el nombre de la variable host y algunos otros argumentos, como se muestra en el siguiente
ejemplo:

SQLBindParameter (hstmt, 1, SQL PARAMETER MODE IN, SQL INT,
SQL INT, 4, O, &v_ID CD, 4, &ind ID CD);

Como se puede ver, la funcién BindParameter() utiliza 10 argumentos. La tabla 17-2 lista
los argumentos utilizados en el ejemplo anterior y proporciona una descripcién para cada uno de
€s0s argumentos.

Si se incluye mds de una variable host en la instrucciéon SQL, deberd ser utilizada una instruc-
cion de funcién BindParameter() para cada variable, y la posicion (el segundo argumento) deberd
ser incrementada en uno para cada variable adicional. Una vez que se enlazan las variables host a
la instruccién SQL, es posible ejecutar la instruccién utilizando la funcién Execute().

Argumento | Ejemplo Descripcion

1 hstmt Identifica al indicador de instruccién que da el contexto
para la ejecucién de la instruccién SQL

2 1 Identifica la posicién de la variable host en la instruccién
SQL

3 SQL_PARAMETER_MODE_IN | Identifica si una variable host es una variable de entrada,
de salida o de entrada/salida

4 SQL_INT Identifica el tipo de datos del valor suministrado

5 SQL_INT Identifica el tipo de datos de la variable host

6 4 Especifica el tamafio de columna de la variable host

7 0 Especifica el nimero de digitos a la derecha del decimal
requerido por la variable host

8 &v_CD_ID Identifica el nombre de la variable host, como se declaré
en el programa host

9 4 Especifica la longitud en octetos (bytes) de la variable host

10 &ind_CD_ID Identifica el nombre de la variable de indicador, como se

declaré en el programa host

Tabla 17-2 Argumentos utilizados en la funcién BindParameter().

426

Fundamentos de SQL

Recuperar datos SQIL

Hasta este punto, las instrucciones SQL que se han ejecutado en el ambiente CLI no han arrojado
ningin dato. Sin embargo, a menudo se encontraran situaciones en las que el programa necesitara
consultar la base de datos y procesar los valores que son arrojados por esa consulta. Como resulta-
do, se necesitara algtn tipo de mecanismo para enlazar el resultado de esa consulta a las variables
que se declararon en el lenguaje host.

Por ejemplo, supongamos que se quiere ejecutar la siguiente instruccién SELECT:

SQLExecDirect (hstmt, "SELECT NOMBRE CD, EN EXISTENCIA FROM
INVENTARIO CD", SQL NTS);

Como se puede ver, la instruccién arrojard una lista de valores NOMBRE_CD y valores EN_
EXISTENCIA de la tabla INVENTARIO_CD. Para poder tratar con esos valores, deben ser enla-
zados a las variables host aplicables. Para hacer esto en un programa C, deber4 utilizarse la fun-
cién BindCol(). Esta funcién es un poco mas simple que la funcién BindParameter() y solamente
ocupa seis argumentos, como se muestra en el siguiente ejemplo:

SQLBindCol (hstmt, 1, SQL CHAR, &v NOMBRE CD, 60, &ind NOMBRE CD) ;
SQLBindCol (hstmt, 2, SQL INT, &v_EN EXISTENCIA, 5, &ind EN EXISTENCIA) ;

La tabla 17-3 lista los argumentos utilizados en la primera instruccion de este ejemplo y pro-
porciona una descripcién de cada uno de esos argumentos.

Observe que se han definido dos instrucciones de funcidn, una para cada columna recuperada
por la instruccién SELECT. Se debe definir una instruccién de funcién por cada columna que esté
listada en la cldusula SELECT de la instruccién SELECT. Una vez que se enlazan los valores de
columna a las variables host, pueden utilizarse esas variables en el programa host para procesar los
datos dentro del programa segtin sea necesario.

Argumento | Ejemplo Descripcion

1 hstmt Identifica el indicador de instruccién que da el contexto
para la ejecucién de la instruccién SQL

2 1 Identifica la columna como estd listada en la cldusula
SELECT de la instruccién SELECT

SQL_CHAR Identifica el tipo de datos de la variable host

4 &v_NOMBRE_CD Identifica el nombre de la variable host, como se declaré
en el programa host

5 60 Especifica la longitud en octetos de la variable host

6 &ind_NOMBRE_CD Identifica el nombre de la variable de indicador, como fue

declarada por el programa host

Tabla 17-3 Argumentos utilizados en la funcién BindCol().

Capitulo 17: Acceder a datos SQL desde un programa host 427

Utilizar la interfaz de nivel
de llomada de SQL

En el ejercicio anterior, Pruebe esto 17-1, se utiliz6 un programa de edicién de texto para crear
instrucciones SQL incrustadas. En este ejercicio se realizardn acciones similares, excepto que esta
vez se definirdn las funciones necesarias para realizar llamadas de la rutina CLI. Como parte de este
proceso, se establecerdn los indicadores de asignacion necesarios, se creard una conexion a la base
de datos, se establecera la ejecucion de la instruccion SQL, se enlazaran las variables host a las ins-
trucciones SQL y se enlazara el resultado de la instruccidn a las variables host. Las funciones CLI
que se estaran utilizando serdn aquellas tipicamente utilizadas en un programa C. Tenga en mente,
sin embargo, que el modelo CLI soporta muchas mds funciones de las que hemos cubierto en este
capitulo. Asegtirese de revisar la documentacién apropiada para mayores detalles acerca de las fun-
ciones que sean diferentes a las descritas aqui. Se puede descargar el archivo Try_This_17_2.txt (en
inglés), que contiene las instrucciones de funcién CLI utilizadas en este ejercicio.

Paso a paso

1. Abra un programa de edicién de texto como el Bloc de notas de Microsoft.

2, El primer paso que debe tomarse es establecer un indicador de ambiente. Se utilizard la variable
host henv para determinar el indicador. Escriba la siguiente instruccién de funcién en el docu-
mento de texto:

SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv);
Observe que las funciones incluyen tres argumentos, encerrados en paréntesis y separados por
comas. Observe también que se utiliza un signo de unién & para la variable host.

3. Ahora es posible establecer el ambiente de conexién. El ambiente de conexién se establecera
dentro del contexto del indicador de ambiente que se cred en el paso 2. Escriba la siguiente ins-
truccion de funcién en el documento de texto:

SQLAllocHandle (SQL HANDLE DBC, henv, &hdbc);

Como se puede ver, la variable host henv se utiliza para mostrar el indicador de ambiente, y la
variable host hdbc se utiliza para identificar al indicador de conexidn.

4. Ahora que se ha establecido el indicador de conexion, es posible crear la conexién real. Para
esta conexion se utilizara ServidorBD como el servidor SQL, AdminBD como la cuenta de
usuario, y CAdmin como la contrasefia para esa cuenta. Escriba la siguiente instruccién de fun-
cion en el documento de texto:

SQLConnect (hdbc, ServidorBD, SQL NTS, AdminBD, SQL NTS, CAdmin, SQL
NTS) ;

Observe que la instruccién incluye el valor SQL_NTS para indicar que no es necesario especifi-
car una longitud de cadena.

(continda)

428 Fundamentos de SQL

5.

8

10.

A continuacion se establecerd el indicador de instruccién dentro del contexto de la conexién
que se cred en el paso 3. Escriba la siguiente instruccion de funcién en el documento de texto:

SQLAllocHandle (SQL HANDLE STMT, hdbc, &hstmt);

Como se puede ver, la variable host hdbc es utilizada para identificar al indicador de conexion,
y la variable hstmt es utilizada para identificar al indicador de instruccién.

Ahora que se han establecido los indicadores de asignacién y se ha creado la conexioén, todo
estd listo para ejecutar una instruccion SQL. Se utilizard la funcién ExecDirect() para especi-
ficar una instruccion DELETE. Escriba la siguiente instruccién de funcién en el documento de
texto:

SQLExecDirect (hstmt, "DELETE FROM DISCOS_ COMPACTOS
WHERE ID DISCO_COMPACTO = 122", SQL NTS);

La instrucciéon DELETE estd incluida como uno de los argumentos de la funcién. Observe que
estd encerrada entre comillas. Observe también que la instruccion estd siendo preparada dentro
del contexto de la variable host hstmt, que estd asignada al ambiente de la instruccion.

En el paso anterior se ejecut6 la instruccién SQL en un paso utilizando la funcién ExecDirect().
En este paso se preparard una instrucciéon SQL para su ejecucidn, pero en realidad se ejecutard
hasta un paso posterior. Escriba la siguiente instruccién de funcién en el documento de texto:
SQLPrepare (hstmt, "SELECT TITULO CD, EN EXISTENCIA FROM DISCOS

COMPACTOS
WHERE ID DISCO_COMPACTO = ?", SQL NTS);

Observe que la cldusula WHERE de la instrucciéon SELECT incluye un signo de interrogacion
para indicar que un valor serd pasado hacia la instruccién a través de una variable host.

Para poder ejecutar la instruccién del paso anterior serd necesario enlazar la variable host a la
instruccién. Escriba la siguiente instruccion de funcién en el documento de texto:
SQLBindParameter (hstmt, 1, SQL PARAMETER MODE IN, SQL INT,

SQL_INT, 3, 0, &v_ID CD, 4, &ind ID CD);
Como se puede ver, la variable host v_ID_CD estd siendo enlazada a la instrucciéon SQL en
el contexto del ambiente de la instruccién creado anteriormente. Debido a que sélo se hace
referencia a una variable host en la instruccién SQL, solamente se requiere una instruccion de
funcién BindParameter().

Ahora es posible ejecutar la instruccion preparada en el paso 7. Escriba la siguiente instruccién
de funcién en el documento de texto:

SQLExecute (hstmt);
La instruccion serd ejecutada en el contexto del ambiente de instruccién hstmt.

A continuacién se deben enlazar los resultados de la consulta con las variables host. Debido
a que dos columnas son identificadas en la cldusula SELECT de la instruccién SELECT, se
deben incluir dos instrucciones de funcién BindCol(). Escriba las siguientes instrucciones de
funcién en el documento de texto:

SQLBindCol (hstmt, 1, SQI,_CHAR, &v_TITULO CD, 60, &ind TITULO CD) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_EN EXISTENCIA, 5, &ind EN EXISTENCIA) ;

Capitulo 17: Acceder a datos SQL desde un programa host 429

El programa C debera ahora ser capaz de utilizar los valores arrojados por la instrucciéon SE-
LECT. Si se revisa el documento que se ha creado, debera contener el siguiente cédigo:

SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv) ;
SQLAllocHandle (SQL HANDLE DBC, henv, &hdbc);
SQLConnect (hdbc, ServidorBD, SQL NTS, AdminBD, SQL NTS, CAdmin, SQL
NTS) ;
SQLAllocHandle (SQL HANDLE STMT, hdbc, &hstmt);
SQLExecDirect (hstmt, "DELETE FROM DISCOS_COMPACTOS

WHERE ID_DISCO_COMPACTO = 122", SQL_NTS) ;
SQLPrepare (hstmt, "SELECT TITULO CD, EN EXISTENCIA FROM DISCOS
COMPACTOS

WHERE ID DISCO_COMPACTO = ?", SQL NTS) ;
SQLBindParameter (hstmt, 1, SQL PARAMETER MODE IN, SQL INT,

SQL _INT, 3, 0, &v_ID CD, 4, &ind ID CD);
SQLExecute (hstmt) ;
SQLBindCol (hstmt, 1, SQL_CHAR, &v_ TITULO_CD, 60, &ind_TITULO_CD) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_ EN EXISTENCIA, 5, &ind EN EXISTENCIA) ;

11. Guarde el archivo y cierre la aplicacion.

Resumen de Pruebe esto

Este ejercicio introdujo las funciones bdsicas necesarias para utilizar CLI para acceder a una base
de datos desde un programa host. Lo que no cubre el ejercicio es el codigo C real que proporcio-
narfa la base para el programa. Por ejemplo, un programa C usualmente incluirfa instrucciones de
variable, archivos de inclusion, capacidades para manejo de errores, operaciones relacionadas con
el usuario y lenguaje condicional que permita utilizar los valores arrojados por la base de datos
SQL. Las funciones CLI que se cubririan en este ejercicio usualmente serian dispersadas en el len-
guaje host y trabajarfan en conjuncién con €l. Aun con eso, este ejercicio deberd haberle ayudado
a comprender los conceptos basicos involucrados al utilizar CLI, y debe haberlo preparado mejor
para trabajar en el ambiente del lenguaje host cuando se intente acceder a datos SQL.

v Aot Canitulo 17

1. ;Cuél método de acceso de datos debera utilizarse si se quieren crear y ejecutar instrucciones
SQL ad hoc?
A CLI
B De mddulos cliente de SQL
C Invocacién directa
D SQL incrustado

430 Fundamentos de SQL

2. ;Qué es SQL incrustado?
3. ;Qué hace el precompilador con el archivo del programa?
4. ;Cuidles archivos son creados por un precompilador SQL?
A Un archivo para las funciones CLI
B Un archivo para el lenguaje host
C Un archivo para las llamadas CLI
D Un archivo para las instrucciones SQL incrustadas
5. (Qué cldusula se utiliza en una instruccion MODULE para especificar el lenguaje de programa-
ci6on host?
6. ;Qué prefijo deberan utilizar las instrucciones SQL incrustadas cuando esas instrucciones son
incrustadas en el lenguaje de programacién MUMPS?
A &SQI(
B EXECSQL
C START-EXEC
D Las instrucciones incrustadas en MUMPS no requieren un prefijo

7. Un(a) es un tipo de pardmetro que es declarado dentro del lenguaje host y
luego es referenciado dentro de la instrucciéon SQL incrustada.

8. ;Qué instruccioén deberd utilizarse al principio de la seccién de instruccion para las variables
host?

9. (Qué prefijo deberd proporcionarse para una variable host cuando esté incluida en una instruc-
cién SQL?
A Signo de interrogacién
B Signo de unién &
C Puntoycoma
D Dos puntos

10. Se planea incrustar instrucciones SQL en el programa host. Se quiere declarar diferentes varia-
bles host para ser utilizadas en las instrucciones SQL. ;Qué instruccién SQL debera utilizarse
para finalizar la seccién de instruccién del programa?

A TERMINATE DECLARE SECTION
B END DECLARE SECTION

C TERMINATE DECLARATIONS

D END DECLARATIONS

11. ;Qué puede provocar que ocurra una incongruencia en la impedancia cuando se pasa una varia-
ble de un programa host a una instruccién SQL?

12. ;Qué tipo de instruccién SELECT puede utilizarse en SQL incrustado cuando se recupera sola-
mente una fila de datos?

13.

14.

15.

16‘

17.

18.

19.

20.

21.

Capitulo 17: Acceder a datos SQL desde un programa host 431

Un(a) es un tipo de variable que especifica si una variable de datos asociada
contiene un valor nulo.

(Qué instruccién puede utilizarse en SQL incrustado para proporcionarle al programa host la
informacién de excepcion y de advertencia?

A WHENEVER

B INTO

C CAST

D PROCEDURE

Un(a) es una coleccién de instrucciones SQL autocontenidas que estdn separa-

das de un lenguaje de programacion host, pero que pueden ser convocadas desde dentro de ese
lenguaje.

(Qué indicadores de asignacién deben establecerse para poder ejecutar una instruccién SQL a
través de una interfaz de programacién CLI?

(Cudntas instrucciones SQL pueden incluirse en un procedimiento en un médulo cliente de
SQL?

(,Qué funcidén deberd utilizarse para establecer un indicador de conexién CLI?
A ExecDirect()

B Connect()

C Prepare()

D AllocHandle()

Se estd asignando un indicador de ambiente dentro de un programa C y asignando el indicador
con la variable host henv. ;Qué instruccion de funcién debera utilizarse?

Se estd creando la siguiente instruccién de funcién Prepare() en el programa host:

SQLPrepare (hstmt, "SELECT ID CD, TITULO CD, EN_ EXISTENCIA FROM
DISCOS_ COMPACTOS WHERE ID DISCO COMPACTO = ?", SQL NTS);

(Cuantas instrucciones de funcién BindCol() deberan crearse?

A Una

B Dos

C Tres

D Cuatro

(Qué funcion CLI debera utilizarse si se quiere ejecutar una instruccién SQL en un solo paso?

Capitulo 18

Trabajar con datos XML

434 Fundamentos de SQL

Habilidades y conceptos clave

Aprender los conceptos basicos de XML

Aprender acerca de SQL/XML

El lenguaje de marcado extensible (XML, por sus siglas en inglés) es un lenguaje de marcado de
propdsito general utilizado para describir documentos en un formato conveniente para desple-

garse en paginas Web y para intercambiar datos entre diferentes partes. Las especificaciones para
almacenar datos XML en las bases de datos SQL fueron agregadas al estindar SQL en SQL:2003
como Part 14 (parte 14, discutiblemente la mejora mds importante a esa version del estdndar). La
parte 14, también conocida como SQL/XML, fue expandida en SQL:2006 y algunas correcciones
de errores se publicaron en el 2007.

NOTA

SQL/XML es totalmente diferente a SQLXML de Microsoft, que es una tecnologia propietaria
utilizada en SQL Server. Como es facil imaginar, el desafortunado parecido en los nombres ha
causado gran confusién. Microsoft participé en los esténdares que precedieron a SQL/XML,
pero después escogié no implementarlo.

Aprender los conceptos bdsicos de XML

Para poder comprender SQL/XML, se deben comprender primero los conceptos basicos de XML.
A pesar de que una explicaciéon completa acerca de XML excede por mucho los alcances de este
libro, este tema proporciona una breve explicacion. Se puede encontrar mucha mas informacién al
buscar en Internet.

Es posible que usted ya esté familiarizado con HTML, el lenguaje de marcado utilizado para
definir paginas Web. De ser asi, la sintaxis de XML le serd muy familiar. Esto se debe a que ambos
estan basados en el lenguaje de marcado generalizado estandar (SGML, por sus siglas en inglés),
el cual estd basado en el lenguaje de marcado generalizado (GML, por sus siglas en inglés), que
fue desarrollado por IBM en los afios sesenta. Un lenguaje de marcado es un conjunto de anota-
ciones, a menudo llamadas etiguetas, que se utilizan para describir como el texto serd estructurado,
formateado o acomodado. El texto etiquetado tiene la intencién de ser leido por humanos. Una de
las diferencias fundamentales entre HTML y XML es que HTML proporciona un conjunto prede-
finido de etiquetas, mientras que XML permite al autor crear sus propias etiquetas.

Demos un vistazo a un documento XML de ejemplo que contiene los resultados de una con-
sulta SQL. La figura 18-1 muestra dos artistas de la tabla INTERPRETES y cinco de sus CD de
la tabla INVENTARIO_CD. Como se aprendi6 en el capitulo 11, podemos unir facilmente las dos
tablas utilizando una instrucciéon SELECT de SQL como la siguiente:

SELECT a.NOMBRE INTER, a.ID INTER, b.NOMBRE CD, b.EN_EXISTENCIA
FROM INTERPRETES a JOIN INVENTARIO CD b
ON a.ID INTER = b.ID INTER
ORDER BY a.NOMBRE INTER, b.NOMBRE CD;

Capitulo 18: Trabajar con datos XML 435

INTERPRETES INVENTARIO_CD
ID_INTER: | NOMBRE_INTER: NOMBRE_CD: ID_INTER: | EN_EXISTENCIA
INT VARCHAR(60) VARCHAR(60) INT INT
101 Joni Mitchell Both Sides Now 101 13
104 Bonnie Raitt Blue 101 24
Court and Spark 101 17
Longing in Their Hearts 104 18
Fundamental 104 22

Figura 18-1 Las tablas INTERPRETES e INVENTARIO_CD.

Observe que se utilizo la clausula ORDER BY para especificar el orden de las filas en el conjunto
de resultados. Los resultados de la consulta deberan lucir parecidos a éstos:

ID _INTER NOMBRE_ INTER NOMBRE_CD EN_EXISTENCIA
104 Bonnie Raitt Fundamental 22
104 Bonnie Raitt Longing in Their Hearts 18
101 Joni Mitchell Blue 24
101 Joni Mitchell Both Sides Now 11
101 Joni Mitchell Court and Spark 17

Los resultados de la consulta estdn en un formato conveniente para desplegarse o imprimirse,
pero no estdn en un formato que pudiera desplegarse facilmente en una pagina Web o pasar a otra
aplicacién de computadora para procesamiento posterior. Una forma de hacer mas fécil esto es
convertir los resultados de la consulta a XML como se muestra aqui:

<artistas>
<artista id="104">
<nombres>Bonnie Raitt</nombre>
<CD>
<CD existencia="22"><nombres>Fundamental</nombre></CD>
<CD existencia="18"><nombres>Longing in Their Hearts</
nombre></CD>
</CD>
</artistas>
<artista id="101">
<nombre>Joni Mitchell</nombres>
<CD>
<CD existencia="24"><nombre>Blue</nombre></CD>
<CD existencia="11"s><nombre>Both Sides Now</nombre></CD>

436

Fundamentos de SQL

<CD existencia="17"><nombre>Court and Spark</nombre></CD>
</CD>
</artista>
<!-- Artistas adicionales disponibles pronto-->
</artistas>

Como se puede ver en el listado de cddigo, las etiquetas estan encerradas en corchetes angu-
lares y cada etiqueta de inicio tiene una etiqueta de finalizacién correspondiente que es idéntica,
excepto por una diagonal (/) que el nombre tiene enfrente. HTML utiliza una convencidn idéntica.
Por ejemplo, la etiqueta <artistas> inicia la lista de los artistas, mientras que le etiqueta </artistas>
la finaliza. Dentro de la lista de artistas, la informacién para cada uno de los artistas individuales
comienza con la etiqueta <artista>, que incluye un valor de datos para el atributo o de identifica-
cion del artista, y finaliza con la etiqueta </artista>. Se acostumbra (y se considera la mejor practi-
ca) nombrar una lista utilizando el plural del nombre de la etiqueta utilizado para cada uno de los
elementos en la lista. Los comentarios pueden ser agregados utilizando una etiqueta especial que
comienza con <!-- y finaliza con -->, como se muestra en la pentltima linea del ejemplo.

Tanto los elementos de datos como los valores de datos (por ejemplo aquellos que serian al-
macenados en una columna de tabla relacional) pueden ser codificados como pares de nombre y
pares de valor en una de dos formas. La primera forma es utilizando un atributo XML al nombrar
el atributo dentro de otra etiqueta, seguido por el signo de igual y el valor de datos encerrado en
comillas dobles, como se hizo con los atributos de identificacién y de existencias. La segunda
forma es utilizando un elemento XML al crear una etiqueta separada para el elemento de datos
con el valor de datos que qued6 entre las etiquetas de inicio y de finalizacién, como se hizo con
los atributos del nombre de artista y con los atributos del nombre de CD. La cuestién acerca de
cudl forma utilizar ha sido tema de mucho debate entre los desarrolladores XML. Sin embargo, el
consenso general es utilizar elementos en cualquier momento que el elemento de datos pudiera ser
separado en elementos adicionales posteriormente, como al separar el nombre del artista en nom-
bre y apellido, o al dividir un elemento tinico de datos que contiene una lista de nombres de artista
de respaldo separados por comas en una lista de elementos. Una consideracién adicional es cuando
se quiere permitir al procesador XML ignorar los caracteres que no aparecen en un documento im-
preso, como sucederia para los atributos, pero no para los elementos.

Probablemente se notara que, a diferencia del conjunto de resultados de SQL, XML puede
mostrar la jerarquia de los datos. En este caso, la lista de los CD grabados por cada artista es
anidada dentro de la informacién acerca del artista. Se ha tratado de que las declaraciones XML
hagan el anidado mas obvio. Y aunque la sangria de las etiquetas anidadas es la mejor practica, no
resulta significante debido a que los caracteres que no aparecen en un documento impreso entre las
etiquetas son ignorados cuando se procesa el XML.

La codificacion XML puede ser muy tediosa. Afortunadamente, existen herramientas disponi-
bles para realizar la conversion entre XML y texto plano, y funciones SQL/XML (cubiertas poste-
riormente en este capitulo) para convertir los datos de una base de datos relacional (SQL) a XML.
Durante un tiempo, las bases de datos especializadas para almacenar y recuperar XML fueron ga-
nando popularidad, pero los fabricantes de bases de datos relacionales mds importantes agregaron
caracteristicas para permitir que XML nativo sea almacenado directamente en sus bases de datos.
Al mismo tiempo, el estandar SQL fue expandido para incluir provisiones de datos XML, como se
discute en el resto de este capitulo.

Capitulo 18: Trabajar con datos XML 437

Pregunta al experto

P: .Existe un estandar para el lenguaje XML por si mismo?

R: Auncuando ISO no publica actualmente un estdndar para XML, ISO 8879 proporciona un
estdndar para el lenguaje de marcado generalizado estdndar (SGML), y XML estd basado en
SGML. Mis relevantemente, el consorcio World Wide Web Consortium (W3C) publica especi-
ficaciones XML que comprenden el estdndar aceptado generalmente por toda la industria de TI.

P: Semencioné que XML es una forma conveniente para que diferentes partes intercambien
informacion. ;Significa eso que dos compaiiias pueden intercambiar libremente datos sin
tener que crear un elaborado software de interfaz debido a que ambos utilizan XML?

R: Bueno, no exactamente. XML s6lo proporciona una forma estdndar para formatear los datos.
Para que una compafia interprete correctamente los datos XML que otra compaiiia le ha en-
viado, debe conocer los nombres y definiciones de las etiquetas que la otra compaiifa formated
para ellos, particularmente los elementos y atributos que contienen los datos. Afortunada-
mente, existen varios estdndares de la industria que pueden ayudar. Por ejemplo, HR/XML
proporciona un estdndar para intercambiar datos sobre recursos humanos (HR), para que una
compafiia pueda, por ejemplo, enviar datos de sus empleados a una compaiiia que proporcione
seguros médicos a esos empleados. En algunas industrias, XML estd empezando a reemplazar
en un estandar mds antiguo conocido como EDI (intercambio de datos electrénicos, por sus
siglas en inglés).

Aprender acerca de SQL/XML

Como ya se menciond, XML es comtinmente utilizado para representar datos en las paginas Web,
y a menudo esos datos vienen de bases de datos relacionales. Sin embargo, como se ha visto, los
dos modelos son bastante diferentes en que los datos relacionales son almacenados en tablas donde
ni la jerarquia ni la secuencia tienen ninguna importancia, mientras que XML estd basado en drbo-
les jerdrquicos en los que el orden se considera importante. El término bosque es a menudo utiliza-
do para referirse a una coleccion de estructuras de arbol de XML. XML es utilizado para las pagi-
nas Web debido a que su estructura coincide cercanamente con la estructura que seria utilizada
para desplegar los mismos datos en HTML. De hecho, muchas paginas Web son una mezcla de
HTML para sus porciones estdticas, y XML para los datos dindmicos. Quiza es esta implemen-
tacion tan amplia lo que ha llevado a los fabricantes principales, incluyendo a Oracle e IBM, a
soportar las extensiones XML.

SQL/XML puede ser dividido en tres partes principales: el tipo de datos XML, las funciones
SQL/XML vy las reglas de trazado de SQL/XML. Se cubre cada una de ellas como tema principal
en el resto de este capitulo.

El tipo de datos XML

El tipo de datos XML es manejado, en general, de 1a misma manera que todos los otros tipos de
datos que se habian discutido desde el capitulo 3. Aun cuando almacenar datos en el formato XML

438

Fundamentos de SQL

directamente en la base de datos no es la inica manera de utilizar SQL y XML juntos, es una for-
ma muy simple de empezar, debido a que es una extensién l6gica de las implementaciones anterio-
res donde los desarrolladores de SQL simplemente almacenaban el texto o XML en una columna
definida con un tipo de datos de cardcter general como CHARACTER VARYING (VARCHAR).
Sin embargo, es mucho mejor comunicarle al DBMS que la columna contiene XML, y la forma
particular en que XML esta codificado, para que asi DBMS pueda proporcionar caracteristicas adi-
cionales hechas a la medida para el formato XML.

La especificacién para el tipo de datos XML tiene este formato general:

XML (<modificador de tipo> {(<modificador secundario de tipo>)})

El modificador de tipo es obligatorio y debe estar encerrado en un par de paréntesis como se mues-
tra, mientras que el modificador secundario de tipo es opcional, y de hecho ni siquiera es sopor-
tado por todos los modificadores de tipo. El estandar no es especifico acerca de cémo una imple-
mentacién SQL particular debera tratar a los diferentes tipos, pero algunas convenciones y reglas
sintdcticas si han sido especificadas. Los modificadores de tipo validos son:

DOCUMENT El tipo DOCUMENT est4 disefiado para el almacenaje de documentos de
texto que fueron formateados utilizando XML. En general, se espera que los valores de datos
estén compuestos en caracteres legibles para los humanos como letras, nimeros y simbolos
como aparecerian en un documento de texto sin estructurar.

CONTENT El tipo CONTENT estd disefiado para datos mas complejos que puedan incluir
datos binarios como imagenes y archivos de sonido.

SEQUENCE El tipo SEQUENCE esta diseflado para los documentos XQuery, que a menu-
do son llamados secuencias XQuery. XQuery es un tema avanzado que se encuentra fuera de
los alcances de este libro.

El modificador secundario de tipo, usado solamente con los modificadores de tipo primarios
DOCUMENT y CONTENT, puede tener uno de estos valores:

UNTYPED Los datos XML no tienen un tipo en particular.

ANY Los datos XML son de cualquiera de los tipos soportados por la implementacion SQL.

XMLSCHEMA El tipo XMLSCHEMA se refiere a un esquema XML registrado que ha
sido dado conocer al servidor de la base de datos. Los tres mas comunes son:

Prefijo comin Identificador uniforme de recurso (URI) objetivo de espacio de nombre
Xs http:/ /www.w3.0rg/2001/XMLSchema

Xsi http:/ /www.w3.0rg/2001/XMLSchema-instance

Sqlxml http://standards.iso.org/iso/9075/2003/sqlxml

Para las implementaciones SQL que no soportan el modificador secundario de tipo, se asume
ANY de manera preestablecida.

Capitulo 18: Trabajar con datos XML 439

NOTA

Debido a que SQL/XML es un esténdar relativamente nuevo, el soporte para la implemen-
tacién de los fabricantes varia. Oracle soporta un tipo de datos XMLType en lugar del tipo
XML. DB2 UDB de IBM soporta un tipo XML, pero sin los modificadores de tipo. Como ya se
mencioné, SQL Server de Microsoft soporta XML y un tipo de datos XML, pero de una z;rmc
un poco diferente del esténdar SQL/XML. Al menos en la versién 5.0, MySQL no proporciona
soporte para XML, pero existe una promesa de la directiva para una liberacién futura.

Supongamos que se quiere agregar una biografia del artista a nuestra tabla de artistas que pue-
da ser desplegada en una pagina Web. Si los datos biograficos vinieran desde diferentes fuentes,
y por lo tanto estuvieran formateados de forma diferente dependiendo de la fuente, XML seria
una excelente forma de almacenar los datos en nuestra tabla de artistas. En el siguiente ejemplo se
agreg6 la columna para la definicién de la tabla ARTISTS que apareci6 en el capitulo 3:

CREATE TABLE ARTISTS

(ID ARTISTA INT,

NOMBRE ARTISTA VARCHAR (60) ,

FDN_ARTIST DATE,
POSTER_EN_EXISTENCIA BOOLEAN,

BIOGRAFIA ARTISTA XML (DOCUMENT (UNTYPED))) ;

Funciones SQL/XML

Una funcién SQL/XML (también llamada funcién de valor XML) es simplemente una funcién
que arroja un valor como un tipo XML. Por ejemplo, se puede escribir una consulta que seleccione
los datos que no sean XML (esto es, los datos almacenados en tipos de datos diferentes a XML) y
formatee los resultados de la consulta en un documento XML apropiado para desplegarse en una
pagina Web o para la transmision a alguna otra parte. La tabla 18-1 muestra las funciones basicas
SQL/XML.

Existen mds funciones que aquellas que estan en el listado, y las funciones SQL/XML pue-
den ser utilizadas en combinacién para formar consultas extremadamente poderosas (si no son
complicadas). Ademads, las funciones disponibles varian entre las implementaciones SQL. Demos
un vistazo a un ejemplo simple para clarificar cémo pueden ser utilizadas estas funciones. En este
ejemplo, se enlistardn los CD de la artista Bonnie Raitt de las tablas INTERPRETES e INVEN-
TARIO_CD mostradas en la figura 18-1. Aqui estd la instruccién SQL, utilizando las funciones
XMLELEMENT y XMLFOREST:

SELECT XMLELEMENT (NAME "CDArtista",
XMLFOREST (a.NOMBRE INTER as Artista, a.ID INTER, b.NOMBRE CD,
b.EN_EXISTENCIA)
FROM INTERPRETES a JOIN INVENTARIO CD b
ON a.ID INTER = b.ID INTER
WHERE a.ID INTER = '104'
AND a.ID INTER = b.ID INTER
ORDER BY b.NOMBRE CD;

440 Fundamentos de SQL

Funcién Valor arrojado

XMLAGG Un valor XML Gnico que contiene un bosque XML formado al combinar (agregar)
una coleccién de filas que contienen cada una un valor XML Gnico

XMLATTRIBUTE Un atributo en la forma nombre=valor dentro de la funcién XMLELEMENT

XMLCOMMENT Un comentario XML

XMLCONCAT Una lista unida de valores XML, que crea un valor Gnico que contiene un bosque
XML

XMLDOCUMENT Un valor XML que contiene un nodo Gnico de documento

XMLELEMENT Un valor XML ?ue puede ser secundario de un nodo de documento, con el
nombre especificado en el pardmetro del nombre

XMLFOREST Un elemento XML que contiene una secuencia de elementos XML formada a partir
de las columnas de la tabla, que utiliza el nombre de cada columna como el
nombre del elemento correspondiente

XMLPARSE Un valor XML formado al analizar gramaticalmente la cadena suministrada sin
validarla

XMLPI Un valor XML que contiene una instruccién de procesamiento XML

XMLQUERY El resultado de una expresién XQuery (XQuery es un sublenguaie utilizado para
buscar XML almacenado en la base de datos; se encuentra fuera de los alcances
de este libro)

XMLTEXT Un valor XML que contiene un nodo Gnico de texto, que puede ser secundario de
un nodo de documento

XMLVALIDATE Una secuencia XML que es el resultado de validar un valor XML

Tabla 18-1 Funciones SQL/XML.

Los resultados arrojados deberan lucir de forma parecida a éstos:

<CDArtistas>

<Artista>BonnieRait</Artistas>

<ID INTER>104</ID INTER>
<NOMBRE_CD>Fundamental</NOMBRE CD>
<EN_EXISTENCIA>22</EN_EXISTENCIA>

</CDArtistas
<CDArtista>

<Artistas>BonnieRait</Artistas>

<ID INTER>104</ID INTER>

<NOMBRE_CD>Longing in Their Hearts</NOMBRE CD>
<EN_EXISTENCIA>18</EN_EXISTENCIA>

</CDArtistas

Observe que los nombres de elemento XML son tomados de los nombres de las columnas,
en mayusculas y con guién bajo, como se acostumbra en SQL. Sin embargo, usando los alias de
columna, como se hizo para la columna NOMBRE_INTER, es posible cambiar los nombres
de columna a cualquier otro que se decida.

Capitulo 18: Trabajar con datos XML 441

Reglas de trazado de SQL/XML

Hasta ahora no se ha analizado cémo se traducen y representan los valores SQL como valores
XML y viceversa. El estandar SQL describe a detalle cémo los valores SQL pueden ser trazados
hacia y desde valores XML. Este tema contiene un vistazo a las reglas de trazado de SQL/XML.

Trazados desde SQL hacia XML

Los trazados en este tema aplican para traducir datos de tipos de datos SQL hacia XML.

Trazar conjuntos de caracteres SQL a Unicode Unicode es un estdndar de la industria que
permite a los sistemas de computadora representar (codificar) consistentemente caracteres de texto
expresados en la mayoria de los lenguajes escritos en el mundo. XML es codificado a menudo
como caracteres Unicode para permitir su utilizacion en multiples idiomas. Los caracteres SQL de
datos se almacenan en cualquier conjunto de caracteres que sea especificado cuando es creada la
tabla o la base de datos, y aunque muchas implementaciones de SQL soportan Unicode, también
pueden ser utilizados muchos otros conjuntos de caracteres. El estindar SQL requiere que cada ca-
rdcter en un conjunto de caracteres SQL tenga un trazado hacia un cardcter Unicode equivalente.

Trazar identificadores SQL a nombres XML Es necesario definir un trazado de identificadores
SQL, como los nombres de tabla y de columna, a nombres XML debido a que no todos los identi-
ficadores SQL son nombres aceptables en XML. Los caracteres que no son vélidos en los nombres
XML se convierten a una secuencia de digitos hexadecimal derivada de la codificacién Unicode
del carécter, encerrados entre un guién bajo inicial y una x en mindscula, y un guién bajo final.
Por ejemplo, el simbolo de dos puntos (:) seria traducido de un identificador SQL a un nombre
XML como _x003A_.

Trazar tipos de datos SQL a tipos de datos de esquema XML Quiz4 ésta es la mas complica-
da de las formas de trazado. Para cada tipo o dominio SQL, se le exige a la implementacién SQL
un trazado del tipo de esquema XML apropiado. El trazado detallado de los tipos SQL estandar a
los tipos de datos de esquema XML es proporcionado en el estdndar con suficiente detalle. Se en-
cuentran resumidos en la tabla 18-2.

Valores de trazado de tipos de datos SQL a valores de tipos de datos de esquema XML
Para tipo o dominio SQL, con excepcion de los tipos estructurados y los tipos de referencia, exis-
te también un trazado de valores para el tipo hacia el espacio de valor del tipo de esquema XML
correspondiente. Los valores nulos se representan utilizando ya sea ausencia (no utilizando el ele-
mento) o utilizando la faceta xsi:nil="true” para determinar explicitamente el valor nulo.

Trazar una tabla SQL a un documento XML y un documento de esquema XML El estdndar
SQL define un trazado de una tabla SQL a uno o ambos de dos documentos: un documento de
esquema XML que describe la estructura del XML trazado, y ya sea un documento XML o una
secuencia de elementos XML. Este trazado aplica solamente a las tablas base y las tablas vistas, y
solamente a las columnas visibles para la base de datos que el usuario puede trazar. La implemen-
tacion puede proporcionar opciones para lo siguiente:

Ya sea trazar la tabla a una secuencia de elementos XML o como un documento XML con un
nombre de raiz unico derivado del nombre de la tabla.

La asignacion de nombres objetivo del esquema XML a ser trazada.

442 Fundamentos de SQL

Tipo SQL Tipo de esquema XML | Notas

CHARACTER, xs:string Se utiliza la faceta XML xs:length para

CHARACTER VARYING, especificar la longitud para las cadenas de

CHARACTER LARGE OBJECT |ongituo| Fiid. (Una faceta es un elemento
utilizado para definir una propiedad de
otro elemento.)

NUMERIC xs:decimal Se especifican la precisién y la escala

DECIMAL utilizando facetas XML xs:precision y xs:
scale.

INTEGER xs:integer Este trazado se enlista como definido por

SMALLINT la implementacién, lo que significa que es

BIGINT opcional.

FLOAT xs:float, xs:double Se utiliza xs:float para precisiones de hasta

REAL 24 digitos binarios (bits) y un exponente

DOUBLE PRECISION

entre =149 y 104 inclusive; de otra
manera, se utiliza xs_double.

BOOLEAN xs:Boolean

DATE xs:date Se utiliza la faceta xs:pattern para
descartar la posibilidad de inexactitud en
la zona horaria.

TIME WITH TIME ZONE xs:time Se utiliza la faceta xs:pattern para

TIME WITHOUT TIME ZONE descartar la posibilidad de inexactitud en
la zona horaria o para especificar la zona
horaria, segin sea el caso.

TIMESTAMP WITH TIME ZONE; | xs:dateTime Se utiliza la faceta xs:pattern para

TIMESTAMP WITHOUT TIME descartar la posibilidad de inexactitud en

ZONE la zona horaria o para especificar la zona
horaria, segin sea el caso.

Tipos de intervalo xdt:yearMonthDuration,

xdt:day-TimeDuration

Tipo de fila Tipo complejo de El documento XML contiene un elemento
esquema XML para cada campo del tipo de fila SQL.
Dominio Tipo de datos de El tipo de datos del dominio es trazado a
esquema XML XML con una anotacién que identifica el
nombre del dominio.
Tipo distinto de SQL Tipo simple de esquema

XML

Tipo de coleccién SQL

Tipo complejo de
esquema XML

El tipo complejo tiene un elemento Gnico
llamado elemento.

Tipo XML

Tipo complejo de
esquema XML

Tabla 18-2 Trazado de los tipos de datos SQL a los tipos de esquema XML.

Capitulo 18: Trabajar con datos XML 443

Ya sea trazar los valores nulos como elementos ausentes o elementos marcados con la faceta
xsi:nil="“true”.

Ya sea trazar la tabla hacia datos XML, un documento de esquema de XML o ambos.

Trazar un esquema SQL a un documento XML y un documento de esquema XML El estdn-
dar SQL define el trazado entre las tablas de un esquema SQL y ya sea un documento XML que
represente los datos en las tablas, un documento de esquema XML, o ambos. Solamente las tablas
y columnas visibles para el usuario de la base de datos pueden ser trazadas. La implementacién
puede proporcionar opciones para lo siguiente:

Ya sea trazar cada tabla como una secuencia de elementos XML o como un documento XML
con un nombre raiz unico derivado del nombre de la tabla.

La asignacion de nombres objetivo del esquema XML que serd trazada.

Ya sea trazar los valores nulos como elementos ausentes o elementos marcados con la faceta
xsi:nil="true”.

Ya sea trazar el esquema hacia datos XML, un documento de esquema de XML, o ambos.

Trazar un catdlogo SQL a un documento XML y un documento de esquema XML El estén-
dar SQL define el trazado entre las tablas de un catdlogo SQL y ya sea un documento XML que
represente los datos en las tablas del catdlogo, un documento de esquema XML, o ambos. Sin em-
bargo, esta parte del estdndar no especifica ninguna sintaxis para invocar tal trazado debido a que
estd disefiada para ser utilizada por las aplicaciones o referenciada por otros estandares. Solamente
los esquemas visibles para el usuario SQL pueden ser trazados. La implementacién puede propor-
cionar opciones para lo siguiente:

Ya sea trazar cada tabla como una secuencia de elementos XML o como un documento XML
con un nombre raiz unico derivado del nombre de la tabla.

La asignacién de nombres objetivo del esquema XML que habra de trazarse.

Ya sea trazar los valores nulos como elementos ausentes o elementos marcados con la faceta
xsi:nil=“true”.

Ya sea trazar el catdlogo hacia datos XML, un documento de esquema de XML, o ambos.

Trazados desde XML hacia SQL

El tema contiene dos trazados desde XML hacia SQL.

Trazar Unicode a conjuntos de caracteres SQL Al igual que con el trazado de conjuntos de
caracteres SQL a Unicode, el estdndar SQL requiere que exista un trazado definido por la imple-
mentacion de caracteres Unicode a los caracteres en cada uno de los conjuntos de caracteres SQL
soportados por la implementacién SQL.

Trazar nombres y XML a identificadores SQL Este es lo contrario de canalizar identificadores
SQL a nombres de XML donde los caracteres que fueron convertidos debido a que no eran validos
en los nombres XML son convertidos de regreso a su forma original. Por lo tanto, si un simbolo de
dos puntos en un identificador SQL fue convertido a _x003A_ cuando se tradujo el identificador
SQL hacia XML, serfa convertido de regreso a dos puntos cuando el proceso fuera revertido. El es-
tandar SQL recomienda ampliamente que la implementaciéon SQL utilice un algoritmo simple para
la traduccién en ambas direcciones.

444 Fuyndamentos de SQL

Utilizar funciones SQL/XML

En este ejercicio se utilizaran las funciones XML para seleccionar datos formateados XML de la
base de datos INVENTARIO. Obviamente, la implementacién SQL tiene que proporcionar soporte
para XML para que se pueda completar este ejercicio, y como siempre, es posible que se tenga que
modificar el cédigo incluido en este ejercicio para poder ejecutarlo en el DBMS. Se puede descar-
gar el archivo Try_This_18.txt (en inglés), que contiene las declaraciones SQL utilizadas en este
ejercicio.

Paso a paso

1. Abra la aplicacion de cliente para su RDBMS y conéctese con la base de datos INVENTARIO.

2. Se va a crear una consulta SQL que utilice las tres funciones SQL/XML para formatear XML
que contenga un elemento para cada CD en la tabla DISCOS_COMPACTOS, con cada elemen-
to incluyendo la ID del CD, seguido por un elemento separado que contenga el titulo del CD.
Ingrese y ejecute la siguiente instruccién SQL:

SELECT XMLELEMENT (NOMBRE CD,
XMLATTRIBUTE (ID DISCO_COMPACTO AS ID),
XMLFOREST (TITULO_CD as Titulo))

FROM DISCOS_COMPACTOS
ORDER BY ID DISCO COMPACTO;

3. El resultado producido deberd lucir parecido al siguiente listado. Observe que por cuestiones de
espacio, solamente se muestran los primeros dos CD.

<CD ID='101"'>
<Titulo>Famous Blue Raincoat</Titulo>
</CD>
<CD ID='102"'>
<Titulo>Blue</Titulo>
</CD>

4, Cierre la aplicaci6n de cliente.

Resumen de Pruebe esto

En este ejercicio, la instrucciéon SELECT de SQL utiliza tres funciones SQL/XML para formatear
datos de la tabla DISCOS_COMPACTOS a XML. La funciéon XMLELEMENT fue utilizada para
crear un elemento para cada CD. La funcion XMLATTRIBUTE fue utilizada para incluir el valor

ID_DISCO_COMPACTO con el nombre de ID como un valor dentro del elemento CD. Finalmen-
te, la funcién XMLFOREST fue utilizada para crear un elemento para la columna TITULO_CD.

Capitulo 18: Trabajar con datos XML 445

v Autoexamen Capitulo 18
1. (Qué es XML?
2, ;Cuiles de los siguientes son usos comunes de XML?
A Desplegar datos de la base de datos en una pagina Web
B Lacreacidon de paginas Web estaticas
C Latransmisién de datos de una base de datos a otra parte

D El reforzamiento de reglas de negocios en documentos

3. (Qué tanto varian las bases de datos SQL y los documentos XML en términos de estructura de
datos?

4. Si dos organizaciones estan usando XML, ;significa eso que ellos tienen una forma estandar de
intercambiar datos sin tener que crear software de interfaz?

5. (Cuiles de los siguientes son modificadores de tipo validos para el tipo de datos XML?
A DOCUMENT
B SEQUENCE

C SQLXML
D CONTENT
6. ;Cuiles son los modificadores secundarios de tipo vdlidos para el modificador de tipo SE-
QUENCE?
7. [Cudl de las siguientes funciones SQL/XML crea un elemento basado en una columna de una
tabla?
A XMLQUERY
B XMLELEMENT
C XMLFOREST
D XMLDOCUMENT
E XMLPARSE

8. (Cuil tipo de esquema XML es trazado desde el tipo de datos SQL NUMERIC?
A xs:integer
B xs:float
C xs:decimal
D

xs:double

446 Fundamentos de SQL

9. ;Cudl tipo de esquema XML es trazado desde el tipo de datos SQL DATE?

A xs:dateTime

B xdt:yearMonthDuration
C xs:time

D xs:date

E

xdt:dat-TimeDuration

10. ;Cudles son las dos formas en que los valores nulos de la base de datos pueden ser representa-
dos por SQL/XML?

A Absent document
Absent element
xsi:null= “true”

xsi:nil= “true”

m O O »

<elementname=nil>

Parte IV

Apéndices

Apéndice A

Respuestas a los
autoexamenes

450 Fundamentos de SQL

Capitulo 1: Introduccién a las bases de datos
relacionales y a SQL

1. {Qué es una base de datos?

Una base de datos es una coleccion de datos organizados en un formato estructurado definido
por los metadatos que describen la estructura.

2. ;Cual de los siguientes objetos conforma una relacion?
A Tipos de datos
B Tuplas
C Atributos
D Formas
Las respuestas correctas son B 'y C.

3. Un(a) es un conjunto de datos cuyos valores conforman una instancia de
cada uno de los atributos definidos para esa relaciéon.

Tupla
4, ;Cuales son las diferencias entre la primera forma normal y la segunda forma normal?

De acuerdo con la primera forma normal, cada atributo de una tupla debe contener solamente
un valor, cada tupla en una relacién debe contener el mismo nimero de valores, y cada tupla en
una relacién debe ser diferente. De acuerdo con la segunda forma normal, una relacién debe es-
tar en la primera forma normal y todos los atributos en una relaciéon deben ser dependientes de
toda la clave de candidato.

5

Una relacion esta en la tercera forma normal si esta en la segunda forma normal y si cum-
ple con las demas directrices de esa forma. ;Cuales son esas directrices?

Todos los atributos sin clave deben ser independientes entre si y dependientes de la clave.

6. (Cuales son los tres principales tipos de relaciones soportados por una base de datos rela-
cional?

Una a una, una a varias, varias a varias.

N

En el modelo de datos hay dos relaciones asociadas cada una entre si por una relacion
varias a varias. ; Como se implementa fisicamente esta relacion en una base de datos rela-
cional?

La relacién serd implementada agregando una tercera relacion entre las dos relaciones origina-
les para poder crear dos relaciones uno a muchos.

¢ Como se diferencia SQL de los lenguajes de programacion como C, COBOL y Java?

Los lenguajes de programacién como C, COBOL y Java son lenguajes de procedimiento que
definen como deben ser realizadas las operaciones de una aplicacion y el orden en que son rea-
lizadas. Sin embargo, SQL no es un lenguaje de procedimiento y estd mds relacionado con los
resultados de una operacion; el ambiente subyacente de software determina cémo las operacio-
nes serdn procesadas. Sin embargo, SQL si soporta algunas funcionalidades de procedimiento.

Apéndice A: Respuestas a los autoexdmenes 431

9. ;Qué factores contribuyeron a que el estindar SQL:2006 incorporara capacidades orien-
tadas a objetos?

La aparicién de programacion orientada a objetos, avances en tecnologias de hardware y soft-
ware, y las crecientes complejidades de las aplicaciones.

10. ;Qué nivel de conformidad debe soportar un RDBMS para poder cumplir con SQL:2006?

A Entrada
B Core
C Pleno

D Intermedio
La respuesta correcta es B.
11. ;Cuiles son las diferencias entre las instrucciones DDL y DML?
Las instrucciones DDL se utilizan para crear, modificar y eliminar objetos de la base de datos
como tablas, vistas, esquemas, dominios, activadores y procedimientos almacenados. Las ins-

trucciones DML se utilizan para ver, agregar, modificar o eliminar datos almacenados en los
objetos de la base de datos.

12. ;Qué método de ejecucion de instrucciones SQL usaria si deseara comunicarse directa-
mente con una base de datos SQL desde una aplicacion de usuario?
Invocacion directa.

13. (Cuiles son los cuatro métodos que soporta el estindar SQL:2006 para la ejecucién de las
instrucciones SQL?
Invocacioén directa, SQL incrustado, unién de médulos y CLI.

14. ;Qué es un sistema de gestion de base de datos relacional?

Un RDBMS (por sus siglas en inglés) es un programa o conjunto de programas que almacenan,
administran, recuperan, modifican y manipulan los datos en una o més bases de datos relacionales.

15. ;Cual es un ejemplo de un RDBMS?

Cualquiera de los siguientes son ejemplos de RDBMS: DB2, MySQL, Oracle, SQL Server,
PostgreSQL, Sybase, Informix, Ocelot o cualquier otro RDBMS en el mercado.

Capitulo 2: Trabajo con el entorno SQL

1. ;Cuales son las diferencias entre un agente SQL y una implementaciéon SQL?

Un agente SQL es cualquier estructura que provoque que las instrucciones SQL sean ejecuta-
das. El agente SQL estd ligado al cliente SQL dentro de la implementaciéon SQL. Una imple-
mentacién SQL es un procesador que ejecuta instrucciones SQL de acuerdo con los requeri-
mientos del agente SQL. La implementacién SQL incluye un cliente SQL y uno o més servi-
dores SQL. El cliente SQL establece las conexiones SQL con los servidores SQL y mantiene
los datos relacionados a las interacciones con el agente SQL y los servidores SQL. Un servidor
SQL administra la sesiéon SQL que toma lugar sobre la conexién SQL y ejecuta las instruccio-
nes SQL recibidas desde el cliente SQL.

452 Fundamentos de SQL

2. ;Qué componente del entorno SQL representa a un usuario o rol que concede privilegios

6

especificos para acceder a los objetos y datos?
A Catdlogo
B Identificador de autorizacion
C Moddulo de cliente SQL
D Agente SQL
La respuesta correcta es B.

Un(a) es una coleccion de esquemas que forman un nombre dentro del en-
torno SQL.

Catdlogo
. Qué es un esquema?

Un esquema es un conjunto de objetos relacionados que son recolectados bajo una asignacion
comiun. El esquema actiia como un contenedor para esos objetos, los cuales a su vez almacenan
los datos SQL o realizan otras funciones relacionadas con los datos.

¢ Qué instruccion se utiliza para agregar un esquema en el entorno SQL?
A ADD SCHEMA

B INSERT SCHEMA

C CREATE SCHEMA

La respuesta correcta es C.

¢ Cual es el nombre del esquema que contiene las definiciones para los objetos de esquema
en un catalogo?

INFORMATION_SCHEMA
¢ Cuales son los 11 tipos de objetos de esquema que pueden estar contenidos en un esquema?

Tablas base, vistas, dominios, UDT, restricciones, modulos de servidor de SQL, activadores,
rutinas invocadas por SQL, conjuntos de caracteres, cotejos y traducciones.

.Qué es una vista?

Una vista es una tabla virtual que es creada cuando se invoca la vista (al convocar su nombre).
La tabla no existe en realidad, solamente la instrucciéon SQL que define a la tabla.

¢ Cuales objetos de esquema proporcionan la unidad basica de gestion de datos en el en-
torno SQL?

A \Vistas

B Dominios

C Tablas base

D Conjuntos de caracteres

La respuesta correcta es C.

Apéndice A: Respuestas a los autoexdmenes 453

10. ;Cémo define el estandar SQL:2006 a una base de datos?
El estandar SQL:2006 no define una base de datos.

11. Un(a) es el nombre dado a un objeto SQL.
Identificador.

12. ;Cémo se distingue un identificador regular de un identificador delimitado en una ins-
truccion SQL?
Un identificador delimitado estd encerrado entre comillas, mientras que un identificador regular
no.

13. ;Qué tipo de identificador permite que se utilicen espacios como parte del nombre de un
objeto?
Un identificador delimitado.

14. El entorno SQL incluye un catalogo denominado INVENTARIO. En ese catalogo se en-
cuentra el esquema denominado DISCOS_COMPACTOS, y en ese esquema se encuentra

una tabla denominada ARTISTAS. ;Cual es el nombre cualificado de esa tabla?
INVENTARIO.DISCOS_COMPACTOS.ARTISTAS

15. ;Cuales son las tres formas que puede tomar el componente <clausula de nombre> de una
instruccion CREATE SCHEMA?

Una <cldusula de nombre> en una instrucciéon CREATE SCHEMA puede tomar cualquiera de
las siguientes tres formas:

<nombre del esquema>
AUTHORIZATION <identificador de autorizacién>
<nombre del esquema> AUTHORIZATION <identificador de autorizacién>

16. ;Cuales son las diferencias entre la opcion CASCADE y la opcion RESTRICT en la ins-
truccion DROP SCHEMA?

Si se especifica la opcion CASCADE, todos los objetos de esquema y los datos SQL dentro de
esos objetos son eliminados del sistema. Si se utiliza la opciéon RESTRICT, el esquema es eli-
minado solamente si no existe ninglin objeto de esquema.

17. Dentro de la jerarquia del entorno SQL, ;cémo esta relacionado un dominio con un cata-
logo?
Un dominio es un objeto de esquema, que es un objeto o hijo del esquema. El esquema es un
objeto secundario de un catdlogo.

18. (Qué tipo de identificador permite utilizar una palabra clave reservada?

Un identificador delimitado.

4 ° » offe °
Capitulo 3: Creacién y modificacién de tablas
1. ;Qué tipos de tablas base se pueden crear utilizando una instruccion CREATE TABLE?
A Tablas base persistentes

B Tablas base temporales globales

454 Fundamentos de SQL

2.

3

5

N

©

C Tablas temporales locales creadas
D Tablas temporales locales declaradas
Las respuestas correctas son A, By C.

¢ Cual es la principal diferencia entre una tabla temporal global y una tabla temporal lo-
cal creada?

Una tabla temporal global puede ser accedida desde cualquier lugar dentro de la sesién SQL
asociada, mientras que una tabla temporal local creada puede ser accedida solamente dentro del
médulo asociado.

Esta creando una tabla llamada AGENTES. La tabla incluye la columna ID_AGENTE,
que tiene un tipo de datos INT, y la columna NOMBRE_AGENTE, que tiene un tipo de
datos CHAR(60). ;Qué instruccion SQL utilizaria?

Debera utilizarse la siguiente instruccién SQL:

CREATE TABLE AGENTES
(ID AGENTE INT,
NOMBRE AGENTE CHAR(60)) ;

¢ Cuales son los tres tipos de datos que soporta SQL?

Predefinidos, construidos y definidos por el usuario.

¢ Cuales son los cuatro tipos de datos de cadena?

Cadenas de caracteres, cadenas de caracteres nacionales, cadenas de bits y cadenas binarias.

Un(a) es un tipo de datos que permite valores que se basan en bits de datos,
en lugar de conjuntos de caracteres o cotejos. Este tipo de datos permite sélo valores de 0

y 1.

Cadenas de bits

¢ Cual es la precision y la escala del niimero 5293.472?
La precisién es 7 y la escala es 3.

¢ Cuales son las diferencias entre los tipos de datos numéricos exactos y los tipos de datos
numéricos aproximados?

Con los tipos de datos numéricos exactos, los valores permitidos tienen una precision y escala.
Con los tipos de datos numéricos aproximados, los valores permitidos tienen una precision pero
no escala.

¢ Cuales tipos de datos son tipos de datos numéricos exactos?
A DOBLE PRECISION

B DECIMAL

C REAL

D SMALLINT

Las respuestas correctas son B y D.

Apéndice A: Respuestas a los autoexdmenes 455

10. Un tipo de datos especifica los valores de una fecha por afio, mes y dia.
DATE

11. ;Cuales son las dos formas de tipos de datos de intervalo que soporta SQL?
Intervalos afio-mes e intervalos dia-hora.

12. ;Qué tipo de datos debe utilizarse para soportar una construccién verdadero/falso que
pueda ser utilizada para comparar valores?

BOOLEAN

13. Esti creando un tipo definido por el usuario distinto llamado CIUDAD. El tipo de usuario

se basa en el tipo de datos CHAR(40). ;Qué instruccion SQL utilizaria?

Debera utilizarse la siguiente instruccién SQL:

CREATE TYPE CIUDAD AS CHAR (40)
FINAL;

14. Se crea una tabla llamada CLIENTES. La tabla incluye la columna NOMBRE_CLIEN-
TE y la columna CIUDAD_CLIENTE. Ambas columnas tienen un tipo de datos VAR-
CHAR(60). La columna CIUDAD_CLIENTE también tiene el valor predeterminado
Seattle. ;Qué instruccion SQL utilizaria?

Deberad utilizarse la siguiente instruccién SQL:

CREATE TABLE CLIENTES
(NOMBRE_ CLIENTE VARCHAR (60),
CIUDAD CLIENTE VARCHAR(60) DEFAULT 'Seattle');

15. ;Qué instruccion SQL debera utilizarse para eliminar una columna de una tabla existen-
te?
ALTER TABLE

16. ;Qué instruccion SQL debera utilizarse para eliminar la definicién de una tabla y todos
los datos de SQL de una base de datos?

DROP TABLE

17. Una base de datos incluye una tabla llamada CANTANTES_OPERA. Se quiere agregar
una columna llamada NACIONALIDAD a esa tabla. La columna debe tener el tipo de da-
tos VARCHAR(40). ;Qué instruccion SQL utilizaria?

Deber4 utilizarse la siguiente instruccién SQL:

ALTER TABLE CANTANTES OPERA
ADD COLUMN NACIONALIDAD VARCHAR (40) ;

18. Se desea eliminar la definicion de la tabla CANTANTES_OPERA de la base de datos.
También se quiere eliminar todos los datos y cualquier dependencia de la tabla. ;Qué ins-
truccion SQL utilizaria?

Debera utilizarse la siguiente instruccién SQL:

DROP TABLE CANTANTES OPERA CASCADE;

456 Fundamentos de SQL

Capitulo 4: Implementacién de la integridad

2.

3.

4.

5

de datos

¢ Cuales son las tres categorias de las restricciones de integridad?

Restricciones relacionadas con la tabla (a veces simplemente denominadas restricciones de ta-
bla), afirmaciones y restricciones de dominio.

¢ Cuales son las diferencias entre una restriccion de columna y una restriccion de tabla?

Ambos tipos de restricciones se encuentran definidos en la definicién de la tabla. Una restric-
cién de columna se incluye con la definicidn de la columna, y una restriccion de tabla se inclu-
ye como un elemento de la tabla, similar a la forma en que las columnas son definidas como
elementos de la tabla.

¢ Qué tipos de restricciones se pueden incluir en una definicion de columna?
NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY y CHECK.
;Cual es la diferencia entre una restriccion de tabla y una afirmacion?

Una restriccion de tabla estd definida dentro de una definicion de tabla y aplica solamente a esa
tabla. Una afirmacién es un tipo de restriccion que estd definida dentro de una definicién de
afirmacion (separada de la definicién de la tabla). Una afirmacién puede estar asociada con una
0 mads tablas.

2 Qué significa un valor nulo?

Un valor nulo es aquel que es desconocido o no definido. Esto no es lo mismo que un cero, un
espacio en blanco o un valor por defecto. En su lugar, éste indica que un valor de datos estd au-
sente.

¢ Cual de los siguientes tipos de restricciones soporta restricciones NOT NULL?
A Restricciones de tabla
B Restricciones de columna
C Restricciones de dominio
D Afirmaciones
La respuesta correcta es B.

Se crea una tabla que incluye una columna que acepta valores nulos, pero cuyos valores
no nulos deben ser tinicos. ;Qué tipo de restriccion se debe utilizar?

UNIQUE.

Se crea una tabla que incluye la columna NOMBRE_TIPO. La columna se define con el
tipo de datos CHAR(10) y requiere una restriccion UNIQUE, que se define como una res-
triccion de columna. ;Qué codigo SQL debe utilizarse para la definicion de la columna?
Debera utilizarse el siguiente cédigo:

TYPE NAME CHAR (10) UNIQUE

{Cuales dos restricciones se aplican a las restricciones PRIMARY KEY pero no aplican a
las restricciones UNIQUE?

Una columna que es definida con una restriccion PRIMARY KEY no puede contener valores
nulos, y solamente una restriccion PRIMARY KEY puede ser definida para cada tabla.

Apéndice A: Respuestas a los autoexdmenes 437

10.

12.

13.

14.

15.

16.

17.

Se crea una restriccion de PRIMARY KEY llamada PK_TIPOS_MUSICA_ARTISTA en

la tabla TIPOS_MUSICA_ARTISTA. La clave primaria incluye las columnas NOMBRE _
ARTISTA y FDN_ARTISTA. ;Qué codigo SQL debera utilizarse para la restriccion de la

tabla?

Deberad utilizarse el siguiente codigo:
CONSTRAINT PK TIPOS MUSICA ARTISTA
PRIMARY KEY (NOMBRE ARTISTA, FDN_ ARTISTA)
. Como difiere una restriccion referencial de una restriccion tinica?

Las restricciones referenciales estdn relacionadas con como se relacionan los datos en una tabla
con los datos en otra tabla, asegurando la integridad referencial entre las dos tablas. Las restric-
ciones Unicas aseguran la integridad dentro de una tabla al bloquear valores duplicados.

Una restriccion impone la integridad referencial entre dos tablas ga-
rantizando que no se lleve a cabo ninguna accién en ninguna tabla que pueda afectar a los
datos protegidos por la restriccion.

FOREIGN KEY

Se crea una tabla que incluye la columna llamada ID_TIPO_NEGOCIO, con un tipo de
datos INT. La columna se define con una restriccion FOREIGN KEY que hace referencia
a la clave primaria en la tabla llamada TIPOS_NEGOCIO. La clave foranea se afiade
como una restriccion de columna. ;Qué cédigo SQL se debe usar para la definicion de co-
lumna?

Deberad utilizarse el siguiente codigo:
ID TIPO NEGOCIO INT REFERENCES TIPOS NEGOCIO

¢ Cuales tres opciones se pueden utilizar en la clausula MATCH de una restriccion FO-
REIGN KEY?

FULL, PARTIAL y SIMPLE.

¢ Cuales son los dos tipos de acciones referenciales desencadenadas que se pueden definir
en una restriccion FOREIGN KEY?

ON UPDATE y ON DELETE.

Se crea una restriccion FOREIGN KEY y se desea que los valores en la columna de refe-
rencia se actualicen si los valores en la columna referenciada se actualizan. ;Qué clausula
<accion referencial desencadenada > utilizaria?

A ON UPDATE RESTRICT

B ON UPDATE NO ACTION

C ON UPDATE CASCADE

D ON UPDATE SET DEFAULT
La respuesta correcta es C.

¢ Qué sintaxis debe utilizar para una restriccion CHECK que se define como una restric-
cion de tabla?

[CONSTRAINT <nombre de la restricciéon>]| CHECK (<condicién de biisqueda>)

458 Fundamentos de SQL

18. ;Qué tipo de restricciones se pueden definir dentro en una afirmacién?

Restricciones CHECK.

19. Se crea una restriccion CHECK en la columna NUMERO_EN_EXISTENCIA. Se desea

limitar los valores que se pueden introducir en la columna en un rango de 11 a 29. ;Qué
debe utilizar para la clausula <condicién de bisqueda> de la restriccion?

(NUMERO_EN_EXISTENCIA BETWEEN 11 AND 29)

Capitulo 5: Crear vistas SQL

1. ;Cuales son las dos ventajas de utilizar vistas?

3

6

Se pueden definir consultas complejas y almacenarlas dentro de la definicién de la vista. De

esa manera, en lugar de tener que volver a crear esas consultas cada vez que sean necesarias, se
puede simplemente invocar la vista. También es posible presentar informacién a los usuarios sin
proporcionarles mas informacién de la que necesitan o informacién que no deben ver.

¢ Cuales son los tres tipos de tablas almacenadas, soportadas por SQL?
Tablas base, tablas derivadas y tablas vistas (vistas).

. Qué sucede si no se asignan nombres de columna a una vista?

Las columnas de la vista heredan los nombres de la tabla que la origina.

¢ Como se asignan los tipos de datos a las columnas de una vista?

No se asignan tipos de datos a las columnas de la vista. Las columnas de la vista heredan sus
tipos de datos de sus respectivas columnas de la tabla.

,En qué circunstancias se deben proporcionar nombres a las columnas de una vista en
una definicion de vista?

Se deben proporcionar nombres si cualquiera de las columnas que llegan lo hacen mediante algin
tipo de operacion que calcule el valor que habré de insertarse en la columna, en lugar del valor
que viene directamente de la tabla. También se deben proporcionar nombres si existen nombres
de columna duplicados en la tabla, que es algo que sucede cuando se fusionan dos o més tablas.

Se crea la vista llamada EMP_CUMPLEANOS. La vista se basa en las columnas EMP_
NOMBRE y CUMPLEANOS de la tabla EMPLEADOS. Los nombres de columna de la
vista seran los mismos que los nombres de columna de la tabla. ;Qué codigo SQL se utili-
zaria para crear la vista?

Deber4 utilizarse el siguiente codigo:

CREATE VIEW EMP_CUMPLEAﬁOS AS
SELECT EMP_NOMBRE, CUMPLEANOS
FROM EMPLEADOS;

Se crea una vista basada en la tabla DISCOS_COMPACTOS en la base de datos INVEN-
TARIO. Se desea que la vista incluya sélo las filas cuyo valor en la columna ID_DISQUE-
RA sea 546. ;Qué clausula (ademas de las clausulas SELECT y FROM) debera incluirse
en la instruccion SELECT para la vista?

10.

12.

13‘

Apéndice A: Respuestas a los autoexdmenes 459

Deber4 utilizarse la siguiente cldusula WHERE:

WHERE ID DISQUERA = 546

Se crea una vista que hace referencia a las tablas EMPLEADOS y TITULO_TRABAJO.

Los datos en las dos tablas coinciden a través de la columna ID_TITULO_TRABAJO en

cada tabla. ;Como se debe escribir la clausula WHERE en la instruccion SELECT de la

vista?

Deber4d escribirse la siguiente clausula WHERE:

WHERE EMPLEADOS.ID TITULO TRABAJO = TITULO TRABAJO.ID TITULO TRABAJO

Se crea una vista que hace referencia a las tablas EMPLEADOS y TITULO_TRABAJO.

Los datos en las dos tablas coinciden a través de la columna ID_TITULO_TRABAJO en

cada tabla. Se desea que la vista muestre solo las filas cuyo valor en la columna ID_TITU-

LO_TRABAJO de la tabla TITULO_TRABAJO sea 109. ;Como se debe escribir la clau-

sula WHERE en la instrucciéon SELECT de la vista?

Debera escribirse la siguiente clausula WHERE:

WHERE EMPLEADOS.ID TITULO TRABAJO = TITULO TRABAJO.ID TITULO TRABAJO
AND TITULO TRABAJO.ID TITULO TRABAJO = 109

. Qué es una especificacion de consulta?

Una especificacion de consulta es una expresion SQL que comienza con la palabra clave SE-
LECT e incluye varios elementos que forman esa expresion.

2 Qué directrices deben seguirse si desea crear una vista actualizable?
A Los datos dentro de la vista no se pueden resumir, agrupar o eliminar automaticamente.
B Porlo menos una columna en la tabla fuente debe ser actualizable.

C Cada columna en la vista se debe rastrear exactamente a una columna fuente en una
tabla.

D Cada fila en la vista se debe rastrear exactamente a una fila fuente en una tabla.

Las respuestas correctas son A, B, C y D. Una vista debe cumplir con las cuatro directri-
ces para ser actualizable.

Se crea la siguiente vista basada en la tabla DISCOS_COMPACTOS en la base de datos
INVENTARIO:

CREATE VIEW PROMEDIO_EN EXISTENCIA AS
SELECT AVG (EN_EXISTENCIA)
FROM DISCOS_ COMPACTOS;

. Como se insertan datos a través de esta vista?

No es posible insertar datos a través de esta vista debido a que los datos estian siendo resumidos
(utilizando la funcién AVG), lo que significa que la fila en la vista no es rastreable para exacta-
mente una fila fuente en una tabla.

A qué tipo de vista aplica la clausula WITH CHECK OPTION?

La clausula WITH CHECK OPTION aplica a las vistas actualizables que incluyen una cldusula
WHERE en la instruccién SELECT.

460 Fundamentos de SQL

14. Se crea la siguiente definicion de vista:

15

16

17

CREATE VIEW COM _EMP AS
SELECT ID EMPLEADO, ANO 1999, ANO 2000
FROM COMISION EMPLEADO
WHERE ANO 1999 > 100;
Se quiere utilizar la vista para actualizar los datos. ;Qué sucede si se cambia el valor
ANO_1999 a una cantidad inferior o igual a 100?
La fila es cambiada, pero ya no podra utilizarse la vista para desplegar la fila o actualizarla.
Para evitar que esto ocurra, se puede utilizar la cldusula WITH CHECK OPTION en la instruc-
cién CREATE VIEW.
Se desea modificar la definicion de la vista COM_EMP en la base de datos. ;Como se mo-
difica esa definicion?

Deberad eliminarse la vista y luego volver a crearla.

Se desea eliminar la definicién de la vista EMP_CUMPLEANOS de la base de datos.
. Qué instruccion SQL debera utilizarse?

Debera utilizarse la siguiente instruccién SQL:
DROP VIEW EMP CUMPLEANOS;

. Qué les sucede a los datos de SQL cuando se elimina una vista de la base de datos?

Ninguno de los datos subyacentes (que esté almacenado en las tablas base) se ven afectados
cuando se elimina una vista. Solamente la definicién de la vista es eliminada.

Capitulo 6: La gestién de la seguridad en la base

de datos

1. (Cuadl es la diferencia entre un identificador de usuario y un nombre de rol?

Un identificador de usuario es una cuenta de seguridad individual que puede representar a un
individuo, a una aplicacién o a un servicio del sistema. Un nombre de rol es un conjunto defini-
do de privilegios que puede ser asignado a un usuario o a otro rol.

2. ;Cual es el nombre del identificador de autorizacién especial que otorga el acceso a todos

los usuarios de la base de datos?
PUBLIC

3. Cada se asocia con un identificador de usuario y un nombre de rol.

Sesion SQL

4, ;Con cual de los siguientes se asocia una sesiéon SQL?

A Privilegio
B Identificador de usuario
C PUBLIC

D Nombre de rol

Las respuestas correctas son B y D.

Apéndice A: Respuestas a los autoexdmenes 461

5. Cuando se establece por primera vez una sesion SQL, el identificador de usuario siempre
es el

Identificador de usuario de sesién de SQL.

6. ;Cuail es el valor del nombre de rol actual cuando se establece por primera vez una sesion
SQL?

Un valor nulo.
7. ;Qué es un identificador de autorizacion?

Un identificador de autorizacion es un objeto en el entorno SQL que representa a un usuario o
un grupo de usuarios a quienes se les otorgan privilegios especificos de acceso a objetos y datos
dentro del entorno SQL.

8. (Cuales son los dos tipos de identificadores de autorizacién que soporta SQL?
Identificadores de usuario y nombres de rol.

9. ;Qué privilegios se le deben otorgar a un objeto si desea permitir que un identificador de
autorizacion consulte los datos de ese objeto?

SELECT

10. Se establece una sesion SQL con la base de datos. El identificador de usuario actual es
EthanW. El nombre de rol actual es nulo. ;Cual es el identificador de autorizacion actual?

EthanW.
11. ;En qué objetos de esquema se pueden definir privilegios de acceso?

Tablas base, vistas, columnas, dominios, conjuntos de caracteres, cotejos, traducciones, tipos
definidos por el usuario, activadores y rutinas invocadas por SQL.

12. ;En qué tipos de objetos de base de datos se puede asignar el privilegio DELETE?

A Tablas

B Vistas

C Columnas

D Dominios

Las respuestas correctas son A y B.

13. (En qué tipos de objetos de base de datos se puede asignar el privilegio TRIGGER?
A Tablas

B Vistas

C Columnas
D Dominios

La respuesta correcta es A.

462 Fundamentos de SQL

14. Se crea un rol llamado CONTABILIDAD. ;Qué instruccion SQL debera utilizarse?
Debera utilizarse la siguiente instruccién SQL:
CREATE ROLE CONTABILIDAD;

15. Se otorgan todos los privilegios en la vista NOMBRE_CD a todos los que utilizan la base
de datos. ;Qué instruccion SQL debera utilizarse?

Debera utilizarse la siguiente instruccién SQL:
GRANT ALL PRIVILEGES ON TABLE NOMBRES CD TO PUBLIC;

16. Se otorga el privilegio SELECT al rol EMPLEADQO_VENTAS a una tabla de la base de
datos. Se desea que el rol EMPLEADO_VENTAS sea capaz de asignar el privilegio SE-
LECT a otros usuarios. ;Qué clausula debera incluirse en la instruccion GRANT?

WITH GRANT OPTION

17. Se desea conceder el rol ACCT a la autorizacion de usuario MaxN. No se quiere que el
usuario pueda otorgar el rol a otros usuarios. ;Qué instruccion SQL debera utilizarse
para otorgar el rol?

Deber4 utilizarse la siguiente instruccién SQL:
GRANT ACCT TO MaxN;

Capitulo 7: Consulta de datos de SQL

1. ;Cuales clausulas en una instruccion SELECT son parte de la expresion de la tabla?

A SELECT

B FROM

C WHERE

D ORDERBY

Las respuestas correctas son B 'y C.
2. ;En qué orden se aplican las clausulas de una instruccion SELECT?

Las cldusulas son aplicadas en el siguiente orden: FROM, WHERE, GROUP BY, HAVING,
SELECT y ORDER BY.

3. Se esta escribiendo una instruccion SELECT que recupera la columna TITULO_CD y
todas las filas de la tabla INVENTARIO. ;Cual instruccion SELECT se debe utilizar?

Debera utilizarse la siguiente instruccién SQL:

SELECT TITULO CD
FROM INVENTARIO;

4, Se esta escribiendo una instruccion SELECT que recupera la columna TITULO_CD y
todas las filas de la tabla INVENTARIOQO. Se desea que la columna en los resultados de la
consulta sea nombrada DISCO_COMPACTO. ;Cual instruccion SELECT debera utili-
zarse?

Apéndice A: Respuestas a los autoexdmenes 463

N

0

Deber4 utilizarse la siguiente instruccién SQL:

SELECT TITULO CD AS DISCO_COMPACTO
FROM INVENTARIO;

¢ Cuales clausulas se requieren en una instruccion SELECT?

A SELECT

B FROM

C WHERE

D GROUPBY

Las respuestas correctas son A y B.

¢ Cual palabra clave se debe afiadir a la clausula SELECT para asegurarse que cada fila
de los resultados de la consulta sea tinica?

A ALL

B ROLLUP
C DISTINCT
D CUBE

La respuesta correcta es C.

Se esta creando una instruccion SELECT para la tabla INVENTARIO y desea asegurarse
que sdlo las filas con un valor PRECIO_MENUDEO menor a $16.00 sean incluidas en los
resultados de la consulta. ;Qué clausula WHERE debera utilizarse?

Deberad utilizarse la siguiente clausula WHERE:
WHERE PRECIO MENUDEO < 16.00

Se esta creando una instruccion SELECT que incluye una clausula WHERE. La clausula
WHERE contiene dos predicados. Se desea que la condicién de uno de los predicados se
cumpla, pero no es necesario que ambas condiciones se cumplan. ;Qué palabra clave de-
bera utilizarse para conectar los dos predicados?

La palabra clave OR.

. Cada predicado en una clausula WHERE se evaliia con cual de las siguientes?
A Verdadero

B No

C Falso

D Desconocido

Las respuestas correctas son A, Cy D.

464 Fundamentos de SQL

10.

12

13.

14.

¢ Cual clausula permite agrupar valores en una columna especifica?
A ROLLUP

B HAVING

C ORDERBY

D GROUPBY

La respuesta correcta es D.

. Cuales dos operadores pueden utilizarse en una clausula GROUP BY para arrojar datos
de resumen adicionales en los resultados de una consulta?

A ROLLUP
B HAVING
C CUBE

D DISTINCT

Las respuestas correctas son A 'y C.

Se esta escribiendo la instrucciéon SELECT que recupera las columnas CATEGORIA y
PRECIO de la tabla EXISTENCIA_DISCO_COMPACTO. Quiere agrupar los datos pri-
mero por la columna CATEGORIA Yy luego por la columna PRECIO. ;Cual instruccién
SELECT debera utilizarse?

Deber4 utilizarse la siguiente instruccién SQL:

SELECT CATEGORIA, PRECIO
FROM EXISTENCIA DISCO_COMPACTO
GROUP BY CATEGORIA, PRECIO;

Se esta escribiendo la instrucciéon SELECT que recupera las columnas CATEGORIA

y PRECIO de la tabla EXISTENCIA_DISCO_COMPACTO. Quiere agrupar los datos
primero por la columna CATEGORIA y luego por la columna PRECIO. A continuacién
desea filtrar cualquier grupo que tenga un valor PRECIO superior a $15.99. ;Cual ins-
truccion SELECT debera utilizarse?

Debera utilizarse la siguiente instruccién SQL:

SELECT CATEGORIA, PRECIO
FROM EXISTENCIA DISCO_COMPACTO
GROUP BY CATEGORIA, PRECIO
HAVING PRECIO < 16.00;

Se crea una instruccion SELECT que incluye una clausula SELECT, una clausula FROM,
una clausula WHERE, una clausula GROUP BY y una clausula HAVING. ;Desde cual
clausula recibira resultados la clausula HAVING?

A SELECT
B FROM

Apéndice A: Respuestas a los autoexdmenes 465

C WHERE
D GROUPBY
La respuesta correcta es D.
15. ;En qué aspecto la clausula HAVING es diferente de la clausula WHERE?

La cldusula HAVING es similar a la clausula WHERE en que define una condicién de busque-
da. Sin embargo, a diferencia de la clausula WHERE, la cldusula HAVING est4 relacionada con
grupos, y no con filas individuales.

16. ;De cual clausula recibe resultados la clausula ORDER BY?
De la cldusula SELECT.

17. ;Cual palabra clave debera agregarse a una clausula ORDER BY para clasificar los datos
en orden descendente?

DESC.

Capitulo 8: Modificar datos SQL

1. ;Cual instruccion SQL debera utilizarse para agregar datos a una tabla?

A SELECT
B INSERT

C UPDATE
D DELETE

La respuesta correcta es B.
2, ;Cuales dos clausulas son obligatorias en una instruccion INSERT?
INSERT INTO y VALUES

3. (En cudl clausula dentro de la instrucciéon INSERT se identifica la tabla que recibira los
nuevos datos?

INSERT INTO

4, Se crea la siguiente instruccion INSERT para agregar datos a la tabla ARTISTAS_IN-
TERPRETES:

INSERT INTO ARTISTAS INTERPRETES VALUES (12, 'Frank Sinatra');

La tabla ARTISTAS_INTERPRETES incluye tres columnas. ;Qué sucedera cuando se intente
ejecutar esta instrucciéon?

Se recibird un error debido a que no existen suficientes valores definidos para la tabla y ninguna
columna ha sido especificada para distinguir donde deben ser insertados los dos valores.

5. ;Qué informacion se debe especificar en la clausula VALUES de una instruccion IN-
SERT?

Se debe especificar uno o mds valores a ser insertados en la tabla.

466 Fundamentos de SQL

6.

©

Io.

12.

¢ Qué requerimientos deberan ser cumplidos por los valores en una clausula VALUES?

Los valores deben estar encerrados en paréntesis y, si se especifica mds de uno, éstos deben
estar separados por comas. Si no se especifican los nombres de las columnas en la cldusula IN-
SERT INTO, entonces debe haber un valor para cada columna en la tabla y los valores deben
estar en el mismo orden en que estan definidos en la tabla. Si los nombres de las columnas es-
tan especificados en la clausula INSERT INTO, entonces debe existir exactamente un valor

por cada columna especificada y esos valores deben estar en el mismo orden en que estan defi-
nidos en la cldusula INSERT INTO. Cada valor con un tipo de datos de cadena debe estar ence-
rrado en comillas simples.

Se esta creando una instruccion INSERT para introducir datos en la tabla TIPOS_AR-
TISTA. La tabla incluye solamente dos columnas: ID_ART y NOMBRE_TIPO. Se quiere
insertar una fila que incluye el valor ID_ART de 27 y el valor NOMBRE_TIPO de Gospel.
. Cual instruccion SQL debera ser utilizada?

Deber4 utilizarse la siguiente instruccion SQL:

INSERT INTO TIPOS ARTISTA VALUES (27, 'Gospel');

Se esta creando una instruccion INSERT que inserta valores tomados desde otra tabla.

. Qué tipo de instruccion o clausula se puede utilizar en lugar de la clausula VALUES para
tomar datos desde la otra tabla?

A SELECT
B SET

C SELECT
D WHERE

La respuesta correcta es C.

¢ Cual instruccion debera utilizarse para modificar los datos existentes en una o mas filas
en una tabla?

A SELECT

B INSERT

C UPDATE

D DELETE

La respuesta correcta es C.
¢ Cuales clausulas son obligatorias en una instruccion UPDATE?
UPDATE y SET
¢ Cual es el proposito de la clausula WHERE en una instrucciéon UPDATE?

La cldausula WHERE especific6 una condicién o un conjunto de condiciones que actian como
un filtro para las filas que son actualizadas. Solamente se actualizan las filas que cumplen con
la condicién o condiciones especificadas.

Se esta creando una instruccion UPDATE para actualizar los datos en la tabla ARTIS-
TAS_INTERPRETES. Se quiere actualizar el valor ID_ART en la fila que contenga el va-
lor ID_ART_INTER de 139. El nuevo valor ID_ART es 27. ;Cual instruccion SQL debera
ser utilizada?

13.

14.

15

16

17

Apéndice A: Respuestas a los autoexdmenes 467

Deber4 utilizarse la siguiente instruccién SQL:

UPDATE ARTISTAS INTERPRETES
SET ID_ART = 27
WHERE ID_ART INTER = 139;

Se esta creando una instruccion UPDATE para actualizar los datos en la tabla ARTIS-
TAS_INTERPRETES. Se quiere actualizar el valor ID_ART de cada fila a 27. ;Cual ins-
truccion SQL debera ser utilizada?

Deber4 utilizarse la siguiente instruccién SQL:
UPDATE ARTISTAS INTERPRETES
SET ID ART = 27;

Se estan actualizando dos columnas en la tabla INVENTARIO_CD. Se quiere cambiar el
valor EDITOR a MCA Records y se quiere duplicar el valor EN_EXISTENCIA. ;Cual
clausula SET debera ser utilizada?

Debera utilizarse la siguiente instruccién SQL:

SET PUBLISHER = 'MCA Records',
EN EXISTENCIA = (EN_EXISTENCIA * 2);

Se esta creando una instruccion UPDATE que incluye una clausula SET con una expre-
sion de valor. Se requiere que la expresion de valor tome un valor desde otra tabla en la
base de datos. ;Cual instruccion o clausula se puede utilizar como una expresion de valor
para seleccionar datos desde otra tabla?

A SELECT
B WHERE
C UPDATE
D INSERT

La respuesta correcta es A.
¢ Cual clausula es requerida en una instruccion DELETE?
DELETE FROM

¢ Cual instruccion o clausula se utiliza en una instruccion DELETE para especificar cua-
les filas seran eliminadas en una tabla?

A SELECT
B WHERE
C UPDATE
D INSERT

La respuesta correcta es B.

468 Fundamentos de SQL

Capitulo 9: Utilizar predicados

1. (En cual clausula de la instruccion SELECT se incluyen predicados?
En la clausula WHERE

2, ;Cual simbolo de operador de comparacién debera utilizarse para expresar una condi-
cion desigual?

A <=
B >=
C <
D =<

La respuesta correcta es C.

3. (Cuiles palabras clave pueden utilizarse para combinar predicados en una clausula
WHERE?

La palabra clave AND y la palabra clave OR.
4, Se quiere consultar una tabla que incluye la columna PRECIO. Es necesario asegurarse
que todas las filas arrojadas tengan un valor PRECIO de 13.99. ;Cual predicado debera
utilizarse?
PRECIO = 13.99
Se crea la siguiente instruccion SQL:

SELECT TITULO CD, PRECIO MENUDEO
FROM CDS_A LA MANO

WHERE PRECIO MENUDEO >= 14
AND PRECIO_MENUDEO <= 16;

by

¢ Qué predicado puede utilizarse en lugar de los dos predicados mostrados en esta instruc-
cion?
PRECIO_MENUDEO BETWEEN 14 AND 16

. Qué palabra clave puede agregarse a un predicado BETWEEN para encontrar el inverso
de la condicion especificada por el predicado?

NOT
7. ;Cuando se utiliza un valor nulo en una columna?

6

Se utiliza un valor nulo en lugar de un valor regular cuando éste es desconocido o no identifica-
do. Un valor nulo indica que el valor estd ausente. Esto no es lo mismo que un cero, un espacio
en blanco o un valor predeterminado.

8. Se quiere consultar una tabla para determinar cuéles valores son nulos. ;Qué tipo de pre-
dicado debera utilizarse?
El predicado NULL

9. Se esta creando una instrucciéon SELECT que consulta la tabla BIO_ARTISTAS. Se
quiere arrojar todas las columnas en la tabla, pero arrojar sélo aquellas columnas que no
contengan valores nulos en la columna LUGAR_DE_NACIMIENTO. ;Cual instruccion
SELECT debera utilizarse?

10.

12.

13

14.

15.

16.

Apéndice A: Respuestas a los autoexdmenes 469

Deber4 utilizarse la siguiente instruccién SQL:

SELECT *
FROM BIO ARTISTAS
WHERE LUGAR DE NACIMIENTO IS NOT NULL;

Se esta consultando la tabla INVENTARIO_CD. Se quiere ver todas las columnas, pero
se requiere ver s6lo aquellas columnas que contengan la palabra Christmas en el nombre
del CD. Los nombres estan almacenados en la columna TITULO_CD. ;Cual instruccion
SELECT debera utilizarse?

Deber4 utilizarse la siguiente instruccién SQL:

SELECT *
FROM INVENTARIO CD
WHERE TITULO CD LIKE ('%Christmas%');

¢ Cual es la diferencia entre un signo de porcentaje y un guién bajo cuando se usan en un
predicado LIKE?

El signo de porcentaje representa cero o mds caracteres desconocidos, mientras que el guién
bajo representa exactamente un cardcter desconocido.

¢ Cuales dos tipos de fuentes de datos pueden utilizarse en un predicado IN?
Una lista definida o una subconsulta.

¢ Cual tipo de predicado se ocupa solamente de determinar si una subconsulta arroja cual-
quier fila o no?

El predicado EXISTS.
¢ Cuales nombres de columna deben ser especificados en un predicado EXISTS?

No tiene importancia cudles columnas o cudntas columnas se especifiquen en la cldusula SE-
LECT de la subconsulta en un predicado EXISTS. Este tipo de predicado estd unicamente rela-
cionado con la condicién de que las filas sean arrojadas, no con el contenido de esas filas. Por
lo tanto, se puede especificar cualquier nombre para las columnas o solamente un asterisco.

Se esta creando una instruccion SELECT que incluye un predicado en la clausula WHE-
RE. Se quiere utilizar un operador de comparacion para comparar los valores en una de
las columnas con los resultados de una subconsulta. Se quiere que el predicado se evalie
como verdadero para cualquiera de los resultados de la subconsulta. ;Qué tipo de predi-
cado debera utilizarse?

A EXISTS
B ANY

C ALL

D IN

La respuesta correcta es B.
¢ Cudl es la diferencia entre un predicado SOME y un predicado ANY?

No hay diferencia. Los dos predicados arrojan resultados idénticos.

470 Fundamentos de SQL

17. ;Cémo difiere el predicado ALL del predicado SOME?

En muchos aspectos, el predicado ALL funciona de la misma forma que el predicado SOME.
El predicado ALL compara los valores de columna con los resultados de la subconsulta. Sin
embargo, en lugar de que los valores de la columna tengan que evaluarse como verdaderos para
cualquiera de los valores resultantes, los valores de la columna deben evaluarse como verdade-
ros para todos los valores resultantes; de otra manera, la fila no es arrojada.

Capitulo 10: Trabajar con funciones y expresiones
de valor

1. ;Qué es una funcion set?

Una funcién set es un tipo de funcién que procesa o calcula los datos y arroja los valores apro-
piados.

2. Se esta creando una instruccion SELECT que consulta la tabla CDS_ARTISTA. La tabla
incluye las columnas NOMBRE_ARTISTA y NOMBRE_CD. Se requiere que la instruc-
cion arroje el nimero total de filas en la tabla. ;Cual funcion COUNT debera incluirse en
la clausula SELECT?

A COUNT(*)
B COUNT(NOMBRE_ARTISTA)
C COUNT(NOMBRE_CD)
D COUNT(NOMBRE_ARTISTA, NOMBRE_CD)
La respuesta correcta es A.
3. (Cual funcion set debera utilizarse para sumar los valores en una columna?

A MAX
B COUNT
C SUM
D AVG
La respuesta correcta es C.
4. Las funciones set requieren que los datos estén de alguna manera.
Agrupados.

5. ;Qué son las funciones de valor?

Las funciones de valor son un tipo de funcién que permite arrojar un valor que de alguna ma-
nera calcule o derive informacion desde los datos almacenados dentro de las tablas o desde la
misma implementacién SQL.

6. Se esta utilizando la funcion SUBSTRING para extraer caracteres de la columna DISCO_
COMPACTO de la tabla FECHAS_VENTAS. Se quiere iniciar con el tercer caracter y
extraer ocho caracteres. ;Qué parametros deberan utilizarse en la funcion SUBSTRING?

(DISCO_COMPACTO FROM 3 FOR 8)

Apéndice A: Respuestas a los autoexdmenes 471

7.

10

12

13

14

15‘

16.

Se esta utilizando la funcién LOWER en el valor Past Light de la columna NOMBRE _
CD. ;Qué valor sera arrojado?

El valor arrojado serd el siguiente: past light.

¢ Qué funcion arroja un valor que represente la fecha y la hora actuales al igual que la in-
formacion relacionada con UCT?

A LOCALTIMESTAMP
B CURRENT_DATE
C LOCALTIME
D CURRENT_TIMESTAMP
La respuesta correcta es D.
. Cuales son los cuatro tipos de operadores que se utilizan en una expresion de valor nu-
mérica?
Suma, resta, multiplicacion y division.

Se estan consultando datos de la tabla RASTREO_CD. Se quieren agregar valores en la
columna EN_EXISTENCIA a los valores en la columna EN_PEDIDO. Luego se quiere
duplicar los totales de la columna. ;Cémo se establece la expresion de valor numérica?

(EN_EXISTENCIA + EN_ORDEN) * 2

¢ Cual expresion de valor se utiliza para establecer una serie de condiciones que modifi-
quen valores?

La expresion CASE.

Se esta creando una instruccion SELECT que incluye una expresion de valor CASE. Se

requiere que una de las condiciones especifique que cualquier valor EN_PEDIDO mayor a
10 se incremente en 5. ;Cémo debera establecerse la clausula WHEN/THEN?

WHEN EN_PEDIDO > 10 THEN EN_PEDIDO + 5

¢ Cual es la dltima palabra en una expresion de valor CASE?
La palabra END.

2 Qué es la expresion de valor CAST?

Una expresion de valor CAST es un tipo de expresidon que permite cambiar un tipo de datos de
valor cuando se recupera ese valor desde la base de datos.

Se esta consultando la columna FECHA_VENTA en la tabla FECHAS_VENTAS. Se
requiere convertir los valores a un tipo de datos CHAR(25), y que los datos sean desple-
gados en la columna CHAR_FECHA en los resultados de la consulta. ;Como se define la
expresion de valor CAST?

CAST(FECHA_VENTA AS CHAR (25)) AS CHAR_FECHA

. Qué valor especial puede utilizarse para identificar al identificador de usuario de sesion
SQL actual?

SESSION_USER

472 Fundamentos de SQL

Capitulo 11: Acceder a mdltiples tablas

o

N

Se esta utilizando una operacion join separada por comas para unir dos tablas. La prime-
ra tabla contiene cinco filas y la segunda tabla contiene tres filas. ; Cuantas filas contendra
la tabla de producto cartesiano?

15 filas.
. Qué constituye una condicion equi-join en una clausula WHERE?

Los valores en una o mds columnas en la primera tabla son igualados con los valores en una o
mads columnas correspondientes en la segunda tabla.

¢ Cual clausula contiene la condicion equi-join en una operacion join separada por comas?
La cldusula WHERE.

¢ Qué lineamientos basicos deberan seguirse cuando se crea una operacion join separada
por comas?

La clausula FROM debera incluir todos los nombres de las tablas, la clausula WHERE debera
definir una condicién equi-join, y las referencias de columna deberan ser cualificadas cuando
los nombres de columna sean compartidos entre las tablas.

Se esta creando una operacion join sobre dos tablas. Se asignan nombres de correlaciéon
para cada una de estas tablas. ;Cuales nombres deberan utilizarse en la clausula SE-
LECT: los nombres de correlaciéon o los nombres reales de las tablas?

Los nombres de correlacion.
. Qué tipo de operacion join es practicamente idéntica a la operacion join separada por
comas?
A Join de condicién
B Join natural
C Cross join
D Join de columna nombrada
La respuesta correcta es C.
. Cuantas tablas estan contenidas en una operacion self-join?
Una.

. Qué lineamientos deberan seguirse cuando se crean operaciones join naturales o de co-
lumna nombrada?

Las columnas unidas deben compartir el mismo nombre y tener tipos de datos compatibles. Y
los nombres de las columnas unidas no pueden ser cualificados con los nombres de las tablas.

¢ Cual es la diferencia entre una operacion join natural y una de columna nombrada?

La operacién join natural automaticamente hace coincidir las filas para aquellas columnas con
el mismo nombre. No es necesario especificar ningtin tipo de condicién equi-join para las ope-
raciones join naturales. La implementaciéon SQL determina cuéles columnas tienen los mismos
nombres y luego intenta formar una coincidencia. En una operacién join de columna nombrada,
se debe especificar la columna coincidente. Las columnas coincidentes no se determinan auto-
mdticamente.

Apéndice A: Respuestas a los autoexdmenes 473

10. ;Qué tipo de operacién join contiene una cldusula USING para especificar la condicién
equi-join?

Join de columna nombrada.

11. ;Cuales son los dos tipos de operaciones join de condiciéon?

Inner joins y outer joins

12. ;Cuales son los tres tipos de operacion outer join?

Left, right y full.

13. (Cuil tipo de operacién join de condicién debera utilizarse si se quiere arrojar solamente
filas coincidentes?

A

B
C
D

Inner join

Left outer join
Right outer join
Full outer join

La respuesta correcta es A.

14. ;Qué tipo de operacion join de condicion arroja todas las filas coincidentes y no coinci-

dentes?

A Inner join

B Left outer join
C Right outer join
D Full outer join

La respuesta correcta es D.

15. ;Qué tipo de operacion join contiene una clausula ON?

A Crossjoin
B Join separada por comas
C Join natural
D Join de condicién
La respuesta correcta es D.
16. Un operador permite combinar instrucciones SELECT separadas en una
sola instruccion para unir los datos en un solo resultado de consulta.
UNION

17. ;Qué palabra clave puede utilizarse con un operador UNION para arrojar todas las filas
en los resultados de la consulta, sin importar si existen valores duplicados?

La palabra clave ALL.

474 Fundamentos de SQL

Capitulo 12: Utilizar subconsultas para acceder y

g

modificar datos

.En cual tipo de instruccion se pueden incluir subconsultas?
A SELECT

B INSERT

C UPDATE

D DELETE

Las respuestas correctas son A, B, Cy D.
.Qué es una subconsulta?

Una subconsulta es una instruccién SELECT incrustada que actia como una puerta de comuni-
cacion hacia los datos en una segunda tabla. Los datos arrojados por la subconsulta se utilizan
por la instruccién primaria para cumplir cualquier condicién que haya sido definida para esa
instruccion.

.En cuales clausulas de una instruccion SELECT se puede incluir una subconsulta?
A SELECT

B WHERE

C GROUPBY

D HAVING

Las respuestas correctas son A, By D.

,En cudles dos categorias generales se pueden dividir las subconsultas de una clausula
WHERE?

Las subconsultas que pueden arrojar multiples filas y aquellas que pueden arrojar solamente un
valor.

¢ Cuales tipos de predicados se debe evitar utilizar con subconsultas que arrojen miiltiples
filas?

A Predicados IN y EXISTS
B Predicados SOME, ANY y ALL
C Predicados de comparacién
D Predicados de comparacion cuantificados
La respuesta correcta es C.
., Cuando se evalia una condicion EXISTS como verdadera?

Una condicion EXISTS se evalda como verdadera si una o mas filas son arrojadas por la sub-
consulta; de otra manera, se evalia como falsa.

. Qué debera incluirse en la condicion de bisqueda de una subconsulta cuando se utiliza
un predicado EXISTS?

La subconsulta de un predicado EXISTS deber4 incluir una condicién de bisqueda que coinci-
da con los valores en las dos tablas que estdn siendo vinculadas a través de la subconsulta.

Apéndice A: Respuestas a los autoexdmenes 475

8. Ademas de niimeros, los datos pueden ser comparados en los predicados
de comparacion.

De cadena de caracteres.
9. (Cuales son los tres predicados de comparacion cuantificados?

SOME, ANY y ALL

10. ;Qué tipos de predicados permiten utilizar subconsultas que arrojen miltiples filas?
A Predicados IN y EXISTS
B Predicados SOME, ANY y ALL
C Predicados de comparacién
D Predicados de comparacion cuantificados

Las respuestas correctas son A, B y D.
11. ;Qué es una subconsulta correlacionada?

Una subconsulta correlacionada es aquella que es dependiente en alguna manera de la instruc-
cioén outer.

12. ;Con qué constancia es evaluada una subconsulta correlacionada cuando se procesa una

instruccion SELECT?

La subconsulta correlacionada debe ser evaluada para cada fila arrojada por la instruccién SE-
LECT outer.

13. Un(a) es una subconsulta que es un componente de otra subconsulta.

Subconsulta anidada.

14. ;Cuantas subconsultas pueden ser incluidas en una instruccion SELECT, segiin especifica

el estandar SQL?

El estandar SQL:2006 no limita el nimero de subconsultas que pueden ser incluidas en una ins-
truccion.

15. ;Cual clausula en una instruccion INSERT puede contener una subconsulta?
La cldusula VALUES.

16. ;Cuantos valores puede arrojar una subconsulta si es utilizada dentro de una instruccion
INSERT?

Uno.

¢ Cuales clausulas en una instruccion UPDATE pueden contener una subconsulta?
WHERE y SET

17

Capitulo 13: Crear rutinas invocadas por SQL

1. ;Cuales son los tipos de rutinas invocadas por SQL soportados por el estaindar SQL?
A CHECK Constraint

B Function

476 Fundamentos de SQL

C Trigger
D Procedimiento invocado por SQL
Las respuestas correctas son B 'y D.
2. ;Cuales tipos de parametros pueden utilizarse en una funcién invocada por SQL?
A De entrada
B Desalida
C De entrada/salida
D Variables
Las respuestas correctas son A, By C.

3. (Cual instruccién se utiliza para invocar un procedimiento invocado por SQL?

A RETURN
B CALL

C SET

D DECLARE

La respuesta correcta es B.

4, Un(a) es un valor pasado a una instruccion en un procedimiento cuan-
do se invoca ese procedimiento.

Parametro.
5. ;Cuales tipos de parametros pueden utilizarse en una funcién invocada por SQL?
A De entrada
B De salida
C De entrada/salida
D Variables
La respuesta correcta es A.
6. (Cual es otro nombre para un procedimiento invocado por SQL?
Procedimiento almacenado.
7. (Cuales son las dos diferencias principales entre procedimientos y funciones?

Los procedimientos son invocados utilizando una instruccién CALL, y soportan parametros de
entrada y de salida. Las funciones son invocadas como un valor en una expresion, y solamente
soportan parametros de entrada.

8. (Qué informacion debe incluirse en una instruccion CALL cuando se invoca un procedi-
miento?

El nombre del procedimiento y los valores que son pasados a los pardmetros.
9. ;Qué tipo de instrucciones pueden incluirse en un procedimiento?

A SELECT

B INSERT

477

C
D

Apéndice A: Respuestas a los autoexdmenes

UPDATE
DELETE

Las respuestas correctas son A, B, C y D.

10. ;Cual instruccion se utiliza para asignar un valor inicial a una variable?

A DECLARE
B RETURN
C SET
D CALL
La respuesta correcta es C.
11. Una instruccion permite agrupar las instrucciones SQL en bloques.
Control.

12. ;Qué palabra clave se utiliza para comenzar una instrucciéon condicional?

A

B
C
D

IF
BEGIN
THEN
ELSE

La respuesta correcta es A.

13. ;Qué palabra clave se utiliza en una instruccién LOOP para terminar la repeticién?
LEAVE.

14. ;Cual es la diferencia entre una instruccion condicional y una instrucciéon compuesta?

Una instruccién condicional determina si una instruccién es ejecutada basada en si una condi-
cion especifica se evaltia como verdadera. Una instrucciéon compuesta agrupa las instrucciones
en un bloque.

15. ;Cuales son los dos tipos de instrucciones de repeticion?

A

B
C
D

BEGIN...END
IF...END IF
LOOP...END LOOP
WHILE...END WHILE

Las respuestas correctas son C y D.

16. ;Qué tipo de parametro puede arrojar un valor cuando se invoca un procedimiento?

De salida.

478 Fundamentos de SQL

17. ;Qué paso debe tomarse cuando se convoque un procedimiento que incluya un parametro
de salida?

Se debe declarar una variable que sea entonces utilizada en la instruccion CALL como un valor
de parametro.

2 Qué tanto difiere una instruccion CREATE FUNCTION de una instruccion CREATE
PROCEDURE?

En una instruccion CREATE FUNCTION, las definiciones de pardmetro de entrada no pueden
incluir la palabra clave IN. Ademads, una clausula RETURNS debe seguir a las definiciones de
parametro, y el cuerpo de la rutina debe incluir una instruccion RETURN.

19. Se esta convocando un procedimiento llamado OBTENER_TOTALES. El procedimiento
no incluye ningin parametro, pero si incluye una instruccion SELECT que consulta la
tabla INVENTARIO_CD. ;Cual instruccion SQL debera utilizarse para invocar este pa-
rametro?

Se deberd utilizar la siguiente instruccién SQL:
CALL OBTENER TOTALES();

20. Se crea un procedimiento llamado OBTENER_INFO_CD que selecciona datos acerca de
un artista de la tabla INFO_CD. El procedimiento incluye un parametro de entrada. Se
quiere convocar ese procedimiento con el valor Bonnie Raitt. ;Cual instruccion SQL de-

bera utilizarse para invocar el procedimiento?

Se deberd utilizar la siguiente instruccion SQL:
CALL OBTENER INFO CD ('Bonnie Raitt');

21. ;Cuales son los dos tipos de objetos de esquema que pueden utilizarse para almacenar

una instruccion SELECT?

Vistas y procedimientos invocados por SQL.

Capitulo 14: Crear activadores SQL

1. ;Qué es un activador?

Un activador es un objeto de esquema que es invocado automdticamente cuando se realiza una
modificacién de datos especifica. Una vez invocado, el activador toma una accién predefinida,
la cual se encuentra especificada en una o mds instrucciones SQL.

2, ;Cuales son los tres tipos de activadores?
Insert, update y delete.
3. ;Qué tipo de acciones pueden ser realizadas por las instrucciones SQL activadas?

Las instrucciones SQL activadas pueden realizar acciones tales como actualizar tablas, eliminar
datos, invocar procedimientos, o realizar la mayoria de las tareas que pueden llevarse a cabo
con instrucciones SQL.

4. ;Cuales acciones puede invocar un activador?
A Actualizacion de datos
B Consulta de datos

Apéndice A: Respuestas a los autoexdmenes 479

C Eliminacién de datos
D Inserci6n de datos
Las respuestas correctas son A, Cy D.
5. ;Cuando es invocado un activador de insercién?
Cuando se insertan datos en la tabla en la cual se encuentra definido el activador.
6. (En cuantas tablas puede ser definido un activador?
A Solamente una
B Unaomis
C Deunaatres
D Cualquier nimero de tablas
La respuesta correcta es A.

7. Un(a) es un espacio creado en la memoria que alberga un proceso de ac-
tivador durante la ejecucion de ese activador.

Contexto de ejecucidn del activador.

8. Se insertan datos en la tabla 1, que invoca un activador de insercion definido en esa tabla.
El activador actualiza la informacion en la tabla 2, que invoca un activador de actualiza-
cion definido en esa tabla. El activador de actualizacion elimina informacion en la tabla 3,
que invoca un activador de eliminacion definido en esa tabla. ;Cual contexto de ejecucion
de activador esta activo en este punto?

A El contexto de ejecucion de activador para el activador de insercion
B El contexto de ejecucion de activador para el activador de actualizacién
C El contexto de ejecucién de activador para el activador de eliminacién

La respuesta correcta es C.

9. Si tres activadores son invocados durante una sesion, ;cuintos contextos de ejecucion de
activador son creados en esa sesion?

Tres.
10. ;Qué informacién es incluida en un contexto de ejecucion de activador?

Un contexto de ejecucion del activador contiene la informacidn necesaria para que el activador
sea ejecutado correctamente. Esta informacion incluye detalles acerca del mismo activador y de
la tabla sujeto. Ademds, el contexto de ejecucién incluye una o dos tablas de transicion.

11. (En cual clausula de la instruccion CREATE TRIGGER se asignan nombres de correla-
cion a los datos antiguos y nuevos?

A FOREACH

B ON

C REFERENCING
D WHEN

La respuesta correcta es C.

480 Fundamentos de SQL

12. ;En cual clausula de la instruccion CREATE TRIGGER se especifica si las instrucciones

13.

14

15

16

17

SQL activadas seran ejecutadas una vez para cada fila o una vez para cada instruccion?
A FOR EACH

B ON

C REFERENCING

D WHEN

La respuesta correcta es A.

Se esta creando una definicion de activador para un activador de insercion. ;Cuales clau-
sulas REFERENCING se pueden incluir en la instruccion CREATE TRIGGER?

A REFERENCING OLD ROW AS Old

B REFERENCING NEW ROW AS New
C REFERENCING OLD TABLE AS Old
D REFERENCING NEW TABLE AS New

Las respuestas correctas son B 'y D.

Un activador permite especificar los nombres de columna de una tabla en
cuestion.

Update.

¢ Cuales palabras clave pueden utilizarse para designar si las instrucciones SQL activadas

seran ejecutadas antes o después de que la instruccion de modificacion de datos sea apli-
cada a la tabla en cuestion?

Las palabras clave BEFORE o AFTER.

Se esta creando un activador de actualizacion en la tabla INVENTARIO_CD. La tabla
incluye una columna llamada EN_EXISTENCIA. Se requiere que las instrucciones SQL
activadas sean ejecutadas solamente cuando el valor EN_EXISTENCIA de la fila actua-
lizada exceda 20. ;Cual clausula debera incluirse en la instruccion CREATE TRIGGER
para restringir cuando son ejecutadas las instrucciones?

A WHERE

B HAVING

C FOREACH
D WHEN

La respuesta correcta es D.

¢ Qué instruccion debe incluirse en la instruccion CREATE TRIGGER si la definicion del
activador incluye mas de una instruccion SQL activada?

La instruccion BEGIN...END.

18. ;Cuail instruccion puede utilizarse para eliminar un activador del esquema?

La instruccion DROP TRIGGER.

Apéndice A: Respuestas a los autoexdmenes 481

19. ;Cual instruccién SQL se utiliza para alterar una definicion de activador?

SQL no soporta una instruccién que permita alterar una definicion de activador. Primero debe
utilizarse una instruccion DROP TRIGGER para eliminar al activador de la base de datos, y
luego utilizar la instruccion CREATE TRIGGER para volver a crear al activador.

Capitulo 15: Utilizar cursores SQL

1. {Qué es un cursor?

Un cursor funciona como un sefialador que permite al lenguaje de programacién de aplicacion
tratar con los resultados de la consulta una fila a la vez. A pesar de que el cursor puede recorrer
todas las filas de los resultados de la consulta, se enfoca solamente en una fila a la vez.

2, ;Cuales métodos de invocacion soportan el uso de cursores?
SQL incrustado y los médulos cliente SQL.
3. ;Cual forma de incongruencia en la impedancia es cubierta a través del uso de cursores?

El hecho de que SQL arroje datos en conjuntos pero otros lenguajes de programacién solamen-
te puedan procesar muy pocos segmentos de datos al mismo tiempo.

4. Un(a) funciona como un sefialador que permite al lenguaje de programa-
cion de aplicacion tratar con los resultados de la consulta una fila a la vez.

Cursor.

5. Cuando se utilizan cursores en SQL incrustado, ;cual es el primer paso que se debe tomar
antes de que se puedan recuperar datos a través de ese cursor?

A Buscar el cursor.
B Declarar el cursor.
C Cerrar el cursor.
D Abrirel cursor.
La respuesta correcta es B.

6. ;Cuales son las cuatro instrucciones relacionadas con el cursor que pueden ser incrusta-
das en un lenguaje host?

DECLARE CURSOR, OPEN, FETCH y CLOSE.

7. (Cuales opciones pueden ser utilizadas en las instrucciones de cursor de sélo lectura?

A SCROLL

B WITHHOLD
C ORDERBY

D INSENSITIVE

Las respuestas correctas son A, C y D.

482

Fundamentos de SQL

8. (Cuales son los elementos obligatorios de una instruccion DECLARE CURSOR?
DECLARE <nombre del cursor> CURSOR FOR <expresién de la consulta>

9. (Qué tipo de cursor no ve los cambios hechos por instrucciones fuera del cursor?
Cursor no sensitivo.

10. ;Cual opcion debera utilizarse en una instruccién de cursor para extender las capacida-
des de recuperacion de una instruccion FETCH?

A WITHOUT HOLD
B ASENSITIVE
C SCROLL
D FOR UPDATE
La respuesta correcta es C.

11. La capacidad para el cursor hace referencia a una caracteristica en
los cursores que esta relacionada con la condicién de cerrar o no un cursor automatica-
mente cuando la transaccion en la que el cursor fue abierto es completada.

Mantener abierto.

12. Se esta creando una instrucciéon de cursor. La instruccién SELECT incluye una clidusula
ORDER BY. ;Cuales clausulas no pueden ser incluidas en la instruccion SELECT?

A SELECT
B HAVING
C GROUPBY
D WHERE
Las respuestas correctas son B 'y C.

13. (Cual opcion debera incluirse en una instruccién de cursor para definir que ese cursor
tiene capacidades para mantenerse abierto?

WITH HOLD

14. La instrucciéon de cursor incluye una clausula FOR UPDATE que no especifica ninguna
columna. ;Cuales columnas en la tabla subyacente pueden ser actualizadas?

Todas las columnas.

15. (Cual instruccién SQL debera utilizarse si se quiere abrir el cursor ARTISTAS_CD?
Deber4 utilizarse la siguiente instruccion:
OPEN ARTISTAS CD;

16. ;Cual instrucciéon SQL ejecuta la instrucciéon SELECT en un cursor?

La instruccion OPEN.

Apéndice A: Respuestas a los autoexdmenes 483

17. Una instruccion recupera filas desde los resultados de la consulta del
cursor una vez que se abre ese cursor.

FETCH.

18. ;Qué tipo de cursor permite utilizar todas las opciones de orientacion para bisqueda en
la instruccion FETCH?

El cursor con capacidad de desplazamiento.

19. ;Cuil opcion de orientacién para biisqueda deberi utilizarse en una instruccién FETCH
si se requiere asegurarse de recuperar la primera fila en los resultados de la consulta del

cursor?

A PRIOR

B NEXT

C ABSOLUTE-1
D FIRST

La respuesta correcta es D.

20. ;Cual cldusula es requerida en una instruccion UPDATE posicionada para poder actuali-
zar una fila arrojada por la instruccion FETCH mas reciente?

WHERE CURRENT OF <nombre del cursor>

Capitulo 16: Manejar transacciones SQL

1. (Cuaél caracteristica de una transaccion se refiere a la naturaleza todo-o-nada de una

transaccion?

A Atdémica

B Consistente
C Aislada

D Durable

La respuesta correcta es A.

2. Un(a) es una unidad de trabajo que consta de una o mas instrucciones
SQL que realizan un conjunto relacionado de acciones.

Transaccion.
3. ;Qué instruccion puede utilizarse para iniciar explicitamente una transaccién?
START TRANSACTION.
4, ;Cuales instrucciones SQL finalizaran una transaccion?
A SAVEPOINT
B SET TRANSACTION
C ROLLBACK
D COMMIT

Las respuestas correctas son C y D.

484 Fundamentos de SQL

5.

6‘

°

10

¢ Cuales son los tres tipos de modo de transaccion que pueden especificarse en una ins-
truccion SET TRANSACTION?

Nivel de acceso, nivel de aislamiento y tamafio de diagnéstico.

¢ Cuales opciones del nivel de acceso pueden incluirse en una instrucciéon START TRAN-
SACTION?

A READ ONLY
B UPDATE
C LOCAL
D READ WRITE
Las respuestas correctas son A y D.

Dos transacciones simultianeas estan activas en el sistema. La primera transaccion modifi-
ca los datos en una tabla. La segunda transaccion ve esas modificaciones antes de que sean
completadas realmente en la base de datos. Luego, la primera transaccion reinvierte las
modificaciones. ;Qué tipo de irregularidad de datos ha ocurrido?

A Lectura fantasma
B Lectura repetible
C Lectura sucia
D Lectura no repetible
La respuesta correcta es C.

Una lectura puede ocurrir cuando una transaccion lee una tabla basada
en algin tipo de condicion de bisqueda, después una segunda transaccion actualiza los
datos en la tabla, y la primera transaccion intenta volver a leer los datos, sélo que esta vez
se arrojan diferentes filas debido a como esta definida la condicion de bisqueda.

Fantasma.

. Qué tipo de restriccion puede especificarse en una instruccion SET CONSTRAINTS?
Restriccion aplazable.

¢ Cual de los niveles de aislamiento aisla por completo una transaccion de otra transac-
cion?

SERIALIZABLE.

Se esta utilizando una instruccion SET TRANSACTION para configurar los modos de
transaccion. Se requiere asegurarse de que no puedan ocurrir lecturas no repetibles ni
lecturas sucias dentro de la transaccion. Sin embargo, no es necesario preocuparse acerca
de las lecturas fantasma. ;Cual nivel de aislamiento debera utilizarse?

A READ UNCOMMITTED
B READ COMMITTED

Apéndice A: Respuestas a los autoexdmenes 485

12.

13.

14.

15.

16.

17.

C REPEATABLE READ
D SERIALIZABLE
La respuesta correcta es C.

Se esta configurando una transaccién que aplace la aplicacion de la restriccion REST_
CD_EXISTENCIA hasta que se ejecuten varias instrucciones SQL. Después de ejecutar
las instrucciones, se requiere aplicar explicitamente la restriccion a los cambios que se
hicieron a la base de datos. ;Qué instruccion SQL debera utilizarse para aplicar las res-
tricciones?

Debera utilizarse la siguiente instruccion:
SET CONSTRAINTS REST CD EXISTENCIA IMMEDIATE;

Un(a) es un marcador designado dentro de la transaccién que actiia como
un punto para reinvertir una porcion de la transaccion.

Punto de recuperacion.

Se necesita crear un punto de recuperacion llamado svpt_Seccion2. ;Qué instruccion SQL
debera utilizarse?

Deber4 utilizarse la siguiente instruccion:
SAVEPOINT svpt Seccion2;

Se crea una transaccion que incluye cuatro puntos de recuperacion: Seccionl, Seccion2,
Seccion3 y Secciond. Cerca del final de la transaccion, posterior a los cuatro puntos de
recuperacion, se define RELEASE SAVEPOINT que especifica el punto de recuperacion
Seccion2. ;Cual punto o cuales puntos de recuperacion son eliminados de la transacciéon
cuando se ejecuta la instruccion RELEASE SAVEPOINT?

A Seccionl
B Seccion2
C Seccion3
D Secciond
Las respuestas correctas son B, C y D.
¢ Qué circunstancias finalizaran una transaccion?

Que una instruccién ROLLBACK sea definida explicitamente en la transaccién; que una ins-
truccion COMMIT sea definida explicitamente en la transaccidn; que el programa que inici
la transaccion sea interrumpido, causando que el programa aborte, o que el programa complete
exitosamente su ejecucion.

Se esta creando una instruccion ROLLBACK en la transaccién. Se necesita que la reinver-
sion deshaga los cambios hasta el punto de recuperacion svpt_Seccion2. ;Qué instruccion
SQL debera utilizarse?

Debera utilizarse la siguiente instruccion:

ROLLBACK TO SAVEPOINT svpt Seccion2;

486 Fundamentos de SQL

18. Se esta creando una instruccion COMMIT en la transaccion. Después de que la transac-
cion es finalizada, se requiere que inicie una nueva transaccion. La nueva transaccion de-
bera estar configurada con los mismos modos de transaccién que la primera transaccién.
. Como debera crearse la instruccion COMMIT?

Debera utilizarse la siguiente instruccién:
COMMIT AND CHAIN;

Capitulo 17: Acceder a datos SQL desde un programa
host

1. ;{Cual método de acceso de datos debera utilizarse si se quiere crear y ejecutar instruccio-
nes SQL ad hoc?

A CLI
B De médulos cliente de SQL
C Invocacién directa
D SQL incrustado
La respuesta correcta es C.
2, ;Qué es SQL incrustado?

SQL incrustado se refiere a las instrucciones SQL que estdn entremezcladas con algin tipo de

lenguaje de programacion de aplicacién. Las instrucciones SQL se fusionan dentro del lengua-
je host para permitir al programa fuente ser capaz de acceder y modificar tanto los datos SQL

como la estructura subyacente de la base de datos.

3. {Qué hace el precompilador con el archivo del programa?

El precompilador retira las instrucciones SQL del cédigo del lenguaje host y las reemplaza con
Ilamadas a las instrucciones SQL.

4, ;Cuales archivos son creados por un precompilador SQL?
A Un archivo para las funciones CLI
B Un archivo para el lenguaje host
C Un archivo para las llamadas CLI
D Un archivo para las instrucciones SQL incrustadas
Las respuestas correctas son B y D.

5. {Qué clausula se utiliza en una instruccion MODULE para especificar el lenguaje de pro-
gramacion host?

La clausula LANGUAGE.

6. (Qué prefijo deberan utilizar las instrucciones SQL incrustadas cuando esas instrucciones
son incrustadas en el lenguaje de programacion MUMPS?

A &SQL(
B EXEC SQL

Apéndice A: Respuestas a los autoexdmenes 487

C START-EXEC
D Las instrucciones incrustadas en MUMPS no requieren un prefijo
La respuesta correcta es A.

7. Un(a) es un tipo de parametro que es declarado dentro del lenguaje host
y luego es referenciado dentro de la instruccion SQL incrustada.

Variable host.

8. (Qué instrucciéon deberi utilizarse al principio de la seccién de instruccién para las varia-
bles host?

BEGIN DECLARE SECTION.

9. ;Qué prefijo debera proporcionarse para una variable host cuando esté incluida en una
instruccion SQL?

A Signo de interrogacion
B Signo de unién &
C Puntoycoma
D Dos puntos
La respuesta correcta es D.

10. Se planea incrustar instrucciones SQL en el programa host. Se quieren declarar diferen-
tes variables host para ser utilizadas en las instrucciones SQL. ;Qué instrucciéon SQL de-
bera utilizarse para finalizar la seccion de instruccién del programa?

A TERMINATE DECLARE SECTION
B END DECLARE SECTION
C TERMINATE DECLARATIONS
D END DECLARATIONS
La respuesta correcta es B.

11. ;Qué puede provocar que ocurra una incongruencia en la impedancia cuando se pasa una
variable de un programa host a una instruccion SQL?

Las diferencias entre el tipo de datos del lenguaje host y el tipo de datos SQL.

12. ;Qué tipo de instruccion SELECT puede utilizarse en SQL incrustado cuando se recupe-
ra solamente una fila de datos?

Una instruccion SELECT de instancia dnica.

13. Un(a) es un tipo de variable que especifica si una variable de datos aso-
ciada contiene un valor nulo.

Una variable host de indicador.

488 Fundamentos de SQL

14.

15.

16‘

17

19.

20.

;Qué instruccion puede utilizarse en SQL incrustado para proporcionarle al programa
host la informacion de excepcion y de advertencia?

A WHENEVER
B INTO
C CAST
D PROCEDURE
La respuesta correcta es A.

Un(a) es una coleccion de instrucciones SQL autocontenidas que estian
separadas de un lenguaje de programacion host pero que pueden ser convocadas desde
dentro de ese lenguaje.

Moédulo cliente SQL.

. Qué indicadores de asignacion deben establecerse para poder ejecutar una instruccion
SQL a través de una interfaz de programacion CLI?

De ambiente, de conexién y de instruccién.

¢ Cuantas instrucciones SQL pueden incluirse en un procedimiento en un médulo cliente
de SQL?

Una.
¢ Qué funcion debera utilizarse para establecer un indicador de conexion CLI?
A ExecDirect()
B Connect()
C Prepare()
D AllocHandle()
La respuesta correcta es D.

Se esta asignando un indicador de ambiente dentro de un programa C y asignando el indi-
cador con la variable host henv. ;Qué instruccion de funcion debera utilizarse?

Debera utilizarse la siguiente instruccién de funcién:

SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv);

Se esta creando la siguiente instruccion de funcion Prepare() en el programa host:

SQLPrepare (hstmt, "SELECT ID CD, TITULO CD, EN EXISTENCIA FROM
DISCOS_COMPACTOS
WHERE ID DISCO_COMPACTO = ?", SQL NTS);

¢ Cuantas instrucciones de funcion BindCol() deberan crearse?
A Una
B Dos

Apéndice A: Respuestas a los autoexdmenes 489

C Tres
D Cuatro
La respuesta correcta es C.

21. ;Qué funcién CLI debera utilizarse si se quiere ejecutar una instruccion SQL en un solo
paso?

ExecDirect()

Capitulo 18: Trabajar con datos XML
1. ;Qué es XML?
XML es un lenguaje de marcado de propésito general utilizado para describir documentos.
2. ;Cuales de los siguientes son usos comunes de XML?
A Desplegar datos de la base de datos en una pagina Web
B Lacreacidn de pdginas Web estdticas
C Latransmision de datos de una base de datos a otro partido
D El reforzamiento de reglas de negocios en documentos
Las respuestas correctas son A 'y C.

3. ;Qué tanto varian las bases de datos SQL y los documentos XML en términos de estruc-
tura de datos?

XML define una secuencia y una estructura jerarquica de arbol, no asi SQL.

4, Si dos organizaciones estan usando XML, ;significa eso que ellos tienen una forma estan-
dar de intercambiar datos sin tener que crear software de interfaz?

No necesariamente. Las dos organizaciones deben utilizar una definiciéon comin para los ele-
mentos dentro de los documentos XML a ser intercambiados antes de que puedan procesarlos
sin la necesidad de realizar ninguna interpretacién o conversion.

5. ;Cuales de los siguientes son modificadores de tipo validos para el tipo de datos XML?
A DOCUMENT
B SEQUENCE
C SQLXML
D CONTENT
Las respuestas correctas son A, B y D.

6. ;Cuales son los modificadores secundarios de tipo validos para el modificador de tipo SE-
QUENCE?

El modificador de tipo SEQUENCE no puede tener un modificador secundario de tipo.

490 Fundamentos de SQL

7. ;Cual de las siguientes funciones SQL/XML crea un elemento basado en una columna de

una tabla?

A XMLQUERY

B XMLELEMENT

C XMLFOREST

D XMLDOCUMENT
E XMLPARSE

La respuesta correcta es C.
8. (Cual tipo de esquema XML es trazado desde el tipo de datos SQL NUMERIC?
A xs:integer
B xs:float
C xs:decimal
D xs:double
La respuesta correcta es C.
9. ;Cual tipo de esquema XML es trazado desde el tipo de datos SQL DATE?
A xs:dateTime
B xdt:yearMonthDuration
C xs:time
D xs:date
E xdt:dat-TimeDuration
La respuesta correcta es D.

10. ;Cuailes son las dos formas en que los valores nulos de la base de datos pueden ser repre-
sentados por SQL/XML?

A Absent document
B Absent element
C xsi:mnull= “true”
D xsi:nil= “true”
E <elementname=nil>

La respuesta correcta es D.

Apéndice B

Palabras clave
de SQL:2006

492 Fundamentos de SQL

El estandar SQL:2006 define un conjunto de palabras clave reservadas y palabras clave no re-
servadas que se utilizan dentro de las declaraciones SQL. No es posible utilizar palabras clave
reservadas como identificadores. Ademds, generalmente es una buena idea evitar utilizar palabras
clave no reservadas. Nétese que el estindar SQL advierte que no garantiza aquellas palabras que
pudieran ser agregadas al estdndar en el futuro. Como resultado, un identificador que se utilice en
una base de datos actual pudiera no ser utilizable en versiones futuras de SQL. Se pueden evitar
los conflictos con palabras clave reservadas en el futuro al agregar un digito o un guién bajo a los
identificadores, especialmente a aquellos comprimidos en una sola palabra, y al no comenzar un
identificador con current_, session_, system_, or timezone_ o terminar el identificador

con _length.

NOTA

Varias implementaciones SQL incluyen palabras clave adicionales y palabras reservadas que
no pueden ser utilizadas como identificadores. Como siempre, revise la documentacién de su

producto.

Palabras clave reservadas de SQL

La tabla B-1 lista las palabras clave reservadas de SQL.

ABS ALL ALLOCATE ALTER

AND ANY ARE ARRAY

AS ASENSITIVE ASYMMETRIC AT

ATOMIC AUTHORIZATION AVG BEGIN

BETWEEN BIGINT BINARY BLOB

BOOLEAN BOTH BY CALL

CALLED CARDINALITY CASCADED CASE

CAST CEIL CEILING CHAR

CHAR_LENGTH CHARACTER CHARACTER_LENGTH | CHECK

CLOB CLOSE COALESCE COLLATE

COLLECT COLUMN COMMIT CONDITION

CONNECT CONSTRAINT CONVERT CORR

CORRESPONDING COUNT COVAR_POP COVAR_SAMP

CREATE CROSS CUBE CUME_DIST

CURRENT CURRENT_DATE CURRENT_DEFAULT_ CURRENT_PATH
TRANSFORM_GROUP

CURRENT_ROLE CURRENT_TIME CURRENT_TIMESTAMP | CURRENT_TRANSFORM_

GROUP_FOR_TYPE

Tabla B-1 Palabras clave reservadas de SQL.

Apéndice B: Palabras clave de SQL:2006 493
CURRENT_USER CURSOR CYCLE DATE
DAY DEALLOCATE DEC DECIMAL
DECLARE DEFAULT DELETE DENSE_RANK
DEREF DESCRIBE DETERMINISTIC DISCONNECT
DISTINCT DOUBLE DROP DYNAMIC
EACH ELEMENT ELSE END
END-EXEC ESCAPE EVERY EXCEPT
EXEC EXECUTE EXISTS EXP
EXTERNAL EXTRACT FALSE FETCH
FILTER FLOAT FLOOR FOR
FOREIGN FREE FROM FULL
FUNCTION FUSION GET GLOBAL
GRANT GROUP GROUPING HAVING
HOLD HOUR IDENTITY IN
INDICATOR INNER INOUT INSENSITIVE
INSERT INT INTEGER INTERSECT
INTERSECTION INTERVAL INTO 1S
JOIN LANGUAGE LARGE LATERAL
LEADING LEFT LIKE LN
LOCAL LOCALTIME LOCALTIMESTAMP LOWER
MATCH MAX MEMBER MERGE
METHOD MIN MINUTE MOD
MODIFIES MODULE MONTH MULTISET
NATIONAL NATURAL NCHAR NCLOB
NEW NO NONE NORMALIZE
NOT NULL NULLIF NUMERIC
OCTET_LENGTH OF oL ON
ONLY OPEN OR ORDER
OouT OUTER OVER OVERLAPS
OVERLAY PARAMETER PARTITION PERCENT_RANK
PERCENTILE_CONT PERCENTILE_DISC POSITION POWER
PRECISION PREPARE PRIMARY PROCEDURE
RANGE RANK READS REAL

Tabla B-1 Palabras clave reservadas de SQL (continuacién).

494 Fundamentos de SQL

RECURSIVE REF REFERENCES REFERENCING
REGR_AVGX REGR_AVGY REGR_COUNT REGR_INTERCEPT
REGR_R2 REGR_SLOPE REGR_SXX REGR_SXY
REGR_SYY RELEASE RESULT RETURN
RETURNS REVOKE RIGHT ROLLBACK
ROLLUP ROW ROW_NUMBER ROWS
SAVEPOINT SCOPE SCROLL SEARCH
SECOND SELECT SENSITIVE SESSION_USER
SET SIMILAR SMALLLINT SOME
SPECIFIC SPECIFICTYPE SQL SQLEXCEPTION
SQLSTATE SQLWARNING SQRT START
STATIC STDDEV_POP STDDEV_SAMP SUBMULTISET
SUBSTRING SUM SYMMETRIC SYSTEM
SYSTEM_USER TABLE TABLESAMPLE THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE
TO TRAILING TRANSLATE TRANSLATION
TREAT TRIGGER TRIM TRUE
UESCAPE UNION UNIQUE UNKNOWN
UNNEST UPDATE UPPER USER
USING VALUE VALUES VAR_POP
VAR_SAMP VARCHAR VARYING WHEN
WHENEVER WHERE WIDTH_BUCKET WINDOW
WITH WITHIN WITHOUT YEAR

Tabla B-1 Palabras clave reservadas de SQL (continuacién).

Palabras clave no reservadas de SQL

La tabla B-2 lista las palabras clave no reservadas de SQL.

ABSOLUTE ACTION ADA
ADD ADMIN AFTER
ALWAYS ASC ASSERTION
ASSIGNMENT ATTRIBUTE ATTRIBUTES
BEFORE BERNOULLI BREADTH

Tabla B-2 Palabras clave no reservadas de SQL.

Apéndice B: Palabras clave de SQL:2006 495
CASCADE CATALOG CATALOG_NAME
CHAIN CHARACTER_SET_CATALOG CHARACTER_SET_NAME
CHARACTER_SET_SCHEMA CHARACTERISTICS CHARACTERS
CLASS_ORIGIN COBOL COLLATION
COLLATION_CATALOG COLLATION_NAME COLLATION_SCHEMA
COLUMN_NAME COMMAND_FUNCTION COMMAND_FUNCTION_CODE
COMMITTED CONDITION_NUMBER CONNECTION
CONNECTION_NAME CONSTRAINT_CATALOG CONSTRAINT_NAME
CONSTRAINT_SCHEMA CONSTRAINTS CONSTRUCTOR
CONTAINS CONTINUE CURSOR_NAME
DATA DATETIME_INTERVAL_CODE DATETIME_INTERVAL_PRECISION
DEFAULTS DEFERRABLE DEFERRED
DEFINED DEFINER DEGREE
DEPTH DERIVED DESC
DESCRIPTOR DIAGNOSTICS DISPATCH
DOMAIN DYNAMIC_FUNCTION DYNAMIC_FUNCTION_CODE
EQUALS EXCEPTION EXCLUDE
EXCLUDING FINAL FIRST
FOLLOWING FORTRAN FOUND
GENERAL GENERATED GO
GOTO GRANTED IMMEDIATE
IMPLEMENTATION INCLUDING INCREMENT
INITIALLY INPUT INSTANCE
INSTANTIABLE INVOKER ISOLATION
KEY KEY_MEMBER KEY_TYPE
LAST LENGTH LEVEL
LOCATOR MAP MATCHED
MAXVALUE MESSAGE_LENGTH MESSAGE_OCTET_LENGTH
MESSAGE_TEXT MINVALUE MORE
MUMPS NAME NAMES
NESTING NEXT NORMALIZED
NULLABLE NULLS NUMBER
OBJECT OCTETS OPTION

Tabla B-2 Palabras clave no reservadas de SQL (continuacién).

496 Fundamentos de SQL

OPTIONS ORDERING ORDINALITY
OTHERS OUTPUT OVERRIDING
PAD PARAMETER_MODE PARAMETER_NAME

PARAMETER_ORDINAL_
POSITION

PARAMETER_SPECIFIC_CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_ PARTIAL PASCAL

SCHEMA

PATH PLACING PLI

PRECEDING PRESERVE PRIOR

PRIVILEGES PUBLIC READ

RELATIVE REPEATABLE RESTART

RESTRICT RETURNED_CARDINALITY RETURNED_LENGTH
RETURNED_OCTET_LENGTH RETURNED_SQLSTATE ROLE

ROUTINE ROUTINE_CATALOG ROUTINE_NAME
ROUTINE_SCHEMA ROW_COUNT SCALE

SCHEMA SCHEMA_NAME SCOPE_CATALOG
SCOPE_NAME SCOPE_SCHEMA SECTION

SECURITY SELF SEQUENCE
SERIALIZABLE SERVER_NAME SESSION

SETS SIMPLE SIZE

SOURCE SPACE SPECIFIC_NAME
STATE STATEMENT STRUCTURE

STYLE SUBCLASS_ORIGIN TABLE_NAME
TEMPORARY TIES TOP_LEVEL_COUNT
TRANSACTION TRANSACTION_ACTIVE TRANSACTIONS_COMMITTED
TRANSACTIONS_ TRANSFORM TRANSFORMS
ROLLED_BACK

TRIGGER_CATALOG TRIGGER_NAME TRIGGER_SCHEMA
TYPE UNBOUNDED UNCOMMITTED
UNDER UNNAMED USAGE
USER_DEFINED_TYPE_ USER_DEFINED_TYPE_CODE USER_DEFINED_TYPE_NAME
CATALOG

USER_DEFINED_TYPE_SCHEMA | VIEW WORK

WRITE ZONE

Tabla B-2 Palabras clave no reservadas de SQL (continuacién).

Apéndice C

Codigo SQL utilizado
en los ejercicios
Pruebe esto

498 Fundamentos de SQL

En los ejercicios que se encuentran a lo largo de todo el libro se crearon muchas instrucciones
SQL que permitieron definir los objetos de la base de datos en la base de datos INVENTA-
RIO, modificar esos objetos, insertar datos en las tablas que se crearon, recuperar esos datos, y
actualizar y eliminar los datos. Las instrucciones se incluyen aqui para que pueda observarse la
progresion de esas instrucciones segun se iba avanzando en los ejercicios, y también para que sir-
van de referencia seglin sea necesario en caso de requerir la repeticién de ciertos elementos de un
ejercicio. Ademads, se han proporcionado las instrucciones SQL (en forma consolidada) utilizadas
para crear la base de datos INVENTARIO vy llenar las tablas con datos. Puede encontrarse que, en
la forma en que cada usuario trabaje en el libro, se necesitard ser capaz de volver a crear la base de
datos y de dejarla en un estado consistente. Al utilizar el c6digo consolidado, simplemente es posi-
ble crear los objetos de la base de datos y llenar las tablas tan frecuentemente como sea necesario,
sin tener que juntar los elementos desde los diferentes ejercicios. Puede descargar los archivos
desde www.mcgraw-hill-educacion.com. Haga una buisqueda por autor, titulo o ISBN. También los
puede descargar del sitio en inglés: http://www.mhprofessional.com. Dirfjase a Computing y luego
Downloads.

NOTA

Las instrucciones SQL estdn escritas en SQL puro. Por lo tanto, algunas implementaciones SQL
pudieran requerir que se modifiquen las instrucciones para adecuarse a las convenciones de
esa implementacién en particular. Asegirese de revisar la documentacién de su producto.

s e . o .

Cédigo SQL por cada ejercicio

Las instrucciones SQL se presentan aqui de acuerdo con el orden en que los proyectos fueron pre-
sentados en el libro. Puede referirse a esas instrucciones segiin sea necesario para utilizarlas para
volver a crear los ejercicios o para utilizarlas como una base para otros ejercicios. Si desea volver
a crear la base de datos INVENTARIO y quiere asegurarse de que se estdn incluyendo todos los
elementos necesarios, véase la seccidén “La base de datos INVENTARIO”, mas adelante en este
apéndice.

USR] Creacién de tablas en SQL

CREATE TABLE DISCOS COMPACTOS

(ID DISCO COMPACTO INT,
TITULO_CD VARCHAR (60) ,
ID_DISQUERA INT) ;

CREATE TABLE DISQUERAS CD
(ID_DISQUERA INT,
NOMBRE_COMPARNIA VARCHAR (60)) ;

CREATE TABLE TIPOS MUSICA
(ID TIPO INT,
NOMBRE TIPO VARCHAR (20));

http://www.mhprofessional.com

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto

499

Modifique y elimine tablas en SQL

CREATE TABLE TIPOS_DISCO_COMPACTO
(ID_DISCO COMPACTO INT,
ID TIPO INT) ;

DROP TABLE TIPOS DISCO COMPACTO CASCADE;
CREATE TABLE TIPOS DISCO_COMPACTO
(ID DISCO COMPACTO INT,

TITULO_CD VARCHAR (60) ,

ID TIPO INT) ;

ALTER TABLE TIPOS DISCO_ COMPACTO
DROP COLUMN TITULO CD CASCADE;

Afada restricciones NOT NULL,

Unicas y referenciales

DROP TABLE DISCOS_COMPACTOS CASCADE;
DROP TABLE TIPOS DISCO COMPACTO CASCADE;
DROP TABLE TIPOS MUSICA CASCADE;
DROP TABLE DISQUERAS CD CASCADE;

CREATE TABLE TIPOS MUSICA

(ID TIPO INT,
NOMBRE _TIPO VARCHAR(20) NOT NULL,
CONSTRAINT UN_NOMBRE_TIPO UNIQUE (NOMBRE TIPO),
CONSTRAINT PK_TIPOS MUSICA PRIMARY KEY (ID_TIPO));

CREATE TABLE DISQUERAS CD

(ID_DISQUERA INT,
NOMBRE_COMPANIA VARCHAR (60) DEFAULT 'Independiente' NOT NULL,
CONSTRAINT PK DISQUERAS CD PRIMARY KEY (ID DISQUERA)) ;

CREATE TABLE DISCOS_ COMPACTOS
(ID DISCO COMPACTO INT,
TITULO_CD VARCHAR (60) NOT NULL,
ID DISQUERA INT NOT NULL,
CONSTRAINT PK DISCOS COMPACTOS PRIMARY KEY (ID DISCO_ COMPACTO),
CONSTRAINT FK_ID DISQUERA FOREIGN KEY (ID DISQUERA) REFERENCES
DISQUERAS CD) ;

CREATE TABLE TIPOS DISCO_COMPACTO
(ID_DISCO COMPACTO INT,
ID_TIPO MUSICA INT,
CONSTRAINT PK TIPOS DISCO COMPACTO

500 Fundamentos de SQL

PRIMARY KEY (ID_DISCO COMPACTO, ID TIPO MUSICA),
CONSTRAINT FK_ID_DISCO_COMPACTO 01

FOREIGN KEY (ID_DISCO_COMPACTO) REFERENCES DISCOS_COMPACTOS,
CONSTRAINT FK ID TIPO MUSICA

FOREIGN KEY (ID TIPO MUSICA) REFERENCES TIPOS MUSICA) ;

CREATE TABLE ARTISTAS

(ID_ARTISTA INT,
NOMBRE ARTISTA VARCHAR (60) NOT NULL,
LUGAR_DE_NACIMIENTO VARCHAR(60) DEFAULT 'Desconocido' NOT NULL,
CONSTRAINT PK ARTISTAS PRIMARY KEY (ID ARTISTA));

CREATE TABLE CDS_ARTISTA
(ID_ARTISTA INT,
ID DISCO COMPACTO INT,
CONSTRAINT PK CDS ARTISTA PRIMARY KEY (ID ARTISTA, ID DISCO_COMPACTO),
CONSTRAINT FK_ID ARTISTA FOREIGN KEY (ID ARTISTA) REFERENCES ARTISTAS,
CONSTRAINT FK_ID DISCO_COMPACTO 02 FOREIGN KEY (ID DISCO_COMPACTO)
REFERENCES DISCOS_COMPACTOS) ;

LR ARada una restricciéon CHECK

ALTER TABLE DISCOS_ COMPACTOS
ADD COLUMN EN EXISTENCIA INT NOT NULL;

ALTER TABLE DISCOS_COMPACTOS
ADD CONSTRAINT CK EN EXISTENCIA CHECK (EN_EXISTENCIA > 0 AND EN
EXISTENCIA < 50);

Anada vistas a su base de datos

CREATE VIEW CDS EN EXISTENCIA AS
SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE EN_EXISTENCIA > 10 WITH CHECK OPTION;

CREATE VIEW EDITORES_CD (TITULO_CD, EDITOR) AS
SELECT DISCOS COMPACTOS.TITULO CD, DISQUERAS CD.NOMBRE COMPANIA
FROM DISCOS COMPACTOS, DISQUERAS_CD
WHERE DISCOS_COMPACTOS.ID DISQUERA = DISQUERAS_CD.ID_DISQUERA
AND DISQUERAS CD.ID DISQUERA = 5403 OR DISQUERAS_CD.ID_DISQUERA =
5402;

DROP VIEW EDITORES CD;

CREATE VIEW EDITORES CD (TITULO CD, EDITOR) AS
SELECT DISCOS_COMPACTOS.TITULO_CD, DISQUERAS_CD.NOMBRE_COMPANIA
FROM DISCOS_ COMPACTOS, DISQUERAS CD
WHERE DISCOS_COMPACTOS.ID DISQUERA = DISQUERAS CD.ID DISQUERA;

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto 501

ALl Gestién de roles y privilegios

CREATE ROLE MRKT;
CREATE ROLE PERSONAL VENTAS;
GRANT SELECT ON CDS_EN EXISTENCIA TO PUBLIC;

GRANT SELECT, INSERT, UPDATE (TITULO_CD) ON DISCOS COMPACTOS
TO PERSONAL_VENTAS WITH GRANT OPTION;

GRANT PERSONAL VENTAS TO MRKT;

REVOKE SELECT ON CDS EN_ EXISTENCIA FROM PUBLIC CASCADE;

REVOKE ALL PRIVILEGES ON DISCOS_ COMPACTOS FROM PERSONAL VENTAS CASCADE;
REVOKE PERSONAL_ VENTAS FROM MRKT CASCADE;

DROP ROLE MRKT;

DROP ROLE PERSONAL VENTAS;

Consultar la base de datos
INVENTORY

NOTA

Las instrucciones INSERT utilizadas para este proyecto estén enlistadas al final de la seccién
“La base de datos INVENTARIO”, més adelante en este apéndice.

SELECT *
FROM ARTISTAS;

SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS;

SELECT *
FROM CDS EN_ EXISTENCIA;

SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE EN_EXISTENCIA > 10 AND EN_ EXISTENCIA < 30;

SELECT ID DISQUERA, SUM(EN EXISTENCIA) AS TOTAL EN EXISTENCIA
FROM DISCOS_ COMPACTOS

GROUP BY ID_DISQUERA;

SELECT ID DISQUERA, SUM(EN EXISTENCIA) AS TOTAL EN EXISTENCIA

502 Fundamentos de SQL

FROM DISCOS_ COMPACTOS
GROUP BY ID DISQUERA
HAVING SUM(EN EXISTENCIA) > 10;

SELECT *

FROM DISCOS_ COMPACTOS
WHERE EN_EXISTENCIA > 10
ORDER BY TITULO CD DESC;

Modificar datos SQL

INSERT INTO DISQUERAS CD
VALUES (837, 'DRG Records');

INSERT INTO DISCOS_COMPACTOS
VALUES (116, 'Ann Hampton Callaway', 836, 14);

INSERT INTO DISCOS_COMPACTOS
(ID DISCO_COMPACTO, TITULO CD, ID_DISQUERA, EN_EXISTENCIA)
VALUES (117, 'Rhythm Country and Blues', 832, 21);

UPDATE DISCOS_COMPACTOS
SET EN_EXISTENCIA = 25
WHERE ID DISCO COMPACTO = 117;

UPDATE DISCOS COMPACTOS
SET ID DISQUERA =
(SELECT ID DISQUERA
FROM DISQUERAS CD
WHERE NOMBRE COMPANTIA = 'DRG Records')
WHERE ID DISCO COMPACTO = 116;

SELECT *
FROM DISCOS_ COMPACTOS
WHERE ID_DISCO COMPACTO = 116
OR ID DISCO_COMPACTO = 117;

DELETE FROM DISCOS COMPACTOS
WHERE ID DISCO COMPACTO = 116
OR ID DISCO_COMPACTO = 117;

DELETE FROM DISQUERAS CD
WHERE ID DISQUERA = 837;

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto

503

ALl Utilizar predicados

SELECT
FROM
WHERE
OR

SELECT
FROM
WHERE
AND

SELECT
FROM
WHERE
AND

SELECT
FROM
WHERE

SELECT
FROM
WHERE

SELECT
FROM
WHERE

SELECT
FROM
WHERE
OR

SELECT
FROM
WHERE

en instrucciones SQL

ID TIPO, NOMBRE TIPO
TIPOS MUSICA
ID TIPO = 11
ID_TIPO = 12;

NOMBRE ARTISTA, LUGAR DE NACIMIENTO
ARTISTAS

NOMBRE ARTISTA <> 'Patsy Cline'
NOMBRE ARTISTA <> 'Bing Crosby';

ID ARTISTA, NOMBRE ARTISTA
ARTISTAS

ID ARTISTA > 2004

ID ARTISTA < 2014;

ID ARTISTA, NOMBRE ARTISTA
ARTISTAS
ID ARTISTA BETWEEN 2004 AND 2014;

*

ARTISTAS
LUGAR_DE NACIMIENTO IS NULL;

*

ARTISTAS
LUGAR_DE NACIMIENTO IS NOT NULL;

TITULO CD, EN EXISTENCIA
DISCOS_COMPACTOS

TITULO CD LIKE ('$Greatest%')
TITULO CD LIKE ('%Best%');

TITULO CD, EN_EXISTENCIA
DISCOS_COMPACTOS
TITULO CD NOT LIKE ('%Greatest%')

AND TITULO CD NOT LIKE ('%Best%');

Utilizar subconsultas en predicados

SELECT
FROM
WHERE
(

TITULO CD, EN_EXISTENCIA
DISCOS_COMPACTOS
ID DISQUERA IN
SELECT ID DISQUERA
FROM DISQUERAS CD

WHERE NOMBRE_COMPANIA = 'Decca Record Company'

)i

504 Fundamentos de SQL

SELECT TITULO CD, EN_EXISTENCIA FROM DISCOS_ COMPACTOS
WHERE EXISTS
(SELECT ID DISQUERA FROM DISQUERAS CD
WHERE DISCOS_ COMPACTOS.ID DISQUERA = DISQUERAS CD.ID_DISQUERA
AND ID DISQUERA > 830);

SELECT ID DISQUERA, NOMBRE_COMPANIA
FROM DISQUERAS CD
WHERE ID DISQUERA = ANY
(SELECT ID DISQUERA
FROM DISCOS_COMPACTOS
WHERE EN_EXISTENCIA > 20);

SELECT ID DISQUERA, NOMBRE_COMPAﬁIA
FROM DISQUERAS CD
WHERE ID_ DISQUERA = ALL
(SELECT ID DISQUERA
FROM DISCOS_COMPACTOS
WHERE EN EXISTENCIA > 20);

SELECT ID DISQUERA, NOMBRE_COMPANIA
FROM DISQUERAS CD
WHERE ID DISQUERA = ALL
(SELECT ID_DISQUERA
FROM DISCOS_ COMPACTOS
WHERE EN EXISTENCIA > 40);

Sl - Utilizar funciones y expresiones
de valor

SELECT COUNT (DISTINCT NOMBRE ARTISTA) AS ARTISTAS
FROM ARTISTAS;

SELECT MIN(EN_ EXISTENCIA) AS MIN EXISTENCIA
FROM DISCOS_ COMPACTOS;

SELECT ID DISQUERA, SUM(EN_EXISTENCIA) AS TOTAL
FROM DISCOS_COMPACTOS
GROUP BY ID DISQUERA;

SELECT NOMBRE ARTISTA,
SUBSTRING (LUGAR DE NACIMIENTO FROM 1 FOR 8) AS LUGAR NACIMIENTO
FROM ARTISTAS;

SELECT UPPER(TITULO CD) AS NOMBRE CD
FROM DISCOS_ COMPACTOS;

SELECT TITULO CD, EN_EXISTENCIA,

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto 505

(EN_EXISTENCIA * 2) AS DOUBLED, (EN EXISTENCIA * 3) AS TRIPLED
FROM DISCOS_ COMPACTOS
WHERE EN_EXISTENCIA < 25;

SELECT TITULO CD, EN_EXISTENCIA, EN PEDIDO =

CASE

WHEN EN_ EXISTENCIA < 10 THEN EN EXISTENCIA * 2

WHEN EN EXISTENCIA BETWEEN 10 AND 15 THEN EN_EXISTENCIA + 3

ELSE EN_EXISTENCIA

END

FROM DISCOS_COMPACTOS
WHERE EN_EXISTENCIA < 20;

SELECT ID TIPO, CAST(NOMBRE TIPO AS CHAR(20)) AS CHAR TYPE
FROM TIPOS MUSICA;

Consultar maltiples tablas

SELECT * FROM ARTISTAS a, CDS_ARTISTA c
WHERE a.ID ARTISTA = c.ID ARTISTA;

SELECT d.TITULO_CD, a.NOMBRE ARTISTA, a.LUGAR _DE NACIMIENTO
FROM ARTISTAS a, CDS_ARTISTA c¢, DISCOS_COMPACTOS d

WHERE a.ID ARTISTA = c.ID ARTISTA
AND d.ID DISCO COMPACTO = c.ID DISCO COMPACTO;

SELECT d.TITULO_CD, a.NOMBRE ARTISTA, a.LUGAR_DE NACIMIENTO

FROM ARTISTAS a CROSS JOIN CDS ARTISTA c¢ CROSS JOIN DISCOS COMPACTOS d
WHERE a.ID ARTISTA = c.ID ARTISTA

AND d.ID DISCO COMPACTO = c.ID DISCO COMPACTO;

SELECT d.TITULO_CD, t.NOMBRE TIPO
FROM DISCOS COMPACTOS d JOIN TIPOS DISCO COMPACTO dt
ON d.ID DISCO COMPACTO = dt.ID DISCO_COMPACTO
JOIN TIPOS MUSICA t
ON dt.ID TIPO MUSICA = t.ID TIPO;

SELECT d.TITULO_CD, t.NOMBRE TIPO
FROM DISCOS COMPACTOS d FULL JOIN TIPOS DISCO COMPACTO dt
ON d.ID DISCO COMPACTO = dt.ID DISCO_COMPACTO
FULL JOIN TIPOS MUSICA t
ON dt.ID TIPO MUSICA = t.ID TIPO;

s Akl - Trabajar con subconsultas

SELECT TITULO_CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISQUERA IN

506 Fundamentos de SQL

(SELECT ID DISQUERA
FROM DISQUERAS CD
WHERE NOMBRE_COMPAﬁIA = 'MCA Records');

SELECT NOMBRE_COMPANIA
FROM DISQUERAS CD 1
WHERE EXISTS
(SELECT *
FROM DISCOS_ COMPACTOS d
WHERE 1.ID DISQUERA = d.ID DISQUERA
AND TITULO CD = 'Out of Africa');

SELECT NOMBRE_COMPAﬁIA
FROM DISQUERAS CD
WHERE ID DISQUERA = ANY
(SELECT ID DISQUERA
FROM DISCOS_COMPACTOS
WHERE EN_ EXISTENCIA > 30);

SELECT TITULO CD, EN_EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE ID DISQUERA =
(SELECT ID DISQUERA
FROM DISQUERAS CD
WHERE NOMBRE_COMPAﬁIA = 'Capitol Records');

SELECT TITULO CD, EN_EXISTENCIA

FROM DISCOS COMPACTOS d, DISQUERAS CD 1
WHERE d.ID DISQUERA = 1.ID_DISQUERA

AND NOMBRE COMPANIA = 'Capitol Records';

SELECT NOMBRE ARTISTA
FROM ARTISTAS

WHERE ID_ARTISTA IN

(SELECT ID ARTISTA

FROM CDS ARTISTA
WHERE ID DISCO_COMPACTO IN
(SELECT ID _DISCO COMPACTO
FROM DISCOS_ COMPACTOS
WHERE TITULO CD = 'Past Light'));

SELECT TITULO CD, NOMBRE TIPO

FROM DISCOS COMPACTOS d, TIPOS DISCO COMPACTO t, TIPOS MUSICA m
WHERE d.ID DISCO_COMPACTO t.ID DISCO_COMPACTO

AND t.ID TIPO MUSICA m.ID TIPO

AND TITULO_CD = 'Kojiki';

UPDATE TIPOS DISCO COMPACTO
SET ID TIPO MUSICA =

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto

507

WHERE

AND

SELECT
FROM
WHERE
AND
AND

UPDATE

SET
(

WHERE

SELECT ID TIPO
FROM TIPOS_MUSICA
WHERE NOMBRE_TIPO =
ID DISCO_COMPACTO =
SELECT ID DISCO_ COMPACTO
FROM DISCOS_COMPACTOS

'Classical')

WHERE TITULO CD = 'Kojiki')
ID TIPO MUSICA =
SELECT ID TIPO

FROM TIPOS_MUSICA

WHERE NOMBRE TIPO = 'New Age');
TITULO CD, NOMBRE TIPO
DISCOS_COMPACTOS d, TIPOS DISCO COMPACTO t, TIPOS MUSICA m
d.ID_DISCO COMPACTO = t.ID _DISCO_ COMPACTO
t.ID _TIPO MUSICA = m.ID_TIPO
TITULO CD = 'Kojiki';
TIPOS_DISCO_COMPACTO
ID_TIPO MUSICA =
SELECT ID_TIPO

FROM TIPOS MUSICA

WHERE NOMBRE TIPO = 'New Age')

ID DISCO_COMPACTO =

(SELECT ID DISCO COMPACTO

SELECT
FROM
WHERE
AND
AND

Pruebe esto 13-1

FROM DISCOS COMPACTOS

WHERE TITULO CD = 'Kojiki')
AND ID TIPO MUSICA =
(SELECT ID TIPO
FROM TIPOS MUSICA
WHERE NOMBRE TIPO = 'Classical');

TITULO CD, NOMBRE TIPO

DISCOS COMPACTOS d, TIPOS DISCO COMPACTO t, TIPOS MUSICA m
d.ID DISCO COMPACTO = t.ID DISCO COMPACTO

t.ID TIPO MUSICA = m.ID TIPO

TITULO CD = 'Kojiki';

Crear procedimientos invocados
por SQL

CREATE PROCEDURE OBTENER CD ARTISTAS ()
SELECT cd.TITULO_CD, a.NOMBRE ARTISTA
FROM DISCOS_COMPACTOS cd, CDS_ARTISTA ac, ARTISTAS a
WHERE cd.ID DISCO COMPACTO = ac.ID DISCO COMPACTO
AND ac.ID ARTISTA = a.ID ARTISTA;

508 Fundamentos de SQL

CALL OBTENER CD ARTISTAS() ;
DROP PROCEDURE OBTENER CD_ARTISTAS CASCADE;

SELECT cd.TITULO CD, a.NOMBRE ARTISTA

FROM DISCOS COMPACTOS cd, CDS ARTISTA ac, ARTISTAS a
WHERE cd.ID _DISCO COMPACTO = ac.ID DISCO COMPACTO

AND ac.ID ARTISTA a.ID ARTISTA

AND cd.TITULO_ CD p_CD;

CALL OBTENER_CD_ARTISTAS ('Fundamental') ;

CREATE PROCEDURE OBTENER CANTIDAD CD()

BEGIN
DECLARE v_En Existencia INT;
SET v_En Existencia = (SELECT AVG (EN EXISTENCIA)

FROM DISCOS_COMPACTOS) ;
SELECT TITULO CD, EN EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE EN EXISTENCIA < v_En Existencia;
END;

CALL OBTENER CANTIDAD CD() ;

MR AkR] - Crear funciones invocadas por SQL

CREATE FUNCTION DISQUERA CD (p_ CD VARCHAR(60))
RETURNS VARCHAR (60)
BEGIN
RETURN (SELECT NOMBRE_COMPANIA
FROM DISCOS_COMPACTOS d, DISQUERAS_CD 1
WHERE d.ID DISQUERA = 1.ID DISQUERA

AND TITULO CD = p CD);

END;

SELECT TITULO CD, NOMBRE_COMPANIA
FROM DISCOS COMPACTOS d, DISQUERAS CD 1
WHERE d.ID DISQUERA = 1.ID_DISQUERA
AND NOMBRE_COMPAﬁIA = DISQUERA CD ('Blues on the Bayou');

DROP FUNCTION DISQUERA CD CASCADE;

LI RPRL - Crear activadores SQL

CREATE TABLE ARTIST LOG
(ACTION TYPE CHAR(6),
ID ARTISTA INT,

Apéndice C: Cdédigo SQL utilizado en los ejercicios Pruebe esto 509

MOD DATE TIMESTAMP DEFAULT CURRENT TIMESTAMP) ;

CREATE TRIGGER INSERT LOG
AFTER INSERT ON ARTISTAS
REFERENCING NEW ROW AS Nuevo
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO REGISTRO ARTISTA (TIPO ACCION, ID ARTISTA)
VALUES ('INSERT', Nueva.ID ARTISTA);
END;

CREATE TRIGGER ACTUALIZAR REGISTRO
AFTER UPDATE ON ARTISTAS
REFERENCING NEW ROW AS Nueva
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO REGISTRO ARTISTA (TIPO ACCION, ID ARTISTA)
VALUES ('UPDATE', Nueva.ID ARTISTA);
END;

CREATE TRIGGER ELIMINAR REGISTRO
AFTER DELETE ON ARTISTAS
REFERENCING OLD ROW AS Antigua
FOR EACH ROW
BEGIN ATOMIC
INSERT INTO REGISTRO ARTISTA (TIPO ACCION, ID ARTISTA)
VALUES ('DELETE', Antigua.ID ARTISTA);
END;

INSERT INTO ARTISTAS (ID ARTISTA, NOMBRE ARTISTA)
VALUES (2019, 'John Lee Hooker');

UPDATE ARTISTAS
SET LUGAR_DE_NACIMIENTO = 'Clarksdale, Mississippi, Estados Unidos'
WHERE ID ARTISTA = 2019;

DELETE ARTISTAS
WHERE ID ARTISTA = 2019

SELECT * FROM REIGSTRO_ARTISTA;
DROP TRIGGER INSTERTAR REGISTRO;
DROP TRIGGER ACTUALIZAR REGISTRO;
DROP TRIGGER ELIMINAR REGISTRO;

DROP TABLE REGISTRO_ARTISTA;

510 Fundamentos de SQL

AL ABl] Trabajar con cursores SQL

DECLARE v_NOMBRE CD VARCHAR (60) ;

DECLARE CD_cursor_1 CURSOR
FOR
SELECT TITULO_CD
FROM DISCOS_COMPACTOS
ORDER BY TITULO_CD ASC;

OPEN CD_cursor_ 1;
FETCH CD_cursor_1 INTO v_NOMBRE_CD;
CLOSE CD_cursor 1;
DECLARE v_NOMBRE CD VARCHAR (60) ;
DECLARE CD_cursor 2 SCROLL INSENSITIVE CURSOR
FOR
SELECT TITULO_CD
FROM DISCOS_COMPACTOS
ORDER BY TITULO_CD ASC
FOR READ ONLY;
OPEN CD cursor_ 2;
FETCH LAST FROM CD_cursor_2 INTO v_NOMBRE CD;
CLOSE CD_cursor_2;
DECLARE v_NOMBRE CD VARCHAR (60) ;
DECLARE CD_cursor_3 CURSOR
FOR
SELECT TITULO CD
FROM DISCOS_ COMPACTOS
FOR UPDATE;
OPEN CD_cursor_ 3;
FETCH CD_cursor 3 INTO v_NOMBRE CD;
UPDATE DISCOS_COMPACTOS

SET EN_EXISTENCIA = EN_EXISTENCIA * 2
WHERE CURRENT OF CD cursor 3;

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto 311

CLOSE CD_cursor_ 3;
SELECT * FROM DISCOS_COMPACTOS;

UPDATE DISCOS_ COMPACTOS
SET EN_EXISTENCIA = 13
WHERE ID DISCO_COMPACTO = 101;

Pruebe esto 16-1 Trabo]or con transacciones

START TRANSACTION
ISOLATION LEVEL READ UNCOMMITTED;

SELECT *
FROM ARTISTAS;

COMMIT;

START TRANSACTION
ISOLATION LEVEL SERIALIZABLE;

UPDATE DISCOS_COMPACTOS
SET EN_EXISTENCIA = EN_EXISTENCIA + 2
WHERE ID DISQUERA = 832;
ROLLBACK;
SELECT TITULO_CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISQUERA = 832;
START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SELECT TITULO_CD, EN_EXISTENCIA
FROM DISCOS_ COMPACTOS
WHERE ID DISQUERA = 832;
SAVEPOINT SECCION_1;
UPDATE DISCOS_COMPACTOS
SET EN_EXISTENCIA = EN_ EXISTENCIA + 2

WHERE ID DISQUERA = 832;

ROLLBACK TO SAVEPOINT SECCION 1;

512 Fundamentos de SQL

ETYURVAL |ncrustar instrucciones SQL

EXEC SQL
BEGIN DECLARE SECTION;
long v_1ID CD;

/*

variable de entrada para el identificador
de CD */

varchar v_TITULO CD[60]; /* variable de salida para el titulo del CD

*/

long v_EN EXISTENCIA; /* variable de salida para el valor EN_

EXEC SQL
END DECLARE SECTION;

EXISTENCIA */

short ind TITULO_ CD; /* variable de indicador para v_TITULO CD */
short ind EN EXISTENCIA; /* variable de indicador para v_EN EXISTENCIA */

EXEC SQL BEGIN DECLARE SECTION;

long v_CD_ID;

varchar v _TITULO CD[60] ;

short ind TITULO CD;
long v_EN EXISTENCIA;
short ind_EN_EXISTENCIA;

EXEC SQL END DECLARE SECTION;

EXEC SQL

e
e
"
e
"

variable de entrada para el
identificador de CD */

variable de salida para el titulo del CD
*/

variable de indicador para v_TITULO_CD
*/

variable de salida para el valor EN_
EXISTENCIA */

variable de indicador para v_EN
EXISTENCIA */

WHENEVER SQLEXCEPTION GOTO Errorl;

EXEC SQL

SELECT TITULO CD, EN EXISTENCIA
INTO :v_TITULO CD :ind TITULO CD, :v_EN EXISTENCIA :ind EN_EXISTENCIA

FROM DISCOS_ COMPACTOS
WHERE ID DISCO COMPACTO =

EXEC SQL
BEGIN DECLARE SECTION;
long v_CD ID;

varchar v _TITULO CD[60] ;

short ind TITULO CD;
long v_EN EXISTENCIA;
short ind EN_ EXISTENCIA;

EXEC SQL

:v_CD_ID;

/*
/*
/*
/*
/*

variable de entrada para el
identificador de CD */

variable de salida para el titulo del CD
*/

variable de indicador para v_TITULO_CD
*/

variable de salida para el valor EN_
EXISTENCIA */

variable de indicador para v_EN
EXISTENCIA */

Apéndice C: Cdédigo SQL utilizado en los ejercicios Pruebe esto 513

END DECLARE SECTION;
EXEC SQL
WHENEVER SQLEXCEPTION GOTO Errorl;
EXEC SQL
SELECT TITULO_CD, EN EXISTENCIA
INTO :v_TITULO CD :ind TITULO CD, :v_EN_EXISTENCIA :ind EN EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE ID DISCO COMPACTO = :v_CD_ID;

Utilizar la interfaz de nivel

de llomada de SQL

SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv) ;
SQLAllocHandle (SQL HANDLE DBC, henv, &hdbc);

SQLConnect (hdbc, ServidorBD, SQL NTS, AdminBD, SQL NTS, CAdmin,
SQL_NTS) ;

SQLAllocHandle (SQL HANDLE STMT, hdbc, &hstmt);

SQLExecDirect (hstmt, "DELETE FROM DISCOS_ COMPACTOS
WHERE ID DISCO_COMPACTO = 122", SQL NTS);

SQLPrepare (hstmt, "SELECT TITULO CD, EN_EXISTENCIA FROM DISCOS
COMPACTOS
WHERE ID DISCO_COMPACTO = ?", SQL NTS);

SQLBindParameter (hstmt, 1, SQL PARAMETER MODE IN, SQL_INT,
SQL_INT, 3, 0, &v _CD ID, 4, &ind CD ID);

SQLExecute (hstmt);

SQLBindCol (hstmt, 1, SQL_CHAR, &v TITULO CD, 60, &ind TITULO CD) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_EN EXISTENCIA, 5, &ind EN EXISTENCIA) ;

SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv) ;
SQLAllocHandle (SQL HANDLE DBC, henv, &hdbc);
SQLConnect (hdbc, ServidorBD, SQL NTS, AdminBD, SQL NTS, CAdmin,
SQL_NTS) ;
SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt) ;
SQLExecDirect (hstmt, "DELETE FROM DISCOS_COMPACTOS
WHERE ID DISCO COMPACTO = 122", SQL NTS);
SQLPrepare (hstmt, "SELECT TITULO CD, EN_EXISTENCIA FROM DISCOS
COMPACTOS
WHERE ID_DISCO_COMPACTO = 2", SQL_NTS) ;
SQLBindParameter (hstmt, 1, SQL PARAMETER MODE_ IN, SQL INT,
SQL_INT, 3, 0, &v _CD ID, 4, &ind CD ID);
SQLExecute (hstmt) ;
SQLBindCol (hstmt, 1, SQL CHAR, &v TITULO CD, 60, &ind TITULO CD) ;
SQLBindCol (hstmt, 2, SQL_INT, &v_EN EXISTENCIA, 5, &ind_EN_EXISTENCIA) ;

514 Fundamentos de SQL

Utilizar funciones SQL/XML

SELECT XMLELEMENT (NOMBRE CD,
XMLATTRIBUTE(ID_DISCO_COMPACTO AS ID),
XMLFOREST(TITULO_CD as Titulo))

FROM DISCOS_ COMPACTOS
ORDER BY ID DISCO_ COMPACTO;
<CD ID='101"'>

<Titulo>Famous Blue Raincoat</Titulo>
</CD>

<CD ID='102"'>

<Titulo>Blue</Titulo>
</CD>

La base de datos INVENTARIO

Es posible que mientras se trabaja en los proyectos de este libro se necesite volver a crear la base
de datos INVENTARIO. Esta pudiera ser el resultado de cambiar a una implementacién SQL dife-
rente, reinstalar la implementacién SQL, o incluso querer empezar con datos frescos y una base de
datos nueva. Las siguientes instrucciones SQL permitiran volver a crear los objetos de la base de
datos INVENTARIO (tablas y vistas) en su totalidad. Una vez que se creen las tablas necesarias,
se pueden utilizar instrucciones INSERT para agregarles datos. Si se desea copiar las instrucciones
SQL directamente desde un archivo, puede descargar el archivo AppC.txt, que contiene las instruc-
ciones de definicion de datos y las instrucciones INSERT.

CREATE TABLE TIPOS MUSICA
(ID_TIPO INT,
NOMBRE TIPO VARCHAR (20) NOT NULL,
CONSTRAINT UN NOMBRE TIPO UNIQUE (NOMBRE TIPO),
CONSTRAINT PK TIPOS MUSICA PRIMARY KEY (ID TIPO));

CREATE TABLE DISQUERAS CD

(ID_DISQUERA INT,
NOMBRE_COMPARNTA VARCHAR (60) DEFAULT 'Independiente' NOT NULL,
CONSTRAINT PK DISQUERAS CD PRIMARY KEY (ID DISQUERA)) ;

CREATE TABLE DISCOS COMPACTOS
(ID_DISCO COMPACTO INT,

TITULO_CD VARCHAR (60) NOT NULL,
ID DISQUERA INT NOT NULL,
EN_EXISTENCIA INT NOT NULL

CONSTRAINT PK_DISCOS_COMPACTOS PRIMARY KEY (ID_DISCO_COMPACTO),

CONSTRAINT FK ID DISQUERA FOREIGN KEY (ID DISQUERA) REFERENCES
DISQUERAS CD,

CONSTRAINT CK EN_EXISTENCIA CHECK (EN_EXISTENCIA > 0 AND EN_EXISTENCIA
< 50));

CREATE TABLE TIPOS DISCO_COMPACTO
(ID DISCO_COMPACTO INT,

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto 315

ID TIPO MUSICA INT,
CONSTRAINT PK_TIPOS_DISCO_COMPACTO
PRIMARY KEY (ID_DISCO_COMPACTO, ID_TIPO_MUSICA),
CONSTRAINT FK ID DISCO COMPACTO 01
FOREIGN KEY (ID DISCO COMPACTO) REFERENCES DISCOS COMPACTOS,
CONSTRAINT FK_ID TIPO MUSICA
FOREIGN KEY (ID_TIPO_MUSICA) REFERENCES TIPOS_MUSICA) ;

CREATE TABLE ARTISTAS

(ID ARTISTA INT,
NOMBRE ARTISTA VARCHAR (60) NOT NULL,
LUGAR_DE_NACIMIENTO VARCHAR (60) DEFAULT 'Desconocido' NOT NULL,
CONSTRAINT PK ARTISTAS PRIMARY KEY (ID ARTISTA));

CREATE TABLE CDS ARTISTA
(ID ARTISTA INT,
ID DISCO_COMPACTO INT,
CONSTRAINT PK CDS ARTISTA PRIMARY KEY (ID ARTISTA, ID DISCO COMPACTO),
CONSTRAINT FK ID ARTISTA FOREIGN KEY (ID ARTISTA) REFERENCES ARTISTAS,
CONSTRAINT FK _ID DISCO COMPACTO 02 FOREIGN KEY (ID DISCO COMPACTO)
REFERENCES DISCOS COMPACTOS) ;

CREATE VIEW CDS_ EN_ EXISTENCIA AS
SELECT TITULO_CD, EN_EXISTENCIA
FROM DISCOS_COMPACTOS
WHERE EN_EXISTENCIA > 10 WITH CHECK OPTION;

CREATE VIEW EDITORES CD (TITULO CD, EDITOR) AS
SELECT DISCOS_COMPACTOS.TITULO CD, DISQUERAS CD.NOMBRE COMPANIA
FROM DISCOS_COMPACTOS, DISQUERAS CD
WHERE DISCOS_COMPACTOS.ID DISQUERA = DISQUERAS_CD.ID DISQUERA;

--Inserta datos en la tabla DISQUERAS CD

INSERT INTO DISQUERAS CD VALUES (827, 'Private Music');

INSERT INTO DISQUERAS CD VALUES 828, 'Reprise Records');
INSERT INTO DISQUERAS CD VALUES 829, 'Asylum Records');
INSERT INTO DISQUERAS CD VALUES 830, 'Windham Hill Records') ;
INSERT INTO DISQUERAS CD VALUES 831, 'Geffen');

INSERT INTO DISQUERAS CD VALUES 832, 'MCA Records');

INSERT INTO DISQUERAS CD VALUES 833, 'Decca Record Company') ;
INSERT INTO DISQUERAS CD VALUES 834, 'CBS Records');

INSERT INTO DISQUERAS CD VALUES 835, 'Capitol Records');
INSERT INTO DISQUERAS CD VALUES 836, 'Sarabande Records');
--Fin de insercidén de datos para la tabla DISQUERAS CD

--Inserta datos en la tabla DISCOS COMPACTOS
INSERT INTO DISCOS_ COMPACTOS VALUES

(101, 'Famous Blue Raincoat',6 827, 13);
INSERT INTO DISCOS_COMPACTOS VALUES

(102, 'Blue', 828, 42);
INSERT INTO DISCOS_ COMPACTOS VALUES

(103, 'Court and Spark',6 829, 22);
INSERT INTO DISCOS_COMPACTOS VALUES

316

Fundamentos de SQL

(104,

'Past Light',

830,

17

)i

INSERT INTO DISCOS_ COMPACTOS VALUES

(105,

'Kojiki', 831,

6);

INSERT INTO DISCOS_COMPACTOS VALUES
'That Christmas Feeling',
INSERT INTO DISCOS_ COMPACTOS VALUES

(106,

(107,

'Patsy Cline:

12 Greatest Hits',

INSERT INTO DISCOS_ COMPACTOS VALUES
'Carreras Domingo Pavarotti in Concert',
INSERT INTO DISCOS_ COMPACTOS VALUES

(108,

(109,

'After the Rain:

INSERT INTO DISCOS_ COMPACTOS VALUES

(110,

'Out of Africa’,

832,

INSERT INTO DISCOS_COMPACTOS VALUES

(111,

'Leonard Cohen The Best Of',

INSERT INTO DISCOS_COMPACTOS VALUES

(112,

'Fundamental’,

835,

34) ;

INSERT INTO DISCOS_ COMPACTOS VALUES
'Bob Seger and the Silver Bullet Band Greatest Hits',

(113,
835,

16);

INSERT INTO DISCOS_COMPACTOS VALUES

(114,

'Blues on the Bayou',

INSERT INTO DISCOS_ COMPACTOS VALUES

(115,

'Orlando’,

836, 5)
--Fin de insercidén de datos para la tabla DISCOS_COMPACTOS

I

832,

832, 8);

832,

29);

834, 12);

27) ;

--Inserta datos en la tabla TIPOS MUSICA

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

--Fin de insercidén de datos para la tabla TIPOS MUSICA

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA
TIPOS MUSICA

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

(

A~~~ o~~~ o~~~ —~

32

)i

11, 'Blues');

12, 'Jazz');

13, 'Pop');

14, 'Rock');

15, 'Classical’');
16, 'New Age');
17, 'Country');
18, 'Folk');

19, 'International'
20, 'Soundtracks'
21, 'Christmas');

--Inserta datos en la tabla TIPOS DISCO_COMPACTO

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

TIPOS DISCO_COMPACTO
TIPOS DISCO_COMPACTO
TIPOS DISCO_COMPACTO
TIPOS_DISCO_COMPACTO
TIPOS DISCO_COMPACTO
TIPOS DISCO_COMPACTO
TIPOS DISCO_COMPACTO
TIPOS DISCO_COMPACTO
TIPOS_DISCO_COMPACTO

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

(

~ e~~~ o~~~ —~

101,
101,
102,
102,
102,
103,
103,
104,
105,

18
13
11
18
13
18
13
16
16

)i

833,

The Soft Sounds of Erik Satie',

)i

27) ;

833,

21

)i

Apéndice C: Cédigo SQL utilizado en los ejercicios Pruebe esto 317

INSERT INTO TIPOS DISCO COMPACTO VALUES (106, 21);
INSERT INTO TIPOS DISCO_ COMPACTO VALUES (107, 13);
INSERT INTO TIPOS DISCO_ COMPACTO VALUES (107, 17);
INSERT INTO TIPOS DISCO_COMPACTO VALUES (108, 13);
INSERT INTO TIPOS DISCO COMPACTO VALUES (108, 15);
INSERT INTO TIPOS DISCO COMPACTO VALUES (109, 15);
INSERT INTO TIPOS DISCO_ COMPACTO VALUES (110, 20);
INSERT INTO TIPOS DISCO_COMPACTO VALUES (111, 13);
INSERT INTO TIPOS DISCO COMPACTO VALUES (111, 18);
INSERT INTO TIPOS DISCO COMPACTO VALUES (112, 11);
INSERT INTO TIPOS DISCO COMPACTO VALUES (112, 13);
INSERT INTO TIPOS DISCO_COMPACTO VALUES (113, 13);
INSERT INTO TIPOS DISCO COMPACTO VALUES (113, 14);
INSERT INTO TIPOS DISCO_ COMPACTO VALUES (114, 11);
INSERT INTO TIPOS DISCO_ COMPACTO VALUES (115, 20);

--Fin de insercidén de datos para la tabla TIPOS DISCO COMPACTO

--Inserta datos en la tabla ARTISTAS
INSERT INTO ARTISTAS VALUES

(2001, 'Jennifer Warnes', 'Seattle, Washington, Estados Unidos');
INSERT INTO ARTISTAS VALUES

(2002, 'Joni Mitchell', 'Fort MacLeod, Alberta, Canadad');
INSERT INTO ARTISTAS VALUES

(2003, 'William Ackerman',6 'Alemania');
INSERT INTO ARTISTAS VALUES

(2004, 'Kitaro', 'Toyohashi, Japdén');
INSERT INTO ARTISTAS VALUES

(2005, 'Bing Crosby', 'Tacoma, Washington, Estados Unidos');
INSERT INTO ARTISTAS VALUES

(2006, 'Patsy Cline', 'Winchester, Virginia, Estados Unidos');
INSERT INTO ARTISTAS VALUES

(2007, 'Jose Carreras', 'Barcelona, Espafia');
INSERT INTO ARTISTAS VALUES

(2008, 'Luciano Pavarotti', 'Modena, Italia');
INSERT INTO ARTISTAS VALUES

(2009, 'Placido Domingo', 'Madrid, Espaifia');
INSERT INTO ARTISTAS VALUES

(2010, 'Pascal Roge', 'Desconocido');
INSERT INTO ARTISTAS VALUES

(2011, 'John Barry',6 'Desconocido');
INSERT INTO ARTISTAS VALUES

(2012, 'Leonard Cohen', 'Montreal, Quebec, Canada');
INSERT INTO ARTISTAS VALUES

(2013, 'Bonnie Raitt', 'Burbank, California, Estados Unidos');
INSERT INTO ARTISTAS VALUES

(2014, 'Bob Seger', 'Dearborn, Michigan, Estados Unidos') ;
INSERT INTO ARTISTAS VALUES

(2015, 'Silver Bullet Band', 'No aplica');

INSERT INTO ARTISTAS VALUES
(2016, 'B.B. King', 'Indianola, Mississippi, Estados Unidos');

518 Fundamentos de SQL

INSERT INTO ARTISTAS VALUES

(

2017,

'David Motion',

INSERT INTO ARTISTAS VALUES

(

2018,

'Sally Potter',

'Desconocido!') ;

'Desconocido!') ;

--Fin de insercidén de datos para la tabla ARTISTAS

--Inserta datos en la tabla CDS ARTISTA

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO
INTO

CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA
CDS_ARTISTA

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

--Fin de insercidn de datos para

2001, 101);
2002, 102);
2002, 103);
2003, 104);
2004, 105);
2005, 106);
2006, 107);
2007, 108);
2008, 108);
2009, 108);
2010, 109);
2011, 110);
2012, 111);
2013, 112);
2014, 113);
2015, 113);
2016, 114);
2017, 115);
2018, 115);

la tabla CDS_ARTISTA

Simbolos

-- (guiones) con instrucciones INSERT,
170
— (sustraccién) operador de, 239
% (signo de porcentaje) con LIKE, 203-
205
& (simbolo de conjuncién) con
indicadores de asignacion,
422
() (paréntesis)
con la funcién COUNT, 227
con la instruccién CALL, 308
con las palabras clave AND y OR,
155
con predicados, 158-159
organizacién en cddigo, 96-97
* (asterisco)
con cursores, 361
con resultados de la consulta, 148
en la funcion COUNT, 227-228
* (multiplicacién) operador de, 239
/ (divisién) operador de, 239
/ (diagonal) en XML, 436
: (dos puntos)
con etiquetas de instruccién, 317
con variables host, 408-409
::= (simbolo), 90
; (punto y coma) con instrucciones
compuestas, 313
? (signo de interrogacién) marcador de
posicién, 425
[1 (corchetes) con la clausula MATCH,
88
_ (guiones bajos)
con el predicado LIKE, 203-204
utilizacién de, 41
{} (Maves), 51
+ (adicién) operador de, 239
< (menor que) operador de, 195, 197
<!--y-->en XML, 436
<= (menor que o igual a) operador de,
195, 198-199
<> (corchetes angulares)
en XML, 436
utilizacién de, 42
<> (desigual a) operador de, 195-196
<::> separador con la palabra clave class,
133

= (igual a) operador
con equi-joins, 256
con la clausula WHERE, 196
ejemplo de, 195
> (predicados de comparacion)
combinacion, 197, 207
con restricciones, 95
definir subconsultas con, 292
descripcion de, 194
> (mayor que) operador, 195, 197
>= (mayor que o igual a) operador, 195,
198-199
¢ (comillas sencillas) con INSERT INTO,
177-178
, (coma)
con columnas, 53
con identificadores de
autorizacion, 137-138
con la cldusula INSERT INTO,
177
con la instrucciéon CALL, 308
con referencias de tabla, 149

A

accion CONTINUE con WHENEVER,
413
accion referencial CASCADE, 90
accion referencial NO ACTION, 90
accion referencial RESTRICT, 90
accion referencial SET DEFAULT, 90
accion referencial SET NULL, 90
activadores. Véase también activadores
de eliminacién; activadores
de insercion; activadores de

actualizacion

como objetos de esquema, 330-
331

contexto de ejecucion para, 331-
332

creacion de, 345-348, 508-509

definidos, 17

descripcién de, 36

disparar al mismo tiempo, 342

invocar, 342

nombres de correlacion para, 334-
335

Indice

probar, 346
quitar, 335, 341, 347
sintaxis, 333
tipos de, 335
vistazo general de, 330-331
activadores de actualizacion. Véase
también activadores
creacion de, 338-341, 345-346
quitar, 347
activadores de eliminacion. Véase
también activadores
creacion de, 343-344, 346
quitar, 347
activadores de insercion, creacién de,
336-338, 345. Véase también
activadores
actualizar datos en columnas
referenciadas, 89-91
Ada, instrucciones SQL en, 408
adicion (+)
operador de, 239
afirmaciones
definicion, 97-98
definidas, 74
limitacion de, 75
agente SQL, 31
almacenaje en tuplas, definicion de, 6
asignacion de nombres, definida, 33
asterisco (¥)
con cursores, 361
con resultados de la consulta, 148
en la funcion COUNT, 227-228
atributos
definidos, 6
dependencia funcional de, 9
en XML, 436
identificadores unicos, 8-9
terminologia, 7
atributos XML, 436

B

bases de datos
agregar vistas a, 119-120
concepto de, 37-39
conectar a, 25-26
creacion de, 44-45
definidas, 4
quitar vistas de, 117

520

Indice

bloque BEGIN
con instrucciones compuestas,
313-314
con repeticiones, 318
bosques en XML, 437
bytes
almacenaje, 57
tamafo de, 55

C

cadenas binarias, 55, 57
cadenas de bits, 55-56
cadenas de caracteres. Véase también
funciones de valor de cadena
comparacién, 230
tipos de, 55
cadenas de caracteres nacionales, 55-56
calidad aislada, aplicar a transacciones,
379
calidad consistente,
aplicar a transacciones, 379
capacidad de actualizacién del cursor
definicion de, 362, 373
vistazo general de, 359-360
capacidad de desplazamiento del cursor
definicion de, 361
vistazo general de, 357
capacidad del cursor para arrojar
resultados, vistazo general de,
358-359
capacidad para aceptar valores nulos por
defecto, anular, 76-77
capacidad para mantener abierto el
cursor, vistazo general de, 358
caracteristica durable, aplicar a
transacciones, 379
cardinalidad minima, definida, 13. Véase
también tuplas
catdlogos. Véase también esquemas
componentes de, 33
descripcion de, 32
esquemas en, 34-35
estructura jerarquica de, 33-34
frente a esquemas, 34
relaciones de objeto en, 34
catdlogos SQL. Véase catdlogos
CD en existencias,
determinar, 247-248
cldusulas
procesar en orden, 165, 228
uso opcional de, 88
clave candidato
con la restriccion PRIMARY
KEY, 80
definicion, 7
clave primaria. Véase identificador tnico

clave sustituto, definida, 7
claves en normalizacion, 7
claves fordneas
columnas multiples en, 86-87
crear como restricciones de tabla,
86
en la tabla DISCOS_
COMPACTOS, 93
en la tabla TIPOS_DISCO_
COMPACTO, 94
para unir tablas, 108
representar como [FK], 91
claves primarias
para la tabla DISQUERAS_CD,
93
para la tabla TIPOS_MUSICA, 93
versus restricciones FOREIGN
KEY, 87-88
CLI (interfaz de nivel de llamada)
ejecutar instrucciones SQL en,
423-424
indicadores de asignacién en, 421-
423
la funcién ExecDirect() en, 423-
424, 428
la funcién Execute() en, 424-425
la funcién Prepare() en, 424
recuperar datos en, 426
utilizacion de, 427-429, 513
variables host en, 424-425
vistazo general de, 419-420
COBOL, instrucciones SQL en, 408
Codd, E.F. (Edgar Frank Codd), 5, 7, 15
c6digo, separar en lineas, 96-97
columnas. Véase también marcador de
posicion <columna derivada>;
columnas de vista
agregar, 239
arrojar desde tablas, 361
calcular, 240
combinar en restricciones, 79
consultar, 149-151, 153
crear y eliminar, 70-71
definicion de, 52-53
en claves foraneas, 86-87
en conjuntos de resultados, 411
en el predicado NULL, 202
en INSERT INTO, 180
en la clausula HAVING, 165
en los resultados de la consulta,
148
en vistas, 116
enlistar valores para, 96
especificar con GROUP BY, 162
especificar para columnas, 95-97
nombrar para vistas, 110-111
para INSERT INTO, 178-179

promediar valores en, 148-149
utilizar coma (,) con, 53
utilizar la opcién RESTRICT con,
68
valores para, 95-97
valores tnicos en, 77-79
visualizacion, 105
columnas de vista, asignar nombres para,
105. Véase también columnas
coma (,)
con columnas, 53
con identificadores de
autorizacion, 137-138
con la clausula INSERT INTO,
177
con la instrucciéon CALL, 308
con referencias de tabla, 149
comentarios,
agregar en XML, 436
comillas simples () con INSERT INTO,
177-178
complejidad de la consulta, ocultar con
vistas, 105-107
componentes del modelo de seguridad
identificadores de autorizacion,
124
identificadores de usuario, 124
identificadores PUBLIC, 125-
126
nombres de rol, 125
sesiones, 126-128
condiciones
inverso de, 200, 212, 214
y tamaifio de diagnéstico, 387
condiciones de busqueda. Véase también
predicados
combinar, 159
definir con la clausula WHERE,
152-159
definir para el predicado LIKE,
203-204
formatear desde predicados,
198
operadores para, 156
condiciones de busqueda de grupo,
especificar, 164-166
conectividad,
verificar, 26
conjuntos de caracteres, 36
conjuntos de caracteres de SQL, trazado
para, 443
conjuntos de resultados. Véase también
resultados de la consulta
arrojar con cursores, 353
definidos, 352
filas y columnas en, 411
consultar tablas miltiples, 505

Indice

consultas. Véase también subconsultas
correlacionadas
almacenar en definiciones de
vista, 104-105
para columnas en resultados de la
consulta, 170-171
contexto de ejecucion, aplicar a
activadores, 331-332
corchetes ([])
con clausula MATCH, 88
corchetes angulares (<>)
en XML, 436
utilizar, 42
cotejo por defecto, 36
cotejos, 36
cross join,
creacion de, 259, 273
cualidad atémica,
aplicacién a transacciones, 379
cuerpo de la rutina, variables en, 311-312
cursor de sélo lectura, creacion del,
372-373
cursor desplazable, definicién de, 361
cursores
abrir y cerrar, 354, 363, 369
acceder tablas con, 353-354
caracteristicas de, 364
como sefialadores, 353, 411
con DELETE posicionada, 370-
371
con instrucciones SELECT, 368
con UPDATE posicionada, 368-
370
de sélo lectura, 372-373
declarar, 354-356, 371-372
declarar en médulos, 417
declarar y acceder, 373
definicion de, 369
instrucciones utilizadas con, 354
recuperar datos desde, 363-367
utilizacion de, 510-511
vistazo general de, 353-355
cursores de la instruccion OPEN, 354,
364

D

datos

actualizar, 182-186, 290

actualizar desde columnas
referenciadas, 89-91

almacenaje en tuplas, 6

comparar con predicados, 194-198

eliminar con subconsultas, 291

eliminar de columnas
referenciado, 89-91

en nodos, 5-6

en tipos de registro, 6
insertar, 288-289
modificar, 188-190, 502
modificar con procedimientos,
309-310
modificar con vistas, 108
proteger entre tablas, 83
recuperar, 411-412
recuperar en CLI, 426
resumir, 164
unir con vistas, 108
utilizar la instruccién DELETE
con, 69
datos SQL. Véase datos
DBMS de Oracle, arquitectura de, 39
DCL (Lenguaje de Control de Datos), 19
DDL (Lenguaje de Definicién de Datos),
18
definicion de, 358
definiciones de vista
almacenar instrucciones SELECT
en, 304
la instrucciéon SELECT en, 153
dependencia funcional, definida, 9
desnormalizar datos, 11
diagonal (/) en XML, 436
disefio relacional, 11
DML (Lenguaje de Manipulacién de
Datos), 19
documentos XML
ejemplo de, 434
trazado para, 441, 443
dominios
creacion de, 98
definidos, 6
descripcion de, 35, 37
dos puntos (:)
con la etiqueta de instruccién, 317
con variables host, 408-409

E

el activador INSERT, definicion de, 336
el activador INSERT_LOG, creacion de,
336-337
el cursor WITH HOLD, definicién de,
358
el esquema INVENTARIO_CD,
creacion de, 45
el esquema INVENTARIO, creacién
de, 43
el estandar ANSI para SQL-86, 16
el estandar SQL, partes de, 16
el estandar SQL-86, liberacion de, 16
el estandar SQL:2006
conformar con, 20
conformidad para, 17-18

terminologia, 4
ver informacién acerca de, 18
el identificador de autorizacién App_
User, 127-128
el lenguaje host, SQL incrustado en,
407-408
el marcador de posicién <accion
referencial desencadenada> con
FOREIGN KEY, 89-91
el marcador de posicién <condicién de
bisqueda>
con la restriccion CHECK, 95-96
utilizacion de, 153
el marcador de posicion <cuerpo de la
rutina>, 303
el marcador de posicién <definicién de la
columna>, 68
el marcador de posicion <determinar
expresion de la clausula>, 183
el marcador de posicién <especificacion
de agrupacién>, 159-160
el marcador de posicién <expresién de la
consulta> con vistas, 109-110
el marcador de posicién <lista de
privilegios> con la clausula
GRANT, 132
el marcador de posicién <lista selecta>
con resultados de la consulta,
148
el marcador de posiciéon <modo> con
SET TRANSACTION, 382
el marcador de posicién <nombre de
objeto> con la cldusula ON,
132-133
el marcador de posicién <orientacién
para bisqueda>, 364
el marcador de posicion <tipo de objeto>
con la clausula ON, 132-133
el marcador de posicién signo de
interrogacion (?), 425
el método CLI, 20
el modelo CLI,
implementaciones de, 419
el operador BETWEEN con
restricciones, 97
el operador CUBE con GROUP BY,
163-164
el operador EXCEPT, efecto de, 272
el operador igual a (=)
con equi-joins, 256
con la clausula WHERE, 196
ejemplo de, 195
el operador INTERSECT versus UNION,
272
el operador IS FALSE, 156
el operador IS TRUE, 156
el operador mayor que (>), 195, 197

521

522

Indice

el operador mayor que o igual a (>=),
195, 198-199
el operador menor que (<), 195, 197
el operador menor que o igual a (<=),
195, 198-199
el operador UNION
utilizacion de, 269-271
versus full outer join, 271
el paquete PKGO008, activadores en, 331
el parametro FOR con SUBSTRING,
234-235
el pardmetro FROM con SUBSTRING,
234-235
el pardmetro SQLSTATE con médulos,
417-418
el predicado ALL, 218-219, 221
el predicado ANY, 216-218, 221, 282
el predicado BETWEEN, 199-200, 207
el predicado EXISTS
con subconsultas, 215, 220, 281
descripcion de, 213
utilizacion de, 284-285, 292
el predicado IN
actualizar datos con, 290
con subconsultas, 284
definir listas con, 210-211
descripcién de, 209
subconsulta en, 211-212
utilizacion de, 220, 279-280
el predicado NULL
agregar la palabra clave NOT a,
208
utilizacion de, 200-203
el predicado SOME, 216-218, 282
el prefijo sqlxml con el tipo
XMLSCHEMA, 438
el prefijo Xs con el tipo XMLSCHEMA,
438
el privilegio EXECUTE con objetos de
esquema, 130
el privilegio TRIGGER con objetos de
esquema, 130
el privilegio UNDER con objetos de
esquema, 130
el privilegio USAGE con objetos de
esquema, 130
el procedimiento CDS_NEW_AGE
creacion de, 305
descripcion de, 306
el procedimiento OBTENER _
ARTISTAS_CD
convocar, 320
quitar, 319
el programa C
declarar variables host en, 409-
410
incrustar instrucciones en, 409

instrucciones SQL en, 408
la funcion AllocHandle() en, 422
la funcién BindParameter() en,
425
modulos de llamada en, 418
el rol ADMINISTRADORES, creacion
de, 138
el rol CONTABILIDAD,
otorgar privilegios a, 134
el rol MRKT
creacion de, 139
otorgar el rol PERSONAL_
VENTAS hacia, 140
quitar, 140
revocar el rol PERSONAL_
VENTAS desde, 140
el rol PERSONAL_VENTAS
creacion de, 139
otorgar para el rol MRKT, 140
otorgar privilegios para, 130-140
quitar, 140
revocar desde el rol MRKT, 140
el rol VENTAS, otorgar privilegios a, 134
el tipo SALARIO, creacién de, 64
el valor SESSION_USER, 246
el valor USER, 246
elementos de agrupacion, 51
elementos XML, 436
eliminar
columnas, 71
datos desde columnas
referenciadas, 89-91
datos desde tablas, 69
esquemas, 34, 43-44
objetos de esquema, 43
roles, 130-131, 140
tablas, 69-71, 499
entidad, definida, 6
entorno de conexion,
entorno SQL
acceder al, 25-26
componentes de, 30-31
objetos de nombre en, 40-41
equi-join
creacion de, 256
definir en join de condicién, 263,
272
escala, aplicar a nimeros, 57
especificacion de la consulta,
definida, 114. Véase también
instrucciones SELECT
esquema
acceder a, 128-130
organizacion de, 44
otorgar privilegios en, 130
esquemas. Véase también catidlogos
caracteristicas de, 34-35

creacion de, 34, 42-45
eliminar, 34, 43-44
INFORMATION_SCHEMA, 34
instrucciones SELECT en, 304-
305
INVENTARIO, 43
nombrado, 42
tratamiento de, 34
versus catdlogos, 34
establecer en CLI, 427
estilos de enlace. Véase métodos de
ejecucion
etiqueta de instruccién con repeticiones,
317
etiquetas, valores nulos como, 76
EXEC SQL
ejemplo de, 409-410
significado de, 355, 408
expresion de la tabla con la instruccion
SELECT, 147
expresiones de consulta
componentes de, 114
con vistas, 110-111
instrucciones SELECT como, 146
expresiones de valor
CASE, 241-243, 249
CAST, 244-245, 249
numéricas, 238-241, 248
utilizacion de, 247-249, 504-505
expresiones de valor numéricas
combinar, 240
utilizacién de, 238-241, 248-249
extensiones del fabricante, definidas, 17

F

factor determinante, definido, 9. Véase
también identificador tinico
falsas, evaluar filas como, 157
fecha, recuperar, 237
filas
actualizar, 293-294
actualizar para activadores, 346
agrupar, 160
arrojado limitado de, 256-257
arrojar con subconsultas, 213,
278-283
consultar, 149-150
contar, 227-228
eliminar, 187, 190
eliminar para activadores, 346
en conjuntos de resultados, 411
en resultados de la consulta, 153
evaluacion de, 213-214
evaluar como verdaderas, 155
hacer coincidir con la cldusula
WHERE, 119

523

Indice

insertar en la tabla DISCOS_
COMPACTOS, 188
insertar en tablas, 178
tuplas como, 6
[FK], significado de, 91
Fortran, instrucciones SQL en, 408
frente al operador UNION, 271
full outer join
definicién de, 268-269
descripcion de, 266
funcién de valor de cadena LOWER,
235-236
funciones. Véase también funciones
set; funciones definidas por el
usuario; funciones de valor
capacidades de las, 36
con rutinas CLI, 419
concepto, 301
creacion de, 303, 322
definidas, 63, 226
frente a procedimientos, 301-302,
321
invocar, 322-323
llamadas en CLI (interfaz de nivel
de llamada), 419
quitar, 324
sintaxis, 301-303
utilizacién de, 247-249, 504-505
utilizar en SQL/XML, 439-440
y rutinas invocadas por SQL, 300
funciones de agregado. Véase alias de las
funciones set
con activadores, 334-335
utilizar, 257-258
funciones de valor. Véase también
funciones
descripcion de, 232-233
para cadenas, 233-236
SUBSTRING, 233-235, 248
UPPER, 248
UPPER y LOWER, 235-236
utilizar en SQL/XML, 439-440
funciones de valor CURRENT_*, 236~
237
funciones de valor de cadena. Véase
también cadenas de caracteres
SUBSTRING, 233-235, 248
UPPER, 248
UPPER y LOWER, 235-236
funciones de valor de fecha y hora,
disponibilidad de, 236
funciones definidas por el usuario. Véase
también funciones
creacion de, 63-64, 321-325, 508
descripcion de, 36, 55
frente a procedimientos, 301
soporte para, 301

tipos definidos por el usuario
(UDT)
utilizacion de, 55
funciones invocadas por SQL. Véase
también funciones
creacion de, 321-325, 508
versus procedimientos, 301
funciones set. Véase también funciones
AVG, 232
con la clausula GROUP BY, 230-
231
COUNT, 227-228
definidas, 226
en instrucciones, 229
MAX, 229-231
MIN, 229-231
SUM, 231-232
utilizacion de, 247-248

G

generadores de secuencia, 36
guiones (--) con instrucciones INSERT,
170
guiones bajos ()
con el predicado LIKE, 203-204
utilizacién de, 41

<identificador de autorizacion> valor,
43
identificador unico, elegir, 7. Véase
también determinante
identificadores. Véase también
identificadores de autorizacién
calificacion de, 41-42
casos de, 41
convenciones para, 40
identificadores de autorizacién. Véase
también identificadores
asociar privilegios con, 131-132
con coma (), 137-138
descripcién de, 32
identificadores de usuario, 124
nombres de rol, 125
identificadores de autorizacién PUBLIC
descripcion de, 125-126
especificar para otorgar roles,
138
otorgar privilegios a, 139-140
otorgar privilegios SELECT a,
134-135
revocar privilegios para, 136
identificadores de objeto de esquema,
calificacion de, 41-42
identificadores de objeto, definidos, 40

identificadores de usuario
definidos, 124
designar, 131
otorgar roles para, 138
y el nombre de rol para sesion,
126-128
identificadores delimitados,
convenciones para, 40-41
identificadores SQL, trazado para, 443
implementaciones SQL
descripcion de, 31
diferencias en, 404-405
incongruencia en la impedancia
aparicion de, 364
definida, 352-353
eliminacion de, 405
utilizar cursores para, 411
incrustrar, 413-414
indexar, soporte para, 70
indicador de ambiente
en CLI, 421-422
establecer en CLI, 427
indicador de conexién en CLI, 421-423
indicador de instruccién
crear en CLI, 427
utilizar en CLI, 421, 423
indicadores de asignacién en CLI, 421-
423,427
la funcion AllocHandle(), 422-423
INFORMATION_SCHEMA, contenido
de, 34
inner joins
creacion de, 264-266, 273
frente a outer join, 264
instruccién DECLARE con variables,
311-312
instruccion del cursor, creacion de, 360-
363
instrucciones. Véase instrucciones SQL
instrucciones activadas, ejecucién
limitada de las, 340
instrucciones compuestas,
creacion de, 312-313
instrucciones condicionales de control
condiciones en, 316
utilizacion de, 314-315
instrucciones DDL
palabras clave SQL para, 18
utilizar en transacciones, 390
instrucciones de control. Véase también
instrucciones SQL
compuestas, 312-313
condicionales, 314-315
de repeticion, 316-318
definidas, 312
instrucciones de repeticién, creacién de,
316-318

524

Indice

instrucciones DML en transacciones, 390
instrucciones INSERT
con activadores de eliminacion,
344
con activadores de insercién, 337-
338
con funciones de fecha y hora,
237-238
con la instruccién SELECT, 181-
182
con procedimientos, 310
ejecutar, 180
la cldusula VALUES en, 177
sintaxis, 176
utilizacién de, 169-170, 178, 288-
289
instrucciones SELECT. Véase también
la instruccién SELECT
incrustada; especificacion de la
consulta
activadores en, 338
actualizar valores desde, 185-186
almacenar en esquemas, 304-305
clausulas necesarias para, 146
combinar resultados de, 269-271
como expresiones de consulta, 146
con cursores, 368
con el predicado EXISTS, 213
con la vista DESCUENTOS_CD,
113
de instancia unica, 411
el predicado ALL en, 218-219
el predicado ANY en, 217
el predicado IN en, 211-212
insertar valores desde, 180-182
la cldusula FROM en, 112
la clausula GROUP BY en, 159-
164
la clausula HAVING en, 171-
172
la clausula ORDER BY en, 166-
169
la clausula WHERE en, 112-113,
152-159, 171, 182
la expresion de tabla para, 147
la funcién COUNT en, 227-228
la funcién UPPER en, 235-236
orden de las cldusulas para, 147
orden de procesamiento de, 228,
258
orden de procesamiento de
clausulas en, 165
predicados LIKE en, 205
sintaxis, 26, 146
SUBSTRING en, 234
unir tablas en, 259
vistas en, 110-111

instrucciones SQL. Véase también
instrucciones de control
clasificacion, 19-20
comienzo, 42
DCL (Lenguaje de Control de
Datos), 19
DDL (Lenguaje de Definicién de
Datos), 18
decidir en alternativas para,
215
DML (Lenguaje de Manipulacién
de Datos), 19
ejecutar, 19-20, 423-424, 428
frente a implementaciones de
productos, 21-24
incluir funciones set en, 229
pasar datos hacia, 410
variables host en, 408-410
instrucciones WHENEVER
en manejo de errores, 415
integridad de los datos
asegurar la, 13
definidos, 5
integridad referencial, definida, 83
interfaz de nivel de llamada de SQL.
Véase CLI (interfaz de nivel de
llamada)
intervalo afio-mes, 60
intervalo dia-hora, 60
irregularidades de los datos
lecturas fantasma, 384-385
lecturas no repetibles, 384
lecturas sucias, 383-384

J

join de columna nombrada, creacién
de, 263
join de condicion
como join de entrada y de salida,
264
descripcion de, 263
utilizacién de, 273
join natural, creacién de, 262-263
join separada por comas
frente a cross join, 259
implementar, 254
lineamientos para, 257
realizar, 272
utilizacion de, 258-259
joins
con vistas, 108
crear con tablas multiples, 258-
259
cross-join, 259
equi-join, 256
evitar filas duplicadas en, 260

frente a subconsultas
correlacionadas, 286

full outer join, 266, 268-269, 273

inner join, 264-266, 273

join de columna nombrada, 263

join de condicién, 263-264, 273

natural, 262-263

outer join, 266-269

self-join, 260-261

separados por comas, 254, 257-
259,272

theta-join, 257

tipos de, 263

L

la accion GOTO con WHENEVER,
413-414
la base de datos INVENTARIO
conectarse a, 66, 70
consultar, 169-172, 501-502
creacion de, 45
crear roles en, 139-140
modelo de datos para, 92
tablas en, 71
volver a crear, 514-518
la cldausula ADMIN OPTION FOR
con roles, 138
la clausula ALTER [COLUMN], 68
la clausula AND CHAIN
con COMMIT, 396
con ROLLBACK, 397
la clausula AND NO CHAIN
con COMMIT, 396
con ROLLBACK, 397
la clausula AUTHORIZATION, 417
la cldusula <conjunto o ruta de
caracteres>, 43
la clausula DELETE FROM, 186
la cldusula DROP [COLUMN], 68
la cldusula <elemento de tabla>, 52
la cldusula <elementos de esquema>, 43
la cldusula ELSE con CASE, 242
la cldausula ELSE IF en instrucciones
condicionales,
316
la clausula ELSEIF en instrucciones
condicionales, 316
la clausula FOR EACH
con activadores, 333, 335, 340
con activadores de eliminacion,
344
con activadores de insercion, 337
la cldausula FOR READ ONLY con
cursores, 361
la clausula FOR UPDATE con cursores,
362-363

Indice

la clausula FROM
con la clausula SELECT, 149,
152-153
con vistas, 110-111
en la instruccion REVOKE, 136
evaluacion de, 147
la cldusula GRANT OPERATION FOR,
135
la clausula GRANT, opciones para, 132
la cldusula GRANT OPTION FOR
para revocar privilegios, 135, 137
para revocar roles, 138
la clausula GRANTED BY
con la instruccion REVOKE, 135
utilizacion de, 132, 138
la clausula GROUP BY
con funciones set, 230-231, 247
con la cldausula HAVING, 166
con la clausula WHERE, 162
con resultados de la consulta, 159-
164
consideraciones respecto al
rendimiento, 161
la clausula HAVING
agregar a la instruccién SELECT,
171-172
con GROUP BY, 166
incluir columnas en, 165
subconsultas en, 279
utilizacion de, 165-166
versus WHERE, 164-165
la clausula INSERT INTO
especificar columnas en, 180
utilizacion de, 176-177
la clausula INTO
con SELECT de instancia tnica,
411
con SELECT incrustada, 415-416
con variables de indicador, 412
la clausula LANGUAGE, 417
la clausula MATCH con restricciones
FOREIGN KEY, 88-89
la clausula NAMES ARE, 417
la clausula ON
agregar la condicion de union
después de, 265
con activadores, 333, 339
con la instruccion REVOKE, 135
definir la condicion de unién en,
263
marcadores de posicién para, 132-
133
la cldusula ON DELETE, 90
la clausula ON UPDATE, 90
la clausula ORDER BY
con cursores, 359, 361-362
con XML, 435

consideraciones respecto al
rendimiento, 161
en instrucciones SELECT, 166-
169
evaluacion de, 147
utilizacion de, 178
la clausula REFERENCING
con activadores, 334-335, 345-346
con activadores de actualizacion,
339
con activadores de eliminacion,
343-344
soporte para, 340
la clausula RETURNS con funciones,
303, 322
la clausula SCHEMA, 417
la clausula SELECT
con expresiones de valor
numéricas, 239
con la cldusula FROM, 149, 152-
153
con la clausula WHERE, 153-154
con la palabra clave ALL, 147-148
con la palabra clave DISTINCT,
147-148
con vistas, 112
subconsultas en, 279, 283
la cldusula SET
combinar con la clausula WHERE,
186
con UPDATE, 183, 186
especificar expresiones en, 184
subconsultas en, 290, 294
la clausula STATIC DISPATCH con
funciones, 303
la clausula TO
con la clausula GRANT, 137
opciones para, 133
la clausula TO SAVEPOINT, 397. Véase
también puntos de recuperacion
la clausula USING con joins, 263
la clausula VALUES
alternativa para, 180-182
con INSERT, 177-178
especificar valores en, 180
la clausula WHEN
con activadores, 333-334, 339-
341
con activadores de eliminacion,
344
la clausula WHERE
AND y OR en, 155
capacidades de, 194
combinar la cldusula SET con,
186
con activadores, 339, 341
con equi-join, 256

con funciones set, 230
con GROUP BY, 162
con la clausula FROM, 147
con la instrucciéon DELETE, 186-
187
con la instruccion SELECT, 153-
154, 156, 171, 182
con predicado EXISTS, 215
con WITH CHECK OPTION,
111-113, 117
definicion de, 156-159
definir condiciones de bisqueda
con, 152-159
el operador igual a (=) en, 196
el predicado LIKE en, 204
en la instrucciéon DELETE, 198
en la instruccion SELECT, 113
en la instruccion UPDATE, 183-
186, 198
frente a HAVING, 164-165
para DELETE posicionadas, 370-
371
para hacer coincidir filas, 119
para UPDATE posicionadas, 368-
369
predicados en, 157, 194
subconsultas en, 278
la cldusula WHEN/THEN con CASE,
242
la clausula WITH ADMIN con roles,
131, 138
la cldusula WITH CHECK OPTION,
116-117
para promedios, 115
utilizacion de, 110-111, 113
la cldusula WITH GRANT OPTION,
133-135
la columna CATEGORIA
valores en, 160, 163
la columna PRECIO
especificar en ORDER BY, 167
valor nulo en, 162-163
la columna PROM_PRECIO

arrojar, 165

la columna TIPO_MUSICA, valor nulo
en, 178-179

la condiciéon NOT FOUND, definida,
413

la condicion SQLEXCEPTION, definida,
413-414

la condicién SQLWARNING, definida,
413

la denominaciéon SEQUEL, posesion
de, 15

la funcién ARTISTA_CD
arrojar valores desde, 323
definicion de, 322

525

526

Indice

la funcién AVG
en consultas, 148-149
en vistas, 115
utilizacién de, 232
la funcién BindCol() en CLI, 426
la funcién BindParameter() en CLI,
425
la funcién COUNT, 227-228, 247
la funcién de valor de cadena UPPER,
235-236, 248
la funcién de valor LOCALTIME, 236
la funcién de valor
LOCALTIMESTAMP, 236
la funcion de valor SUBSTRING, 233-
235,248
la funcion ExecDirect(), 423-424
la funcién Execute() en CLI, 424-425,
428
la funcién getdate, 237
la funcion MAX, 229-231
la funcién MIN, 229-231, 247
la funcién Prepare() en CLI, 424
la funcién SQLConnect(), 423
la funcién SUBSTR, 234
la funciéon SUM
con GROUP BY, 160
utilizacion de, 231-232
la funcion XMLELEMENT, 439
la funcion XMLFOREST, 439
la instruccion ALTER FUNCTION, 311
la instruccion ALTER PROCEDURE,
310
la instruccion ALTER TABLE
con restricciones CHECK, 99
utilizar, 50, 67-68
la instruccién ALTER VIEW, 118
la instruccién BEGIN...END
con activadores, 334, 340
con activadores de eliminacion,
344
con activadores de insercion, 337
con instrucciones condicionales,
314
utilizacién de, 313-314
la instruccién CALL
con instrucciones condicionales,
315
con procedimientos, 305-306,
308-310, 312, 320
con repeticiones, 317
la instruccién CLOSE con cursores,
354,363
la instruccion COMMIT
con transacciones, 395-396
definida, 380
finalizar transacciones con, 395
utilizacion de, 52, 381

la instruccion CREATE DATABASE, 44
la instruccion CREATE FUNCTION,
303, 322
la instruccion CREATE INDEX,
variaciones de, 70
la instruccion CREATE PROCEDURE
con parametros de salida, 321
definir pardmetros en, 308
utilizacion de, 302-303, 305
la instruccion CREATE ROLE
sintaxis, 130
utilizacién de, 131
la instruccion CREATE SCHEMA
sintaxis, 42-43
utilizacion de, 34
la instruccion CREATE TABLE
ejecutar, 53
para tablas base, 51
sintaxis, 51-52
utilizacion de, 43, 50, 65
la instruccién CREATE TRIGGER
la semdntica cambiante de, 337
utilizacion de, 334, 336, 338-339
la instruccion CREATE TYPE, 64
la instruccién CREATE VIEW
la instruccion DECLARE CURSOR
capacidad de actualizacion del
cursor parte de, 359-360
capacidad de desplazamiento del
cursor parte de, 357
capacidad de ordenamiento del
cursor parte de, 359
capacidad del cursor para arrojar
resultados parte de, 358-359
capacidad para mantener abierto el
cursor parte de, 358
sensibilidad del cursor parte de,
357
utilizacién de, 354-356, 361
la instruccion DELETE
agregar la clausula WHERE a, 198
frente a DROP TABLE, 187
para activadores, 343-344
para cursores, 359, 370-371
para datos, 69, 291
para filas, 190
para procedimientos, 310
utilizacion de, 186-187
la instruccién DELETE posicionada,
370-371
la instruccién DROP FUNCTION, 311,
324
la instruccion DROP PROCEDURE,
311,319
la instruccién DROP ROLE, 131, 140
la instruccion DROP SCHEMA, 34,
43-44

la instruccion DROP TABLE
para activadores, 347
utilizacién de, 50, 119
versus DELETE, 69, 187

la instruccion DROP TRIGGER, 335,

341, 347
la instruccién DROP VIEW, 117
la instrucciéon FETCH
con cursores, 354-355, 361, 364-
367,373

y la capacidad de desplazamiento
del cursor, 357
la instruccion GRANT
con objetos, 130
con roles, 137
ejemplo de, 134
utilizacion de, 132
versus la clausula FROM, 136
la instruccién IF con repeticiones, 317
la instrucciéon LOOP
frente a la instruccion WHILE,
317-318
utilizacién de, 316-318
la instrucciéon MODULE, 418
la instruccion RELEASE SAVEPOINT
definida, 380
utilizacién de, 394
la instruccion RETURN con funciones,
303, 322
la instruccion REVOKE
con objetos, 130, 137
con roles, 138-139
la cldausula FROM en, 136
sintaxis, 135
la instrucciéon ROLLBACK
con transacciones, 396-397, 399-
400
definida, 380
finalizar transacciones con, 395
utilizacién de, 381
la instruccion SAVEPOINT, definida,
380
la instrucciéon SELECT de instancia
Gnica, 411
la instruccién SELECT incrustada,
415-416. Véase también
instrucciones SELECT
la instrucciéon SET
con parametros de salida, 321
con repeticiones, 317-318
con variables, 311-312
la instrucciéon SET CONSTRAINTS
con transacciones, 390-392
definida, 380
la instruccién SET TRANSACTION
creacion de, 388
definida, 380

Indice

frente a START TRANSACTION,
389
uso limitado de, 381
utilizacién de, 381-382
la instruccion START TRANSACTION
definida, 380
uso limitado de, 381
utilizacién de, 381, 389, 398-399
la instruccion TRUNCATE, 69
la instruccion UPDATE
activadores en, 338-341
creacion de, 185
cursores en, 359-360, 368-370,
373-374
impacto sobre activadores, 332
instrucciones condicionales en, 315
la clausula SET en, 183
la clausula WHERE en, 183-186,
198
procedimientos en, 310
repeticiones en, 317-318
sintaxis, 182
subconsultas en, 290, 293
utilizacién de, 290
la instruccién UPDATE posicionada,
368-370
la instruccién WHILE con repeticiones,
317-318
la interfaz de linea de comandos de
MySQL
sensibilidad al uso de mayusculas/
minusculas de, 41
utilizacion de, 22, 24, 26
la interfaz de nivel de llamada (CLI)
ejecutar instrucciones SQL en,
423-424
indicadores de asignacion en, 421-
423
la funcién ExecDirect() en, 423-
424, 428
la funcion Execute() en, 424-425
la funcién Prepare() en, 424
recuperar datos en, 426
utilizacion de, 427-429, 513
variables host en, 424-425
vistazo general de, 419-420
la interfaz GUI, 22
la opcién FIRST con instruccién
FETCH, 365
la opcién FULL con la cldusula MATCH,
89
la opcién INSENSITIVE con cursores,
357,362, 373
la opcién LAST con la instruccién
FETCH, 365
la opcion NEW ROW, omitir desde
activadores, 335

la opcién NEW TABLE, omitir desde
activadores, 335
la opcién NEXT con la instruccion
FETCH, 364, 367
la opcién NO SCROLL con cursores,
357
la opcién OLD ROW
con activadores, 343
omitir desde activadores, 335
la opcién OLD TABLE con activadores,
343
la opcién PARTIAL con la cldusula
MATCH, 89
la opcién PRIOR con la instruccion
FETCH, 364
la opcién PUBLIC con la cldusula TO,
133
la opcién READ ONLY, 382, 386, 388-
389
la opcion READ WRITE, 382, 386
la opcién RELATIVE con la instruccién
FETCH, 365-367
la opcion RESTRICT
con columnas, 68
con esquemas, 43
con procedimientos, 311
con REVOKE, 136
con tablas, 69
la opcién ROW
con la cldusula FOR EACH, 333
para activadores, 340
la opcién SCROLL con cursores, 357,
361-362, 373
la opcién SENSITIVE con cursores,
357
la opcién SIMPLE con la cldusula
MATCH, 89
la opcién STATEMENT con la clausula
FOR EACH, 333-334
la palabra clave AFTER
con activadores, 333, 339
con activadores de insercion, 337
la palabra clave AFTER DELETE
con activadores, 343
la palabra clave ALL
con la cldusula SELECT, 147-148,
152
después del operador UNION, 271
la palabra clave AND
con el predicado BETWEEN, 199
con joins, 257
con predicados, 153-155, 157,
197-198, 208, 219
la palabra clave AS
con CAST, 244-245
con nombres de correlacion, 258
con vistas, 109-111

la palabra clave ASC con ORDER BY,
166
la palabra clave ATOMIC
con activadores, 334
con activadores de insercion, 337
la palabra clave AUTHORIZATION, 42
la palabra clave class con separador <::>,
133
la palabra clave CONSTRAINT, 86
la palabra clave DEFAULT con
columnas, 64-65
la palabra clave DEFERRED con
restricciones, 392
la palabra clave DESC
con la columna A_LA_MANO,
167
con ORDER BY, 166
la palabra clave DISTINCT
con joins, 260
con la cldusula SELECT, 147-148,
151-152
con la funcion COUNT, 228
consideraciones respecto al
rendimiento, 161
la palabra clave ELSE en instrucciones
condicionales, 314-316
la palabra clave END
con CASE, 242
con instrucciones compuestas,
313-314
la palabra clave END IF con repeticiones,
317
la palabra clave END LOOP, 316-317
la palabra clave EXIT con repeticiones,
316
la palabra clave FOR con cursores, 356
la palabra clave IN
evitar el uso de, 322
utilizacién de, 212
la palabra clave IS
con cursores, 356
con el predicado NULL, 201
la palabra clave ISOLATION LEVEL,
388
la palabra clave JOIN, 264
la palabra clave LOCAL con SET
TRANSACTION, 381-382
la palabra clave NOT
agregar a predicados LIKE, 205
agregar al predicado NULL, 208
con el predicado BETWEEN, 200
con el predicado IN, 212
con el predicado NULL, 202
con predicados, 158, 195
incluir en predicados, 208
utilizacion de, 156
la palabra clave NULL con INSERT, 177

527

528

Indice

la palabra clave OPEN con cursores, 363
la palabra clave OR con predicados, 153-
155, 158, 198, 200, 208, 219
la palabra clave OUT con pardmetros,
321
la palabra clave REFERENCES
con objetos de esquema, 130
con restricciones de columna, 85
la palabra clave ROLLUP con GROUP
BY, 160, 163-164
la palabra clave TABLE
con privilegios, 137
vistas para, 133
la palabra clave THEN con instrucciones
condicionales, 314-315
la palabra clave VALUE con restricciones
de dominio, 98
la palabra LEAVE con repeticiones, 316
la pila de autorizacién
creacion de, 127
la prueba ACID,
aplicada a transacciones, 379
base de datos activa, definida,
331
la publicacién PSM-96, 300
la publicacién SQL/PSM, 300
la restriccion CHECK de columna
creacion de, 95
la subclausula AS con la instruccién
SELECT, 151
la tabla ARTISTAS
alterar, 68
consultar, 170
creacion, 53, 62-63, 65
crear un activador de insercion en,
345
restricciones en, 94
transacciones en, 398-400
la tabla ARTISTAS_CD
consultar, 281
la tabla ARTISTAS_DISCO, consultar,
286-288
la tabla CDS_ARTISTA,
creacion, 94
establecer funciones en, 226-227
la tabla DISCOS_COMPACTOS
agregar CD a, 188
con la restriccion CHECK, 99
con restricciones, 93
consultar, 171
creacion de, 66
insertar filas en, 188
otorgar privilegios en, 130-140
la tabla DISQUERAS_CD
agregar compaiiia a, 188
creacion de, 67
utilizar restricciones con, 93

la tabla EMPLEADO_COMISIONES
creacion de, 114-115
extraer datos desde, 116
la tabla EMPLEADOS, usar la operacién
self-join, 260-261
la tabla EXISTENCIA_CD
consultar, 279-280
crear activador de eliminacion en,
343
la tabla EXISTENCIA_DISCO_
COMPACTO
con la clausula HAVING, 165
utilizacion de, 160-161
la tabla FECHAS_VENTAS, funciones
de valor en, 233
la tabla INTERPRETES
acceder con cursores, 353-354
columnas en, 150
la tabla INVENTARIO, columnas en,
156-157
la tabla INVENTARIO_CD
consultar, 181-182
declarar cursores en, 360-363
insertar valores en, 177-182
otorgar acceso a, 134
la tabla INVENTARIO_DISCO,
consultar, 286-288
la tabla PRECIOS_MENUDEO,
consultar, 282
la tabla PRECIOS_VENTAS, consultar,
282
la tabla RASTREO_CD
consultar, 241
expresiones de valor en,
238
la tabla REGISTRO_ARTISTA con
activadores, 345-348
la tabla TIPO_INTERPRETE
filas en, 152
la tabla TIPOS_DISCO, consultar, 286-
288
la tabla TIPOS_DISCO_COMPACTO
consultar, 294
creacion de, 70
restricciones en, 93-94
la tabla TIPOS_MUSICA
creacion de, 67
utilizar restricciones con, 93
la tabla TIPOS_TITULO, modificar,
288-289
la tabla TITULOS_CD
creacion de, 85
la vista DESCUENTOS_CD
columnas en, 113
desplegar, 108-109
la vista EDITORES_CD
creacion de, 119

la vista EMP_COMM
columnas en, 115
eliminar, 117
LAMP (Linux, Apache, MySQL, PHP),
25
las definiciones de columna
agregar restricciones PRIMARY
KEY a, 81
con cadenas, 56
con NOT NULL, 76
sin valores por defecto, 69
tipos de datos de intervalo en, 61
las palabras clave AND NOT, 157-158
las palabras clave DEFAULT
CHARACTER SET, 43
las restricciones NOT NULL
agregar, 76-77, 93, 499-500
con definiciones de columna, 79,
82-83
con UNIQUE, 79
efecto de, 200
utilizacion de, 412
las variables host. Véase también
variables
como pardmetro, 368
creacion de, 414-415
declaracion de, 422
definidas, 364
en CLI (interfaz de nivel de
llamada), 424-425
en instrucciones SQL, 408-410
indicadores, 412
lecturas fantasma, aparicion de, 384,
386-387
lecturas no repetibles, 384-385, 387
lecturas sucias, aparicién de, 383-384,
387
left outer join
creacion de, 267-268
descripcion de, 266
Lenguaje de Consulta Estructurado
(SQL). Véase SQL (Lenguaje
de Consulta Estructurado)
Lenguaje de Control de Datos (DCL), 19
Lenguaje de Definicién de Datos (DDL),
18
Lenguaje de Manipulacién de Datos
(DML), 19
lenguaje de marcado, definido, 434
Lenguaje de Marcado Extensible (XML)
agregar comentarios en, 436
vistazo general de, 434-437
lenguaje procesal, definido, 15
lenguaje relacional a objetos, SQL como,
17
ligar los resultados de la consulta con,
428

Indice

lineas, separar el c6digo en, 96-97
Linux, Apache, MySQL, PHP (LAMP),
25
<lista del identificador de autorizacién>
opcidn, 133
listas, definir con el predicado IN, 210-
211
literal, definido, 62, 64-65
llaves ({}), 51
los nombres de columna
agregar después de los privilegios,
134
compartir, 261-263
con operadores de comparacion,
195
especificar en INSERT INTO, 177
ordenar en la cldusula ORDER
BY, 168
proporcionar para columnas
derivadas, 149
proporcionar para vistas, 110
los tipos de datos CHARACTER
descripciones de, 56
trazado para los tipos de esquema
XML, 442
los valores de columna
agregar juntos, 231-232
combinar, 240-241
contar, 227-228
eliminar, 187

M

manejo de errores, proporcionar, 413-415
marcador de posicion <columna
derivada>, 148-149. Véase
también columnas
marcadores de posicidn, separar, 90
metadatos, definidos, 4
método de invocacion directa
con cursores, 372
definido, 352
soporte para, 22, 25
utilizacion del, 19-20, 404
ventajas del, 405
método de vinculacién de médulos, 20
métodos
con rutinas invocadas por SQL,
301
definidos, 63
métodos de acceso a los datos, elegir, 420
métodos de ejecucion
CLI (Interfaz de Nivel de
Llamada), 20
invocacion directa, 19
SQL incrustado, 20
unién del médulo, 20

modelo de datos de red, 5
modelo de datos jerdrquico, 4-5
modelo de datos relacional, 4. Véase
también normalizar datos
entidades en, 6
relaciones en, 5-6
vistazo general de, 5
modelos de bases de datos
dered, 5
jerarquicos, 4-5
relacionales, 5
modelos de datos
con restricciones, 91-94
definidos, 13
para la base de datos
INVENTARIO, 91-92
modificador de tipo en SQL/XML, 438
modificador del tipo CONTENT en SQL/
XML, 438
modificador del tipo DOCUMENT en
SQL/XML, 438
modificador del tipo SEQUENCE en
SQL/XML, 438
modulo de servidor de SQL, 36
moédulos. Véase también SQL mddulos
cliente
declarar cursores en, 417
declarar tablas temporales en, 417
definidos, 37, 51, 301
modulos cliente. Véase médulos cliente
de SQL
modulos cliente de SQL. Véase también
moédulos
declarar pardmetros para, 418
definicion de, 418-419
descripcion de, 32
sintaxis, 417
vistazo general de, 417-418
muestras de c6digo
activadores, 508-509
alterar y eliminar tablas, 499
CLI (interfaz de nivel de llamada),
513
consultar la base de datos
INVENTARIO, 501-502
consultar tablas multiples, 505
crear tablas SQL, 498
cursores, 510-511
expresiones de valor, 504-505
funciones, 504-505
funciones invocadas SQL, 508
funciones SQL/XML, 513-514
instrucciones SQL incrustadas,
512
modificar datos SQL, 502
predicados en instrucciones SQL,
503

procedimientos invocados por
SQL, 507-508
restricciones CHECK, 500
restricciones NOT NULL, 499-
500
restricciones referenciales, 499-
500
restricciones UNIQUE, 499-500
roles y privilegios, 501
subconsultas, 505-507
subconsultas en predicados, 503-
504
transacciones, 511
vistas, 500
MUMPS, instrucciones SQL en, 408
MySQL Community Server, descarga, 25

N

nivel de aislamiento READ
COMMITTED, 386-388
nivel de aislamiento READ
UNCOMMITTED, 385-389,
398-399
nivel de aislamiento REPEATABLE
READ, 386-387
nivel de aislamiento SERIALIZABLE,
386-388, 399
niveles de aislamiento
anomalias de datos para, 387
establecer para transacciones, 382-
383
READ COMMITTED, 386, 388
READ UNCOMMITTED, 385-
386, 388
REPEATABLE READ, 386
SERIALIZABLE, 386-388, 399
y las lecturas sucias, 383-384
nodos, datos en, 5-6
nodos primarios frente a nodos
secundarios, 5-6
nodos secundarios frente a nodos
primarios, 5-6
nombres calificados, 41-42
nombres completos calificados, 41-42
<nombres de columna de vista>, 109-110
nombres de correlacion
con activadores, 334-335
utilizacion de, 257-258
nombres de rol
definidos, 126
designar, 131
determinar, 128
revocar privilegios para, 137
y el identificador de usuario para
sesion, 126-128
nombres XML, trazado para, 441

529

530

Indice

normalizar datos, 14. Véase también
modelo de datos relacional
elegir identificador tnico, 7
primera forma normal, 8-9
segunda forma normal, 9
tercera forma normal, 9-11
normalizar el lenguaje de datos, definido,
15
nimero de punto flotante, definido, 57
ndmeros enteros, generacion de, 36

O

objetos. Véase también objetos de la base
de datos; objetos de esquema
en catdlogos, 34
identificadores para, 40
nombrado de, 41
otorgar acceso a, 19
tomar posesion de, 132
objetos de esquema. Véase también
objetos de la base de datos;
objetos; vistas
activadores, 36
activadores como, 330-331
conjuntos de caracteres, 36
cotejos, 36
dominios, 35
eliminar, 43
generadores de secuencia, 36
modulo de servidor de SQL, 36
privilegios de acceso para, 128-
129
restricciones, 36
rutinas invocadas por SQL, 36
tablas base, 35
transliteraciones, 36
UDT (tipos definidos por el
usuario), 36
vistas, 35
objetos de la base de datos. Véase
también objetos; objetos de
octeto, definido, 55
objetos SQL. Véase objetos
ODBC API, desarrollo de, 419-420
opcién ABSOLUTE con la instruccién
FETCH, 365-367
opcién ALL PRIVILEGES
con la cldusula GRANT, 132
utilizar, 136
opcion ASENSITIVE con cursores, 357
opcién CASCADE
con esquemas, 43-44
con procedimientos, 311
con REVOKE, 136
con tablas, 68-69
opcién CASCADE CONSTRAINTS, 93

opcion CURRENT OF con UPDATE,
369, 374
operador de division (/), ejemplo de,
239
operador de multiplicacion (*), 239
operador de resta (=), 239
operador desigual a (<>), 195-196
operadores de comparacién
con ANY y SOME, 217-218
con subconsultas, 284
simbolos y ejemplos de, 195
Oracle Express, descarga, 25
Oracle, ventajas de, 22-23
ordenamiento del cursor, vistazo general
de, 359
outer joins
creacion de, 266-269
frente a inner joins, 264
tipos de, 266-269

P

palabras clave
AUTHORIZATION, 42
con instrucciones DDL, 18
DEFAULT CHARACTER SET,
43
definidas, 40
no reservadas, 494-496
reservadas, 492-494
palabra clave BEFORE con activadores,
333
palabras clave no reservadas
lista de, 494-496
uso de, 40
palabras clave reservadas
lista de, 492-494
uso de, 40
pardmetros. Véase también parametros de
entrada; pardmetros de salida
agregar a procedimientos, 307-
310, 320-321
como literales, 62
con procedimientos, 319
con rutinas invocadas por SQL,
300
declarar para médulos, 418
definir en CREATE
PROCEDURE, 308
descripcién de, 307
instrucciones para, 307
separar en SUBSTRING, 234
tipos de, 307
utilizacién de, 307
variables host como, 368
pardmetros de entrada. Véase también
pardametros de salida

parametros de salida. Véase también
parametros de entrada
paréntesis (())
con la funcién COUNT, 227
con la instruccién CALL, 308
con las palabras clave AND y OR,
155
con predicados, 158-159
organizar en cédigos, 96-97
Parte 14. Véase SQL/XML
Pascal, instrucciones SQL en, 408
PL/I, instrucciones SQL en, 408
precision
aplicar a niimeros, 57
especificar para intervalos, 61
predicados. Véase también predicados
de comparacién cuantificados;
condiciones de bisqueda
ALL, 221
ANY, 221
BETWEEN, 199-200, 207
combinar, 159, 195, 198
con el marcador de posicién
<condicién de busqueda>, 153-
154
con la instrucciéon DELETE,
187
con paréntesis (()), 158-159
con restricciones CHECK, 95-97
en instrucciones SQL, 503
evaluacion de, 155
evaluacion en la clausula WHERE,
194
EXISTS, 213-214, 220, 281, 292
IN, 209-213, 220, 279-280
incluir en la clausula WHERE,
157
invertir condiciones para, 195
LIKE, 203-206
NULL, 200-201, 208
para comparar datos, 194-198
para la instrucciéon UPDATE,
184
subconsultas en, 209, 220-221
predicados de comparacion (>)
combinar, 197, 207
con restricciones, 95
definir subconsultas con, 292
descripcion de, 194
predicados de comparacion
cuantificados. Véase también
predicados
ALL, 218-219
ANY, 216-218
descripcion de, 216
SOME, 216-218
utilizacién de, 219, 282-283

531

Indice

predicados LIKE
combinar, 206
en instrucciones SELECT, 205
en la clausula WHERE, 204
palabra clave NOT en, 205
simbolos utilizados en, 203-204
utilizacion de, 208
primera forma normal, 8-9
privilegio DELETE con objetos de
esquema, 129
privilegios
agregar nombres de columna a,
134
asociar con identificadores de
autorizacion, 131-132
definir para objetos de esquema,
128-129
manejar, 139-140, 501
nombres de rol, 126
otorgar, 130
otorgar a roles, 134
otorgar en objetos, 131-132
revocar, 130, 135-137, 139-140
tipos para objetos de esquema,
129-130
privilegios de acceso
definicién, 128-129
otorgar y restringir, 19
privilegios de seguridad. Véase
privilegios
privilegios INSERT
con objetos de esquema, 129
otorgar a roles, 134
otorgar en la tabla DISCOS_
COMPACTOS, 130-140
revocar, 137
privilegios SELECT
con objetos de esquema, 129
otorgar a identificadores PUBLIC,
134-135
otorgar a roles, 134
otorgar en la tabla DISCOS_
COMPACTOS, 130-140
otorgar en vistas, 139
revocar, 136, 140
privilegios UPDATE
con objetos de esquema, 129
otorgar a roles, 134
otorgar en la tabla DISCOS_
COMPACTOS, 130-140
revocar, 137
procedimientos. Véase también rutinas
invocadas por SQL
agregar pardmetros de entrada a,
307-310
agregar pardmetros de salida a,
320-321

agregar variables locales a, 311-
313
capacidades de, 36
con modulos, 417
con repeticiones, 317
concepto, 301
creacion de, 302-303, 319-320
crear y reemplazar, 310
definidos, 62
ejecutar con la instruccién CALL,
312
frente a funciones, 301-302,
321
instrucciones de los lenguajes de
programacion en, 407-408
invocados externamente, 62
invocar, 308
parametros multiples en, 308
pardmetros para, 319
quitar, 311, 319
sintaxis, 301-303
utilizacion de, 303-305
utilizar para modificar datos, 309-
310
y rutinas invocadas por SQL,
300
procedimientos almacenados. Véase
procedimientos invocados por
SQL
procedimientos invocados por SQL
almacenar instrucciones SELECT
como, 305
creacion de, 318-320, 507-508
definidos, 17
invocar, 305-306
modificar, 310-311
programacién orientada a objetos,
definida, 17
programas, incrustar instrucciones en,
406-407
promedios,
crear vistas de, 115
punto y coma (;) con instrucciones
compuestas, 313
puntos de recuperacion. Véase también la
cldusula TO SAVEPOINT
crear en transacciones, 392-394,
400
liberar, 394

R

rangos, incluir puntos finales en, 97
RDBMS
conectarse a, 25-26
ejemplos de, 4
utilizacion de, 21

referencias de tabla, separar, 149
registros de datos, representar, 6
registros DRG
agregar a la tabla DISQUERAS _
CD, 188
eliminar de la tabla
DISQUERAS_CD, 190
relacion recursiva
definida, 83
relacién una-a-varias
definida, 11
ejemplo de, 12
relacién una-a-una
definida, 11
ejemplos de, 11
implementar, 12
relacion varias-a-varias
definida, 11
ejemplos de, 12
relaciones
cardinalidad minima de, 13
ejemplo de, 6
entre objetos en catdlogos, 34
identificar, 14
normalizar, 8
relaciones entre, 13
terminologia, 7
valores duplicados en, 8
repeticiones, nombrado, 317
resolver con self-join, 260-261
restricciones, 91
restricciones. Véase también restricciones
de integridad
aplazar en transacciones, 390-
393
CHECK, 95-97
combinar columnas en, 79
definicion de, 52
definidas, 68
descripcién de, 36
dominio de, 98
FOREIGN KEY, 83-87
modelo de datos para, 91-94
NOT NULL, 76-77, 93
PRIMARY KEY, 79-82
tipos de datos como, 6
UNIQUE, 77-79, 93
y sus relaciones, 91
restricciones CHECK
afirmaciones como, 97-98
agregar, 99
definicion de, 95-97, 500
dominios como, 98
restricciones de columna
agregar, 85
creacion de, 78
definidas, 74-75

532

Indice

restricciones de dominio
creacion de, 98
definidas, 74
limitacién de, 75
restricciones de integridad. Véase
también restricciones
categorias de, 74-75
definidas, 74
restricciones de tabla
claves fordneas como, 84, 86
restricciones PRIMARY KEY
como, 85
restricciones FOREIGN KEY
agregar como restricciones de
columna, 85
clausula <accion referencial
activada> de, 89-91
clausula MATCH de, 88-89
frente a claves primarias, 87-88
lineamientos para, 84
restricciones FOREIGN KEY como,
84-85
restricciones para, 79-80
restricciones PRIMARY KEY
como restricciones de tabla, 85
con restricciones UNIQUE, 81-82
frente a restricciones UNIQUE,
80-82
restricciones referenciales
agregar, 499-500
ejemplos de, 75
FOREIGN KEY, 83-87
restricciones relacionadas con la tabla,
tipos de, 74
restricciones UNIQUE
agregar, 77-79, 93, 499-500
con claves candidato, 80
con restricciones PRIMARY KEY,
81-82
ejemplos de, 75
frente a PRIMARY KEY, 80-82
resultados de la consulta. Véase también
conjuntos de resultados
agrupar, 159-164
convertir a XML, 435-436
incluir columnas en, 148
ligar con las variables host, 428
orden de resultados arrojados,
163
ordenamiento, 172
organizar con la clausula ORDER
BY, 169
right outer join, 266
roles
administracién de, 139-140, 501
crear y eliminar, 131
otorgar, 137, 140

otorgar a identificadores de
usuario, 138
revocar, 138-140
ROUTINE_ROLE, autorizar, 127
rutinas invocadas por SQL. Véase
también procedimientos
descripcion de, 36
tipos de, 301
vistazo general de, 300-301

S

SECOND con intervalos, 61
segunda forma normal, 9
self-join, creacién de, 260-261
sensibilidad del cursor, opciones para,
357
sesion, definida, 51
sesion SQL, definida, 51
sesiones, vistazo general de, 126-128
signo de porcentaje (%) con LIKE, 203-
205
simbolo de unién (&) con los indicadores
de asignacion, 422
sitio, descripcion de, 32
sitios Web
descarga de Oracle Express, 25
MySQL Community Server, 25
SQL Server Express, 25
software relacional, 16
SQL (Lenguaje de Consulta
Estructurado)
como lenguaje relacional de
objetos, 17
como lenguaje sin procedimiento,
15
como sublenguaje, 15
evolucién de, 15-18
frente a Oracle y SQL Server, 21
SQL incrustado
crear instrucciones en, 407-408
descripcién de, 20, 352
instrucciones, 512
soporte para, 406-407
utilizacion de, 414-416
SQL interactivo. Véase método de
invocacion directa
SQL Server
ventajas de, 22-23
utilizacién de, 26
SQL Server Express, descarga, 25
SQL/XML
bases de, 434-436
funciones, 439-440, 444, 513-514
reglas de trazado para, 441-443
soporte del fabricante para, 439
tipo de datos, 437-439

subconsultas
anidar, 286-288, 293
arrojar filas con, 213, 278-283
arrojar un valor con, 283-284
con el predicado EXISTS, 281
con el predicado IN, 279-280
definir con predicados de
comparacion, 292
descripcion de, 278
en el predicado IN, 211-212
en instrucciones UPDATE,
293
en la cldusula HAVING, 279
en la clausula SELECT, 279
en la clausula SET, 290, 294
en la clausula WHERE, 279
en la instruccion UPDATE, 290
en predicados, 209, 220-221, 503-
504
incluir en la clausula SELECT,
283
para eliminar datos, 291
para insertar datos, 288-289
requerimientos de, 280
utilizacién de, 291-295, 505-
507
subconsultas anidadas, 286-288, 293
subconsultas correlacionadas. Véase
también consultas
definidas, 213
frente a joins, 286
utilizacién de, 284-285

T

tabla de producto cartesiano
producir la, 255
tablas. Véase también tablas base; tablas

derivadas;

alteracion de tablas temporales,
67-68

alterar y eliminar, 70-71, 499

componentes de, 35

consultar, 272-273, 505

creacion de, 50-53, 66-68, 498

determinar la capacidad de
actualizacion de, 116

eliminar, 69

nombradas, 52

quitar restricciones ejemplo,
92

soporte para, 37

tipos de, 50

unir, 254, 257-259, 264-265, 269-
271, 304

unir con nombres de columna
compartidos, 261-263

Indice

tablas base. Véase también tablas
creacion de, 51
creadas como temporales locales,
51
declaradas como temporales
locales, 51
descripcién de, 35, 50
especificar partes de, 52
nombrado de, 52
persistentes, 50
temporales globales, 51
tipos de, 104
tablas base como, 50-51
vaciar, 52
tablas base persistentes
frente a tablas derivadas, 104
vistazo general de, 50
tablas de transicion con activadores,
332
tablas derivadas. Véase también tablas
descripcion de, 50
frente a tablas base persistentes,
104
tablas SQL. Véase tablas
tablas temporales. Véase también tablas
declarar en modulos, 417
designar, 52
propdsito de, 54
tablas temporales locales creadas, 51
tablas temporales locales declaradas,
51
tablas vistas, 50
tamaifio de diagnéstico, especificar para
transacciones, 387-388
tercera forma normal, 9-11
terminales en rangos, 97
theta-join, definida, 257
tiempo, recuperar el valor, 237
tipo de coleccién SQL, tipo de datos,
mapeo para los tipos de
esquema XML, 442
tipo de datos DECIMAL, 58
tipo de datos INT
basar el dominio en, 98
con procedimientos, 312
tipo de datos XML, 57
tipos. Véase tipos de datos
tipos de datos
asignar, 62
booleanos, 61
cambiar valores de, 244-245
construidos, 54
de fecha y hora, 58-59
de intervalo, 60-61
definidos por el usuario, 55,
63-64
en SQL/XML, 437-439

especificar por columnas, 54-55
frente a dominios, 6
herencia por columnas de vista,
105
numéricos, 57-58
para cadenas, 55-57
predefinidos, 54, 62
utilizacion de, 62-63
tipos de datos BIGINT,
tipos de datos BOOLEAN
tipos de datos construidos, 54
tipos de datos DATE
descripcién de, 59
trazado para los tipos de esquema
XML, 442
tipos de datos de cadena, 55-57
tipos de datos de columna,
especificar, 54-55
tipos de datos DECIMAL,
tipos de datos de dominio, trazado para
los tipos de esquema XML,
442
tipos de datos de esquema XML, trazado
para, 441-442
trazado para los tipos de esquema
XML, 442
tipos de datos de fecha y hora
descripciones de, 58-59
frente a intervalos, 60
tipos de datos de fila, trazado para los
tipos de esquema XML, 442
tipos de datos de intervalo
trazado para los tipos de esquema
XML, 442
utilizacion de, 60-61
tipos de datos de SQL. Véase tipos de
datos
tipos de datos distintivos de SQL, trazado
para los tipos de esquema
XML, 442
tipos de datos DOUBLE PRECISION
descripcion de, 58
tipos de datos FLOAT
descripcién de, 58
trazado para los tipos de esquema
XML, 442
tipos de datos INTEGER
descripcién de, 58
trazado para los tipos de esquema
XML, 442
tipos de datos NUMERIC
descripciones de, 57-58
reglas para, 64
trazado para los tipos de esquema
XML, 442
utilizacién de, 64
tipos de datos predefinidos, 54, 62

tipos de datos REAL
descripcion de, 58
trazado para los tipos de esquema
XML, 442
tipos de datos SMALLINT
descripcion de, 58
trazado para los tipos de esquema
XML, 442
tipos de datos TIME
descripciones de, 59
trazado para los tipos de esquema
XML, 442
tipos de datos TIMESTAMP
descripciones de, 59
trazado para los tipos de esquema
XML, 442
tipos de datos ZONE, trazado para los
tipos de esquema XML, 442
tipos de registros, datos en, 6
tipos de relaciones
una-a-una, 11
una-a-varias, 11
varias-a-varias, 11
tipos distintos frente a tipos
estructurados, 63
tipos estructurados frente a tipos
distintos, 63
tipos XML, trazado para los tipos de
esquema XML, 442
tipos XMLSCHEMA, 438
totales, visualizacion de los, 162
transacciones
aplazar restricciones en, 390-
393
consideraciones respecto al
rendimiento, 397
creacion de, 388
crear puntos de recuperacion en,
392-394
definidas, 379
ejecucion de, 395-396
finalizar, 395
iniciar, 389
instrucciones DDL en, 390
instrucciones relacionadas con,
380-381
la opcién READ ONLY para,
382
la opcién READ WRITE para,
382
lineamientos para, 398
modos para, 382
niveles de aislamiento para, 382-
387
reinvertir, 396-397, 399-400
tamafio de diagnoéstico para, 387-
388

534

Indice

utilizacién de, 398-400, 511
y lecturas fantasma, 384-386
y lecturas no repetibles, 384-385
transliteraciones, 36
trazado de la rutina, 32
trazado de usuario, 32
trazado para los tipos de esquema XML,
442
utilizacién de, 61
tuplas. Véase también cardinalidad
minima
almacenaje de datos en, 6
terminologia, 7
violacién de la primera forma
normal, 8

V)

UDT (tipos definidos por el usuario)
creacion de, 63-64
descripcién de, 36, 55
soporte para, 301
utilizacion de, 55

Unicode, trazado para, 441, 443

usuarios de autorizacion,
determinado de, 128

usuarios, determinar valores de, 128

\'%

valor CURRENT_ROLE, 246
valor CURRENT_USER
con sesiones, 128
descripcion de, 246
valor de expresion CASE, 241-244, 249
valor de expresion CAST, 244-245, 249,
410
valor SYSDATE, 237
valor SYSTEM_USER, 246
valores. Véase también valores
especiales; valores SQL
actualizar, 189
actualizar desde la instruccion
SELECT, 185-186
agregar juntos, 160
arrojar, 203-206
arrojar con MIN y MAX, 229-231
asignar a variables, 311
enlistar para columnas, 95-97

insertar desde la instruccion
SELECT, 180-182
referenciar con activadores, 334-
335
renombrado de, con CASE, 242
valores A_LA_MANO
en orden ascendente, 169
utilizar la cldusula HAVING con,
165-166
valores de datos numéricos, generacion
de, 36
valores de fecha y hora, conversion de,
245
valores duplicados,
prevenir, 79
valores EN_EXISTENCIA
arrojar, 158-159
basar filas en, 156-157
promediar, 185
valores especiales, 245-247. Véase
también valores
valores nulos
arrojar, 200-203
autorizar, 79
como marcas, 76
comparaciones con, 197
en columnas, 69
en la columna PRECIO, 162-163
especificar para INSERT INTO,
178-179
manejo de, 412
nombres de rol como, 126, 128
utilizacion de, 61
y las restricciones NOT NULL,
76-77
valores por defecto de columna
especificar, 64-65
valores similares, arrojar, 203-206
valores SQL, representar en XML, 441.
Véase también valores
valores XML, representar en SQL, 441
variables. Véase también variables host
agregar a procedimientos, 311-313
asignar valores a, 311
declarar para cursores, 372
pasar datos desde, 410
variables host de indicador, declarar,
412,415
variables locales, agregar a
procedimientos, 311-313

verdaderas, evaluar filas como, 155
vistas. Véase también objetos de
esquema; vistas actualizables
agregar, 500
agregar a las bases de datos, 119-
120
alterar, 118
basar en tablas multiples, 105-107,
118
capacidades de, 105
con columnas, 105
con expresiones de consulta, 110-
111
convocar con instrucciones
SELECT, 304
cortes de linea en, 110-111
creacion de, 112, 118
de promedios, 115
definidas, 34, 104
descripcion de, 35
desplegar columnas en, 116
en INFORMATION_SCHEMA,
34
espaciado en, 110-111
especificar operaciones en, 108
insertos en, 176
limitaciones de las, 305
nombrado, 109-111
ocultar la complejidad de la
consulta con, 105-106
otorgar privilegios SELECT en,
139
para modificar datos, 108
quitar de las bases de datos, 117,
119
sintaxis, 109
unir datos con, 108
ventajas de, 104-105
vistas actualizables. Véase también vistas
CHECK OPTION con, 117
creacion de, 114-116
vistazo general sobre las tablas
temporales globales, 51

X

XML (Lenguaje de Marcado Extensible)
agregar comentarios en, 436
vistazo general de, 434-437

	Fundamentos de SQL (3a. ed.)

	Página Legal
	Contenido
	Introducción
	Parte I
	Capítulo 1
	Capítulo 2
	Capítulo 3
	Capítulo 4
	Capítulo 5
	Capítulo 6

	Parte II
	Capítulo 7
	Capítulo 8
	Capítulo 9
	Capítulo 10
	Capítulo 11
	Capítulo 12

	Parte III
	Capítulo 13
	Capítulo 14
	Capítulo 15
	Capítulo 16
	Capítulo 17
	Capítulo 18

	Parte IV
	Apéndice A
	Apéndice B
	Apéndice C

