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CONCEPCIONES DE LA LÓGICA 1 

Carlos E. Alchourrón 

1. INTRODUCCIÓN 

50 long as rhe sciences are imperfecr, rhe definirions musr partake of rheir 
imperfecrion; and if rhe former are progressive, rhe larter ought ro be so too 
(John 5ruarr Mili). 

Los textos tradicionales de lógica usualmente comenzaban con una carac­
terización de la lógica, seguida de una detallada comparación de su con­
tenido y enfoque con los de otras disciplinas estrechamente vinculadas 
a ella. Esta costumbre en gran medida se ha perdido. En los textos con­
temporáneos es frecuente encontrar sólo unas breves consideraciones refe­
ridas a la definición de la lógica y muy pocas comparaciones, en muchos 
casos totalmente ausentes, con la temática de otras disciplinas afines. Esta 
evolución en cuanto a la disminución de la extensión dedicada a la defi­
nición de la disciplina y su comparación con otras es un rasgo que acom­
paña al enriquecimiento intrínseco de toda ciencia. Cuanto más abun­
dante es el material a exponer en una ciencia menos es el espacio que 
se reserva a la definición de su área temática y al deslinde con otras cien­
cias. Estos últimos objetivos pasan a integrar, entonces, los temas de 
la filosofía de la ciencia en cuestión. La relativa autonomía que en cada 
ciencia se produce respecto de su correspondiente filosofía como conse­
cuencia de su propio desarrollo puede interpretarse como un síntoma de 
madurez, en la medida que por un lado permite al científico con­
tinuar con su tarea sin verse embarcado en complicadas cuestiones 

1. Para una presentación diferente de la idea central de esre ensayo ver C.E. Alchourrón y A. 
A. Marrino, «Lógica sin verdad»; Theoria, 3 (1987/88) 459-464, San Sebasrián. 

Quiero agradecer las importantes sugerencias y comentarios de David Makinson y Thomas Moro 
Simpson que permitieron mejorar considerablemente el contenido y la estructura de este escrito. 
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filosóficas, y por otro, permite al filósofo profundizar sus problemas espe­
cíficos apoyándose en los resultados de la ciencia. Sin embargo, no son 
pocos los momentos en que el desarrollo mismo de una ciencia depende 
de una adecuada reflexión filosófica sobre el área temática de la disci­
plina. Tal es el caso de la lógica en su último siglo de vida. Caracteriza­
ciones aceptadas durante siglos fueron desplazadas por otras como resul­
tado del desarrollo mismo de la lógica. Sin embargo, este cambio ocurrió 
sin abandonar el núcleo central que define el área temática de la disciplina. 

El propósito de este ensayo, ubicado al comienzo del volumen sobre 
lógica en una enciclopedia general de filosofía, es tomar en cuenta, aun­
que sea brevemente, alguno de los tópicos filosóficos vinculados al des­
linde de la lógica. 

No es tarea fácil la de dar una definición del área temática de una 
disciplina, cualquiera que ella sea. Esto corrientemente se debe a que por 
un lado el origen histórico de las distintas disciplinas es fijado, más o 
menos arbitrariamente por los historiadores, destacando los trabajos de 
alguno o algunos autores representativos como las obras iniciales de la 
disciplina, pero con clara consciencia de que ellos fueron precedidos por 
observaciones y descubrimientos en el área cuyos autores se desconocen 
o tienen menos importancia. Además, es frecuente que el desarrollo his­
tórico del cuerpo teórico de cada disciplina haya sido gradual y acumu­
lativo, tal como ha ocurrido, por ejemplo, con el contenido teórico de 
ciencias como la astronomía, la física o la matemática que son el resul­
tado de adiciones y rectificaciones acumuladas a lo largo de siglos por 
un sinnúmero de autores, de importancia diversa, y que ha llevado, en 
muchos casos, a ampliaciones y cambios más o menos significativos de 
la temática históricamente inicial. 

La historia de la lógica es, en la dirección apuntada, radicalmente 
distinta. Su origen histórico tiene fecha cierta. La lógica es una teoría 
que se inicia en los libros del Organon de Aristóteles. La teoría del Silo­
gismo Categórico, contenida sustancialmente en los Primeros Analíticos, 
es y sigue siendo el paradigma para identificar la temática de la lógica, 
aunque no, por cierto, su contenido teórico, que se ha incrementado enor­
memente y se ha modificado en rasgos importantes. Además, la historia 
de la lógica está signada por discontinuidades tan marcadas que se hace 
difícil hallar paralelos en la historia de otras ciencias. Esta curiosidad 
en la historia de la lógica está enfatizada, aunque errónea y exagerada­
mente, por Kant en el prólogo a la segunda edición de su Crítica de la 
Razón Pura cuando presenta a la lógica como una ciencia que nació per­
fecta y completa en manos de su creador: Aristóteles. Aunque Kant se 
equivocó en esta apreciación histórica, ya que desde Aristóteles hasta los 
días de Kant la teoría lógica fue objeto de múltiples, y en algunos casos, 
sustanciales modificaciones, hay mucho de cierto en la imagen kantiana 
de la historia de la lógica, ya que, sin exagerar demasiado, puede afir­
marse que el cuerpo central de la teoría lógica contemporánea surgió en 
las postrimerías del siglo diecinueve en las obras de Frege, sin que pueda 
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señalarse en ellas influencia alguna ni continuidad con el enfoque teó­
rico aristotélico, y en cierto sentido, oponiéndose a éste. Sin embargo, 
es dable señalar un tema central que, fijado en la obra de Aristóteles, 
permanece idéntico hasta nuestros días de modo que hace factible una 
definición general del área temática de la lógica. 

11. EL ENFOQUE PSICOLÓGICO 

En una primera aproximación la lógica deductiva (ya que ése es nuestro 
tema) puede describirse como la teoría de los razonamientos (deducti­
vos). Esta caracterización, además de excesivamente imprecisa, tiene un 
inadecuado cariz psicológico que ha tenido, y que en ciertos enfoques 
de la lógica (el que recibe contemporáneamente en muchos trabajos de 
inteligencia artificial) continúa teniendo una persistente influencia que 
entorpece la identificación de la lógica. 

Una definición muy corriente en las obras escritas antes de nuestro 
siglo identificaba la lógica con la ciencia y / o el arte del pensamiento. 
Tal es el caso de la muy influyente obra de Antoine Arnauld y Pierre 
Nicole (1662) La Logique ou I'Art de penser conocida como La Lógica 
de Port Royal. En este sentido es también significativo el título An Inves­
tigation 01 the Laws 01 Thought on which are lounded the Mathematical 
Theories 01 Logic and Probabilities (Laws 01 Thought) con que George 
Boole designó, en 1854, a uno de los libros más influyentes en la lógica 
contemporánea. 

De este modo, la vinculación de la lógica con la psicología fue, desde 
la perspectiva de muchos y muy representativos autores, tan estrecha que 
identificaban a la lógica como describiendo, y a veces prescribiendo, cier­
tos procesos psicológicos (razonamientos, argumentaciones) en que esta­
ban involucrados estados psicológicos de los individuos (juicios, creen­
cias, conocimientos). 

Es realmente asombroso que una caracterización, en cierto modo, 
tan errada como la que ofrece la definición psicologista de la lógica tuviera 
un consenso tan amplio y duradero, que fuera necesario para descartarla 
la enorme tarea y dedicación que a fines del siglo pasado y principios 
del actual pusieron Frege y Husserl en la lucha antipsicologista en cuanto 
a la definición de la lógica. En el caso de Frege sus argumentos antipsi­
cologistas estuvieron en gran medida focalizados en la definición psico­
logista de la matemática, y más en particular de la aritmética, pero no 
hay que olvidar que para Frege la matemática no es más que el capítulo 
más avanzado de la lógica. 

Sería realmente insensato intentar justificar las leyes de cualquier teoría 
lógica apoyándose en las propiedades que pudieran descubrirse obser­
vando los procesos psicológicos efectivos de argumentación que los hom­
bres realizan a diario. El resultado de tal investigación, de naturaleza cla­
ramente empírica y contingente, que seguramente exhibiría características 
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muy distintas frente a individuos de grupos humanos heterogéneos, sería 
impotente para dar cuenta del carácter necesario y a priori de las leyes 
lógicas, quizás sólo seriamente cuestionado por John Stuart Mill. Sin 
embargo, la larga tradición psicologista en la definición de la lógica ha 
tenido una enorme influencia, si no en el desarrollo de la teoría lógica, 
en el vocabulario usado en la formulación de las teorías lógicas. En efecto, 
verbos como inferir, argumentar, deducir, etc., designan indudablemente 
procesos psicológicos que los hombres realizan con frecuencia. A su vez, 
los sustantivos correspondientes: inferencia, argumento, deducción, etc., 
y a  pesar de su clara ambigüedad proceso-producto, conservan en su desig­
nación la connotación psicológica de los verbos asociados. Es más, si 
bien en lógica se ha acuñado la expresión «premisa(s»> para indicar los 
puntos de partida de una inferencia, se sigue usando la expresión «con­
clusión», con su clara connotación de punto final de un proceso (en este 
caso psicológico), para referirse a lo que se pretende estar justificado por 
las premisas en un esquema inferencial. 

Si bien, en principio, carece de justificación la definición de la lógica 
como ciencia teórico-descriptiva del pensamiento, es en cambio más plau­
sible aquella definición (vinculada a la idea de «arte del pensar») que carac­
teriza a la lógica como una disciplina normativa destinada a prescribir 
cómo se debe pensar (argumentar, inferir) para hacerlo correctamente. 
Desde esta perspectiva el objeto de la lógica sería, no ya describir cómo 
los hombres efectivamente argumentan, sino efectuar una suerte de con­
trol de calidad con relación al producto de la actividad argumentativa, 
codificando los 'esquemas argumentativos que logran, distinguiéndolos 
de los que no logran, la finalidad implícita en la actividad argumenta­
tiva. Este enfoque presupone que se explicite la o las finalidades que la 
lógica toma en cuenta en su control de calidad de los procesos argumen­
tativos, ya que, como toda actividad, los procesos de argumentar pue­
den llevarse a cabo guiados por las finalidades más diversas. Así, una 
argumentación realizada con el propósito de persuadir a alguien, será 
buena o mala si de hecho se logra con ella convencer a la persona a la 
que está dirigida. Esta finalidad persuasiva que puede ser importante para 
juzgar sobre el valor retórico de una argumentación no es por cierto la 
finalidad contemplada en la lógica. En el enfoque que estamos conside­
rando se asume que la finalidad (por lo menos la finalidad que la lógica 
tomará en cuenta) de una argumentación será preservar en la conclusión 
la verdad de las premisas. El objetivo de la lógica sería entonces encon­
trar criterios que aseguren la verdad de la conclusión para el caso en que 
las premisas sean verdaderas. 

I1I, EL ENFOQUE SEMÁNTICO 

Siguiendo el camino anterior, que transita por las huellas de la tradición 
del «arte de pensar», puede llegarse a una de las caracterizaciones más 
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representativas de la visión actual frente a la cuestión de la identificación 
temática de la lógica: el enfoque semántico de la noción de consecuen­
cia. Por una inferencia se entenderá desde ahora un conjunto de enun­
ciados, de un lenguaje previamente especificado, en el que la verdad de 
uno de ellos (la conclusión de la inferencia) se pretende justificar en la 
verdad de los otros (las premisas de la inferencia). La inferencia será buena 
(válida) cuando la conclusión sea consecuencia necesaria de las premi­
sas, o lo que es lo mismo, cuando las premisas impliquen lógicamente 
la conclusión. Esta idea puede resumirse en cualquiera de las siguientes 
dos definiciones intuitivas que servirán como punto de partida para lograr 
otras técnicamente más precisas. 

(Def. 1.0) Un enunciado C es consecuencia del conjunto de premisas 
P , ... Pn si y sólo si es imposible que las premisas P J • • •  Pn sean todas ver­
daderas y la conclusión C no lo sea, o equivalentemente: 

(Def. 1.1) Un enunciado C es consecuencia del conjunto de premisas 
P, ... Pn si y sólo si es necesario que si todas las premisas son verdaderas 
la conclusión también lo sea. 

Es claro que cuando se cumple la condición expuesta, la verdad de 
las premisas justifica la verdad de la conclusión, es decir, se cumple con 
la finalidad, considerada por la lógica en todo proceso (psicológico) argu­
mentativo, de preservar en la conclusión la verdad de las premisas. 

En la noción de consecuencia que estamos comentando hay dos tipos 
de expresiones que requieren especiales aclaraciones: por un lado están 
las nociones modales de necesidad e imposibilidad, y por otro las de ver­
dad y falsedad. En este momento nuestro propósito es presentar esque­
máticamente el enfoque de la lógica que deriva de los trabajos de A. Tarski 
sobre el concepto de verdad (Tarski, 1935) y el concepto de consecuen­
cia lógica (Tarski, 1936). 

Comencemos con las nociones de verdad y falsedad. En el enfoque 
tarskiano verdad y falsedad son calificaciones hechas en el metalenguaje 
que versa acerca de las expresiones de un lenguaje (objeto) L a los enun­
ciados L. En este enfoque los «portadores de la verdad» son expresiones 
lingüísticas (los enunciados del lenguaje objeto IL). No son estados psi­
cológicos ni el significado (proposiciones) de tales expresiones lingüísti­
cas. Sin embargo, para que pueda atribuirse un valor de verdad (verdad 
o falsedad) a un enunciado éste tiene que ser un enunciado significativo 
y esto supone que el lenguaje tiene que estar interpretado a través de 
alguna correlación (explicitada en la parte semántica del metalenguaje) 
de algunas de sus expresiones con las entidades de la realidad acerca de 
las cuales versa el lenguaje objeto L. 

Por razones que por ahora no vamos a analizar, Tarski considera que 
por sus peculiares características ninguno de los lenguajes naturales (espa­
ñol, inglés, portugués, alemán, etc.) admite una noción de interpreta­
ción con el grado de precisión que se requiere para dar una explicación 
coherente y satisfactoria de la noción de verdad (y de falsedad). Por esta 
razón, su construcción está referida siempre a un lenguaje artificialmente 
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creado, en donde no existen las imprecisiones sintácticas y semánticas 
de los lenguajes naturales. En ésto la obra de Tarski está signada por 
uno de los rasgos distintivos de la tarea lógica en la última centuria: crear 
y estudiar lenguajes artificiales con el propósito de reconstruir en ellos 
algunas propiedades (no todas) de las expresiones de los lenguajes natu­
rales. Además, en ésto la lógica no hace más que seguir el camino de las 
ciencias más avanzadas, en efecto, cuando ellas tienen que dar cuenta 
de una realidad compleja comienzan por construir un modelo simplifi­
cado en el que sólo se representan los aspectos que interesan, dejando 
fuera todo lo demás. 

Supongamos un lenguaje artificial lL con la siguiente super simple 
estructura sintáctica. El vocabulario de lL está integrado por los signos 
de las siguientes cuatro categorías sintácticas: 

Nombres: a, ... an • • •  

Predicados (monádicos): P, ... P n 
Signos lógicos: 

---, (Negación) 
/\ (Conjunción) 
v (Disyunción incluyente) 
:l (Condicional material) 

Signos de puntuación: «(»y«)" (paréntesis izquierdo y derecho). 
Los enunciados de lL serán las secuencias de signos de lL (expresiones 

de lL) que satisfacen alguna de las siguientes cláusulas (reglas de forma­
ción [de enunciados] de lL): 

1. Enunciados atómicos: si P es un predicado de lL y a es un nombre 
de lL, entonces Pa (P seguido de a) es un enunciado (atómico) de lL. 

2. Enunciados moleculares: si A y B son enunciados de lL, entonces 
---, A, (A /\ B), (A v B) y (A :l B) son enunciados (moleculares de lL). 

Las reglas anteriores 1 y 2, que pertenecen al metalenguaje sintáctico 
de lL, especifican cuáles de las expresiones de lL son sus enunciados, pero 
nada dicen acerca del significado (en el sentido de referencia a la reali­
dad) de ninguna de las expresiones de nuestro lenguaje objeto. Para este 
último propósito surongamos que contamos en nuestro metalenguaje con 
funciones del tipo 1; 2 (funciones de interpretación) cada una de las 
cuales correlaciona cada uno de los nombres del lenguaje con un objeto 
y sólo uno de la realidad y cada uno de los predicados de lL con una clase 
de objetos de la realidad y sólo una. Si a es un nombre, 1 a 1; es el objeto 
nombrado por a en la interpretación 1 1;; si P es un predicado, 1 PI; 

2. Lo indicado en el texto es instrumental suficiente para la semántica de una lógica proposicio­
nal. Cuando se trata de una lógica (como la de la cuantificación) en la que figuran los cuantificadores 
estándar es necesario asociar a cada función de interpretación ¡ 1, un conjunto no vacío de objetos 
D; (llamado dominio de la interpretación I L) que fija el ámbito de las entidades tomadas en cuenta 
por los cuantificadores. 
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es el conjunto de los objetos denotados por el predicado (la extensión 
de P) en la interpretación 1 1 ¡. Con estos elementos estamos en condi­
ciones de especificar las condiciones en que son verdaderos los enuncia­
dos atómicos en cada una de las interpretaciones de IL (con relación a 
cada una de las funciones interpretativas 1 1 ¡ del metalenguaje de IL). 
La cláusula que cumple con tal tarea es: 

(i) Un enunciado atómico Pa es verdadero en la interpretación 
1 1 ¡ si y sólo si 1 a 1 ¡E 1 P 1 ¡ (el objeto asignado al nombre «a» en la inter­
pretación 1 1 ¡ es uno de los elementos de la clase asignada al predicado 
«P» por esa misma interpretación). 

Si además suponemos que cada una de las funciones de interpreta­
ción cumple las siguientes cláusulas definitorias de las condiciones de ver­
dad (definición contextual del significado de los signos lógicos de IL) de 
los enunciados moleculares, entonces habremos especificado las condi­
ciones en que son verdaderos o falsos todos y cada uno de los enuncia­
dos de IL en cada una de sus interpretaciones. 

(ii) ----, A es verdad en 1 1 ¡ si y sólo si A no es verdad en 1 1 ¡. 
(iii) (A /\ B) es verdad en 1 1 ¡ si y sólo si tanto A como B son ver-

dad en 1 I¡. 
(iv) (A v B) es verdad en 1 I¡ si y sólo si A, B o ambas son verdad 

en 1 I¡· 
(v) (A ::J B) es verdad en 1 I¡ si y sólo si A no es verdad en 1 I¡ 

o B es verdad en 1 I¡. 
o 

Lo anterior será todo lo que diremos por el momento en cuanto a 
la noción de verdad requerida para explicar la caracterización anterior 
de consecuencia lógica en la tradición semántica tarskiana. Sin embargo, 
quedan por aclarar las nociones modales que figuran en las anteriores 
definiciones. Tanto la noción de necesidad como la de imposibilidad 
son reconstruidas, en este enfoque, como generalizciones a partir de 
las funciones de interpretación 1 1 ¡ admisibles para lL, es decir, las 
que cumplen las condiciones estipuladas en las cláusulas anteriores de 
(i) hasta (v) . 

De este modo se dirá: 

(Def. 2.0) Un enunciado A de IL es consecuencia (semántica) del con­
junto de enunciados ex de IL (premisas), que abreviaremos: ex 1= A, si y 
sólo si no hay una interpretación 1 1 ¡ admisible de IL (imposibilidad) 
en la que todos los enunciados de ex son verdaderos y en la que A no lo es. 

0, lo que es equivalente: 

(Def. 2.1) Un enunciado A de IL es consecuencia (semántica) del con­
junto de enunciados ex de IL (premisas), ex 1= A, si y sólo si A es verdadera 
en toda interpretación admisible 1 1 ¡ de IL (necesidad) en la que son ver­
daderos todos los enunciados de ex. 
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En resumen, la transición de las definiciones (Def. 1.0) y (Def. 1.1) 
a las definiciones (Def. 2.0) y (Def. 2.1) está signada por varias caracte­
rísticas destinadas a obtener resultados más precisos: 

(A) En las últimas definiciones la noción de consecuencia está refe­
rida a un lenguaje artificial IL, (en el que se aspira a reflejar importantes 
rasgos de los lenguajes corrientes), que cuenta con una estructura sintác­
tica mucho más perfilada y simple que la de los lenguajes naturales. 

(B) La noción de interpretación (las funciones I 1; referidas a IL,) 
de las expresiones de IL, carece de las ambigüedades y vaguedades que 
adolecen las expresiones correlativas de los lenguajes corrientes (con este 
alcance suele decirse que las definiciones (Def. 2.0) y (Def. 2.1) son 
«reconstrucciones racionales» de (Def. 1.0) y (Def. 1.1)). 

(C) La noción de verdad (y falsedad) usada en las últimas definicio­
nes depende: 1) de las funciones de interpretación I 1; (en el sentido 
en que un mismo enunciado A de IL, puede ser verdadero en una interpre­
tación I 1; y falso en otra I I ¡ ) y 2) de las cláusulas que la gobiernan 
(en nuestro ejemplo, las cláusulas que van de (i) a (v)). 

(D) Además, la noción de verdad de Tarski pretende reconstruir, fun­
damentalmente a través de la satisfacción de la condition (i), la noción 
filosófica de origen aristotélico, de «verdad como correspondencia». 

(E) Las nociones modales intuitivas de necesidad e imposibilidad 
lógica son reconstruidas por medio de cuantificaciones universales sobre 
la totalidad de funciones de interpretación I 1; admisibles para el len­
guaje IL,o La referencia a la imposibilidad (lógica) de (Def. 1.0) es reem­
plazada en (Def. 2.0) por «no hay interpretación I 1; admisible» y la 
referencia a la necesidad (lógica) de (Def. 1.1) es reemplazada en (Def. 
2.1) por «para toda interpretación I 1; admisible». 

La presente relación 1= de consecuencia semántica cumple con las 
siguientes propiedades (de fácil verificación a partir de las definiciones 
anteriores): 

(1= 1) Reflexividad generalizada: o: 1= A si AEo:. 
(1= 2) Corte: si o: 1= B y o:U[B] 1= A entonces o: 1= A. 
( 1= 3) Monotonía: si o: 1= A entonces o:Uj3 1= A. 

Ninguna de estas propiedades depende de las específicas cláusulas que 
van de (i) a (v) a que se encuentra sujeta en el ejemplo anterior la noción 
de verdad. Cada una de esas propiedades puede probarse recurriendo sólo 
a (Def. 2.0) o a su equivalente (Def. 2.1). 

La noción de «verdad lógica» queda como el caso límite de la rela­
ción de consecuencia semántica en el que el conjunto de premisas es vacío. 
Un enunciado A expresa una verdad lógica: 1= A (abreviatura de 0 1= 
A) si y sólo si A es verdadero en todas las interpretaciones I 1; admi­
sibles de !Lo A su vez, si el lenguaje cuenta con el signo::) de implicación 
material que satisface la cláusula (v), la noción de consecuencia semán-
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tica es caracterizable a partir de la noción de verdad lógica. En efecto, 
es fácil verificar el siguiente enunciado metalingüístico de correlación entre 
las nociones de consecuencia semántica y de verdad lógica, para el caso 
en que el conjunto de premisas IX no sea vacío (que es el caso diferencial 
entre ambas nociones) y la relación � sea compacta 3: 

(P-5) IX � A si y sólo si hay en IX un conjunto finito de enunciados 
Al ... An tal que � ((Al J (A2 J ... (An J A) .. . ). 

Con estos elementos se constituye el, actualmente más dominante, 
enfoque en cuanto a la identificación temática de la lógica. Esta propuesta 
podría llamarse el paradigma Tarski-Carnap, ya que si bien se debe a 
Tarski tanto la definición semántica de verdad, como la caracterización 
de la noción semántica de consecuencia e, indirectamente, la noción de 
verdad lógica, fue Carnap quien enfatizó la identificación de la lógica 
como la teorización de esa noción de consecuencia semántica y de ver­
dad lógica. De hecho Carnap, siguiendo ideas fundamentalmente origi­
nadas en el formalismo de Hilbert, había sostenido, hasta el momento 
de la publicación de trabajos de Tarski, en su obra Sintaxis Lógica del 
Lenguaje (Carnap, 1937) la identificación de la lógica como la teoriza­
ción de una noción puramente sintáctica de consecuencia. 

Es más, generalizando esta tesis acerca de la naturaleza sintáctica de 
la lógica, Carnap (1937) sostuvo que la filosofía no es más que la sinta­
xis lógica del lenguaje de la ciencia. Luego de las publicaciones de Tarski 
cambió su paradigma adoptando, en primer término, la tripartición de 
la meta teoría de todo lenguaje en: sintaxis (parte de la meta teoría que 
considera solamente las propiedades y relaciones de los signos de un len­
guaje JL, con independencia de toda interpretación del lenguaje), semán­
tica (parte de la meta teoría en la que se consideran las propiedades y rela­
ciones entre los signos de un lenguaje JL, que dependen de las correlaciones 
entre las expresiones del lenguaje y la realidad establecidas por las fun­
ciones de interpretación I 1;) y pragmática (parte de la meta teoría en 
la que se consideran las reglas de uso de los signos lingüísticos adopta­
dos por un hablante o una comunidad de hablantes del lenguaje). Semió­
tica (teoría general de los signos) es el nombre genérico que cubre a la 
sintaxis, la semántica y la pragmática. 

Desde la perspectiva anterior Carnap (1942) reformuló sus tesis de la si­
guiente manera: la filosofía no es más que la semiótica del lenguaje de la cien­
cia y la lógica es, como en la caracterización tarskiana, la teoría de la re­
lación de consecuencia semántica y de la noción semántica de verdad lógica. 

La influencia de las obras de Tarski fue enorme, y si bien ahora nos 
estamos refiriendo principalmente a la incidencia que tuvieron en la meta-

3. Una relación de consecuencia 1= se dice que es compacta si y sólo si cuando un enunciado 
A es consecuencia de un conjunto a (a 1= A) entonces A es consecuencia de un subconjunto finito {3 
de IX ({3 '" A). 
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teoría de la lógica, su repercusión se hizo sentir en muchas otras áreas 
centrales de la filosofía. Así, por ejemplo, Popper tras haberse resis­
tido a toda mención de la noción de verdad, por considerarla incon­
trolable y metafísica, luego de los trabajos de Tarski efectuó un giro 
semejante al realizado por Carnap, dando a la noción semántica de ver­
dad un lugar central en su filosofía de la ciencia. El gran impacto de 
la semántica de T arski se debe en gran medida a que en ella se muestra 
una esclarecedora vinculación entre los signos lógicos (conectivos y cuan­
tificadores) y la noción de verdad. En efecto, Tarski mostró cómo las 
mismas reglas que lógicos anteriores (como Post, Wittgenstein, Skolem 
y Godel), presuponiendo la noción de verdad, habían usado para expli­
car el significado de los signos lógicos, podían también ser usadas para 
clarificar la noción de verdad (con una precomprensión de los signos 
lógicos). 

IV. EL ENFOQUE SINTÁCTICO 

Para comprender mejor el sentido de esta evolución carnapiana conviene 
presentar con cierto detalle su enfoque anterior de la noción sintáctica 
de consecuencia y las razones que lo llevaron a abandonarla como noción 
a tomar en cuenta para definir el área temática de la lógica. 

La siguiente es posiblemente la definición más simple de la noción 
sintáctica (metalingüística) de consecuencia (que Carnap llamó relación 
de derivabilidad). 

(Def. 3) Un enunciado A del lenguaje [, es una consecuencia sintác­
tica del conjunto a de enunciados de [" que abreviaremos por a 1-- A, 
si y sólo si hay en [, una secuencia finita Al' .. An de enunciados de [" 
tal que An = A y cada uno de los A¡ de la secuencia es o bien un axioma 
de [, o es un elemento de a o bien se sigue de enunciados que le prece­
den en la secuencia en función de las reglas primitivas de inferencia de 
[, (de la secuencia AI ... An se dice que es una derivación de la conclu­
sión A). 

En la definición anterior se entiende por axioma a todo enunciado 
del lenguaje [" que por expresar lo que intuitivamente sería una verdad 
lógica (como lo es en la lógica clásica el enunciado (condicional) de [, 
que expresa la ley del modus ponens: «(((A :J B) 1\ A) :J B))», que puede 
introducirse en cualquiera de las secuencias que constituyen una deriva­
ción. Por regla (primitiva) de inferencia se entiende a toda cláusula con­
dicional del metalenguaje de [, que permite introducir en una deriva­
ción el enunciado de [, que es la conclusión de la regla si en la parte 
precedente de la derivación se encuentran el o los enunciados (de [,) que 
figuran como premisas de la regla. Así, por ejemplo, la regla del modus 
ponens: «De (A :J B) y A se sigue B», que no es, como la anterior ley 
del modus ponens, un enunciado (condicional) del lenguaje [, sino un 
enunciado condicional de metalenguaje de [, que permite introducir la 
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conclusión B en toda derivación en la que figuren previamente tanto el 
enunciado (A :J B) como el enunciado A 4. 

A partir de la definición anterior puede fácilmente probarse que la 
relación sintáctica de consecuencia 1- cumple las siguientes tres propie­
dades, análogas a las indicadas en (�1), (�2) Y (�3) para la relación 
semántica de consecuencia �: 

( 1- 1) 
( 1- 2) 
(1- 3) 

Reflexividad generalizada: ex 1- A si AEex. 
Corte: si ex 1- B Y ex U [B] 1- A entonces ex 1- A. 
Monotonía: si ex 1- A entonces exU{J 1- A. 

Conviene destacar que todas estas propiedades las cumple toda noción 
de consecuencia sintáctica cualquiera sea el conjunto de axiomas y el con­
junto de reglas primitivas de inferencia seleccionados para identificarla 
(y aunque tales conjuntos sean vacíos). 

Así como el caso límite en que el conjunto ex de premisas es vacío 
da lugar a la noción de verdad lógica con referencia a la relación semán­
tica de consecuencia, el mismo caso límite para la noción sintáctica de 
consecuencia, da lugar a la noción de tesis (teorema) de un sistema lógico 
axiomático. Un enunciado A es un teorema 1- A (abreviatura de (i) 1-
A) si y sólo si hay una secuencia como la anterior cuyos elementos son 
sólo axiomas o enunciados que se siguen de los precedentes en la secuen­
cia en función de las reglas primitivas de inferencia. 

Así como la noción de consecuencia semántica y la de verdad lógica 
dependen (en su caracterización) de las nociones de interpretación y de 
verdad (en particular de la satisfacción de condiciones como (i) ... (v) que 
especifiquen las condiciones de verdad de los distintos tipos de enuncia­
dos del lenguaje), la noción sintáctica de consecuencia depende de las 
nociones de axioma y regla primitiva de inferencia, ya que la verdad de 
una afirmación sintáctica de consecuencia ex 1- A depende de cuáles sean 
los enunciados elegidos como axiomas y cuáles sean las reglas primitivas 
de inferencia seleccionadas al caracterizar el sistema axiomático. 

En muchos casos (cuando el lenguaje incluye un signo de condicio­
nal, como':J', que satisface el llamado meta teorema de la deducción: 

(MD) Si (ex U [A]) 1- B entonces ex 1- (A :J B)), 

Y su conversa (que depende de la presencia de la regla del modus ponens) 
puede darse una definición alternativa de la lógica (que aquí es tanto como 
la relación sintáctica de consecuencia 1- ) en cuestión, identificándola con 

4. Si bien no está excluida la posibilidad de que en una regla primitiva de inferencia figure un 
número infinito de premisas (todas las cuales tendrían que figurar en una derivación para poder intro· 
ducir en ella la conclusión de la regla), la presencia de tales reglas es vacua, ya que por el carácter finito 
que (Def. 3) impone a cada derivación, nunca se dará la condición para usarlas. Por el contrario, debe 
considerarse que a los efectos de (Def. 3) están excluidas las reglas con condiciones negativas (del tipo 
«Si en la derivación figura A pero no B, puede introducirse e en la derivación»), características de las 
lógicas (no deductivas) no monótonas, cuya presencia impediría probar la monotonía de la relación 
de consecuencia sintáctica (f--.3). 
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el conjunto de los teoremas (el conjunto de los enunciados A para los 
que se cumple: f- A), ya que en las condiciones indicadas la relación sin­
táctica de consecuencia es definible a partir de la noción de teorema. 

V. LA CUESTIÓN DE LA PRIMACÍA: SEMÁNTICA VERSUS SINTAXIS 

Así como la definición semántica (Def. 2.0) (al igual que su equivalente 
(Def. 2.1)) pretende ser una reconstrucción precisa de la noción intuitiva 
de consecuencia (definitoria de la lógica) contenida en (Def. 1.0) (o su 
equivalente intuitivo (Def. 1.1)), lo mismo sucedió con la definición (Def. 
3). En efecto, la definición de consecuencia sintáctica fue presentada por 
Carnap en sus primeros trabajos como la reconstrucción racional pre­
cisa de la noción intuitiva de consecuencia. Sin embargo, la existencia 
de dos nociones precisas (la sintáctica y la semántica), en principio com­
pletamente diferentes, ya que en cada una de ellas figuran esencialmente 
pares de conceptos muy distintos (funciones de interpretación y verdad 
en la definición semántica, y axiomas y reglas de inferencia primitivas 
en la definición sintáctica) de una misma relación intuitiva plantea varios 
interrogantes técnicos y filosóficos: ¿a través de cuál de las relaciones, 
la semántica o la sintáctica, debe llevarse adelante la tarea específica de 
la lógica en su empeño en reconstruir con precisión la noción intuitiva 
de consecuencia?, ¿debe hacerlo buscando identificar axiomas y reglas 
de inferencia primitivas o por el contrario debe hacerlo especificando 
nociones de interpretación y de verdad? 

En la tarea lógica actual los dos enfoques son, en cierto modo, objeto 
de igual interés teórico. Si bien en la presentación original de muchas 
lógicas se sigue el enfoque semántico y en otras el enfoque sintáctico, 
hay una suerte de acuerdo tácito que considera que la tarea del lógico 
no se encuentra concluida hasta que para una misma lógica no se ha con­
seguido una presentación coincidente desde ambos enfoques. Esto signi­
fica lo siguiente. Supongamos que una específica relación de consecuen­
cia sintáctica f- es caracterizada a partir de la enumeración de un conjunto 
Ax de axiomas y de un conjunto lR de reglas de inferencia primitivas y 
que una específica relación de consecuencia semántica 1= es caracteri­
zada a partir de un conjunto II de funciones de interpretación y un con­
junto '1,7 de cláusulas para la noción de verdad de los enunciados, enton­
ces ambos enfoques son coincidentes (caracterizan de manera diferente 
una misma lógica) cuando puede probarse en el metalenguaje el siguiente 
enunciado de correlación: 

(Corr. 1) Para todo conjunto a de enunciados de lL y para todo enun­
ciado A de lL: a f- A si y sólo si a 1= A, 

que para el caso particular en que se tienen en mira las nociones de teo­
rema y verdad lógica más que las relaciones de consecuencia el enunciado 
anterior se convierte en: 
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(Corr. 2) Para todo enunciado A de IL: f- A si y sólo si � A. 

Ambas afirmaciones significan (si bien (Corr. 1) es más general que 
(Corr. 2)) que los dos enfoques producen el mismo resultado: un enun­
ciado es una conclusión axiomática-sintáctica exactamente cuando es una 
consecuencia semántica, lo que implica que los enunciados sintácticamente 
demostrables (teoremas) son exactamente las verdades lógicas. La afir­
mación de correlación (Corr.) es frecuentemente identificada como un 
«metateorema de representación» ya que cuando el punto de partida es 
una presentación sintáctica este último suministra la representación 
semántica adecuada; y a la inversa, cuando el origen es una presentación 
semántica, indica una representación sintáctica equivalente. 

Sin embargo, el nombre más corriente para el enunciado de correla­
ción es el de «metateorema» de completitud ( - consistencia) semántica». 
Este nombre enfatiza la idea de que la calidad conceptual de un sistema 
sintáctico-axiomático se juzga desde la perspectiva semántica, ya que tal 
denominación indica que lo que se ha estado buscando es la representa­
ción sintáctico-axiomática de un sistema de lógica semánticamente iden­
tificado. Giros terminológicos como el indicado, muestran cómo, cons­
ciente o inconscientemente, los lógicos contemporáneos han internalizado 
una posición filosófica (en cuanto a la naturaleza de la lógica) que, en 
cierto modo, es la posición característica de Carnap en su período semán­
tico (el posterior a los escritos semánticos de Tarski). Podemos llamar 
a esta posición la de la «Primacía de la Semántica sobre la Sintaxis» (en 
la caracterización de la lógica). Según ella son las nociones de consecuencia 
semántica y de verdad lógica las que identifican a cada lógica. En este 
sentido identificar una lógica lL, es tanto como especificar la relación de 
consecuencia semántica correspondiente: � ,. Si además se cuenta con 
una relación sintáctica correspondiente f- " esto es, para la que se cum­
ple la condición de correlación (Corr. 1), entonces se está en posesión 
de una presentación axiomática (sintáctica) de la lógica IL, en cuestión. 

Desde la perspectiva de la primacía de la semántica la identificación 
de cada lógica IL, es la que se logra semánticamente. La presentación 
axiomática es sólo una representación sintáctica de ella, obtenida pres­
cindiendo de la significatividad del lenguaje en que la lógica es formu­
lada, pero no la identificación de la misma. La tarea del lógico es esen­
cialmente semántica. 

Por cierto, la tesis de la primacía de la semántica no pretende restar 
importancia a la axiomatización de una lógica, ya que el enfoque sintác­
tico tiene virtudes independientes que lo justifican ampliamente. Recor­
demos que una afirmación de consecuencia sintáctica ex f- A es una aser­
ción (metalingüística) existencial comprometida con la existencia de una 
secuencia finita de enunciados del lenguaje entre cuyos puntos de par­
tida están los enunciados de ex y cuyo último enunciado es precisamente 
A. Como la forma más natural de representar un proceso es por medio 
de una secuencia (en la que se ubican, siguiendo el orden temporal, los 
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distintos estados momentáneos que constituyen el proceso), la caracteri­
zación sintáctica es así una fiel representación de un posible proceso psi­
cológico de inferencia que comienza con las premisas a y que se va desa­
rrollando según las reglas de inferencia de la lógica en cuestión hasta 
alcanzar como punto final la conclusión buscada. Esto es, la noción sin­
táctica de consecuencia conserva los rasgos estructurales de la noción psi­
cológica de inferencia. 

Muy por el contrario, las afirmaciones de consecuencia semántica a 
1= A, que suponen una aserción (metalingüística) universal (y no exis­
tencial como la sintáctica) 5, sólo establecen una vinculación entre las 
premisas y la conclusión sin ninguna referencia a secuencia alguna que 
pueda reproducir algún tipo de proceso (psicológico) inferencia!. Tales 
aserciones son vistas, desde la perspectiva de la primacía de la semán­
tica, como el control de calidad que la lógica realiza al comparar el ori­
gen (premisas) y el punto final de la secuencia en que se constituye la 
derivación sintáctica, que en definitiva es la reconstrucción lingüística 
de un posible proceso psicológico inferencia!. 

Además, la inteligibilidad que se logra a través de una presentación 
sintáctico-axiomática de una lógica amplía y complementa a la suminis­
trada mediante el enfoque semántico. En este sentido, el lograr una pre­
sentación axiomática significa un adelanto en la comprensión psico­
lógica del contenido conceptual de una lógica. Lo mismo sucede habi­
tualmente con las distintas presentaciones sintácticas de una misma lógica. 
Por cierto, otro tanto ocurre a la inversa. Una presentación semántica 
aumenta y complementa usualmente el nivel de inteligibilidad que se con­
sigue a través de las presentaciones sintácticas. 

Sin embargo, y a pesar de las virtudes señaladas del enfoque sintác­
tico, que son pacíficamente aceptadas, hay algunas razones muy convin­
centes que apoyan la tesis de la primacía de la semántica. 

Un argumento en esa dirección es el siguiente. En el enfoque sintác­
tico se prescinde completamente del significado (en el sentido de correla­
ción entre el lenguaje y la realidad) de las expresiones del lenguaje JL, al 
que está referido. Los signos y expresiones del lenguaje son, desde la pers­
pectiva sintáctica, entidades asignificativas y sus enunciados carecen de 
valor de verdad (porque carecen de significado). Por este motivo la elec­
ción de los principios (axiomas y reglas de inferencia primitivas) de una 
lógica no tiene limitación alguna. En el enfoque sintáctico somos total­
mente libres de erigir en axiomas lógicos a cualquier conjunto de enun­
ciados del lenguaje, y lo mismo sucede con la elección de las reglas de 

5. El carácter existencial de la noción sintáctica de consecuencia facilita la prueba de que un 
enunciado es consecuencia de un cierto conjunto de premisas, ya que basta con mostrar la existencia 
de una derivación para lograr lo buscado. A la inversa, el carácter universal de la noción semántica 
de consecuencia facilita la prueba de que un enunciado 110 es consecuencia de un conjunto de premisas, 
ya que para ello basta con mostrar la existencia de una interpretación admisible en la que las premisas 
son verdaderas y la conclusión no lo es. 
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inferencia: cualquier relación sintáctica-formal entre enunciados es sus­
ceptible de ser elegida para identificar las reglas primitivas de una lógica. 
Resulta así que una lógica se presenta como el resultado puramente con­
vencional de elecciones arbitrarias adoptadas sin limitación alguna. Desde 
este ángulo la creación e identificación de una lógica se muestra como 
una empresa tan libre, arbitraria y convencional como el de la creación 
e identificación de un juego. Un cambio de las reglas que identifican a 
un juego sólo produce la identificación de otro juego tan legítimo (en 
tanto que juego) como el anterior. 

Sin embargo, así como tenemos criterios para elegir en cada oportu­
nidad entre los distintos juegos posibles cuál o cuáles son los más aptos 
para alcanzar una finalidad determinada, que puede ser muy distinta en 
cada contexto y circunstancia diferente (no son las mismas las finalida­
des que han prestigiado juegos tan distintos como la lotería, el ajedrez, 
el bridge, el polo, etc.). Lo mismo sucede frente a los distintos cálculos 
posibles que resultan de selecciones de principios diferentes. La finali­
dad que guía la elección entre los diversos cálculos sintáctico-axiomáticos 
para identificar una lógica es una finalidad muy específica y bien delimi­
tada: se trata de que los axiomas y teoremas del sistema sean verdades 
lógicas y de que las reglas de inferencia (primitivas y derivadas) transmi­
tan a la conclusión la verdad de sus premisas. Un sistema sintáctico­
axiomático que no cumpla con esta condición no identifica un sistema 
lógico, y cualquier otra virtud que pueda tener es ajena a la lógica. 
Mirando las cosas de esta sensata manera, y considerando que la condi­
ción impuesta (en función de la finalidad por antonomasia de la lógica) 
es la que caracteriza al enfoque semántico, es como se configura uno de 
los caminos por los que se justifica la tesis de la primacía de la semántica. 

Hay otras razones que conducen al mismo resultado. Cuando se 
indaga por la razón por la que ciertos enunciados expresan verdades lógi­
cas y por la que las reglas de inferencia que preservan la verdad de su 
conclusión cuando sus premisas son verdaderas son identificadas como 
reglas lógicas de inferencia (que es tanto como indagar por la diferencia 
entre la lógica y otras disciplinas científicas), una respuesta muy antigua 
y sensata señala que un enunciado expresa una verdad lógica cuando su 
verdad puede determinarse recurriendo exclusivamente al significado de 
los signos lógicos que figuran en el enunciado en cuestión (o en los enun­
ciados que figuran en la regla de inferencia, según sea el caso). Se entiende 
aquí que los signos lógicos, que los medievales llamaban «sincategore­
máticos», son aquellos que no denotan entidad alguna de la realidad 
(aquellos que están fuera del ámbito de las funciones de interpretación 
I I i antes mencionadas). Esta indicación, puramente negativa, no nos 
dice, sin embargo, cómo se logra la especificación del significado de los 
signos lógicos. 

La respuesta positiva deriva de una de las tesis centrales de la filoso­
fía de la lógica de Frege, aquélla según la cual la especificación del signi­
ficado de un enunciado se obtiene mediante la explicitación de las condi-
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ciones en que el enunciado es verdadero (el significado de un enunciado 
son sus condiciones de verdad). Desde este enfoque el significado de un 
signo lógico se identifica cuando se explicita cómo este último contri­
buye al significado de los enunciados de los que forma parte. Indicando 
las condiciones de verdad de los enunciados en los que interviene un signo 
lógico y cómo incide su presencia en las condiciones de verdad de los 
enunciados en los que figura se identifica (indirectamente) su significado. 
La definición de un signo lógico es siempre una definición de las que B. 
Russell llamó «definiciones en uso» (aquéllas en las que el significado de 
un signo se logra indicando su uso en el contexto de un enunciado). Nótese 
que las anteriores cláusulas (ii) hasta (v) de la caracterización de la noción 
de verdad para nuestro lenguaje IL, tienen como función precisamente 
exponer, en la forma indicada (como definición en uso), el significado 
de los signos lógicos de negación «--, », de conjunción «1\», de disyun­
ción «v» y de condicional (material) «:J» del lenguaje modelo IL. Estas 
cláusulas suelen presentarse en los textos de lógica, para los conectivos 
proposicionales, en la forma tabular de las llamadas «tablas de verdad». 

Resumiendo la argumentación anterior resulta que: a) la delimita­
ción de las leyes (verdades) y reglas de inferencia de la lógica se hace en 
base al significado de los signos lógicos, b) el significado de los signos 
lógicos se especifica en las cláusulas que definen la noción de verdad de 
un lenguaje. Pero como tanto la noción de verdad como las cláusulas 
que la caracterizan son los rasgos esenciales del enfoque semántico, se 
concluye naturalmente la primacía del enfoque semántico sobre el enfo­
que sintáctico en la identificación del área específica de la lógica. 

VI. LOS ENFOQUES SINTÁCTICOS y SEMÁNTICOS EN LA HISTORIA 

Sin perjuicio de la validez de lo anterior, es dable reconocer que el enfo­
que sintáctico fue la forma históricamente primera usada en la presenta­
ción de los sistemas de lógica. Ella fue la única vigente hasta bastante 
entrado el presente siglo. Indudablemente, sus creadores hicieron usual­
mente comentarios de naturaleza semántica, pero la presentación oficial 
siguió siempre los carriles del enfoque sintáctico. 

El enfoque sintáctico fue el usado por Aristóteles en la presentación 
de sus sistemas lógicos (la lógica del Silogismo Categórico y la lógica del 
Silogismo Modal). Así, es correcto interpretar la tarea llevada a cabo por 
Aristóteles al presentar la lógica del silogismo categórico como la especi­
ficación de un conjunto de reglas primitivas de inferencia. Las reglas para 
la lógica del silogismo categórico requieren, en primer término, reglas 
con una única premisa, conocidas en la lógica escolástica como «Infe­
rencias Inmediatas», y luego reglas con dos premisas llamadas «Inferen­
cias Mediatas» que comprenden los distintos esquemas inferenciales típi­
cos de la silogística (los silogismos indicados en los versos medievales: 
Barbara, Celarent, Darii, Ferio, etc.). Aristóteles mostró cómo podían 
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reducirse las reglas primitivas de inferencia tomando sólo como reglas 
mediatas los silogismos de la primera figura. Naturalmente Aristóteles 
admitió que una inferencia puede partir de un conjunto de premisas con 
más de dos enunciados, son sólo sus reglas primitivas las que no tienen 
nunca más de dos premisas. De este modo sus reglas de inferencia identi­
fican una noción sintáctica de consecuencia f-, (donde el subíndice «s» 
figura para recordar que se trata de la noción de consecuencia que iden­
tifica la lógica del silogismo categórico) 6. 

La presentación de la lógica del silogismo categórico por medio de 
una relación sintáctica de consecuencia f-, definida según la definición 
(Def. 3) a partir de un conjunto de reglas primitivas de inferencia, en 
pleno acuerdo con la forma usada en la escolástica, muestra algunos ras­
gos que importa señalar. En ella no hay axiomas (el conjunto de los axio­
mas con que se define f- s es vacío), además no hay en ella reglas que, 
como el meta teorema de la deducción (MD), permitan disminuir el 
número de las premisas de una inferencia hasta alcanzar el conjunto vacío 
de premisas. Por estas dos razones no hay teoremas en la lógica del silo­
gismo categórico (el conjunto de los A para los que se cumple f- s A es 
vacío). Este fenómeno es el reflejo sintáctico de la observación de van 
Wright de que la noción de verdad lógica fue desconocida para Aristóteles: 

It seems to me [ ... ] that the notion of logical truth is un known to Aristotle. This 
is not necessarily to blame Aristotle of ignorance. Ir is an interesting question, to 
what extent logic can be developed independently of the ideal of logical truth (van 
Wright, 1957, 21). 

Lo anterior no significa que Aristóteles no identificó ningún enun­
ciado como lógicamente verdadero, ya que es ampliamente conocida su 
discusión y defensa, en la Metafísica, de los principios lógicos de no con­
tradicción y del tercero excluido. Es más, su famosa definición de la 
noción de verdad como correspondencia con la realidad figura precisa­
mente en las páginas en las que discute los principios indicados. Con este 
alcance debiera decirse que Aristóteles llegó a su noción de verdad por 
haber detectado dos verdades lógicas. Creo que la importancia de la obser­
vación de van Wright deriva de la independencia teórica y conceptual 
entre la lógica de Aristóteles y las dos verdades lógicas por él detectadas 
y discutidas. Por un lado está su lógica, caracterizada sintácticamente, 
y por otro, sin conexión intrasistemática, dos verdades lógicas aisladas. 
Si Aristóteles hubiera tenido una noción general de la noción de verdad 
lógica habría seguramente detectado que ellas no son sólo dos y se habría 

6. En la presentación del texto se sigue la presentación tradicional, no obstante la diferente opi­
nión de Lukasiewicz, para quien cada silogismo no es una regla de inferencia con tres enunciados (dos 
premisas y la conclusión) sino un único enunciado condicional en el que el antecedente es la conjunción 
de las premisas y el consecuente es la conclusión del silogismo. Se adopta el enfoque clásico por estar 
convencido de la legitimidad de las críticas de C. H. van Wright al enfoque de Lukasiewicz (ver van 
Wright, 1957, 20). 
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percatado que aún con las únicas cuatro formas de enunciados temati­
zadas en la teoría del silogismo categórico (los enunciados de la forma 
A [universales afirmativos 1 del tipo «Todo A es B», E [universales 
negativos 1 del tipo «Ningún A es B", 1 [particulares afirmativos] del 
tipo «Algún A es B» y O [particulares negativos] del tipo «Algún A no 
es B») hay enunciados que expresan verdades lógicas, como es el caso 
de los enunciados de la forma: Todo A es A. Una consecuencia de este 
hecho es que si se intenta una presentación semántica de la lógica del 
silogismo categórico por medio de una relación de consecuencia semán­
tica 1= s seguramente se muestra que la relación sintáctica 1- s es dema­
siado estrecha ya que no se podrá probar la tesis de correlación (Corr. 
1), por cuanto tendremos 1= s Todo A es A, pero no 1- s Todo A es A. 

También Frege usó el enfoque sintáctico en la presentación de su 
lógica (la hoy llamada lógica de la cuantificación de nivel superior). Frege 
expuso su lógica indicando un conjunto (no vacío) de axiomas y un con­
junto (también no vacío) de reglas primitivas de inferencia. Si bien en 
la obra de Frege se encuentran las ideas semánticas más importantes con 
las que en el futuro se construiría la noción semántica de consecuencia 
correspondiente a la noción sintáctica usada por Frege, el instrumental 
técnico que supone la identificación semántica no existía aún en los tiem­
pos de Frege. Recién K. Gódel en 1930 probó el teorema de correlación 
entre la relación sintáctica de consecuencia 1- Q para la porción de la 
lógica de Frege conocida actualmente como lógica de la cuantificación 
(cálculo funcional de primer orden) y la relación semántica de conse­
cuencia 1= Q que fue caracterizada por Gódel con elementos que deri­
van básicamente de Post y Wittgenstein (como ca inventores independien­
tes de las tablas de verdad) y de T. Skolem en obras suyas de los años 
1919 y 1920. 

Posiblemente las primeras lógicas presentadas originariamente desde 
la perspectiva semántica sean las lógicas polivalentes, iniciadas a princi­
pio de la década del treinta, ya que en ellas el significado de los signos 
lógicos es identificado por un método de matrices tabulares análogas 
a las tablas de verdad y su noción de consecuencia es caracterizada por 
una definición generalizada del tipo de (Def. 2.0). Por esta razón una 
de las tareas más absorbentes, con relación a las lógicas polivalentes, 
fue la de encontrar presentaciones sintáctico-axiomáticas con las que se 
satisfagan las condiciones de correlación (Corr. 1) Y Corr. 2). 

Tanto la lógica intuicionista de Heyting (1930) como las lógicas 
modales de c.l. Lewis, con las que se inicia el período moderno de la 
lógica modal, fueron concebidas usando el enfoque axiomático-sintáctico. 
Aun cuando las pioneras y fundamentales indagaciones en lógica modal 
de G.H. van Wright fueron realizadas desde una perspectiva semántica, 
lo cierto es que la semántica estándar de la lógica modal debió esperar 
hasta los trabajos de S. Kripke, S. Kanger y J. Hintikka que en la década 
del sesenta consolidan el aparato teórico para la presentación semántica 
de estas lógicas. Las lógicas modales de Lewis y los modelos semántico 
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modales de Kripke tienen una gran incidencia en el tema que nos ocupa: 
la caracterización del área temática de la lógica. Por este motivo dedica­
remos a ellas los próximos párrafos. 

VII. REFINAMIENTO DEL ENFOQUE SEMÁNTICO 

Lewis consideraba que la tarea fundamental de la lógica era la de recons­
truir con precisión la noción intuitiva de consecuencia lógica (Def. 1.0) 
y entendió que esto debía hacerse incorporando al lenguaje objeto un signo 
que representara la noción de consecuencia (cosa que no sucede en el len­
guaje de Frege ni en el de ninguno de los que continuaron con su estilo). 
Es así como Lewis enriquece el lenguaje objeto, que ahora llamaremos 
lL!DJll (lenguaje modal), con el signo para lo que llamó «implicación estricta» 
(para el que aquí usaremos «=»» de manera tal que una expresión del 
tipo «(A=>B)>>, leído «A implica estrictamente a B», sea verdad cuando 
B es una consecuencia lógica de A 7. 

Al llevar al lenguaje objeto, mediante la implicación estricta, la repre­
sentación de la noción de consecuencia, que en este escrito (siguiendo 
el hábito actual) fue hasta ahora una noción metalingüística (tanto en 
el caso de 1- como en el de 1=), suceden varias transformaciones que 
sutilmente introducen rasgos importantes en el análisis de la noción de 
consecuencia lógica. 

En primer lugar, la noción de consecuencia sufre una limitación. En 
efecto, tanto en el caso de la relación sintáctica 1- como en el de la rela­
ción semántica 1= de consecuencia lo que figura a la izquierda es la refe­
rencia a (el nombre de) un conjunto Q' de premisas. Ese conjunto puede 
ser tan grande como se quiera: puede ser un conjunto infinito de enun­
ciados. Muy por el contrario en una implicación estricta lo que figura 
a la izquierda de => es un único enunciado, de modo que lo que las impli­
caciones estrictas pueden reconstruir no es la idea de cuándo un enun­
ciado es consecuencia lógica de un conjunto de enunciados (premisas), 
sino sólo cuándo un enunciado es consecuencia lógica de otro (o mejor, 
cuándo la proposición expresada por un enunciado es consecuencia lógica 
de la proposición expresada por otro enunciado). Naturalmente cuando 
el conjunto Q' de premisas es finito entonces habrá un enunciado del len­
guaje que pueda ocupar su lugar, sin pérdida de alcance conceptual, como 
antecedente en una implicación estricta, pero cuando Q' no es de ese tipo 
la implicación estricta es inhábil para dar cuenta de la noción de conse­
cuencia. Por esta razón el recurso de Lewis supone una restricción fini­
ti sta de la noción de consecuencia de la que la noción de consecuencia 

7. En rigor de verdad => no fue el signo primitivo con que Lewis enriqueció el lenguaje iL para 
aleanzar el lenguaje modal [.U1. SU lenguaje modal estaba caracterizado por la introducción de un rombo 
para representar la noción modal de posibilidad, y definir luego la implicación estricta (A => B ) (al 
estilo de (Def. 1.1)) cuando se da el caso que no es posible A en conjunción con la negación de B. 
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semántica � carece. La noción de consecuencia sintáctica es también fini­
tista, si como lo hemos hecho en (Def. 3), siguiendo la tradición más 
estable, una afirmación del tipo Ct' 1- A requiere la existencia de una 
secuencia finita de enunciados (lo anterior significa que la noción de con­
secuencia sintáctica introducida en (Def. 3) es compacta). Sin embargo, 
la finitud de la noción de consecuencia sintáctica 1- es de muy distinta 
naturaleza que la finitud que la implicación estricta => conlleva, ya que 
ella no impide indagar por las consecuencias de un conjunto infinito (ni 
para la significatividad de Ct' 1- A ni para su verdad se requiere que Ct' 
sea un conjunto finito). 

En segundo lugar, dado que una implicación estricta (A => B) es un 
enunciado del lenguaje a la par de los que figuran como su antecedente 
A y su consecuente B, resulta que en el enfoque de Lewis son expresables 
implicaciones estrictas anidadas, esto es, implicaciones estrictas del tipo 
((A => B) => C) o del tipo (C => (A => B)) en donde una implicación estricta 
figura en el ámbito (como parte del antecedente o del consecuente) de 
otra implicación estricta. Este rasgo de la implicación estricta es el reflejo 
de uno de los problemas filosóficos e intuitivos más oscuros de la lógica 
modal: la cuestión de las modalidades reiteradas. En las nociones meta­
lingüísticas de consecuencia (sintáctica y semántica) este rasgo perturba­
dor de la implicación estricta no existe. En los enunciados del tipo «Ct' 
1- A», o del tipo «Ct' � A», «Ct'» es el nombre de un conjunto de enuncia­
dos del lenguaje objeto y «A» el nombre de un enunciado del lenguaje 
objeto, pero como tanto «Ct' 1- A» como «Ct' � A» no son enunciados 
del lenguaje objeto sino de su metalenguaje ni tampoco son nombres de 
nada, su función no es nombrar cosa alguna, sino afirmar la relación 
de consecuencia entre el conjunto de enunciados nombrado por «Ct'» y 
el enunciado nombrado por «A». Por esta razón carecen de sentido las 
expresiones en donde a la izquierda o a la derecha de alguno de los sig­
nos de consecuencia «1-» o «�» aparezca una expresión que contenga 
alguno de tales signos. De este modo las oscuras cuestiones a que ha dado 
lugar el anidamiento de los condicionales estrictos carecen de sentido y 
no pueden plantearse para las nociones metalingüísticas de consecuencia. 

Hasta ahora hemos señalado dos rasgos en que la implicación estricta 
está en desventaja en la comparación con las nociones metalingüísticas 
comentadas como reconstrucción de la noción intuitiva de consecuen­
cia. Sin embargo, hay un aspecto en el que el balance puede sede favora­
ble: en el enfoque de Lewis se tema tiza directamente la noción de necesi­
dad involucrada en el concepto intuitivo de consecuencia lógica. Las 
consecuencias y la relevancia filosófica de esta característica se ponen más 
claramente de manifiesto dirigiendo nuestra atención a los instrumentos 
semánticos que Kripke usó para dar cuenta semántica de las lógicas 
modales. 

El instrumental usado hasta ahora para dar explicación semántica 
de la noción intuitiva de consecuencia estaba integrado for elementos 
de dos tipos: un conjunto de funciones de interpretación I ¡ que fijan 
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la referencia (significado extensional) a los nombres (términos singula­
res) y a los predicados del lenguaje objeto, y un conjunto de cláusulas 
en las que se indican las condiciones para la verdad de los distintos tipos 
de enunciados. La forma de estas últimas cláusulas: «un enunciado X 

es verdadero en I 1; si y sólo si ... » (en las que la verdad de un enun­
ciado es relativa a la interpretación que se esté considerando), explican 
la razón por la que un enunciado puede cambiar su valor de verdad (pasar 
de ser verdadero a ser falso o a la inversa) al cambiar la interpretación 
a través de la cual se juzga el valor de verdad del enunciado. También 
señalamos que con la noción semántica de verdad T arski pretendió recons­
truir para un lenguaje artificial (como lL) la noción aristotélica de verdad 
como correspondencia con la realidad (para obtener este resultado son 
esenciales las cláusulas del tipo de (i), esto es, las cláusulas para los enun­
ciados atómicos, ya que por medio de ellos se inicia la «correspondencia 
con la realidad»). Esta última aspiración de correspondencia significa que 
si la realidad considerada se transforma (cambia en alguno de sus aspec­
tos), entonces el valor de verdad de un enunciado que a ella se refiere 
puede cambiar reflejando los cambios ocurridos en el mundo. En otras 
palabras, de una noción de verdad por correspondencia referida a enti­
dades lingüísticas (enunciados) esperamos que el valor de verdad de un 
enunciado pueda cambiar por dos razones distintas e independientes: a) 
por un cambio en la interpretación con que son entendidas las expresio­
nes que figuran en el enunciado, o b) por un cambio en la realidad consi­
derada. En las cláusulas al estilo de Tarski (las consideradas hasta ahora) 
la relatividad de la verdad con relación a la interpretación del lenguaje 
es explícita pero, muy por el contrario, en ellas no se prevé la relatividad 
a la realidad considerada, cuyos cambios también pueden incidir en el 
valor de verdad 8. 

Al elaborar el instrumental para dar cuenta de la semántica de las 
lógicas modales Kripke colmó el vacío indicado, dejado por Tarski, en 
las cláusulas de su definición semántica de verdad. En efecto, las cláusu­
las usadas por Kripke responden a la siguiente forma estructural: «Un 
enunciado X (del lenguaje lL) es verdadero en la interpretación I , 1; 
frente a la realidad (mundo) Mi si y sólo si ... ». 

La realidad extralingüística a la que está referida un lenguaje lL, que 
en Kripke se llama «Estructura de Modelo», es una estructura (G inte­
grada por dos elementos: 1) un conjunto lMl de mundos posibles (en un 
ejemplo intuitivo dinámico-temporal como el anterior referido a cam­
bios temporales de la realidad, los elementos de lMl pueden ser interpreta­
dos como los distintos estados totales de la realidad en los diferentes 
momentos temporales; naturalmente esa interpretación intuitiva es ina­
decuada cuando se pretende representar la posibilidad lógica) y 2) un ele-

8. Quizás una posible conjetura histórica para explicar esta omisión de Tarski sea que en los 
ejemplos que elaboró con detalle sólo figuran teorías matemáticas y lógicas, y es claramente insensato 
pensar en el cambio de una realidad del tipo de la que tratan esas disciplinas. 
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mento destacado � de NI destinado a representar el mundo (la realidad) 
actual frente a los mundos meramente posibles (los restantes elementos 
de NI) 9. La referencia al lenguaje lL aparece en lo que Kripke llama un 
modelo 'ME (para una estructura de modelo 1\;\) que se consigue acoplando 
a la estructura de modelo � una función de interpretación I�,NIJ de dos 
argumentos que adjudica: 1) a cada nombre � (cuando � es un nombre 
de 1L) frente a cada mundo NIj de NI un único objeto (de NI;), y 2) a cada 
predicado � (cuando � es un predicado monádico de 1L) un único con­
junto de objetos (de NIJ Con estos elementos las cláusulas que definen 
la noción de verdad para todo modelo 'ME son ahora (en lugar de las 
anteriores) : 

(i') Un enunciado atómico Pa es verdadero en la interpretación 
1 , 1; frente al mundo NIj si y sólo si la,NIjl;Elp,NIjl; (el objeto asignado 
al nombre «a» por la interpretación 1 , 1; para el mundo NIj es uno de 
los elementos de la clase asignada al predicado «P» por esa misma inter­
pretación y para ese mismo mundo). 

(ii') --, A es verdad en 1 , 1; frente a NIj si y sólo si A no es verdad 
en 1 , 1; frente a NIj• 

(iii') (A 1\ B) es verdad en 1 , 1; frente a NIj si y sólo si tanto A como 
B son verdad en 1 , 1; frente a NIj• 

(iv') (A v B) es verdad en 1 , 1; frente a NIj si y sólo si A, B o ambas 
son verdad en 1 , 1; frente a NIj• 

(v') (A::J B) es verdad en 1 , 1; frente a NI
1 

si y sólo si A no es ver-
dad en 1 , 1; frente a NIj o B es verdad en 1 , 1 ; frente a NIj. 

(vi) (A => B) es verdad en 1 ,1; frente a NIj si y sólo si B es verdad 
en 1 , 1; frente a NIk para todo NIk de NI en el que A es verdad en 1 , 1; 
frente a NIk• 

(vii) DA es verdad en 1 , 1; frente a NIj si y sólo si A es verdad en 
1 , 1; frente a NIk para todo NIk de NI. 

En la cláusula (vii) hemos usado « DA» para el enunciado que repre­
senta la afirmación de la necesidad lógica de A. Esa cláusula reproduce 
la idea leibniziana según la cual son lógicamente necesarios aquellos enun­
ciados que son verdaderos en todo mundo posible. Las condiciones que 
(vi) fija para la verdad de una implicación estricta (A => B) (que en la 
interpretación de Lewis afirma que B es consecuencia lógica de A) son 
las mismas que por (vii) y (v') resultan para D (A ::J B) (la necesidad lógica 
de la implicación material). 

9. Una estructura de modelo como la indicada en el texto con sólo dos elementos es instrumen­
tal suficiente para dar cuenta de la semántica del sistema modal SS (que fue el objetivo de Kripke cuando 

escribió su primer artículo sobre el tema). Para dar cuenta de otros sistemas modales Kripke creó las 
«estructuras de modelos relacionales» en las que aparece como tercer elemento una relación IT� (relación 
de accesibilidad) que vincula elementos de )'1]. Sin embargo, la estructura más simple del texto es sufi­
ciente para nuestros fines. 
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En las cláusulas anteriores la noción de verdad es relativa (como se 
espera en una teoría de verdad por correspondencia) a la interpretación 
considerada de las expresiones lingüísticas y a la realidad (mundo) a que 
se refiere el enunciado. Para explicar el alcance de la noción de verdad 
cuando la usamos (como es frecuente en la vida diaria) sin relativización 
alguna, Kripke introduce lo que llama la verdad de A en un modelo 'Y'rtE , 

que se da cuando A es verdadero en el mundo destacado (actual) ¡¡:;: del 
modelo 'Y'rtE . Se recoge así la idea intuitiva que refiere al mundo actual 
a los enunciados para los que no explicitamos una referencia distinta. 

Con estos elementos podemos dar los siguientes refinamientos de las 
definiciones (Def. 2.0) y (Def. 2.1) de la relación de consecuencia semán­
tica �. 

(Def. 2.2) Un enunciado A de lL es consecuencia (semántica) del con­
junto de enunciados ex de lL (premisas), ex � A, si y sólo si no hay ningún 
modelo 'Y'rtE de lL en el que todos los enunciados de ex son verdaderos 
y en el que A no lo es. 

(Def. 2.3) Un enunciado A de lL es consecuencia (semántica) del con­
junto de enunciados ex de lL (premisas), ex � A, si y sólo si A es verdadera 
en todo modelo 'Y'rtE de lL en el que son verdaderos todos los enunciados 
de ex. 

El refinamiento introducido en la noción de consecuencia semántica 
� en las últimas definiciones deriva básicamente de que en ellas se ha 

tomado explícitamente en cuenta, además de la relativización de la noción 
de verdad a la interpretación adoptada de las expresiones lingüísticas, 
la relativización con relación a la realidad considerada, dando así expre­
sión más acabada al requerimiento de correspondencia incluido en la 
noción intuitiva de verdad. También ha cambiado la explicación de las 
nociones modales (de necesidad e imposibilidad), asociadas a las nocio­
nes intuitivas de consecuencia y verdad lógica. En (Def. 2.0) y (Def. 2.1) 
la explicación reposaba en una cuantificación universal sobre las funcio­
nes de interpretación admisibles. Por el contrario, en las nuevas defini­
ciones, tales nociones, dependen de un enfoque más leibniziano que 
requiere una cuantificación sobre mundos posibles. 

Finalmente, lo anterior significa una transformación sustancial que 
afecta a las nociones mismas de consecuencia semántica y verdad lógica. 
Esto es así por cuanto, en las últimas definiciones, para que un enun­
ciado A sea consecuencia semántica de un conjunto ex de premisas, ex � 

A (al igual que para que A sea una verdad lógica: � A), se requiere una 
doble cuantificación metalingüística: una sobre todas las interpretacio­
nes admisibles y otra sobre todos los mundos posibles (esta doble cuan­
tificación está involucrada en la explícita cuantificación contenida en las 
últimas definiciones sobre todos los modelos). Un efecto, señalado con 
poca frecuencia, de esta doble cuantificación es que ella evita la posibili­
dad (que en principio dejan abiertas las definiciones (Def. 2.0) y (Def. 2.1)) 
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de la existencia de verdades lógicas no lógicamente necesarias y de ver­
dades lógicamente necesarias que no son identificadas como verdades lógi­
cas. La necesidad de tomar en cuenta esta doble cuantificación en la expli­
cación de las nociones centrales de la lógica, con frecuencia no es 
advertida, porque en muchas oportunidades hay una correspondencia biu­
nívoca entre lo que es un mundo posible y lo que es una interpretación 
admisible. Así por ejemplo, las cuatro alternativas de una tabla de ver­
dad estándar para dos enunciados: 

A B 

V V 
F V 
V F 
F F 

admite una doble lectura: 1) como las cuatro interpretaciones distintas 
que dos enunciados pueden recibir, o 2) como los cuatro tipos de mun­
dos posibles que pueden fijar el valor de verdad de un par de enuncia­
dos. Si bien el tema de la correlación entre mundos posibles y valuacio­
nes admisibles es de gran importancia técnica y filosófica, no diremos 
nada más sobre él, por cuanto es más propio de un ensayo sobre lógica 
modal que de uno sobre la lógica en general. 

VIII. UNA DIFICULTAD A LA PRIMACÍA DE LA SEMÁNTICA 

Con las nuevas interpretaciones (Def. 2.2) y (Def. 2.3) de la relación 
semántica de consecuencia 1= podemos retornar al análisis de la tesis de 
la prioridad de la semántica. La circunstancia de que el enfoque sintác­
tico sea el que más se aproxima a la noción psicológica intuitiva de infe­
rencia, y de que ese enfoque reconstruya con gran precisión lo que se 
ha hecho durante siglos de trabajo en el área de la lógica no invalida la 
pretensión de la tesis de la primacía de la semántica. En efecto, lo que 
tal tesis pretende es suministrar una explicación precisa de los criterios 
utilizados para evaluar el trabajo de los lógicos: es en la preservación 
de la noción semántica de verdad en el paso de las premisas de una regla 
sintáctica de inferencia a su conclusión como se aprecia la calidad de la 
regla. Por esta razón y no por consideraciones históricas es que se justi­
fica erigir la noción semántica de consecuencia en el criterio definitorio 
de la lógica. Sin embargo, la siguiente es una argumentación que inva­
lida la tesis de la primacía de la semántica en la definición general de 
la lógica. 

Hay enunciados respecto de los cuares es lugar corriente reconocer 
que carecen completamente de valores de verdad. Paradigma de ellos son 
los enunciados usados por el legislador para prescribir normativamente 
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la conducta de los súbditos de un país, como, por ejemplo, los enuncia­
dos que usa un legislador para exigir a los súbditos el pago de un impuesto 
o para autorizar la importación de cierto tipo de mercancías. Sus enun­
ciados no están destinados a describir algo que ocurre en el mundo, su 
función es prescribir una forma de comportamiento como debida (o inde­
bida) o autorizar (permitir) ciertos modos de actuar. De los dichos del 
legislador puede afirmarse que son justos o injustos, convenientes o incon­
venientes, etc., pero carece de sentido predicarles verdad o falsedad. Sólo 
de los enunciados descriptivos tiene sentido la predicación de valores de 
verdad, ya que afirmar que un enunciado es verdadero significa que en 
el mundo acaece lo que el enunciado describe, y afirmar que es falso 
supone que en el mundo no sucede lo que el enunciado describe; de modo 
que en ambos casos (para tener un valor de verdad) el enunciado tiene 
que ser descriptivo, tiene que describir el acontecer de un hecho (que puede 
o no darse). Nada de esto sucede con las normas del derecho positivo 
(el derecho creado por los hombres) pues ellas prescriben comportamien­
tos sin describir el acontecer de ningún hecho. 

El hecho de la existencia de enunciados significativos carentes de valo­
res de verdad plantea una de las dificultades filosóficas más serias de la 
lógica deóntica (interpretada como lógica de normas). Esta dificultad se 
la conoce como el dilema de Jorgensen cuyo alcance conceptual es el 
siguiente: si las nociones de la lógica sólo pueden definirse en función 
de valores de verdad entonces no es posible una lógica de normas, y a 
la inversa: si tal lógica es posible las nociones de la lógica no dependen 
de los valores de verdad de los enunciados, luego o no es posible una 
lógica de normas, o las nociones de la lógica son independientes de los 
valores semánticos de verdad y falsedad. 

La importancia de esta dificultad deriva de las siguientes dos obser­
vacIOnes: 

1. Del hecho que los signos lógicos (conjunción, disyunción, nega­
ción, etc.) se usan significativamente en los enunciados que expresan nor­
mas sin diferencia detectable con relación al modo en que se los usa en 
los enunciados descriptivos, se sigue que el significado semántico (el que 
deriva de las condiciones de verdad de los enunciados en los que los sig­
nos lógicos figuran) no es el único relevante para la significatividad de 
los signos lógicos y hace posible la hipótesis de que sea otro tipo de sig­
nificatividad la que unifica el significado de los signos lógicos en los enun­
ciados descriptivos y en los prescriptivos. 

2. La forma en que a diario entendemos las expresiones normativas 
indica que confiamos que entre ellas hay relaciones lógicas. Nuestra inte­
lección del lenguaje normativo indica que algunas normas son consecuen­
cia deductiva de otras. En efecto, si de un enunciado normativo cuantifi­
cado universalmente (como lo son las leyes generales promulgadas por 
el legislador) no se pudiera concluir deductivamente la totalidad de los 
enunciados normativos que refieren el contenido normativo de la ley gene-
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ral a cada uno de los súbditos (es decir si la regla de ejemplificación uni­
versal no fuera aplicable a las normas), entonces ningún súbdito tendría 
su conducta regulada por las leyes generales y éstas se convertirían en 
meros juguetes vistosos sin la significatividad normativa con que incues­
tionablemente son entendidas en la vida social. 

La dificultad indicada de la lógica de óntica expuesta en el dilema de 
Jórgensen cuyo primer cuerno (no es posible una lógica deóntica de nor­
mas) se muestra como incuestionablemente falso por las razones expues­
tas es un desafío sólo para la tesis de la primacía de la semántica. A la 
inversa constituye una virtud de los otros enfoques (el sintáctico y el abs­
tracto, que presentaremos a continuación) la circunstancia de que en ellos 
los enunciados descriptivos y los prescriptivos admiten sin dificultad un 
tratamiento en paridad de condiciones. 

IX. EL ENFOQUE GENERAL ABSTRACTO 

El hecho de que tanto las nociones sintácticas como las nociones semán­
ticas de consecuencia sean importantes candidatos para la reconstruc­
ción de la noción intuitiva y de que ambas son en definitiva nociones 
de consecuencia deductiva, a pesar de las enormes diferencias que las sepa­
ran, hace pensar en la existencia de rasgos comunes que ambos tipos de 
nociones comparten, y que, quizás, ellos suministren la pista para la carac­
terización de una noción general de consecuencia de la cual tanto el enfo­
que sintáctico como el semántico no sean más que especificaciones dife­
rentes. A responder a este interrogante y lograr así una noción general 
abstracta de consecuencia están destinados algunos trabajos de Tarski 
de la década del treinta, los primeros de los cuales (Tarski, 1930a y 1930b) 
preceden al artículo en donde T arski presenta su definición semántica 
(Tarski, 1936). Un rasgo fundamental del enfoque abstracto es que en 
él no se intenta, como en los otros enfoques (el sintáctico y el semán­
tico), caracterizar la noción de consecuencia por medio de esquemas de 
definición (como los expuestos anteriormente), sino señalando las pro­
piedades generales que identifican a toda noción de consecuencia (deduc­
tiva). Esto significa que la noción de consecuencia se toma como un tér­
mino primitivo (no definido) sujeto a varios axiomas que identifican sus 
propiedades esenciales. 

Para axiomatizar la noción de consecuencia T arski usó una función 
de consecuencia «Cn» que pertenece al metalenguaje de un lenguaje [" 

esto es, una función que aplicada a un conjunto de enunciados a de un 
lenguaje [, identifica otro conjunto de enunciados Cn(a) de [, como el 
conjunto de la totalidad de las consecuencias de a. El que no se repre­
sente la noción de consecuencia como una relación (como se hizo en el 
enfoque sintáctico y en el semántico) es sólo una diferencia técnica sin 
importancia conceptual, ya que el siguiente esquema permite pasar tanto 
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de una función de consecuencia a la correspondiente relación de conse­
cuencia como a la inversa: 

AECn(a) si y sólo si a 1- A (o a � A en su caso). 

Los siguientes cuatro axiomas exponen las propiedades esenciales 
(comunes) a toda noción de consecuencia desde la perspectiva de los pri­
meros trabajos de Tarski: 

(Cn.l) a � Cn(a) 
(Cn.2) Cn(a) = Cn(Cn(a)) 
(Cn.3) Si a � (3 entonces Cn(a) � Cn((3) 

(Inclusión) 
(Idempotencia) 

(Monotonía) 
(Cn.4) Si AECn(a) entonces hay un (3 � a finito 

tal que AECn((3) (Compacidad) 

Los dos primeros axiomas exponen propiedades muy intuitivas: que 
todo enunciado de un conjunto está entre las consecuencias de ese con­
junto (Inclusión) y que las consecuencias de las consecuencias de un con­
junto de enunciados son consecuencias del conjunto de partida (Idempo­
tencia). El tercero de los axiomas (Monotonía) indica que si algún 
enunciado es consecuencia de un conjunto de premisas a, él seguirá siendo 
consecuencia de cualquier ampliación (3 del conjunto de premisas; en otras 
palabras, que al agregar enunciados a un conjunto de premisas no se 
pierde ninguna de sus consecuencias. Este axioma responde a la idea de 
que las premisas de una inferencia deductiva son condición de garantía 
suficiente de sus consecuencias, de modo que cuando ellas están presen­
tes, aunque estén acompañadas por otros enunciados, sus consecuencias 
no se pierden por la presencia de tales premisas adicionales. Esta es una 
propiedad esencial de toda noción de consecuencia deductiva (que es la 
que estamos tematizando en este ensayo), es decir, que la monotonía es 
esencial para la idea de deducción más que para la de consecuencia en 
general. Si estuviéramos indagando una noción de consecuencia proba­
ble seguramente no esperaríamos que ella sea monótona. Uno de los focos 
de investigación actual en el área de la llamada Inteligencia Artificial está 
centrada en la indagación de nociones de consecuencia no monótonas, 
y por lo tanto, no deductivas. Pero como nuestro interés en este ensayo 
está circunscripto a la lógica deductiva, el postulado de monotonía ten­
drá que ser satisfecho por toda noción de consecuencia cuya caracteriza­
ción perseguimos. 

El cuarto axioma (Compacidad) impone a la noción de consecuencia 
una restricción finitista que, como señalamos anteriormente, tiene su ori­
gen en una sólida tradición vinculada a la noción sintáctica de conse­
cuencia, pero que es ajena al enfoque semántico. En este sentido él no 
expresa una propiedad que pueda atribuirse a toda noción de consecuencia 
deductiva por más deseable y atractiva que resulte su exigencia. Quizás 
por esta razón, y a pesar de su postulación por Tarski, ella no figura 
entre las condiciones actualmente exigidas en la caracterización general 
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abstracta de la noción de consecuencia deductiva. Por ello los axiomas 
con que se caracteriza tal noción son sólo los tres primeros. 

Una de las investigaciones más importantes y representativas de la 
lógica de este siglo, la memoria de G. Gentzen (Gentzen 1934) sobre la 
deducción lógica, está estructurada desde la perspectiva del enfoque abs­
tracto. Es más, el reconocimiento actual de la importancia de este enfo­
que deriva en mucha mayor medida de la repercusión de la obra de Gent­
zen que de la de Tarski sobre el tema. 

Gentzen, como Tarski, adoptó como primitiva la noción de conse­
cuencia deductiva y la caracterizó por el método axiomático (axiomas 
y reglas primitivas de inferencia). No obstante, su formulación difiere 
de la de T arski en algunos aspectos que conviene señalar, no sin advertir 
que el contenido conceptual de la obra de ambos autores es sustancial­
mente el mismo. 

Gentzen caracterizó una relación de consecuencia lógica, y no como 
Tarski una función de consecuencia. Ésta, como ya indicamos, es una 
diferencia totalmente accidental (para representarla usó la flecha «->>» . 
La segunda diferencia es sustancial; Gentzen generaliza la estructura de 
las relaciones de consecuencia sintáctica 1- y semántica � permitiendo 
la presencia de conjuntos de enunciados tanto a la izquierda como a la 
derecha de la flecha, de modo que los enunciados básicos (que llama 
secuentes) son del tipo «a -> (3)> (llamando «prosecuente» al que está a 
la izquierda de la flecha y «postsecuente» al de la derecha) JO. En reali­
dad esta diferencia hace que lo que la flecha representa no sea la relación 
de consecuencia sino una relación más general que Carnap (1943) llamó 
<<lógical involution» I J. Intuitivamente se espera tener a -> (3 si por lo 
menos uno de los elementos de (3 es verdadero cuando todos los elemen­
tos de a lo son. La relación de consecuencia lógica esta representada por 
el caso especial de los secuentes en que el postsecuente es un conjunto 
unitario (donde figura un y sólo un enunciado). 

Otra diferencia es que la flecha «-»> no es un signo del metalenguaje 
(del lenguaje donde figuran los signos lógicos) como lo es el signo de fun­
ción de consecuencia «Cn» de T arski, sino un signo incorporado al mismo 
lenguaje objeto en el que se encuentran los signos lógicos. Sin embargo, 
los únicos enunciados que son axiomatizados en su cálculo de secuentes 
son los secuentes y sólo indirectamente los enunciados corrientes de una 
lógica estándar. Es decir, los únicos enunciados axiomatizados son los 

10. En el texto los elementos O/ y {3 que integran un secuente ex --+ {3 son conjuntos de enunciados. 
En la obra de Gentzen son secuencias (conjuntos ordenados) de enunciados. Esta diferencia. que pro· 
bablemente sea un resabio de las secuencias que intervienen en la caracterización de la noción sintáctica 
de consecuencia, la hemos cancelado por cuanto en su presentación Gentzen introduce las postulacio­

nes que hacen irrelevante el orden de los elementos de las secuencias, las que en definitiva se comportan 
como simples conjuntos. 

11. Aparentemente Carnap descubrió, independientemente de Gentzen, las propiedades y la 
importancia de la generalización que representa la relación de «Iogical involuriol1» con respecto a la 
de consecuencia lógica. 
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enunciados del tipo «a ---> (3)> donde los elementos tanto de a como de 
(3 son enunciados de un lenguaje lógico estándar (en el caso de Gentzen 
son los enunciados del lenguaje de cuantificación). Nunca la flecha «---»> 
figura en el prosecuente a ni en el postsecuente (3. 

En este aspecto Gentzen sigue el camino de Lewis, ya que sus secuentes 
son, como las implicaciones estrictas de Lewis, enunciados del lenguaje 
objeto (destinados en ambos casos a dar cuenta de la relación de conse­
cuencia deductiva). Sin embargo, hay por lo menos tres muy importan­
tes diferencias con el encuadre de Lewis: 1) Los secuentes no forman 
parte, como las implicaciones estrictas, de un lenguaje modal, 2) Los 
secuentes permiten dar cuenta de la situación en que hay una pluralidad 
de premisas ya que lo que figura a la izquierda de la flecha es un con­
junto de enunciados y no un único enunciado como requiere la implica­
ción estricta de Lewis, y 3) la diferencia más sustancial con Lewis es 
que no se plantea el problema de las implicaciones estrictas anidadas ya 
que lo que tiene que figurar tanto como prosecuente como postsecuente 
son conjuntos de enunciados de un lenguaje de lógica estándar pero los 
secuentes mismos no son enunciados de ese tipo. 

No vamos a entrar en los detalles de la exposición de Gentzen; no 
obstante conviene señalar que su axiomatización de los secuentes es 
sustancialmente 12 coincidente con la de Tarski para su función de con­
secuencia. Los axiomas de Gentzen para la relación de consecuencia (no 
para la relación de <'¡ogical involution») son los tres: (Reflexividad Gene­
ralizada), (Corte) y (Monotonía) que se indicaron anteriormente para las 
relaciones sintácticas f- y semánticas � de consecuencia. Esto es, ellos 
son: 

(---> . 1 ) a ---> [A] si Aw 
(---> .2) Si a ---> [B] y aU[B] ---> [A] 

entonces a ---> [A] 
(---> .3) Si a ---> [A] entonces aU(3 ---> 

(Reflexividad Generalizada) 

(Corte) 
[A] (Monotonía) 

De este modo tanto en el caso de T arski como en el de Gentzen la 
lógica (cada lógica) está caracterizada por cada función (relación) abs­
tracta de conjuntos de enunciados de un lenguaje lL a conjuntos de enun­
ciados del mismo lenguaje que satisfaga las condiciones incluidas en las 
axiomatizaciones indicadas. 

Para conseguir cada lógica en particular sólo hay que agregar a los 
axiomas generales de la noción de consecuencia: (Inclusión), (Idempo­
tencia) y (Monotonía), otros que indiquen el comportamiento de los sig­
nos lógicos en el contexto de una función (relación) de consecuencia. 

12. En el texto se habla de una «sustancial» equivalencia entre los tres primeros axiomas de Tarski 
y las tres postulaciones de Gentzen. Sin embargo, para interderivar mutuamente los postulados de Tarski 
con los de Gentzen es necesario, como lo ha observado David Makinson, generalizar la regla de corte 
( � . 2 ) de la siguiente manera: si a � [B) para todos los BE¡3 y aU¡3 � [A) entonces a � [A) (en donde 
lo que se «corta» no es un enunciado B sino un conjunto (3 de enunciados). 
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Así, para conseguir, por ejemplo, la lógica proposicional clásica (para 
los signos lógicos usados en los ejemplos anteriores), basta con agregar 
(en una presentación que no sigue la forma de la lógica de secuentes de 
Gentzen, sino que representa más bien una versión que reproduce los 
esquemas de «deducción natural» creados también por el propio Gent­
zen en el trabajo comentado) los siguientes axiomas (a continuación un 
conjunto [Al) ... ,AnJ se escribirá simplemente A¡, ... ,An; se usará, ade­
más la constante de falsedad (lógica) « .1 » con el axioma que se indica): 

De Introducción 

(1.1\) A,B ---> (AI\B) 

(1.v.l) A---> (AvB) 
(1.v.2) B ---> (AvB) 
(1.:J) a ---> (A:JB) si 

aUA ---> B 
(1. ----, ) a ---> ----, A si 

aUA ---> .1 

(A . .l) .1 ---> A 
De Eliminación 

(E.I\.l) (AI\B) ---> A 
(E.I\.2) (AI\B) ---> B 
(E.v) aU (A v B) ---> C si 

aUA ---> C y aUB ---> C 
(E.:J.) A,(A:JB) ---> B 

(E. ----, ) a ---> A si 
aU ----, A ---> .1 

Claramente cada uno de estos postulados puede reformularse con fun­
ciones de consecuencia al estilo de Tarski. 

Igual procedimiento puede seguirse para las distintas lógicas: las lógi­
cas modales, las de los llamados condicionales contrafácticos, las de los 
condicionales derrotables (defeasible), los condicionales relevantes, las 
conjunciones asimétricas (temporales), la lógica intuicionista, etc., ya que 
se trata de un procedimiento general no circunscripto a ningún signo 
lógico ni sistema lógico en particular. 

En la presentación de los axiomas anteriores se ha seguido una impor­
tante idea de Gentzen: la de dividir los principios que caracterizan cada 
signo lógico en dos categorías: los de Introducción y los de Eliminación. 
Los primeros regulan la figuración del signo en la conclusión de una infe­
rencia (indican cómo introducir el signo en la conclusión en una deriva­
ción deductiva). Las segundas regulan la figuración del signo entre las 
premisas (indican cómo eliminar el signo al pasar de una premisa en que 
figura el signo a una conclusión). 

Esta idea de Gentzen responde a una concepción acerca del signifi­
cado de los signos lingüísticos característica del segundo período de la 
filosofía de Wittgenstein, según la cual el significado de un signo está 
determinado por las reglas que fijan su uso en cada contexto. La rela­
ción de consecuencia configura el contexto en el que la lógica se desarro­
lla, luego, el significado de un signo lógico se determina indicando cómo 
usarlo en las premisas y en la conclusión de la relación de consecuencia 
(los dos únicos lugares de esa relación). Esto es lo que se consigue al espe­
cificar las reglas de introducción y de eliminación. 
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El significado que el procedimiento anterior determina para un signo 
lógico, no es, por cierto, el significado semántico (del enfoque semán­
tico), ya que él no depende de las correlaciones referenciales entre len­
guaje y realidad efectuadas, en un enfoque semántico, por las funciones 
de interpretación, ni de la noción semántica de verdad. Tal significado 
se configura por medio de reglas sintácticas de inferencia, ya que esto 
es lo que en definitiva representan los axiomas anteriores de introduc­
ción y eliminación. De modo que es apropiado decir que en un enfoque 
abstracto los axiomas referidos a los signos lógicos determinan su signi­
ficado sintáctico J3. 

Así, en lo que hace a la especificación del significado de los signos 
lógicos e indirectamente a la identificación de cada lógica en particular, 
el enfoque abstracto comparte rasgos típicos del enfoque sintáctico. 

Con frecuencia se piensa que para un enfoque sintáctico los signos 
del lenguaje objeto carecen por completo de significación. En rigor esto 
no es así, ya que los signos lógicos tienen un significado (sintáctico) que 
reciben de las reglas que fijan su uso en los contextos de consecuencia, 
si bien es cierto que los demás signos (los que no son lógicos) carecen 
totalmente de (o por lo menos no se considera, en un enfoque sintáctico 
o abstracto, su) significación. Por el contrario en un enfoque semántico 
todos los signos del lenguaje tienen (en cada modelo) significación. Los 
signos lógicos reciben su significación (semántica) a través de las cláusu­
las que determinan las condiciones de verdad de los enunciados en que 
ellos figuran (cláusulas que son comunes a todos los modelos de cada 
lógica). En este sentido, la pretensión (vinculada a veces a la tesis de la 
primacía de la semántica) de que sólo en un enfoque semántico los sig­
nos lógicos tienen signifido es un exceso equivocado. 

Desde esta nueva perspectiva sólo el enfoque abstracto logra dar una 
caracterización general de la lógica, ya que sólo desde ese ángulo es posible 
explicar la razón por la cual lo que se define, tanto desde el enfoque 
semántico como desde el enfoque sintáctico, son efectivamente relacio­
nes de consecuencia. La noción central de la lógica es, en este sentido, 
conceptualmente independiente de las características del método axio­
mático al que está anclado el enfoque sintáctico. La circunstancia de que 
la lógica sea un instrumento indispensable en la organización conceptual 
interna de cualquier disciplina a través de su organización deductiva (que 
justifica la peripatética concepción de la lógica como organon de todo 
conocimiento) y de que la lógica misma sea susceptible de una estructu­
ración axiomática no significa que sólo a través de ese método ella tenga 
que ser identificada. 

Lo anterior también implica que la lógica es de igual modo concep­
tualmente independiente de las nociones semánticas, y en particular de 
la noción de verdad. Nada de esto, por cierto, desmerece el valor de la 

13. Para una defensa del enfoque abstracto como el expuesto en el texto, ver Belnap (1962) escrito 
en respuesta a la tesis de la primacía de la semántica sostenida por Prior (1960). 
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utilización del método axiomático en la lógica ni la importancia de las 
nociones semánticas en la apreciación de las calidades de cada lógica en 
particular. 

Con frecuencia a lo largo de este artículo, siguiendo la forma más 
corriente de referirse al tema, hemos hablado de la lógica como si fuera 
una disciplina única. Sin embargo, para ser fieles al desarrollo histó­
rico y a la situación actual, debe decirse que la expresión "Lógica» es 
un término genérico que se aplica a una pluralidad de disciplinas con 
características y aspiraciones diversas. Puede haber, y de hecho hay, 
muchas lógicas diferentes 14. Cada lógica (cada uno de los ejemplos de 
la expresión genérica Lógica) es identificada extensionalmente (como 
también lo hemos hecho en este artículo) con una única relación de con­
secuencia. También hemos visto que cada lógica (cada relación de con­
secuencia) puede ser intensionalmente identificada básicamente a tra­
vés de dos procedimientos diferentes que requieren la satisfacción de 
propiedades distintas de cada relación de consecuencia. Así, en un enfo­
que sintáctico en el que, por ejemplo, se use el esquema de definición 
(Def. 3) tienen que satisfacerse las propiedades sintácticas que esta defi­
nición requiere respecto de un conjunto de enunciados de !L, identifica­
dos como axiomas y respecto de un conjunto precisamente identificado 
como reglas de inferencia primitivas. Por el contrario, en un enfoque 
semántico en el que, por ejemplo, se use el esquema de definición (Def. 
2.2), no son las anteriores las propiedades que la relación de consecuen­
cia tiene que satisfacer sino que debe satisfacer las que (Def. 2.2) exige 
respecto de los modelos semánticos correspondientes. Sin embargo, lo 
que siempre tiene que satisfacer cada relación para ser una relación de 
consecuencia lógica deductiva son las tres propiedades postuladas en 
el enfoque abstracto. En este sentido el enfoque abstracto y sólo él, per­
mite una definición del término genérico Lógica, ya que en él se con­
templan las propiedades que cada uno de los individuos del género (cada 
una de las relaciones de consecuencia deductiva) tiene que poseer para 
pertenecer al género Lógica. Una relación de consecuencia es una lógica 
deductiva si y sólo si es reflexiva, monótona y valida el principio de 
«corte». 

El permitir una definición general de la lógica es la virtud principal 
del enfoque abstracto. Sin embargo, no debemos olvidar que, comple­
tado con el sentido sintáctico de los signos lógicos anteriormente men­
cionado, el enfoque abstracto da respuesta al dilema de ]órgensen al 
explicar cómo son posibles lógicas referidas a enunciados que carecen 
de valor de verdad, superando así la dificultad indicada en VIII a la tesis 
de la primacía de la semántica. 

J 4. Sobre el importante tema de si las diferentes lógicas son rivales entre si o si son comple­
mentarias y pueden ser integradas en única lógica omnicomprensiva, sólo se harán algunos breves 
comentarios en el apartado x. 
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x. LA JUSTIFICACIÓN INTUITIVA 

En ciertos casos las reglas que determinan el significado sintáctico de los 
signos lógicos tienen, desde el punto de vista intuitivo, exactamente el 
mismo contenido conceptual que las cláusulas para la noción semántica 
de verdad que fijan el significado semántico de tales signos. Tal es clara­
mente el caso cuando se comparan las reglas contenidas en los axiomas 
de introducción y de eliminación para la forma de conjunción conside­
rada «/\» con la cláusula (iii) por la que se determina el significado semán­
tico de dicha conjunción. En efecto, tanto unas como otras intuitivamente 
indican la identidad conceptual de una conjunción con el par de sus con­
yuntos. 

Lo anterior no sucede (ni se pretende que suceda) con todas las mane­
ras usadas para fijar el significado sintáctico y semántico de los diferen­
tes signos lógicos que interese tematizar. Es un lugar común a todos los 
enfoques de la lógica que la apreciación intuitiva requiere considerar la 
totalidad de los principios que cada lógica convalida para cada uno de 
los signos lógicos en ella incluidos. 

Así, por ejemplo, las llamadas «paradojas de la implicación material»: 

(P.�.l) A� (B�A) 
(P.�.2) �A � (A�B) 

(que la implicación material comparte con la implicación intuicionista) 
muestran un desacuerdo conceptual entre, por un lado, los significados 
semánticos y sintácticos de las nociones de implicación de la lógica clá­
sica y de la intuicionista, y por otro, los significados paradigmáticos de 
las construcciones condicionales de los lenguajes corrientes en uso. 

La no satisfacción de la segunda (P. � .2) es la motivación principal 
que ha llevado a la construcción de las lógicas de los condicionales con­
trafácticos. Un condicional contrafáctico es aquél cuyo antecedente es 
de hecho falso. Aceptar (P. � .2) para los condicionales contrafácticos 
implica comprometerse a aceptar que todo condicional contrafáctico es 
siempre verdadero. Podemos creer que si Aristóteles hubiera conocido 
la lógica clásica contemporánea la habría aceptado, o podemos creer que 
si Aristóteles hubiera conocido tal lógica no la habría aceptado, lo que 
sí resulta completamente desquiciado es creer que hay alguna razón con­
ceptual (vinculada a la noción corriente de condicionalidad) para tener 
que aceptar los dos condicionales anteriores por el sólo hecho de que Aris­
tóteles, dada la época en que le tocó vivir, nunca conoció la lógica con­
temporánea. 

Dar la satisfacción a estos desacuerdos intuitivos entre las lógicas 
conocidas y nuestra manera corriente de conceptualizar la realidad a través 
de los lenguajes que a diario usamos es la motivación explícita que sub­
yace a la creación de las distintas lógicas para los condicionales contra­
fácticos. Además, es el tipo de motivación que justifica la creación de 
una gran mayoría del enorme espectro de lógicas que pueblan la lógica 
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contemporánea. Sin embargo, es dable reconocer que muchas lógicas han 
surgido motivadas sólo por consideraciones formales, como las de inda­
gar qué sucede si se generaliza, se restringe o de alguna forma se modi­
fica alguno o algunos principios de una lógica ya conocida. 

A esta altura se plantean varios interrogantes filosóficamente rele­
vantes: 

1) ¿Por qué no hay una única lógica, por lo menos para cada uno 
de los términos sincategoremáticos del lenguaje? 

2) Las fallas denunciadas como paradojas intuitivas ¿no son un sín­
toma de que se ha deslizado algo falso en las lógicas que las padecen? 

3) La buscada correlación entre las lógicas desarrolladas con rela­
ción a lenguajes artificiales y el alcance conceptual de sus pretendidos 
correlatos de los lenguajes corrientes en uso, que por cierto es el instru­
mento con que pensamos a diario ¿no muestran lo justificado de la pre­
tensión descriptiva de la antigua concepción de la lógica como la ciencia 
de nuestro modo de pensar (de las leyes del pensamiento)? 

Es innegable que los lenguajes artificiales con relación a los cuales 
se identifican cada una de las distintas lógicas surgieron con el propósito 
de suministrar reconstrucciones racionales de conceptos que encuentran 
su expresión natural en los lenguajes corrientemente usados. También 
es verdad que no hay lógica que no esté afectada por alguna disonancia 
intuitiva. Tales discrepancias pueden detectarse tanto en sus presenta­
ciones sintácticas como en sus presentaciones semánticas. Este aspecto 
es importante, porque muestra que tanto el significado sintáctico como 
el significado semántico de los signos de un lenguaje artificial son perfec­
tamente inteligibles en sí mismos, ya que en caso contrario no podrían 
compararse con la significación del lenguaje natural y no existirían las 
paradojas intuitivas. 

Lo anterior, sin embargo, no implica que la existencia de discrepan­
cias intuitivas signifique que se haya deslizado alguna falsedad en la lógica 
en que ellas se producen. Así la conjunción clásica «/1», considerada usual­
mente como el signo lógico de máxima semejanza con sus correlatos del 
lenguaje corriente, tiene discrepancias intuitivas, ya que, tanto por su sig­
nificado sintáctico como por el semántico, resulta que es una operación 
conmutativa, en el sentido de que el orden de los conyuntos es irrele­
vante: (A /1 B) significa lo mismo que (B /1 A). No obstante hay típicas 
construcciones conjuntivas del lenguaje corriente que carecen de esta pro­
piedad: no es equivalente «se casaron y tuvieron un hijo» a «tuvieron 
un hijo y se casaron». 

De ello no debe inferirse que haya algún error en las leyes y reglas 
de la conjunción clásica, ya que ellas están plenamente justificadas por 
el significado (sintáctico y semántico) atribuido a esa forma de conjun­
ción. Lo que la discrepancia intuitiva muestra es que la conjunción clá­
sica no reconstruye todas las construcciones conjuntivas corrientes. La 
discrepancia sólo muestra la necesidad de restringir el ámbito de aplica-
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bilidad (con relación a las construcciones corrientes) de esa forma de con­
junción. El propósito reconstructivo se vería frustrado sólo cuando tal 
ámbito fuera vacío. Pero aun en ese caso no significa la inclusión de fal­
sedad alguna en la lógica clásica de la conjunción, ya que es sólo su valor 
práctico de utilidad el que se encontraría cuestionado, valor que podría 
reivindicarse con razones diferentes. 

Desde la anterior perspectiva la coexistencia de una pluralidad de lógi­
cas, cada una de ellas plenamente justificadas en sí mismas, no debe ser 
motivo de extrañeza. Es más, los principios de cada lógica pueden ser 
vistos como analíticos en el sentido en que ellos se justifican apoyándose 
únicamente en el significado (sintáctico o semántico según cuál sea la natu­
raleza del enfoque con que se identifica la significatividad de los signos 
lógicos) de sus expresiones constituyentes. La tesis expuesta corresponde 
sustancialmente a la de Quine (Quine, 1970) frente a la cuestión de las 
lógicas alternativas y rivales que él sintetiza en el dictum: cambio de lógica 
implica cambio de tema. No hay ni puede haber rivalidad entre dos lógi­
cas diferentes porque un cambio en los principios supone un cambio en 
el significado de los signos lógicos que en ellos figuran. 

Así, por ejemplo, la lógica de la implicación intuicionista está carac­
terizada por la adopción de los dos axiomas (I. �) y (E. �) como criterio 
para el significado (sintáctico) del signo de implicación. La implicación 
material se constituye cuando además de los anteriores se postula el 
siguiente axioma de eliminación 15: 

(E. � .1) ((A � B) � A) -> A (Principio de Peirce) 

Naturalmente una caracterización semántica de la implicación intui­
cionista requiere una estructura semántica 16 distinta de la ofrecida ante­
riormente para el condicional clásico y condiciones de verdad distintas 
a las incluidas en la cláusula (v). 

Las dos lógicas son diferentes porque sus principios no son los mismos 
(en la intuicionista el principio de Peirce no vale), pero esto implica que el 
signo de implicación tiene en cada una de ellas un significado diferente. 

Con este alcance dos lógicas diferentes no pueden ser rivales. Natu­
ralmente, esto no excluye una necesaria rivalidad en el ámbito de su apli­
cación. Pero con ello nos vamos del área de la significatividad sintáctica 
y semántica para entrar en el de la justificación intuitiva en la compara­
ción con las construcciones correspondientes del lenguaje corriente. Es 
sensato pensar que es precisamente en este área donde hay que buscar 
una de las fuentes, no por cierto la única, de justificación de toda lógica. 

La justificación pragmática de una lógica por el ámbito del lenguaje 
corriente que logra reconstruir es quizás el grano de verdad contenido 

15. La circunstancia de que en la presentación precedente de la lógica clásica no se incluyó al 
principio de Peirce es porque en presencia de (1. --, ) y (E. --,), (E. :::J. 1) se deriva de (1. :::J) Y (E. :::J). 

16. La semántica estándar para la lógica intuicionista, al igual que la semántica de las lógicas 
modales, recurre a la noción de «mundo posible». 
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en la concepción tradicional de la lógica como versando acerca de las 
<<leyes del pensamiento». 

Lo anterior no descalifica la pretensión de buscar reemplazar la plu­
ralidad de lógicas por una única lógica general. La idea sería la siguiente: 
incorporar en un único sistema de lógica todos los signos lógicos que ten­
gan un ámbito de aplicación no vacío, precisando además cuál es el ámbito 
de aplicación de cada uno de los signos lógicos con significado (semán­
tico y sintáctico) diferente. 

Si tal proyecto es o no, en definitiva, realizable, no podemos respon­
der. El hecho es que hasta ahora no es mucho lo que se ha hecho en esa 
dirección. No obstante, hay que tomar en cuenta la siguiente adverten­
cia limitativa. 

No es sensato esperar entre la lógica reconstruida en un lenguaje 
artificial y la «lógica del lenguaje natural» una suerte de correlación como 
la requerida en (Corr. 1) entre los enfoques sintáctico y semánticos, por­
que en un sentido importante no hay una lógica coherente en el len­
guaje natural. El lenguaje corriente no sólo está plagado de ambigüe­
dades, vaguedades y toda suerte de imprecisiones significativas que 
justifican apartarse de él en los procesos de reconstrucción racional, sino 
que acumula en su seno intuiciones incompatibles que no pueden supe­
rarse más que reformándolo, abandonando intuiciones que pueden ser 
muy sólidas. 

La siguiente situación es un ejemplo de la dificultad anterior. 
Pocas cosas son más intuitivas que la necesidad de rechazar el princi­

pio de la lógica clásica (compartido con casi todas las lógicas salvo las 
lógicas relevantes y las paraconsistentes) de que de dos enunciados con­
tradictorios (y de todo conjunto inconsistente) todo enunciado es conse­
cuencia deductiva. Lo que se rechaza es el principio de Duns Escoto: 

(DE) A, ----, A ..... B 

Igualmente es muy difícil no admitir la enorme intuitividad de la regla 
de Introducción de la Disyunción (Lv.1), el principio de monotonía ( ...... 3), 
el principio del Silogismo Disyuntivo: 

(SD) ----, A,(AvB) ..... B 

y de la suerte de transitividad de la noción de consecuencia representada 
por la regla de Corte ( ...... 2). 

Lamentablemente todas estas fortísimas intuiciones no pueden con­
vivir coherentemente ya que la aceptación de los cuatro últimos princi­
pios compromete a la aceptación del principio de Duns Escoto. La 
siguiente es una derivación de (DE) a partir de los otros cuatro princi­
pios indicados: 

(1) A, ----, A ..... (AvB) 
(2) A, ----, A, (AvB) ..... B 
(3) A,----,A ..... B 
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La más leve aspiración de coherencia nos competen a rechazar alguna 
de estas sólidas intuiciones, pero por otro lado no hay base intuitiva para 
el sacrificio de ninguna. 

La conclusión de esta paradoja intuitiva es que cualquiera que sea 
la lógica que terminemos privilegiando, ella tendrá que apartarse de las 
intuiciones básicas incorporadas al esquema de conceptos de los lengua­
jes corrientes. Esto implica abandonar una idea reconstructivista con pre­
tensiones de resultados unívocos. 

Mantener a toda costa el rechazo del principio de Duns Escoto es 
la motivación subyacente a la construcción de las llamadas Lógicas Rele­
vantes, y es también una de las motivaciones más importantes de las Lógi­
cas Paraconsistentes. En verdad en ellas se reconstruyen intuiciones fun­
damentales, pero queda abierta la pregunta pragmática de si no es más 
conveniente dejar tales intuiciones a un lado ya que, en definitiva, no 
se puede dar satisfacción a todas las intuiciones corrientes. 

Estas últimas reflexiones quizás recojan el grano de verdad contenido 
en la vieja concepción normativa de la lógica como disciplina acerca de 
como se debe pensar. 
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José A. Robl e s  Ca rcía 

En las siguientes páginas se presenta un sucinto panorama histórico de 
la lógica dividido en las siguientes secciones: 1. Lógica griega; 11. Lógica 
medieval; III. La lógica antes de Frege; IV. La lógica de Frege; V. Des­
pués de Frege. 

Ciertamente muchas cosas quedarán fuera de este panorama y el deta­
lle de algunos de los diferentes temas que aquí presentaré o a los que sólo 
aludiré, lo encontrará el lector en los diversos artículos de esta enciclo­
pedia dedicados precisamente a esa tarea. 

El tema de la lógica medieval, aun cuando per se es de gran impor­
tancia por la variedad y riqueza de tratamiento de diversos tipos de infe­
rencias, me veo precisado a bosquejado tan solo, tomando tres temas 
centrales, pocos ejemplos y menos autores y matices. 

I. LÓGICA GRIEGA 

1. Aristóteles 

Con el trabajo de Aristóteles (384-322 a.c.) surge la lógica en el mundo. 
Él desarrolla la teoría del silogismo, a la que se alude cuando se habla 
de la lógica aristotélica como un antecedente remoto de la lógica con­
temporánea. 

En el despliegue de la parte central de su teoría, Aristóteles sólo con­
sidera cuatro tipos diferentes de enunciados o proposiciones a partir de 
los cuales formula sus propuestas de argumentación válida. Los cuatro 
enunciados (o, mejor, jonnas enunciativas, esto es, expresiones en las que 
figuran variables y que se convierten en enunciados una vez que estas 
variables se sustituyen por las expresiones adecuadas correspondientes) 
en cuestión son el universal afirmativo, 'Todo S es P' (A), el universal 
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negativo, 'Ningún S es P' (E), el particular afirmativo, 'Algún S es P' (1) 
yel particular negativo 'Algún S no es P' (O). En donde las letras 'S' y 
'P' son variables predicativas que toman como valores sustantivos gene­
rales, de tal manera que una forma enunciativa del tipo (1), 'Algún S es 
P', se convierte en el enunciado 'Algún hombre es mortal' al sustituir 'S' 
y 'P' por 'hombre' y por 'mortal', respectivamente. Finalmente es preciso 
señalar que Aristóteles también consideró otra clase de enunciados, los 
individuales, como 'Sócrates es mortal', que comentaristas posteriores asi­
milaron a los enunciados universales afirmativos, creando bastante con­
fusión, pues la predicación tiene características diferentes en ambos casos. 

La manera gráfica, postaristotélica, de representar las relaciones lógi­
cas entre los enunciados (formas enunciativas) categóricos aristotélicas 
(A, E, 1, O), se conoce con el nombre de cuadrado de oposición y es el 
siguiente: 

A 
contrarias 

E 
c s 

o a 
s n s 
u r u 
b r o b 
a a a 
l d c l 
t t 
e d c e 
r a r 
n r o n 
a t r a 
s n s 

o a 
c s 

subcontrarias 
O 

Las relaciones lógicas que se dan entre estos enunciados son: los con­
trarios (A, E; esto es, los enunciados universales), pueden ser ambosfal­
sos, pero no ambos verdaderos; los subcontrarios (1, O; esto es, los enun­
ciados particulares), en cambio, pueden ser ambos verdaderos, pero no 
ambos falsos; por otra parte, con respecto a la subalternación, de la ver­
dad de cualquiera de los contrarios (A, E), se sigue la verdad del subcon­
trario correspondiente (1, O) Y de la falsedad de cualquiera de los subal­
ternos (1, O), se sigue la falsedad del contrario correspondiente (A, E). 
Finalmente, los enunciados contradictorios tienen siempre valores verita­
tivos opuestos: si uno de ellos es verdadero, el otro es falso ya la inversa. 

La silogística aristotélica forma parte de la que hoy se considera la 
teoría general de la inferencia deductiva. Conforme a ésta, se define lo 
que es un argumento deductivo válido (y aquí tendremos que apelar a 
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las formas enunciativas, sin entrar en demasiados detalles) como un con­
junto de enunciados, ej, e2, • • •  , en, tales que éstos provienen de formas 
enunciativas tales que es imposible que haya una sustitución (de las varia­
bles por predicados) en la que los enunciados resultantes, e¡ (1 � j < n), 
sean todos verdaderos y en sea falso. A los enunciados e¡ se les denomina 
premisas del argumento y al enunciado en se le llama conclusión. En la 
silogística aristotélica se estudian argumentos formados por sólo dos pre­
misas y conclusión, donde estos tres enunciados (formas enunciativas) 
serán, todos, sólo de alguna de las formas A, E, 1, O arriba mencionadas. 

Aristóteles desarrolla la teoría del silogismo considerando todas las 
formas válidas posibles de inferencia dentro de este esquematismo lógico. 
Conforme a él, son válidas las inferencias que, de un enunciado univer­
sal como premisa van a un enunciado particular como conclusión, es decir, 
los siguientes esquemas (formas de argumento) muestran formas válidas 
de inferencia: 

Todo S es P 

Algún S es P 

Ningún S es P 

Algún S no es P 

Estos esquemas (que corresponden a la relación de subalternación; 
cf. supra, p. 50), aun cuando tienen una apariencia intuitiva correcta, 
fueron puestos en cuestión, como veremos (cf. infra, pp. 63 ss.), por los 
lógicos contemporáneos. 

Los silogismos aristotélicos, según lo señalé, son esquemas de argu­
mentación compuestos de dos premisas y una conclusión. En los silogis­
mos, para ser tales, deben de figurar, entre premisas y conclusión, exac­
tamente tres términos, es decir, sólo tres expresiones diferentes de las que 
forman los sujetos y los predicados de los tres enunciados. Un ejemplo 
de silogismo esquema es el siguiente: 

premIsa menor 
premIsa mayor 

conclusión 

Todo B es C 
Todo C es D 

.. Todo B es D 

En donde los tres términos diferentes están representados por las tres 
letras 'B', 'C' y 'D'. A partir de esta composición los términos reciben 
los siguientes nombres: 'D', el predicado de la conclusión, se denomina 
término mayor; 'B', el sujeto de la conclusión, se denomina término menor 
y, finalmente, 'C', el término que figura sólo en las dos premisas, se deno­
mina término medio. A partir de estas denominaciones, las premisas reci­
ben los nombres de, premisa mayor, aquella en la que figura el término 
mayor y premisa menor, aquella en la que figura el término menor, sin 
importar el orden en el que tales premisas se encuentren colocadas. 

Tras las observaciones anteriores, podemos entender la agrupación 
que hace Aristóteles de los silogismos en tres figuras bajo las que caen 
diversos modos. Las figuras dependen de la colocación de los términos 
en las premisas y los modos dependen del tipo de enunciados que for-
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men el silogismo. De acuerdo con esto, las figuras del silogismo aristoté­
lico son: 

1 � figura 

C-D 
B-C 

B-D 

2� figura 

D-C 
B-C 

B-D 

3� figura 

C-D 
C-B 

B-D 

mayor 
menor 

conclusión 

y los modos en cada una de las figuras anteriores, son: 

1 � figura 2 � figura 3 � figura 

A, Al A 
E, AlE 
A,l/I 

E, l/O 

E, AlE 
A, ElE 

E, l/O 
A,OIO 

A, A/I 
A,I/I 

E,AIO 
E, l/O 
1, A/I 
O,AIO 

Lo que muestra el esquema anterior es el tipo de premisas y de conclu­
sión que pueden figurar en esquemas válidos (el supra, p. 51) de silogismo 
en cada una de las tres figuras. Así, el caso A, AlA de la primera figura señala 
que en esa figura es válido un silogismo cuyas dos premisas y conclusión sean 
enunciados universales afirmativos (A). En la segunda figura la conclusión 
siempre es negativa (E u O) y, por esto, una de las premisas debe se negativa. 

En la tercera figura todas las conclusiones son particulares (1 u O). 
Las reglas de construcción de los silogismos determinan cuáles son 

las formas válidas posibles dentro de cada una de las figuras. 
A la muerte de Aristóteles se añade, a las tres figuras aristotélicas, 

una cuarta figura (atribuida falsamente -según los Kneale- a Galeno, 
siglo 11 de nuestra era), con seis modos válidos. Esta cuarta figura invierte 
la estructura de las premisas de la 1 � figura: 

premisa mayor 
premisa menor 

conclusión 

2. Megárieos y estoicos 

4 � figura modos 

D-C A, A/I A, ElE 
C-B 1, A/I E,AIO 

B-D E, l/O A, EIO 
. . 

En el caso de los megáricos y de los estoicos poco podemos decir, ya que 
hay escaso material conservado acerca de su trabajo. Los megáricos, seña­
lan los Kneale, hicieron tres aportaciones a la lógica en lo relativo a las 
paradojas, a una destacada revisión de los conceptos modales y comen­
zaron un importante debate con relación a los enunciados condiciona­
les. En lo que sigue algo se dirá acerca de la tercera propuesta y muy 
poco acerca de las dos primeras. 
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De las paradojas megárico-estoicas que hasta nosotros han llegado hay 
que subrayar la muy conocida del mentiroso, atribuida a Eubúlides: Si 
alguien dice 'estoy mintiendo', ¿es verdadero o falso esto que dice? Aquí 
vale recordar mínimamente las alternativas: si lo que dice es verdad, enton­
ces, está mintiendo, por tanto, lo que dice es falso, entonces no está min­
tiendo; por otra parte, si lo que dice es falso, entonces no está mintiendo, 
esto es, está diciendo la verdad, a saber, está mintiendo. La conclusión 
es, entonces, que si está mintiendo está diciendo la verdad y si está diciendo 
la verdad, entonces está mintiendo. Esto muestra que el sujeto, a la vez, 
miente y no miente. Pero los dos enunciados no pueden ser verdaderos 
dentro de una lógica bivaluada en la que vale una ley equivalente a la seña­
lada para los enunciados contradictorios (cf supra, pp. 50-51). 

Con respecto a la naturaleza de los enunciados condicionales, los pri­
meros en estudiarlos, de acuerdo a los Kneale, fueron Diodoro Crono 
y su discípulo Filón. Lo que nos dicen acerca de esto es que «Sexto Empí­
rico, al reseñar la disputa sobre los condicionales, señala que Filón sos­
tiene que un condicional correcto (V,,/tE5 aV/Jr¡p,¡ú:/Jo/J) es uno que no 
comienza con una verdad y concluye con una falsedad; pero Diodoro 
dice que un condicional así es uno que no comienza ni puede comenzar 
con una verdad y acabar con una falsedad .. . ». En el primer caso, el de 
Filón, tenemos la que Russell denominó 'implicación material'; conforme 
a la caracterización de Filón, un condicional como «si ahora es de día 
entonces 2 + 2 = 5» será verdadero si se dice de noche, en tanto que nunca 
será verdadero, de acuerdo a la caracterización de Diodoro, ya que puede 
comenzar con una verdad, si el condicional se dice de día, y concluirá 
con una falsedad. De acuerdo a la propuesta de Diodoro, entonces, un 
condicional será verdadero con sólo que su antecedente (o la parte que 
viene después de 'si' y antes de 'entonces') sea siempre falso o que su con­
secuente (o la parte que viene después de 'entonces') sea siempre verda­
dero; de esta manera, se cumple con la exigencia de que nunca se dé el 
caso de que el antecedente sea verdadero y el consecuente falso. 

La implicación de Filón (implicación material) es la implicación de 
la lógica clásica contemporánea, en tanto que el último tipo de implica­
ción, la de Diodoro, es la relación de implicación lógica o implicación 
estricta que adoptó C. I. Lewis en su lógica modal. 

II. LÓGICA MEDIE V AL 

Los lógicos medievales no llegan a formular una teoría lógica tan plena­
mente formalizada como la que tenemos hoy en día por la razón de que 
su interés se centraba en estudiar y formular las leyes lógicas de una lengua 
natural, el latín, a diferencia de la práctica de los lógicos contemporá­
neos, cuyo interés es, más bien, el estudio y la construcción de lenguajes 
simbólicos (artificiales), que tengan ciertas propiedades que se conside­
ran útiles teniendo en cuenta ciertos propósitos a la vista. 
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Sin embargo, un rasgo básico que establece una fuerte liga entre los 
lógicos medievales y el trabajo contemporáneo en esta disciplina, es la 
clara conciencia que tenían los primeros de que la misma es un estudio 
de estructuras formales y que precisamente era por medio de la forma 
de las proposiciones como se podrían evaluar los argumentos y determi­
nar los casos de consecuencias lógicas correctas. 

Para poner lo anterior de relieve sigo, en parte, a Philoteus B6hner 
y señalo las que él considera las principales aportaciones de esta época. 
Los encabezados bajo los que las reúne, son: 'Términos sincategoremá­
ticos' , 'Teoría de la suposición' y 'Teoría de las consecuencias'. 

1. Términos sincategoremáticos 

Sobre los términos sincategoremáticos o palabras cosignificantes, B6h­
ner señala que hay una fuerte relación entre el uso escolástico y el estoico 
de las mismas. En ambos casos se usa la misma palabra y se le da el mismo 
significado. Bochenski también encuentra una fuerte relación con los estoi­
cos y señala, por su parte (1961,189), que la teoría de las consecuencias 
es «esencialmente un avance de la lógica proposicional estoica», aun 
cuando, quizás, no hubo ninguna influencia estoica directa en la cons­
trucción medieval. 

Los términos sincategoremáticos se contrastan con los categoremáti­
cos; éstos, según lo señala Alberto Magno, son los «que, tomados signi­
ficativamente, pueden ser sujetos o predicados -o parte del sujeto o parte 
del predicado distribuido- de una proposición categórica; por ejemplo, 
los términos 'hombre', 'animal', 'piedra', se llaman categoremáticos por­
que tienen una significación definida y cierta» (Perutilis logica, § 44). Los 
términos sincategoremáticos, en cambio, son los que no pueden ser suje­
tos ni predicados de una proposición (a menos que se tomen material­
mente, como en <<

'Y' es una conjunción») y, en el caso preciso de la lógica, 
esos términos son los «signos universales o particulares» (como los llama 
Alberto: ibid.), que son nuestros cuantificadores, así como las conecti­
vas lógicas: negación, conjunción, disyunción, etc. Lo que B6hner señala 
acerca de estos términos es que la importancia que los escolásticos les 
dieron señala con claridad que tenían muy en cuenta el carácter formal 
de sus investigaciones. Los términos sincategoremáticos que aquí hemos 
señalado son los pertinentes para el estudio de la lógica, ya que influyen 
directamente en la verdad o en la falsedad de las proposiciones. 

Para mostrar cómo entendían los autores medievales la función de 
los términos sincategoremáticos, vuelvo a citar a Alberto de Sajonia quien, 
al responder la objeción de que, aparentemente, «y» puede formar parte 
del sujeto de una proposición, como, por ejemplo, en 'Sócrates y Platón 
corren', parece ser que el sujeto es «Sócrates y Platón», Alberto dice, 

... en la proposición 'Sócrates y Platón corren', "y" no es parte del sujeto, sino que 
solamente son sujetos el término 'Sócrates' y el término 'Platón'; esto es claro, pues 
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la contradictoria es 'Sócrates o Platón no corren'; pero ambas proposiciones no serían 
contradictorias si "Y» fuese parte del sujeto de la primera, pues entonces las dos 
proposiciones no tendrían el mismo sujeto. 

(ibid. § 52) 

De las consideraciones anteriores, Alberto precisa los sentidos de con­
secuencias material y formal y, según lo señala acertadamente Bbhner, 
e! uso que se les da a los términos categoremáticos escolásticos es como 
el de nuestras variables predicativas y los términos sincategoremáticos 
se presentan como nuestras constantes lógicas. En otro pasaje de su Peru­
tilis logica, Alberto nos dice: 

975. De las consecuencias, una es formal Y otra materiaL .. 
976 . ... Y tal como hablo aquí de formas Y materia, se entiende por materia 

de la proposición o de la consecuencia, los términos puramente categoremáticos 
-como son los sujetos Y los predicados-, prescindiendo de los sincategoremas que 
les acompañan Y por los que tales se coordinan o distribuyen, al ser llevados a un 
determinado modo de suposición. 

977. Ya la forma se dice que pertenece todo lo demás; de modo que la cópula, 
tanto de la categórica como de la hipotética, pertenece a la forma de la proposi­
ción. Del mismo modo, las negaciones y los signos y el orden mutuo de éstos y 
los modos de significar pertinentes a la cantidad de la proposición categórica, como 
la discreción, comunidad, etc ... 

(§ 975-7) 

Al considerar la teoría de las consecuencias volveremos sobre el tema 
que aquí aparece apuntado acerca, justamente, de las consecuencias for­
males, que según dije al iniciar esta sección, son e! núcleo de! estudio 
de la lógica. 

2. Teoría de la suposición 

Bajo e! nombre de proprietates terminorum, se estudiaron, principalmente 
en la baja Edad Media, la significatio, la copulatio, la appelatio y la sup­
positio. La teoría de las proprietates terminorum creció en complejidad 
a medida que diversos autores daban diferentes formulaciones de las mis­
mas e introducían matices y distinciones varias en ellas. Nuevamente aquí 
se hace palpable la diferencia, ya señalada, en la manera de tratar la lógica 
por parte de los escolásticos y de los autores modernos. Los primeros 
ofrecen análisis de! latín (un lenguaje natural), a diferencia de los segun­
dos que proponen sus análisis de un lenguaje artificial. 

A pesar de las diferencias en el tratamiento, Bbhner (pp. 29-30), 
encuentra similitudes entre la teoría de la suppositio medieval y e! cál­
culo funcional contemporáneo. En cambio, acerca de la misma supposi­
tio, Bochenski (1961, 162-3) nos dice que la doctrina fue una de las crea­
ciones más originales de los escolásticos, pero desconocida tanto para 
la lógica antigua como para la moderna. 
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Aquí sólo menciono la doctrina y algunas de los importantes autores 
que escribieron sobre ella: Guillermo de Shyreswood, Tomás de Aquino, 
Vicente Ferrer, Walter Burleigh, Guillermo de Ockham, etc. 

3. Teoría de las consecuencias 

Una doctrina en la que puedo detenerme más, ligada con mayor clari­
dad a nuestra lógica formal contemporánea, es la teoría de las conse­
cuencias. El origen de una doctrina clara Bochenski (1961,199-200) lo 
atribuye a Buridán, a Ockham e incluso a Pedro Hispano. La doctrina, 
fuertemente influenciada por Buridán, aparece con precisión en la Peru­
tilis logiea de Alberto Magno, la que Filoteo Bóhner considera una pie­
dra miliar en la teoría de la consecuencia y, afirma, «estamos firmemente 
convencidos de que, en muchos respectos, es superior a la Summa Logi­
cae de Ockham» (Bóhner, 70). Alberto, en el libro mencionado, luego 
de considerar diversas definiciones de antecedente y consecuente, formula 
la siguiente caracterización de estas expresiones en una relación de con­
secuenCia: 

... una proposición es antecedente de otra si se relaciona de tal manera con ella 
que es imposible que las cosas sean como, del modo que sea, las significa la pri­
mera -siempre que se mantenga fijo el uso de los términos-, sin que sean como 
las significa la otra. 

(IV, i, § 962) 

(versión modificada, siguiendo las sugerencias de Bóhner y de Bochenski, de 
la traducción de Ángel Muñoz). 

Lo que propone Alberto, entonces, de manera muy similar a la de 
Diodoro (ef supra, p. 53), es afirmar que una proposición es antecedente 
de otra (se refiere al objeto que sea y siempre que los términos se apli­
quen de igual manera) si no es posible que la primera sea verdadera y 
no lo sea la segunda. (Véase la justificación que da Bóhner de esta lec­
tura en Bóhner, 71-72.) Vale la pena añadir aquí, que esta lectura de 
Alberto no convierte en modal la proposición de consecuencia, pues la 
imposibilidad (necesidad) no se predica de la proposición misma, sino 
del valor de verdad de tal conexión (ef ibid.). 

Tal como Bóhner analiza el condicional de Alberto, llega a la con­
clusión de que, para éste, se trata de una implicación formal o necesaria, 
no del tipo de implicación material, a la manera de Filón. 

Más adelante, en la misma Perutilis logiea, Alberto hace una distin­
ción entre implicaciones o consecuencias formal y material; así, en ibid. 
§ 975, señala (ya citado, en parte en supra, pp. 54-55): 

De las consecuencias, una es formal y otra material. Consecuencia formal se llama 
a toda proposición semejante en la forma a la que, si se formara, fuese buena con­
secuencia, como aquí: 'B es A; luego, lo que es A es B'. 
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Y, en la siguiente sección, señala: 

§ 976. Consecuencia material es aquella tal que no toda proposición semejante a 
ella en la forma es buena consecuencia [ ... ] y [ ... ] se entiende por materia de la 
proposición o de la consecuencia, los términos puramente categoremáticos -como 
son los sujetos y los predicados-, prescindiendo de los sincategoremas que los acom­
pañan ... 

Con la cita anterior cierro esta breve incursión por e! mundo de la 
lógica medieval, en el que pudimos atisbar intuiciones muy lúcidas que, 
en muchos casos, tuvieron muy amplio desarrollo posterior gracias a la 
creación de lenguajes simbólicos adecuados que fueron vehículos más ági­
les para e! manejo lógico que los lenguajes naturales en los que se formu­
laba anteriormente la argumentación. 

111. LA LÓGICA ANTES DE FREGE 

1. Leibniz y su idea de un lenguaje universal 

Tras la propuesta de Ramón Llull (1235-1315), en su Ars Magna, de 
formular un lenguaje universal de razonamiento, fundado en e! supuesto 
de que todo e! conocimiento no es sino un complejo que se forma a par­
tir de la unión de ideas básicas, simples, muchos intentos se hicieron por 
formular un lenguaje de esta naturaleza. En e! siglo XVII diversos pensa­
dores hacen propuestas más claras y precisas que las de Lulio; entre ellos, 
Descartes formuló una propuesta a este respecto (carta a Mersenne de! 
20 de noviembre de 1629), en la que alude al orden numérico y a la for­
mación de nuestros pensamientos a partir de pensamientos simples. En 
Inglaterra también se hicieron propuestas (John Wilkins [1614-1672] 
y George Dalgarno [1626-1687]) de construir un lenguaje en base a prin­
cipios simples y con una gramática regular. Lo que esto daría como resul­
tado sería facilitar la comunicación y hacer, por esto, más rápida la difu­
sión de las ideas. 

Vale la pena destacar aquí la aparición, en 1662, de uno de los libros 
más influyentes de la época, La logique ou l'art de penser (conocida como 
la Lógica de Port Royal), de los pensadores jansenistas de Port Royal, 
Antaine Arnauld y Pierre Nicole. Este libro se siguió imprimiendo hasta 
el siglo XIX. Los temas que trata, sin embargo, no son lo que hoy en día 
reconoceríamos como temas de lógica y, según lo señalan los Kneale, 
« ... es la fuente de la mala costumbre de confundir la lógica con la epis­
temología». Sin embargo, hay que señalar que, entre otras cosas, en e! 
libro se hace la distinción entre extensión y comprensión de un término. 

Uno de los grandes filósofos de la época moderna que más se inte­
resó por la lógica y por la creación de un lenguaje simple de razonamiento, 
fue G. W. Leibniz (1646-1716) quien, a las 19 años, llegó a acariciar 
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el proyecto de construir una lingua philosophica o characteristica univer­
satis, esto es, un lenguaje que reflejara la estructura del pensamiento y 
que, por su medio, se pudiera llevar a cabo un cálculo que permitiera 
decidir todas las cuestiones relacionadas de consistencia y consecuencia. 
La propuesta de Leibniz, según se ha señalado aquí, no fue la primera 
pero sí más elaborada que las que se hicieron previamente. Leibniz for­
mula su proyecto en su texto De Arte Combinatoria de 1666. La manera 
como él vislumbraba este nuevo lenguaje era en términos de una analo­
gía con la construcción de los enteros: así como todos los números ente­
ros o bien son primos o bien pueden obtenerse como productos de pri­
mos (2,3,5,7,11,13,17,23, etc. o bien 4=22, 6=2x3, 8=2\ 
9=32, 10=2x5, 12=22x3, etc.), así, en este nuevo lenguaje leibni­
ziano, se podrían expresar las ideas simples (el equivalente de los núme­
ros primos) y las ideas complejas (que serían un compuesto de ideas 
simples). 

Leibniz intenta reflejar la complejidad de nuestro pensamiento en la 
simplicidad de la estructura matemática; el problema aquí es que, junto 
con la estructura, se requiere dar un análisis de los contenidos de los pen­
samientos y esto va más allá de lo que se puede hacer con sólo un análi­
sis del lenguaje, en caso de que esto fuera todo lo que Leibniz deseara 
hacer. 

Sin embargo, para que surgieran realmente cambios y se avanzara 
en lógica habría que esperar hasta el siglo XIX. Como es bien sabido, 
Kant, en el 'Prefacio' a la segunda edición (1787) de su Crítica de la razón 
pura (B viii), dejó sentado que la lógica, desde Aristóteles, no había avan­
zado nada y, así, señala que' ... tiene toda la apariencia de ser perfecta 
y estar completa'. 

2. Antecedentes matemático-geométricos de la lógica actual 

Para llegar a presenciar los cambios en la visión de la lógica que surgen 
en el siglo XIX, es preciso tener en cuenta los avances en la investigación 
en matemáticas que dan origen, entre otras cosas, al surgimiento del álge­
bra abstracta, de las geometrías no euclídeas y a la preocupación por deter­
minar la consistencia de la matemática misma. 

Con respecto al álgebra abstracta, los trabajos en el siglo XIX, de Pea­
cock, Hamilton, Abel, Galois, Cayley, etc. muestran que las operacio­
nes aritméticas, hasta entonces usadas con un solo significado, podían 
redefinirse según diversas necesidades; de esta manera, una operación 
como la multiplicación, x, por ejemplo, podría no ser conmutativa en 
el caso de los cuaternios hamiltonianos o de los vectores. 

Con respecto al surgimiento de las geometrías no euclídeas, el siglo 
XIX presenció el desenlace de la larga historia con respecto a si el postu­
lado V de Euclides, el postulado de las paralelas, era o no independiente 
de los otros postulados de los Elementos. Decir que un enunciado e, es 
independiente, de otros enunciados el' e2, ... , en, es decir que e no es una 
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conclusión deductiva de los enunciados e¡ (1 � j � n) o bien que no es 
contradictorio añadir al conjunto de enunciados e¡ la negación del enun­
ciado e, - e. Los resultados que se obtienen en el siglo XIX son de geo­
metrías en las que por un punto p, exterior a una recta r, puede trazarse 
o bien más de una recta, r', paralela a r (Lobachevsky) o bien ninguna 
recta r' paralela a r (Riemann). Recordemos que, en la geometría de Eucli­
des, por un punto p, exterior a una recta r, podía trazarse exactamente 
una recta r' paralela a r. 

Los resultados anteriores, y algunos más, hacen que los matemáticos 
de la época se preocupen por la consistencia de su herramienta de tra­
bajo. También en el siglo XIX se comienza a elaborar la axiomatización 
de los números reales y a adquirir conciencia de las relaciones entre los 
diversos tipos de números que hasta entonces se habían estado usando 
sin preocuparse por las posibles relaciones que entre ellos pudieran existir. 

Lo que ahora es importante señalar, en base a lo que hasta aquí se 
ha dicho, es que todos los anteriores avances ayudaron a que los mate­
máticos tomaran conciencia de que podían modificar, negar o rechazar 
principios asumidos que sólo la costumbre había hecho que parecieran 
inamovibles. Los resultados que podían obtener serían no sólo consis­
tentes, sino también interesantes, teniendo en cuenta las posibles aplica­
ciones de los nuevos sistemas recién formulados o bien incluso por sí mis­
mos, por las relaciones que mostraban que se daban entre sus elementos. 
En el campo de la lógica los avances en álgebra influyen de manera impor­
tante la labor de George Boole. 

3. Boole y el álgebra de la lógica 

El trabajo de Boole tiene como antecedente inmediato la labor de De Mor­
gan y de Hamilton con relación a los viejos enunciados aristotélicos A, 
E, 1, O. Si en la tradición aristotélica anterior, el sujeto y el predicado 
de los enunciados se veían como signos de cualidades, De Morgan y 
Hamilton los ven como signos de las cosas que tienen esas cualidades. 
Por otra parte, en la tradición aristotélica, los enunciados afirmativos, 
A, 1, se explicaban como relacionando el sujeto con sólo parte del predi­
cado; así, 'Todo S es P' se entendía como afirmando que la cualidad de 
ser P era parte de la cualidad de ser S pero, además, no se agotaba P 
en ser S; en terminología tradicional, en los enunciados afirmativos no 
estaba distribuido el predicado. A diferencia de esto, en los enunciados 
negativos el predicado sí estaba distribuido. Hamilton, además de intro­
ducir una manera diferente de ver los términos de los enunciados, consi­
dera la posible cuantificación del predicado y, así, es posible tener dos 
enunciados de tipo A: 'Todos los S son todos los P' así como 'Todos los 
S son algunos P'. Con todos estos elementos a la mano, es posible dar 
una interpretación de los enunciados como afirmando relaciones entre 
clases de objetos y, entonces, formular las relaciones entre éstas en tér­
minos de un álgebra de clases. 
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Boole desarrolla sus propuestas en su primer libro, The Mathemati­
cal Analysis 01 Logic, being an essay towards a calculus 01 deductive rea­
soning (1847) en el que propone un análisis de los enunciados tradicio­
nales, A, E, I, 0, en términos de ecuaciones y donde demuestra la validez 
de un silogismo mediante manejos algebraicos: si de las premisas, 
mediante manejos algebraicos, se puede obtener la conclusión, enton­
ces, el silogismo es válido. El manejo que se da de los términos de los 
enunciados es mediante una interpretación como términos de clases; la 
siguiente tabla muestra la interpretación de Boole: 

A: Todo X es Y 
E: Ningún X es Y 
I: Algún X es Y 
O: Algún X no es Y 

x(1-y)=O 
xy=O 
xy *0 

x(1-y) *0 

en donde la expresión '(1-(x ) ' representa el complemento de la clase '(X'. 

Así, la primera expresión se puede interpretar como que es vacía la inter­
sección de la clase de las X y el complemento de la clase de las Y; la 
segunda expresión señala que es vacía la intersección de la clase de las 
X y la clase de las Y; la tercera expresión señala que no es vacía la inter­
sección de la clase de las X y la clase de las Y y, finalmente, la cuarta 
expresión señala que no es vacía la intersección de la clase de las X y 
el complemento de la clase de las Y. 

Los siguientes ejemplos de silogismos válidos muestran, de manera 
intuitiva, cómo se podrían emplear las ecuaciones (y las desigualdades), 
junto con razonamiento algebraico, para obtener las conclusiones de­
seadas: 

Todo e es D 
Todo B es e 

Primera figura (bArbArA): 
c(1-d)=O :. c=O v 1-d=0 
b(1-c)=0 :. b=O v 1-c=0 

pero o bien c = ° ó 1 -d = O: 
si c = 0, entonces 1 -c * 0, :. b = ° v b(1 -d) = ° 

si 1 -d = 0, entonces b(1 -d) = ° 
:. en ambos casos, b(1 -d) = ° 

esto es: Todo B es D 

Segunda figura (bArOcO): 
Todo B es e b(1-c)=0:. b=O v 1-c=0 

Algún D no es e d(1-c) * ° :. 1-c*0, d*O y b=O 

:. Algún D no es B pues d(1 -b) *0, ya que d(1 -b) = d(1 -O) = d *0 

Todo e es B 
Algún D es e 

Primera figura (dArII): 
c( 1 -b) = ° :. c = ° v 1 -b = ° 
dc*O:. c*O, d*O y 1-b=0 .. b=1*0 

:. Algún D es B pues db = d *0 
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Las líneas anteriores hacen claro que mediante los manejos algebrai­
cos de Boole no sólo se puede validar un argumento de forma silogística, 
sino que también se puede obtener una conclusión válida si sólo tenemos 
a la mano las dos premisas del silogismo. 

Sin embargo, no es posible validar el silogismo aristotélico de la ter­
cera figura (dArAptl), pues 

Todo C es B 
Todo C es D 

.. Algún D es B 

Sólo si ctO, entonces: 
c( 1 - b) = ° :. c = ° v 1 - b = ° / b = 1 
c(1 - d) = ° :. c = ° v 1 - d = ° / d = 1 

db tO :. bd = 1 x 1 tO 

Aquí nos enfrentamos a una interpretación de los enunciados uni­
versales que no les confiere contenido o carga existencial. Expresar, como 
lo hace Boole, que un enunciado universal afirmativo (A), 'Todo B es 
C', es algebraica mente representable como b( 1 - c) = ° o que uno uni­
versal negativo (E), 'Ningún B es C', es representable como bc=O, es 
expresar que la intersección de dos clases es vacía o que no existen indi­
viduos que tengan, conjuntamente, las propiedades by 1 - e o bien by 
e, respectivamente. Pero, de esto no se puede inferir que hay individuos 
que sean e o miembros de la clase e. 

Conforme a esta interpretación, que es la que se adopta en la lógica 
contemporánea, el que hemos presentado como cuadro de oposición aris­
totélico ( ef. supra, p. 50), pierde las aristas laterales, esto es, si los enun­
ciados universales, A y E, no tienen contenido existencial, pero sí lo tie­
nen los enunciados particulares, 1, ° pues, en la versión algebraica de 
Boole, la representación de estos enunciados es mediante una desigual­
dad que señala que no es vacía la intersección de dos clases, esto es, (1) 
'Algunos B son C', que se representa como bc tO y (O) 'Algunos B no 
son C', que se representa como b(1 - c) tO, entonces de la verdad de los 
enunciados universales no se sigue la verdad de los particulares corres­
pondientes, esto es, desaparece la relación de subalternación. Pero, ade­
más, si la clase b es vacía, entonces es verdadero tanto que b(l - c) = ° 
como que bc = O, Y será falso tanto que b(1 - O) tO como que bc tO. De 
esto se sigue que, a diferencia del cuadro de oposición aristotélico, ahora 
podrán ser verdaderos a la vez los enunciados universales, A y E, Y falsos 
a la vez los enunciados particulares, 1 y O, por lo que ya no habrá más 
enunciados contrarios ni enunciados subcontrarios, así como tampoco 
valdrá la relación de subalternación. El cuadro, así, se ve reducido a sus 
dos grandes diagonales, esto es, sigue habiendo enunciados contradicto­
rios: A y O, por una parte, y E e 1 por la otra: 
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En la segunda mitad del siglo XIX hubo una gran proliferación de 
nombres importantes para el desarrollo de la lógica. Por razones obvias 
de espacio, no podemos detenernos a considerar mínimamente a estos 
lógicos. Un pensador, sin embargo, debe mencionarse pues con él surge 
la lógica en su versión contemporánea: Gottlob Frege. Aquí señalaremos 
algunas de las aportaciones centrales de este hombre que creó la lógica 
de nuestros días. 

IV. LA LÓGICA DE FREGE 

Gottlob Frege (1848-1925), desarrolla un primer sistema axiomático, ple­
namente simbolizado, consistente y completo, de lógica de 1 �c orden, 
aún antes de que se tuvieran las herramientas lógicas adecuadas para lle­
var a cabo la prueba de la completud de un sistema deductivo cualquiera. 
Como es bien sabido, el trabajo de Frege quedó, por un tiempo, fuera 
del cauce principal del desarrollo de la lógica debido, principalmente, 
a su muy rígico y estorboso sistema de notación. Por otra parte, el inte­
rés que tuvo Russell por su obra, con muchos puntos de contacto con 
la suya propia, y la difusión que de ella hizo, la pusieron en el primer 
plano de la atención filosófico-matemática de la Europa de los primeros 
años de este siglo y tal atención aún sigue fija en su labor ahora a casi 
setenta años de su muerte. 

El interés que se tiene por la obra de Frege no sólo se refiere a su 
trabajo técnico matemático, sino también, y muy especialmente, a sus 
formulaciones filosófico-matemáticas acerca de diversos problemas tanto 
epistémico s como ónticas que rebasan el terreno relacionado con sola­
mente los fundamentos de las matemáticas. Aquí vale la pena mencionar 
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su importante discusión de la distinción semántica entre sentido y refe­
rencia que, a partir de la atención que le prestaron Carnap y Church, 
ha sido estudiada con cuidado por un sinnúmero de filósofos posteriores. 

El Begriffsschrift y el origen de la lógica contemporánea 

En 1879, Frege publica una breve obra, la primera que dedica al campo 
de la lógica, su Begriffsschrift (1879), que se convertirá en la obra que 
marca e! comienzo de la lógica formal contemporánea. En ella, como 
ya lo señalé, Frege formula un sistema de lógica de primer orden en e! 
que su autor introduce una modificación radical en e! análisis de las pro­
posiciones, ya que, en lugar de analizarlas como si fueran de la forma 
sujeto-predicado, propone verlas bajo la forma de función y argumento 
y, además, en su escrito las pruebas se llevan a cabo de una manera estric­
tamente formal. Hay que añadir que e! trabajo de Frege también se carac­
teriza por e! rigor en la presentación de sus demostraciones, que no figura 
en obras posteriores como los Principia Mathematica de Russell y White­
head, por ejemplo. 

La preocupación de Frege y el propósito de su trabajo se encuentran 
claramente expresados en el 'Prefacio' de! Begriffsschrift. Al considerar 
cuál sea la forma mejor de establecer la verdad de una proposición, nos 
dice lo siguiente: 

Obviamente, la manera más confiable de llevar a cabo una prueba es seguir la lógica 
pura; ésta es una forma que, al dejar de lado las características particulares de los 
sujetos, depende tan sólo de las leyes en las que se funda todo conocimiento. Con­
forme a esto, nosotros dividimos en dos tipos todas las verdades que requieren de 
una justificación, a saber, aquellas para las que la prueba puede llevarse a cabo 
de manera puramente lógica y aquellas que deben apoyarse en hechos de la expe­
nenCla. 

Más adelante nos sigue diciendo: 

Para impedir que cualquier cosa intuitiva penetrase aquí desapercibida, tuve que 
poner todo mi esfuerzo en mantener la cadena de inferencias libre de huecos ... 

y, para superar los obstáculos que le imponía e! lenguaje natural, nos 
sigue diciendo que eso lo 

... llevó a la idea de la presente ideografía [Begriffsschrift l. Su primer propósito 
es, pues, proporcionarnos la prueba más confiable de la validez de una cadena de 
inferencias y señalar toda presuposición que intente colarse desapercibida, de tal 
manera que se pueda investigar su origen. 

Otra virtud que Frege encuentra en su lenguaje simbólico es que, para 
los propósitos científicos para los que fue creado, e! mismo facilitará e! 
proceso de análisis y, si esto es así, de ello se seguirá una mayor facilidad 
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para descubrir nuevas verdades, esto es, propiciará un mayor avance de 
la ciencia. 

Frege mismo señala la relación que su nuevo lenguaje puede tener 
con el lenguaje universal-la characteristica universalis- de Leibniz, aun 
cuando considera que el entusiasmo de éste fue demasiado y que, por 
esto, subestimó las dificultades a las que habría de enfrentarse la tarea 
de crear un lenguaje así. 

Si, ciertamente, la búsqueda de un lenguaje simple, que facilite las 
pruebas lo acerca a Leibniz, la idea general del método tiene claras remi­
niscencias cartesianas de las Reglas para la conducción del espíritu. 

Por otra parte, además de lo que anteriormente he señalado con res­
pecto al sistema de Frege, es preciso recordar que, en el mismo, se puede 
expresar, de manera clara, la cuantificación múltiple. 

El sistema de Frege contiene, como sus conectivas básicas, la nega­
ción y el condicional, definido a la manera de Filón, y el cuantificador 
que usa como primitivo es el universal. 

Presento algunas expresiones formales en el simbolismo de Frege junto 
con su traducción al simbolismo de Peano: 

expresa, según lo señala Frege, el juicio de que no 
sucede que A se niegue y B se afirme (esto es, que 
no es el caso que B sea verdadera y A falsa). 

En la notación de Peano, la expresión anterior de Frege se convierte 
en el condicional (B:::> A). 

Frege 

f-ú!..I-r------ A (a) 
� B (a,e) 

f-ú!..I-r------ A (a) 
� B (a,e) 

Peano 

(B:::> -A) 

(x) ((y) B(x,y):::>Ax) 

(x) ((ay) -B(x,y):::>Ax) 

En el sistema de Frege (usando la notación de Peano) figuran, junto 
con la regla de derivación modus ponens: 

cp:::>t/; 
cp 

:. t/; 

los siguientes nueve axiomas que cubren tanto los cálculos proposicio­
nal y de predicados, así como la teoría de la identidad: 

1. (cp:::> (t/;:::> cp)) 
8. 

2. ((x:::> (t/;:::>cp)) :::> ((x:::>t/;) :::> (x:::>cp))) 
((x:::> (t/;:::>cp)) :::> (t/;:::> (x:::>cp))) 
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((1/;-:J cp) -:J (-cp-:J -1/;)) 
((a = b) -:J (f(a) -:J f(b))) 

31. (cp-:J - - cp)) 
54. (a = a) 

41. (--cp-:Jcp) 
58. (x)f(x) -:J f(y) 

La numeración que aquí aparece es la que usa Frege en su escrito. 
Frege, con su Begriffsschrift unifica lo que autores anteriores, a par­

tir de Aristóteles habían propuesto por separado, la lógica de enuncia­
dos y la lógica de términos; por otra parte, introduce una teoría general 
de la cuantificación que resuelve muchos problemas a los que se habían 
enfrentado los lógicos medievales y, junto con las otras aportaciones seña­
ladas con anterioridad, da nacimiento a la lógica contemporánea. Des­
pués de él, se intensifica la investigación en la teoría lógica y se diversifi­
can los sistemas lógicos que toman como punto de partida la lógica clásica 
bivaluada, que Frege genera con su trabajo. 

Aquí tan sólo apunto el bien conocido interés de Frege por fundar 
la matemática en la lógica, aspiración que con él comparte Russell. 
Lamentablemente, en 1903, Frege publica el volumen II de sus Grundge­
setze der Arithmetik al que añade un Postscriptum en el que anuncia la 
paradoja, descubierta por Russell, que surge de sus sistemas, a saber, 
la paradoja de las clases que no son miembros de sí mismas, lo que le 
produce un profundo pesar, ya que la misma muestra que su trabajo no 
se puede proponer como una fundamentación adecuada de la matemá­
tica. No es posible, sin embargo, que aquí ampliemos estas breves obser­
vaciones, ya que las mismas rebasan propiamente el campo de la lógica 
elemental que es el tema que nos ocupa. 

Finalmente, menciono que Frege mismo y otros pensadores, entre ellos 
Boole y Peirce, proponen la idea de una matriz de evaluación para los 
enunciados del cálculo proposicional y, más adelante, la idea la elabo­
ran con mayor precisión Lukasiewicz, Post y Wittgenstein. 

V. DESPUÉS DE FREGE 

1. Russell, Whitehead y los Principia Mathematica 

La obra monumental de Russell y Whitehead, Principia Mathematica, 
cuyos tres volúmenes se publicaron, respectivamente, en los años 1910, 
1912 Y 1913, puede verse como la conclusión de una de las propuestas 
centrales de Frege en su labor en fundamentos de la matemática: mos­
trar que la matemática puede fundarse en la lógica. Russell y Whitehead 
intentan evitar la paradoja en el sistema de Frege y llevar a cabo la tarea 
de mostrar que es posible derivar toda la matemática de la lógica. Rus­
sell, para enfrentarse a la paradoja mencionada, desarrolla su teoría de 
los tipos lógicos. Sin embargo, lo que Russell toma como el fundamento 
lógico, primeramente, va más allá de lo que es la lógica elemental o lógica 
de primer orden y, por otra parte, Kurt Gódel mostró que es imposible 
derivar toda la matemática de una base axiomática. 
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2. Kurt Godel 

En el año de 1930, un joven austriaco, Kurt Godel (1906-1978), de 24 

años presenta, como disertación doctoral (que luego publicará), la demos­
tración, sobre un conjunto de axiomas de lógica elemental, de que a par­
tir de este conjunto es posible derivar todas (completud) y sólo (correc­
ción) las verdades lógicas. Esto parecía apoyar la propuesta de Hilbert 
de demostrar la consistencia de las matemáticas, pues de la corrección 
del sistema se sigue sin problemas su consistencia, pero el mismo Godel, 
un año después, en 1931, muestra que una axiomatización lo suficiente­
mente fuerte como para derivar de ella la aritmética elemental de los núme­
ros naturales, si la misma es consistente, entonces será esencialmente 
incompletable, esto es, habrá verdades matemáticas que no será posible 
obtener como teoremas, esto es, lo que muestra Godel es que no son equi­
valentes las nociones de verdad matemática y la de teorema o bien, que 
no hay una equivalencia entre los aspectos semántico y sintáctico de la 
matemática; además, Godel demuestra que será imposible demostrar la 
consistencia de ese sistema. 

3. La lógica y los fundamentos de la matemática 

Para finalizar esta breve visión histórica de la lógica, vale la pena señalar 
la posición que la disciplina ocupa dentro de las diferentes doctrinas que 
se propusieron para dar cuenta de los fundamentos de la matemática. 

Líneas atrás se señaló el interés de Frege, que Russell comparte, de 
mostrar que la matemática se funda directamente en la lógica o, de manera 
quizá más precisa, que no hay ninguna diferencia esencial entre lógica 
y matemática, ya que ésta es una continuación de la primera. Aquí es 
importante señalar la visión ontológica de esta posición, conocida con 
el nombre de logicismo: la matemática es un estudio descriptivo de una 
realidad de tipo platónico, por lo que los enunciados matemáticos deben 
de ser verdaderos de dicha realidad. Así pues, la matemática es una con­
tinuación de la lógica que se funda en un conjunto verdadero de axiomas. 

Una propuesta diferente a la logicista es la formalista, enunciada por 
David Hilbert. Conforme a ella, se mantiene una visión similar a la logi­
cista en tanto que no se considera que haya una diferencia esencial entre 
lógica y matemática, tan sólo que no se mantiene una posición reduccio­
nista de la matemática con respecto a la lógica, sino que se propone que 
ambas se desarrollen conjuntamente a fin de mostrar que el sistema con­
junto está libre de contradicción. Aquí se dejan de lado los aspectos semán­
ticos de verdad de los axiomas y el criterio básico de corrección es uno 
sintáctico, esto es, que sea imposible derivar en el sistema tanto una fór­
mula, <p, como su contrapuesta sintáctica, - <p, que se interpretaría como 
la negación de <p. 

Hilbert propuso un programa que procediera de manera gradual (el 
programa de Hilbert) para demostrar la consistencia de la matemática 
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pero, según lo señalé líneas atrás, su cumplimiento se ve frustrado con 
la demostración de G6del de que esto es imposible. 

Finalmente, la posición intuicionista, cuyo principal defensor fuera Luit­
zen Egbertus Jan Brouwer (1881-1967), considera que la lógica surge de 
un proceso de abstracción que se lleva a cabo en base a ciertas regularida­
des que se observan en el proceso mismo de desarrollar la matemática. 
ASÍ, lógica y matemática son dos disciplinas que claramente se distinguen 
dentro de la perspectiva intuicionista. AquÍ es importante hacer notar que 
la lógica intuicionista se desvía de la lógica clásica en tanto que aquélla 
no acepta, como una verdad lógica, el principio 1- (cp J - - cp) de la 
lógica clásica. 

4. Otras lógicas 

Según lo señalé con respecto a la lógica intuicionista, ésta se separa de 
la lógica clásica al no aceptar todas las tesis que figuran en ésta. Por otra 
parte, también se distingue de la lógica clásica en tanto que acepta tres 
valores de verdad, en lugar de los dos únicos valores, característicos de 
la tradición clásica. De esta manera, tenemos un aumento en valores de 
verdad y esto es algo que Lukasiewicz elabora, a partir de 1917, esto 
es, una lógica multivaluada y, de esta manera, se abre la posibilidad de 
ampliar y generalizar el estudio de estas lógicas hasta llegar a sugerir el 
estudio de lógicas infinitamente valuadas. 

En 1918, C. 1. Lewis introduce una noción de implicación más fuerte 
que la material, la implicación estricta, relacionada con la implicación 
de Diodoro, según se señaló en su momento y, con ello, presenta un sis­
tema de lógica modal, que amplía el repertorio de la lógica clásica. 

Por el año de 1956 Gregario Klimovski y, más adelante, Héctor Neri 
Castañeda, Carlos Alchourrón y Andrés Raggio comienzan, en América 
Latina, a hacer uso de la lógica de manera creativa, en el caso de la teo­
ría de los conjuntos, el primero, en el caso de lógica deóntica, Castañeda 
y Alchourrón y en el estudio de funciones recursivas y pruebas construc­
tivas el último. 

En 1963, Newton C. A. da Costa crea un nuevo sistema de lógica, 
denominado actualmente lógica paraconsistente, que ha despertado el inte­
rés de muchos lógicos contemporáneos. 

En estos avances de la lógica, post Principia Mathematica, se puede 
hacer la distinción señalada por Susan Haack entre lógicas que son riva­
les o las que son ampliaciones de la lógica clásica. El lector encontrará, 
en las otras selecciones de este volumen, material que le permitirá preci­
sar y ampliar las breves notas que figuran en esta historia mínima de la 
lógica. 

Antes de terminar y sabiendo de antemano que no es posible dar una 
enumeración mínimamente satisfactoria de los estudiosos de la lógica en 
nuestros países, me atrevo a mencionar a algunas de las figuras destaca­
das a las que no he aludido anteriormente. 
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Me referiré aquí a Vicente Ferreira da Silva como el primer autor de 
un libro de lógica moderna editado en Latinoamérica, Elementos de lógica 
matemática (Sao Paulo, 1940) y a Francisco Miró Quesada como el ini­
ciador de los estudios de lógica simbólica en el Perú y en Iberoamérica, 
con la publicación de su Lógica (1946). 

En México, Javier Sánchez Pozos ha realizado trabajos importantes 
en lógicas no clásicas, especialmente en lógicas relevantes; Adolfo Car­
cía de la Sienra ha hecho aplicaciones de la lógica a teorías económicas 
y Raúl Orayen, además de dedicarse a trabajar en la enseñanza y la inves­
tigación en lógica ha publicado un importante libro de teoría lógica. 

En España es posible mencionar nombres destacados del pasado inme­
diato y del presente que dedican su atención a esta disciplina; entre ellos 
están Alfredo Deaño (t), Jesús Mosterín, Manuel Sacristán, Lorenzo Peña, 
quien también realizó su trabajo en Iberoamérica, etc. 
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LÓGICA CLÁSICA DE PRIMER ORDEN 

Da n i e l  Qu e s a d a  

La lógica clásica de primer orden es la teoría más versátil y aplicable, tam­
bién la más estudiada y mejor conocida, de la lógica contemporánea, y 
ocupa un lugar central en esta ciencia, siendo el «punto de referencia» 
para otras partes o teorías de la lógica. Otros nombres con los que se 
la conoce son lógica de predicados (elemental) y lógica cuantificacional. 
Puesto que esta monografía sólo trata de lógica clásica, en adelante pres­
cindiremos en general de este adjetivo. 

El objetivo más patente de una teoría lógica es ofrecer una explica­
ción de la relación de implicación lógica en que se encuentran las premi­
sas y la conclusión de una inferencia correcta. Otro objetivo es ofrecer 
un método sistemático para separar las inferencias correctas de las que 
no lo son. Al perseguir estos objetivos la lógica contemporánea ha con­
cebido las inferencias como formuladas lingüísticamente y se ha servido, 
del modo que indicaremos, de lenguajes artificiales desarrollados preci­
samente para alcanzarlos. De entre éstos, precisamente la familia más 
importante es la de los lenguajes de primer orden. 

La lógica (clásica) de primer orden abarca también en cierto sentido 
la lógica (clásica) de enunciados (o lógica proposicional). Los lenguajes uti­
lizados en esta rama de la lógica muestran parte de los recursos lingüísti­
cos de los lenguajes de primer orden. Por ello, a las exposiciones de la lógica 
de primer orden en sentido propio suele anteceder la de la lógica de enun­
ciados, y también esta monografía comenzará por una exposición de esta 
rama básica de la lógica. Muchos de los conceptos presentados en este 
marco más restringido nos servirán luego en el más amplio. 

1. FUNCIONES VERITATIVAS 

La idea intuitiva, preteórica, que tenemos de una conexión lógica o rela­
ción de implicación lógica entre las premisas y la conclusión de un argu-
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mento o una inferencia es la siguiente: es imposible que las premisas sean 
verdaderas y la conclusión sea falsa. Si ésta conexión se da, decimos que 
las premisas implican lógicamente la conclusión (o una variante termi­
nológica de ello: que la conclusión se sigue lógicamente de las premisas; 
que es una consecuencia lógica de ellas, etc.). 

No importan pues a la lógica las cualidades retóricas o estilísticas, o 
la capacidad persuasiva de los argumentos. Ni tampoco los procesos psico­
lógicos o neurofisiológicos implicados en su producción. Todo lo que importa 
es la conexión, por el momento intuitivamente descrita, entre premisas (los 
enunciados que se dan por supuestos en el razonamiento) y conclusión. 

Lo que necesitamos es tener una buena explicación de en qué consis­
tiría o a qué se debería la mencionada imposibilidad de que en una infe­
rencia correcta las premisas sean verdaderas y la conclusión falsa, y tam­
bién, si ello es posible, un método que nos sirva para determinar si se 
da o no en un caso cualquiera. 

Algunos fragmentos de) discurso, o usos de oraciones en el lenguaje 
natural son veritativo-funcionales. Ello quiere decir que el valor verita­
tivo (verdadero o falso) del fragmento en cuestión o de la oración com­
pleja utilizada es una función de los valores veritativos de las oraciones 
simples que componen el discurso u oración compleja, es decir, depende 
de esos valores de una manera totalmente definida. Esta dependencia es, 
como veremos en la sección siguiente, de gran relevancia para el estudio 
de las propiedades lógicas fundamentales. 

Los lenguajes de la lógica de enunciados están diseñados para estu­
diar sistemáticamente tales dependencias. Un lenguaje de éstos contiene 
los siguientes elementos: 

1) Letras de enunciado: p, q, r, s, ... 
2) Conectivas: ---, ,1\, v, --->, -. 
3) Paréntesis: (, ). 

El número de letras de enunciado de los lenguajes de la lógica de enun­
ciados puede ser «arbitrariamente grande»: podemos considerar lengua­
jes con un número infinito numerable de ellas (tantas como números natu­
rales: p J, P2' P3' ... ) J. Estas letras pueden utilizarse para representar 
oraciones simples (no compuestas veritativo-funcionalmente) o que, a los 
propósitos inmediatos, queramos considerar como tales. 

Enseguida prestaremos una atención especial a las conectivas. Sus 
denominaciones más comunes son, respectivamente, negación, conyun­
ción, disyunción, condicional y bicondicional, y, como estos nombres indi­
can, los respectivos análogos de las expresiones «no», «y», «o», «si ... 
entonces», «si y sólo si» 2. Más adelante mencionaremos también la posi­
bilidad de escoger otros conjuntos de conectivas. 

1. En la actualidad se consideran incluso «lenguajes}> con una cantidad no numerable de símbo­
los, pero esta posibilidad no será tenida en cuenta en la presente monografía, ni en este caso ni en el 
de primer orden. 

2. Se utilizan a veces símbolos distintos para alguna de las conectivas. Así, puede encontrarse 
- en lugar de -' , & en lugar de A, y ::J en lugar de --+ . 
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La función de los paréntesis es auxiliar: desambiguar sintácticamente. 
Otras convenciones pueden adoptarse al mismo fin. 

A partir de los mencionados elementos se construyen fórmulas (bien 
formadas); por ejemplo: -----, q, r"p, p--->( -----, qvs). Recurriendo a sus aná­
logos, se leen así, respectivamente: «no q», «r y P», «si p, entonces no-q 
o s». En cambio, otras cadenas de símbolos que, en principio, podría­
mos formar no constituyen fórmulas: P", -----, 5(qvs) (como será obvio si 
se leen utilizando las expresiones análogas y teniendo en cuenta que las 
fórmulas pueden representar oraciones). 

Las fórmulas de estos lenguajes se construyen sintácticamente de un 
modo preciso que excluye la ambigüedad (al contrario de lo que sucede 
con sus análogos en el lenguaje natural). Esto se realiza mediante una 
definición que delimita la clase de las fórmulas (frente a otras cadenas 
de símbolos no bien formadas). 

Para dar tal definición nos servimos de otra serie de símbolos -aquí 
las letras griegas minúsculas <1>, 'P, y, con subíndices si es necesario­
para representar, en principio, filas de símbolos cualesquiera. Debe tenerse 
en cuenta que estas letras no son símbolos de un lenguaje de la lógica 
de enunciados, sino símbolos de un lenguaje (concretamente: el español 
ampliado con tales símbolos) que utilizamos para caracterizar tal lenguaje. 
De forma totalmente general, en la terminología técnica, al lenguaje que 
en cada caso se utilice para describir o caracterizar otro lenguaje se le 
denomina metalenguaje (que es una noción relativa, puesto que en muchos 
casos pueden «cambiarse las tornas»: es posible tanto utilizar el español 
para describir el inglés como a la inversa). 

Por lo dicho, las letras <1>, 'P, y, mientras no se especifique más, 
podrían representar una fila de signos cualquiera, por ejemplo, -----, vrq", 
o bien r"p, el segundo de nuestros ejemplos anteriores de fórmulas, o 
una letra de enunciado. Mezclamos tales letras con símbolos de lenguaje 
de un modo fácil de entender (por simplicidad no utilizaremos otros recur­
sos técnicos existentes para evitar toda posible confusión). 

Con tales recursos, he aquí la definición que delimita la clase de las 
fórmulas: 

1) Toda letra de enunciado es una fórmula. 
2) Si <1> es una fórmula, también lo es -----, <1>. 
3) Si <1>, 'P son fórmulas, también lo son (<I>,,'P), (<I>v'P), (<I>--->'P), 

(<I>-'P). 
4) Nada es una fórmula a menos que resulte de aplicar las cláusulas 

1-3. 

Ahora puede verse que (p---> (-----, qvs)), por ejemplo, es una fórmula. 
En efecto: p, q, s son fórmulas por la cláusula 1; -----, q lo es entonces 
por la 2; por tanto, ( -----, qvs) lo es por la 3 y, finalmente, (p---> (-----, qvs)) 
es una fórmula, por la cláusula 3. Cada paso descansa en el resultado 
del anterior. Estas cláusulas determinan además un análisis sintáctico uní­
voco para cada fórmula y hacen que se pueda hablar del tipo sintáctico 
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de fórmula sin ambigüedad. Así, por ejemplo, una fórmula en cuya cons­
trucción la última cláusula aplicada es la del condicional, es un condi­
cional. (Incidentalmente: la parte de una fórmula condicional a la 
izquierda del signo -+ se denomina antecedente, y la parte de la derecha, 
consecuente) . 

Normalmente se adoptan algunas convenciones para evitar el engo­
rro que suponen los paréntesis cuando no son necesarios para realizar 
su tarea desambiguadora. Así, por ejemplo, se establece la convención 
de no escribir los paréntesis más externos al acabar de construir una fór­
mula (en nuestros primeros ejemplos de fórmulas se hizo ya uso de esa 
convención). 

Este tipo de definición en el que unas cláusulas remiten a otras sin 
circularidad se denomina definición recursiva. Se le denomina «definición» 
porque, haciendo cierto uso de recursos técnicos, se la puede transfor­
mar en una definición explícita. 

En adelante, utilizaremos <1>, 'JI, y específicamente para fórmulas. 
Mostremos ahora la dependencia funcional de los valores veritativos. Esta 
se da en último término porque las conectivas expresan funciones de ver­
dad, como revela la tabla (1.1). 

Tabla (1.1) 

<1> ---,<1> <1> 'JI (<I>I\'JI) (<I>v'JI) (<1> -+ 'JI) (<1>"" 'JI) 

V F V V V V V V 
F V V F F V F F 

F V F V V F 
F F F F V V 

En (1.1) se presentan las tablas de verdad correspondientes a cada 
una de las conectivas de un lenguaje típico de la lógica de enunciados. 
Estas tablas muestran el modo en que tales conectivas contribuyen a deter­
minar el valor veritativo (verdadero o falso, abreviadamente: VA F) de 
cualquier fórmula construida mediante las mismas. 

Atendiendo a las posibilidades combinatorias que las tablas hacen 
patentes, vemos que hay más conectivas posibles. Concretamente, hay 
16 conectivas binarias, pero bastan las que se han dado para desempe­
ñar la función de las restantes, pues éstas pueden definirse en función 
de aquéllas. Incluso puede tomarse un conjunto más reducido de ellas. 
Puede demostrarse que, por ejemplo, basta tomar ---, y v como básicas, 
o---'y-+. 

Naturalmente, el valor veritativo de una fórmula no lo determinan 
totalmente las conectivas que en ella intervienen. Tal valor depende, ade­
más, de los valores veritativos que se asignen a sus letras de enunciado. 
La contribución de ambos factores puede apreciarse en la tabla de ver­
dad de, por ejemplo, la fórmula p-+( ---, qvs) (d. 1.2). 
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Tabla (1.2) 

p q s p-+( --, qvs) 

V V V V F V 
V V F F F F 
V F V V V V 
V F F V V V 
F V V V F V 
F V F V F F 
F F V V V V 
F F F V V V 

3 1 2 

En las tres columnas de la izquierda tenemos todas las maneras en que 
es posible asignar valores veritativos a las letras de enunciado de la fór­
mula. En cada una de las filas correspondientes a esa parte izquierda tene­
mos una asignación distinta. La asignación se toma en el sentido matemá­
tico de función: asignamos a cada cosa de un tipo exactamente una cosa 
de otro (aquí, a cada letra de enunciado, exactamente un valor veritativo). 
De manera que tenemos, para tres letras de enunciado, un total de ocho 
de tales asignaciones (en general, para n letras, 2" asignaciones). 

En las tres columnas de la derecha se reflejan los valores veritativos 
que adquieren las diversas subfórmulas de la fórmula de nuestro ejem­
plo y también ésta misma. Los números (que se han puesto aquí para 
ayudar a la explicación, pero que son inesenciales) indican el orden en 
el proceso. En primer lugar se calculan los valores veritativos de la 
columna 1 teniendo en cuenta los valores de la fórmula q (dados en una 
de las columnas de la izquierda, pues es una letra de enunciado) y la con­
tribución de la conectiva --, (dada en la tabla de verdad para esta conec­
tiva en (1.1)). Fijémonos por ejemplo, en la tercera fila. En ella el valor 
de q es F, por lo que el valor de --, q, obtenido consultando la tabla (1.1), 
debe ser V, y éste es, en efecto, el valor que aparece para esta fórmula 
en la tercera fila de la columna correspondiente a --, q. Los valores así 
calculados para --, q se utilizan ahora para, junto con los de la fórmula 
s obtener los de la fórmula ( --, qvs) (columna número 2), de acuerdo 
con la tabla para la conectiva v (ver tabla (1.1)). Finalmente, los valores 
de p-+( --, qvs) se obtienen (columna 3) de los de p y de los ya obtenidos 
para ( --, qvs), de acuerdo con la tabla para -+. 

En la sección siguiente se amplía la consideración de estas nociones 
y se examina su relevancia para la explicación de la «conexión lógica» 
entre las premisas y la conclusión de una inferencia. 

11. LÓGICA DE ENUNCIADOS Y PROPIEDADES LÓGICAS 

Sea L un lenguaje de la lógica de enunciados. Además de las conectivas 
(y de los paréntesis, símbolos meramente auxiliares), L tiene letras de 
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enunciado. Las fórmulas de L se obtienen por medio de una definición 
como la del apartado anterior. Sea A una asignación de los valores veri­
tativos V o F a todas las letras de L. A partir de A se obtiene unívoca­
mente una asignación de valores veritativos a todas las fórmulas de L. 
Ello se desprende de la definición de verdad para L. 

Para presentar esta definición es conveniente introducir algo de nota­
ción. Cuando <1> sea una letra de enunciado, abreviaremos «A asigna 
a <1> el valor V" mediante A(<I» = V. La definición toma la forma de una 
definición recursiva de «<1> es verdadera en A», que abreviamos así: 
11 <1> 11 A = V, expresión en la que <1> puede ser una fórmula cualquiera 
(letra de enunciado o fórmula compleja)3. Como también es usual, abre­
viamos «<1> no es verdadera en A» mediante 11 <1> 11 A * V. 

(2.1) Para cualquier letra de enunciado <1> de L, 11 <1> 11 A = V si y sólo 
si A( <1» = V. 

Para cualesquiera fórmulas <1>, '11 de L, 

11 --, <1> 11 A = V si y sólo si 11 <1> 11 A * V ; 
11 (<1>1\'11) IIA=V si y sólo si 11 <1> IIA=V y 11 '11 IIA=V; 
11 (<I>v'P) 11 A = V si y sólo si 11 <1> 11 A = V o 11 '11 11 A = V o las dos cosas; 
11 (<1>--->'11) IIA=V si y sólo si 11 <1> IIA*V o 11 '11 IIA=V; 
11 (<1>-'11) IIA=v si y sólo si, o bien 11 <1> IIA=V y 11 '11 IIA=V, o bien 
11 <1> 11 A * V Y 11 '11 11 A * V. 
Podemos definir ahora 11 <1> 11 A = F (<1> es falsa en la estructura A) sim-

plemente como: 11 <1> 11 A * V. 
Introduzcamos algo más de terminología. En el contexto de la lógica 

de enunciados, a una asignación de valores veritativos a las fórmulas de 
un lenguaje L le llamamos una estructura para L. Si una fórmula <1> es 
verdadera en una estructura A (es decir, si 11 <1> IIA= V), decimos que A 
es un modelo de <1>. Consideremos ahora un conjunto cualquiera de fór­
mulas de un lenguaje L; llamémosle r. Si todas las fórmulas de r son 
verdaderas en una estructura A, decimos entonces que A es un modelo 
de r. 

Las nociones de estructura para un lenguaje y de modelo de una fór­
mula o conjunto de fórmulas son nociones clave de la lógica actual. Aquí 
las encontramos en el contexto restringido de la lógica de enunciados, 
pero más adelante las definiremos en el contexto más amplio de la lógica 
de primer orden. 

Introducimos el signo 1= para la noción precisa de implicación lógica. 
De manera que leemos 

(2.2) rl=<I> 
como: «El conjunto de fórmulas r implica lógicamente la fórmula <1»>; 
o también: «<1> es consecuencia lógica de r". La definición de este con­
cepto es la siguiente: 

3. Una notación alternativa muy utilizada es A ",,<l>. Esta notación tiene el inconveniente de hacerle 
desempeñar una doble función al símbolo"" (véase algo más adelante la otra función de este símbolo). 
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(2.3) r 1= <1> si y sólo si todo modelo de r es también un modelo de <1>. 
Más adelante abordaremos la importante cuestión de cuál es la rela­

ción entre la noción precisa que acabamos de introducir y la noción intui­
tiva que mencionábamos en el apartado anterior. Ahora aclararemos el 
sentido de esta definición al hilo de un ejemplo. 

¿Qué quiere decir que la relación 1= de implicación lógica se da entre 
el conjunto formado por las dos fórmulas r--->( --, q--->p) y rA --, q, y la 
fórmula p? Expresado con símbolos: 

(2.4) r--->( --, q--->p), rA --, q I=p 
Aplicando la definición (2.3) Y atendiendo también al significado otor­

gado anteriormente a la noción de modelo, lo que ello quiere decir es 
que si en una estructura cualquiera las primeras dos fórmulas son verda­
deras, también lo es la fórmula p. 

Ahora que comprendemos el sentido o significado que damos a la 
noción de implicación lógica resulta que también tenemos, en la lógica 
de enunciados, un método para averiguar si esa relación se da en un caso 
cualquiera. Esto se desprende de que una estructura es aquí también una 
asignación de valores veritativos a las letras de enunciado de un lenguaje, 
y bastará entonces considerar las estructuras que difieren en lo que asig­
nan a las letras de enunciado de las fórmulas que estamos considerando. 
Es decir, aplicamos el siguiente 

TEOREMA 2.1 (Teorema de coincidencia): Si A y B son estructuras que asig­
nan los mismos valores veritativos a cada una de las letras de enunciados 
de una fórmula <1>, entonces A 1= <1> si y sólo si B 1= <1>. 

Según esto, en nuestro ejemplo bastará considerar estructuras que asig­
nen valores distintos a las letras p, q, r. Las otras estructuras son, a los 
efectos pertinentes, equivalentes a una de tales estructuras. Pero justa­
mente son las tablas de verdad las que recogen las asignaciones distintas. 
Construyamos, por tanto, una tabla de verdad (d. 2.5) para las fórmu­
las del ejemplo anterior. 

Tabla (2.5) 

P q r r---> (--, q--->p) rA --, q 

V V V V F V F F 
V V F V F V F F 
V F V V V V V V 
V F F V V V F V 
F V V V F V F F 
F V F V F V F F 
F F V F V F V V 
F F F V V F F V 

Tenemos ahora la situación siguiente. La parte izquierda de cada una 
de las filas de la tabla describe una de las estructuras relevantes. Por ejem-
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plo, en la segunda fila se describe una estructura que asigna V a las letras 
de enunciado p y q, asigna F a r y asigna no importa qué a las restantes 
letras de enunciado que pudiera haber en el lenguaje. Consideremos ahora 
una fila cualquiera y una cualquiera de las fórmulas de la tabla, <1>; la 
tabla le da a <1> el valor V en esa fila si 11 <1> 11 A = V, donde A es una cual­
quiera de las estructuras asociadas con esa fila. Si 11 <1> 11 A * V, entonces 
la tabla le da a <1> el valor F. Por ejemplo, como puede comprobarse utili­
zando la definición (2.1), si A es una estructura que asigna V a p y q, 
y asigna F a r, entonces 11 r-+(-'q-+p) IIA=V, y, en efecto, si exami­
namos en la tabla el valor de esta fórmula en la segunda fila, comproba­
mos que éste es V. Tal es la estrecha relación que hay entre la definición 

de verdad (2.1) y las tablas de verdad. 
Siguiendo con nuestro ejemplo, concentremos nuestra atención en la 

fila 3; ésta resulta ser la única fila en que las dos fórmulas r-+( -, q-+p) 

y rll -, q son verdaderas simultáneamente. Pero p también es verdadera 
en esa fila. Sucede pues que en todas las filas en las que las dos primeras 
fórmulas son verdaderas también lo es p. Por la relación que se acaba 
de explicar entre filas de una tabla y estructuras, podemos ahora decir 
que en toda estructura en que las dos primeras fórmulas son verdaderas, 
p lo es también. 0, dicho de otro modo, todo modelo de las dos prime­
ras fórmulas es también un modelo de p. Es decir, por la definición (2.3), 
el conjunto de esas dos fórmulas implica lógicamente la fórmula p. 

Es claro que este procedimiento lo podemos generalizar a cualquier 
caso en que se trata de averiguar si r � <1>, siempre que r sea un conjunto 
finito de fórmulas (de lo contrario la tabla no se acabaría nunca de cons­
truir). Puede haber limitaciones prácticas -si hay muchas fórmulas impli­
cadas o éstas son muy complejas-, pero no hay límites de principio. En 
tal sentido las tablas de verdad nos suministran un procedimiento de 

decisión. 

Existe también la posibilidad de que una fórmula <1> sea verdadera 
en toda estructura, lo que escribimos así: �<I>. Este caso puede conside­
rarse un caso particular del caso general recogido en la definición (2.3), 
a saber el caso en que r es el conjunto vacío. Para este caso existe tam­
bién una terminología especial; al menos en el contexto de la lógica de 
enunciados se dice entonces que <1> es una tautología. La noción de ver­

dad en toda estructura es el concepto preciso que se corresponde con la 
noción intuitiva de verdad lógica. 

Naturalmente, también pueden utilizarse las tablas de verdad para 
averiguar si una fórmula cualquiera dada es o no una tautología (se cons­
truye la tabla de verdad para esa fórmula y se examina si la misma tiene 
el valor V en todas las filas) 4. 

4. Las tablas de verdad fueron introducidas por primera vez por C. S. Peirce en Peirce, 1902; 
también se utilizan en el Tractatus de Wittgenstein (1921), al parecer de manera independiente. «Tau­
tología» es un término introducido por Wittgenstein, aunque en el Tractatus tiene un sentido vinculado 
a la teoría de la figura que es la teoría del significado que en tal obra se defiende. 
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He aquí una lista de algunas tautologías conocidas, a las que aún se 
suele aplicar el antiguo rótulo de leyes lógicas: 

(2.6) Lista de tautologías: 
- Las leyes conmutativa y asociativa para /\, V, ..... ; por ejemplo: 

(<1>/\ 'P) ..... ('P /\ <1» . 
- Algunas propiedades de la negación: 

-----, -----, <1> ..... <1>. 
-----, (<1>--->'P) ..... (<1>/\ -----, 'I'). 

- Leyes de De Morgan: 
-----, (<1>/\'P) ..... ( -----, <1>v-----, 'P). 

-----, (<1>v'P) ..... ( -----, <1>/\ -----, 'P). 
- Otras leyes: 

Tercio excluso: <1>v -----, <1>. 
(No) contradicción: -----, (<1>/\ -----, <1» .  
Contraposición: (<1> ---> 'P) ..... ( -----, 'P ---> -----, <1» .  
Exportación: ((<1>---> 'P)--->y) ..... ( (<1>/\ 'P)--->y). 

Las tautologías de esta lista se dan en forma esquemática. Recuér­
dese que <1>, 'P, y, pueden ser cualquier fórmula, por lo que, en realidad, 
estos esquemas suministran infinitas tautologías. 

. 

El siguiente teorema relaciona los casos de implicación lógica con las 
tautologías: 

TEOREMA 2.2 (Teorema de la deducción): f, <1> 1= 'P si y sólo si 
fl=<1>--->'P. 

Aplicando este teorema se puede, por ejemplo, obtener implicacio­
nes lógicas a partir de las tautologías de la lista anterior. Tomemos la 
«ley» de exportación; ésta, como la mayoría de las de la lista, está for­
mulada mediante un bicondicional ( ..... ). Ahora bien, éste se «desdobla» 
en dos condicionales, obteniéndose así: 

1= (<1>--->'P)--->( -----, 'P---> -----, <1»; 
1= ( -----, 'P---> -----, <1»---> (<1>--->'P). 

Aplicando el teorema 2.2 a la primera de estas dos tautologías, por 
ejemplo, se obtiene la implicación: 

<1>--->'P 1= ( -----, 'P---> -----, <1» .  
También se puede aplicar el teorema 2.2 para obtener, a la inversa, 

tautologías a partir de implicaciones. Por ejemplo, a partir de (2.4) se 
llega a una tautología, aplicando dos veces el teorema. En un primer paso 
se obtiene: 

r--->(-----' q--->p)1= (r/\-----, q)--->p; 
y, finalmente: 

1= (r--->( -----, q--->p))---> ((r/\ -----, q)--->p). 
A esta tautología podría aplicársele ahora la regla o ley de exporta­

ción para obtener otra. Pero baste esto como ejemplo de las múltiples 
transformaciones que se hacen posibles aplicando el teorema 2.2. 

Puede defenderse que la lógica de enunciados nos suministra una 
buena teoría lógica para los fragmentos veritativo-funcionales del len-
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guaje, dándonos una explicación de las propiedades lógicas en ese con­
texto. Para verlo, comenzaremos por utilizar un ejemplo de inferencia 
o razonamiento sencillo como el siguiente: 

(2.7) La inflación aumenta a menos que aumente la productividad 
si aumentan los salarios. Los salarios aumentan pero la productividad 
no. Por lo tanto, la inflación aumenta. 

(El simplismo de este argumento económico no importa desde un 
punto de vista lógico, como no importaría el posible refinamiento de otro 
razonamiento que por su complejidad sería aquÍ tal vez menos adecuado 
como ejemplo.) 

Representando las oraciones «la inflación aumenta», «1a productivi­
dad aumenta», «los salarios aumentan» mediante letras de enunciado, 
por ejemplo, p, q y r, respectivamente, se puede «modelar» lo que de 
lógicamente relevante tiene el razonamiento, tomando como premisas las 
fórmulas r-> ( ---, q-> p) (para la oración hasta el primer punto) y r/\ ---, q 
(la oración entre el primer punto y el segundo), y como conclusión a p. 
Afirmar entonces que el razonamiento es correcto equivaldría entonces 
a hacer la precisa afirmación (2.4), afirmación que, como se ha visto ante­
riormente, es verdadera. 

La lógica de enunciados tiene pues la capacidad de ser utilizada como 
teoría lógica para mostrar la corrección o la incorrección de un número 
indefinido de argumentos que responden a un número indefinidamente 
grande de esquemas de argumentación distintos, trascendiéndose en este 
sentido la labor de la lógica tradicional que se limitaba a presentar un 
pequeño número de esquemas de argumentación correctos 5. 

Con todo, la capacidad de la lógica de enunciados para dar cuenta 
de la inferencia es muy limitada. Es más justo hacer su evaluación cuando 
se la considera parte de la lógica de primer orden, pero plantear la cues­
tión del primer modo ayuda a darse una idea, en un contexto más senci­
llo, de qué es lo que está implicado en el tema. 

Como puede verse por el ejemplo anterior, la utilización de la lógica 
de enunciados como teoría lógica depende de dos pasos cruciales. En pri­
mer lugar, de la «modelización» en el sentido apuntado, es decir, la re­
presentación esquemática en el lenguaje artificial de las oraciones del 
lenguaje natural que componen la inferencia (también llamada formali­
zación). En segundo lugar supone la opción por el concepto preciso de 
implicación lógica que se presentó anteriormente. 

El primer paso depende, para empezar, de que podamos considerar 
que las oraciones del fragmento de lenguaje que nos interesa sean verda­
deras o falsas, o que, al menos, sea una idealización razonable conside­
rarlas asÍ. Esta dependencia es clara, pues, como hemos visto, en la lógica 
clásica de enunciados se contemplan sólo esos dos valores veritativos como 
valores posibles para las fórmulas. Hay lógicos que señalan aquÍ una limi-

5. La superación de la lógica tradicional en este sentido concreto puede señalarse por vez pri· 
mera en Boole (1847) y Boole (1854). 
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tación de la lógica clásica y han trabajado para ampliarla con la admi­
sión de otro u otros valores veritativos (d. la monografía sobre «Lógica 
multivalente» en este mismo volumen). 

Pero ese primer paso depende además de que consideremos a expresio­
nes como «no», «y», «pero», «o», «si ... », «si ... entonces», «a menos que» 
y otras expresiones similares del lenguaje natural como adecuadamente repre­
sentadas por las conectivas. Esto ha sido vivamente discutido en algunos 
casos, especialmente en el caso de «si ... entonces» y su representación 
mediante -> (el llamado condicional material). Se ha argumentado que «si ... 
entonces» supone a menudo una conexión «más fuerte» que la veritativo­
funcional que se recoge mediante el condicional material. Pero también hay 
buenas réplicas, que explican las discrepancias intuitivas apelando a la dis­
tinción entre el contenido semántico estricto de una oración usada en un 
contexto y los principios pragmáticos que rigen la conversación 6. 

Respecto al segundo paso, ¿qué es lo que justificaría la adopción del 
concepto preciso definido en (2.3)? No sólo, por supuesto, que sea un 
concepto preciso, que esté apoyado por un aparato matemático, pues no 
se trata de cambiar de tema; la noción precisa ha de tener un estrecho 
vínculo conceptual con la noción intuitiva de implicación lógica, carac­
terizada en los términos modales de posibilidad, imposibilidad o necesi­
dad (d. el comienzo de la sección I). Aquí la línea de justificación consis­
tiría en defender, primero, que las inferencias correctas son inferencias 
analíticas (inferencias realizadas en virtud del significado de las oracio­
nes componentes), o, tal vez, un subconjunto de ellas: inferencias que 
tienen en cuenta exclusivamente la contribución semántica (contribución 
al significado) de expresiones que juegan un papel especial en el discurso 
(para el fragmento del lenguaje que ahora estamos considerando, expre­
siones como «no», «y», «o», «si ... entonces», etc.; y, segundo, que las 
conectivas de la lógica de enunciados recogen precisamente tal contribu­
ción, pues ésta estriba en la manera peculiar en que cada una de esas 
expresiones produce un valor veritativo para las oraciones compuestas 
con ella a partir de los valores veritativos de las oraciones componentes. 

Algo análogo podría decirse de la relación entre la noción intuitiva 
de verdad lógica y la noción precisa de verdad en toda estructura. Pero 
el lugar para tratar estas cuestiones con mayor extensión y profundidad 
es el volumen de la Enciclopedia dedicado a la Filosofía de la lógica. 

111. CÁLCULOS LÓGICOS 

Un cálculo lógico es un sistema para obtener todas las tautologías e impli­
caciones lógicas, a partir de un conjunto de las primeras, que se seleccio-

6. Para las críticas de la lógica contemporánea respecto a estos puntos d. Strawson, 1952. Para 
la mencionada defensa, Grice, 1989, capítulos 2, 3 Y 4, Y también Thomson, 1990. Véanse también 
las monografías sobre lógicas no clásicas del presente volumen. 
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nan como axiomas del cálculo, y / o una serie de reglas cuya aplicación 
sólo atiende a la forma de las fórmulas a las que se aplican. Durante un 
período importante del desarrollo de la lógica contemporánea, los cál­
culos lógicos tuvieron un protagonismo mayor que las consideraciones 
semánticas en que se ha basado la línea de exposición de las secciones 
anteriores, pero aquí prescindiremos casi totalmente de consideraciones 
históricas, remitiendo a la monografía sobre historia de la lógica de este 
mismo volumen. 

La taxonomía más al uso sobre los cálculos los clasifica en cálculos 
axiomáticos, cálculos de deducción natural y cálculos de secuentes 7. 

Los cálculos axiomáticos, también llamados cálculos «estilo Hilbert» 
o sistemas «estilo Frege-Hilbert», consisten en una serie de fórmulas a 
las que se llama precisamente axiomas, y unas reglas (que se reducen nor­
malmente a una o dos en el caso de la lógica de enunciados), llamadas 
reglas de derivación o deducción (también reglas de inferencia, aunque 
esta denominación es menos adecuada). Como ejemplo, el siguiente cál­
culo se debe a Hilbert. Los axiomas son: 

(Al) <I>-->('P--><I»; 
(A2) (<1> --> ('P --> Y ) ) --> ( ( <1> --> 'P ) --> ( <1> --> Y ) ); 
(A3) ( ---¡ 'P --> ---¡ <1» --> (<1> --> 'P). 
La única regla del cálculo es la llamada regla de separación o, en ter-

minología más tradicional, modus ponens: 
<I>-->'P 
<1> 

'P 
Axiomas y reglas se dan en forma esquemática, de manera que admi­

ten infinitas ejemplificaciones (d. sección 2). El cálculo se presenta de 
modo que ---¡ y --> se toman como las únicas conectivas primitivas o no 
definidas. 

Los axiomas (o sus ejemplificaciones) son todos ellos tautologías (por 
ejemplo: (A3) es una dirección de la <dey» de contraposición presentada 
antes) y las fórmulas obtenidas a partir de ellos por la aplicación de la 
regla, los llamados teoremas, también lo son. Sin embargo, aunque esto 
pueda jugar un papel en la motivación del cálculo (se pretende recoger 
en él todas las «verdades lógicas»), no juega ninguno en su presentación 
y funcionamiento. Para obtener teoremas cada uno de los pasos es o bien 
la ejemplificación de un axioma o bien se obtiene de las fórmulas obteni­
das en pasos anteriores mediante la aplicación de la regla de derivación. 
Veamos, por ejemplo, la derivación o prueba formal de un teorema muy 
simple: (<1>--><1»: 

1) (<1>--(( <1>--<1> )--<1») -->( (<1> --> (<1>--> <1» )--( <1>--<1») 

7. Cf. Sundholm, 1983, que constituye una buena referencia para la presentación comparada 

de los diferentes tipos de cálculos. Otra excelente exposición, más breve y elemental, se encontrará en 
Hodges, 1983, secciones 6 y 7. 
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2) (<1>--+((<1>-><1»--+<1») 
3) (<1> --+ ( <1> --+ <1> ) ) --+ ( <1> --+ <1> ) 
4) (<1>--+(<1>--+<1») 
5) (<1>--+<1» . 
La fórmula de la primera línea en esta prueba es una ejemplificación 

(a su vez esquemática) de (A2) en la que <1> y Y se han ejemplificado por 
<1>, y 'JI por (<1>--+<1» . La fórmula de la 2 es una ejemplificación de (Al) 
(<1>--+<1> por 'JI). La de la 3 se obtiene de las dos anteriores por aplicación 
de la regla. La fórmula de la línea 4 es nuevamente una ejemplificación 
de (Al). Y, por aplicación de la regla a las fórmulas de las líneas 3 y 
4 se obtiene finalmente el teorema que queríamos probar. 

Si se quiere utilizar un cálculo de este tipo para derivar una fórmula 
a partir de unos supuestos que actúen como premisas, entonces hemos 
de tratar a éstos como si fueran axiomas adicionales. 

Como puede verse por la ilustración anterior, derivar fórmulas en 
un cálculo axiomático es algo sumamente poco intuitivo que rápidamente 
se transforma en una tarea muy compleja. Esta es la gran desventaja de 
este tipo de cálculos. Pero, si bien los cálculos axiomáticos no son ade­
cuados para probar cosas en ellos, sí lo son, por su reducido "bagaje» 
inicial, para probar cosas sobre ellos. Además, tienen otra ventaja en el 
caso de las lógicas no clásicas, por la facilidad de "localización» (en los 
axiomas) de las diferencias entre unos y otros sistemas. 

Durante varias décadas, los cálculos axiomáticos fueron los únicos 
existentes, de manera que el trabajo pionero de lógicos como Frege y Rus­
sell se desarrolló en su marco 8. En el clásico Gentzen (1934) se intro­
dujeron los llamados cálculos de deducción natural. Diseñados para efec­
tuar pruebas formales de la manera más sencilla (más «natural») posible, 
estos cálculos se encuentran en múltiples variantes y están profusamente 
representados en los libros de texto 9. 

Los cálculos de deducción natural incluyen en torno a una decena 
de reglas que, como la del modus ponens, tienen un carácter muy intui­
tivo. El modo general de proceder en la deducción recoge también mane­
ras intuitivas de demostrar. Por ejemplo, si lo que se quiere es deducir 
una fórmula condicional, se puede adoptar el antecedente como supuesto 
auxiliar, siendo el nuevo objetivo derivar el consecuente. O se puede ini­
ciar una deducción por reducción al absurdo, suponiendo la negación de 
la fórmula que se quiere derivar; si se llega entonces a una contradicción 
a partir de ese supuesto auxiliar, se considera deducida la fórmula en 
cuestión. 

8. Cf. Frege, 1879-1893 y Whitehead y Russell, 1910, tres de los hitos más importantes en el 
desarrollo de la lógica contemporánea. 

9. Algunas referencias: Anderson y Johnstone, 1962 (cf. Deaño, 1978); Garrido, 1981; Gutten­

plan, 1986; Kalish y Monrague, 1980 (cf. Mosterín, 1983); Mates, 1987; Quine, 1981; Sacristán, 1973 
y Suppes, 1975. En realidad, la mayoría de los autores presentan un cálculo de la lógica de enunciados 

integrado en uno de primer orden. 
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En el mismo artículo citado, Gentzen introdujo también los cálculos 
de secuentes. Como una breve explicación de este tipo de cálculos en su 
forma original resultaría poco informativa, centraremos nuestra atención 
en un «descendiente», los cálculos analíticos, exponiendo en detalle uno 
de ellos. 

El cálculo que presentaremos constituye una variante de las llama­
das tablas semánticas 10. Como todos los cálculos analíticos, estos cálcu­
los están muy estrechamente ligados a la siguiente consideración semán­
tica: Si r 1= <1>, no hay ninguna estructura que haga simultáneamente 
verdaderas a las formulas de r y falsa a <1>. Pero esto quiere decir que 
no hay ninguna estructura que haga simultáneamente verdaderas a las 
fórmulas de r y a -, <1>, pues <1> es falsa en una estructura si y sólo si 
-, <1> es verdadera en ella. 

Un conjunto de fórmulas para el que hay al menos una estructura 
en la que todas las fórmulas del conjunto son verdaderas se llama satis­
facible, en caso contrario, el conjunto es insatisfacible. Así, si r 1= <1>, el 
conjunto de fórmulas que resulta de añadir -, <1> a las de r es insatisfa­
cible. 

Tomemos de nuevo un ejemplo. Supongamos que se trata de demos­
trar lo siguiente: 

(3.1) p�(-'qAr), p/\-'ql=r. 
Por lo que se acaba de decir, ello equivale a demostrar que el con­

junto de las tres fórmulas siguientes es insatisfacible: 
(3.2) p�( -, qAr), P/\ -, q, -, r. 
Veamos si podemos refutar esa afirmación mostrando que ese con­

junto es satisfacible, es decir, que hay al menos una estructura en que 
estas fórmulas son verdaderas. En primer lugar, para que P/\ -, q sea ver­
dadera, lo han de ser p y -, q. Por otro lado, para que p�( -, qAr) sea 
verdadera, una al menos de estas dos cosas debe suceder: que p sea falsa 
(y, por lo tanto, -, p verdadera), o que (-, qAr) sea verdadera. La pri­
mera de estas alternativas entra en conflicto con la exigencia anterior de 
que p sea verdadera. Pero para que la segunda alternativa se dé, tanto 
-, q como r deben ser verdaderas, y esto es imposible porque -, r ha 
de ser verdadera para que el conjunto (3.1) sea satisfacible. Por consi­
guiente, ninguna estructura puede hacer verdaderas simultáneamente a 
las fórmulas de (3.2). 

El curso de este razonamiento puede organizarse en un diagrama como 
el siguiente: 

10. Cf. Beth, 1955, y Hintikka, 1955. Para un estudio detallado de los cálculos analíticos y su 
relación con los cálculos de secuentes de Gentzen, cf. Smullyan, 1968. Una breve pero iluminadora 
explicación se da en el texto de Hodges al que se hace referencia en la nota 7. 
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-----,p -----, q/\r 

# 

I 
-----'q 

I 
r 

# 

En este tipo de diagrama, se parte de las fórmulas que se quiere hacer 
verdaderas. Cada estadio comporta una nueva exigencia para que ello 
sea posible. Cuando hay una ramificación, lo que tenemos es una alter­
nativa: se requiere que las fórmulas de al menos una de las ramas sean 
verdaderas. Cuando, para alguna rama llegamos a la conclusión de que 
ello es imposible, puesto que en esa misma rama aparece -a lo largo 
de toda la ruta desde el origen- una fórmula simple y su negación, cerra­

mos la rama (poniendo una marca, por ejemplo:#). Cuando todas las 
ramas están cerradas ello significa que es imposible hacer simultáneamente 
verdaderas a esas fórmulas. El conjunto de partida es insatisfacible, y 
la correspondiente pregunta sobre la implicación lógica se responde afir­
mativamente. Si, tras explorar todas las posibilidades, alguna rama que­
dara abierta, entonces ese conjunto es satisfacible, y la pregunta original 
sobre la implicación lógica habría que responderla negativamente. 

Todas estas consideraciones pueden conducir a formular un cálculo pura­
mente formal. En él los sucesivos estadios se alcanzan mediante la aplicación 
de reglas de derivación. Un conjunto de tales reglas puede ser el siguiente: 

-----, -----, <1> -----, (<1>/\'1') 

<1> <1> -----,<1>-----,'1' 

'1' 
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Cada una de estas reglas expresa lo que se requiere para que la fór­
mula que encabeza la regla sea verdadera, como puede comprobarse por 
las tablas de verdad o por la definición de verdad (por ejemplo: para que 
---, (<1> <--> 'P) sea verdadera se requiere o bien que <1> y ---, 'P sean verdade­
ras o bien que lo sean ---, <1> Y 'P). Pero estas consideraciones semánticas 
quedan fuera de la formulación estricta del cálculo. 

Una de las cualidades de este cálculo es que suministra un método 
de decisión para la lógica de enunciados. Es decir, se puede utilizar el 
cálculo de una manera mecánica para determinar si una fórmula cual­
quiera del lenguaje es o no derivable, o derivable a partir de un conjunto 
de premisas dado (en la determinación de esto último son relevantes otras 
consideraciones que se harán más adelante, en la sección V). 

Un cálculo formal sólo es un cálculo lógico si es correcto, es decir, 
si sólo pueden derivarse en él tautologías o implicaciones lógicas. Ade­
más, los cálculos lógicos son completos si todas las tautologías e impli­
caciones lógicas pueden derivarse en ellos. Los cálculos de la lógica de 
enunciados tienen estas dos propiedades. En cuanto a la corrección ello 
puede ser bastante obvio en algunos casos (como el de nuestro cálculo), 
pero la demostración de las afirmaciones anteriores cae por completo fuera 
del alcance de esta monografía. Más adelante, volveremos sobre estas 
y otras importantes propiedades (cf., de nuevo, la sección V). 

IV. LOS LENGUAJES DE LA LÓGICA DE PRIMER ORDEN 

Los lenguajes de primer orden disponen de lo esencial para hablar sobre 
los objetos de un dominio dado (también llamado universo del discurso), 
que puede cambiar contextualmente y sobre el que la única restricción 
que suele imponerse es que no sea vacío. «Hablar» quiere decir: predicar 
cosas sobre ellos, atribuirles propiedades, afirmar que están en determi­
nadas relaciones o que no lo están, etc.; y ello bien sea en aserciones par­
ticulares -es decir, aserciones acerca de objetos determinados-, bien 
en aserciones generales, acerca de una multiplicidad de objetos -todos 
los del dominio, o alguno o algunos de ellos solamente. 

Para la predicación de propiedades o relaciones se utilizan los predi­
cados (incluyendo aquí expresiones de relación). Si las aserciones son par-
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ticulares será necesario servirse además de las constantes individuales, que 
son e! análogo de los nombres propios, y si son generales, se utilizan los 
cuantificadores y las variables. 

Según esto, un lenguaje de primer orden tiene: 

1) Variables: x, y, z, u, ... 
2) Conectivas: --' , A, V, --+, ..... 
3) Cuantificadores: V, :3:. 
4) Constantes individuales: a, b, c, ... 
5) Predicados: P, Q, R, S, ... 
6) Símbolo de identidad: "". 
7) Paréntesis: (, ). 

Los símbolos de las tres primeras categorías son, con pequeñas sal­
vedades, comunes a todos los lenguajes de primer orden. El número de 
variables puede variar, pudiendo ser finito o infinito numerable (tantas 
como números naturales: x" x2, x 3, • • •  ). Además, hay algunas varian­
tes inesenciales respecto a las conectivas y los cuantificadores (conjunta­
mente conocidos como símbolos lógicos). Ya sabemos que no se limita 
e! poder expresivo de! lenguaje tomando algunos otros conjuntos alter­
nativos. Tampoco se limitaría tomando un solo cuantificador como sím­
bolo básico, pues cualquiera de ellos puede definirse en función de! otro 
(con la ayuda de la negación). 

El cuantificador V es e! cuantificador universal. Puede leerse «todos» 
o «todo». :3: es e! cuantificador existencial; pueden leerse «algún», «hay» 
o «al menos uno»". 

Lo que varía de unos lenguajes a otros son las constantes individua­
les y los predicados. Es costumbre entonces utilizar las letras anteriores 
para hablar de un modo general sobre los lenguajes de primer orden y 
las propiedades lógicas de sus fórmulas, máxime cuando éstas no depen­
den de! significado específico de los predicados. 

Por último, e! símbolo de identidad, un predicado especial que in­
cluimos entre los símbolos lógicos, aumenta e! poder expresivo de! len­
guaje 12. 

Con e! ejemplo siguiente se pretende ilustrar varios aspectos del fun­
cionamiento de un lenguaje de primer orden. Supongamos que estamos 
hablando de ciertas propiedades de las personas de una determinada 
comunidad y de sus relaciones. Observamos, por ejemplo, que todos los 
miembros de la comunidad son varones. Esto lo expresaríamos así: 

11. Existen variantes notacionales menos usadas, como lo son símbolos parecidos en la forma 
a las conectivas 1\ y v, pero de mayor tamaño. Los cuantificadores siempre se escriben acompañados 
de variables y, aunque ahora ha caído en desuso, históricamente era frecuente escribir «(x)) para lo 
que hoy escribimos ( Vx>}. 

J 2. La lógica de que hablaremos es, pues, la lógica de primer orden cal/ idel/lidad, extremo éste 
que a veces se especifica en la descripción. Las expresiones lógica de predicados y lógica clIanlzficacio­
"al se utilizan (con o sin la anterior especificación) esencialmente como sinónimas de lógica de primer 
orde". 
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(4.1) VxVarón(x). 
Algunos miembros son adultos, pero no todos: 
(4.2) :3:xAdulto(x)A -----, VxAdulto(x). 
Todos los adultos llevan barba. 
(4.3) Vx(Adulto(x)--+ Barba(x)). 
Algunos adultos son calvos, pero no todos los adultos lo son. 
(4.4) :3:x(Adulto(x )ACalvo(x))A -----, Vx(Adulto(x)--+Calvo(x)). 
Todos los adultos de la comunidad que llevan barba son tutor de 

alguien pero no todo tutor de alguien lleva barba. 
(4.5) Vx((Adulto(x)ABarba(x))--+ :3:yTutor(x,y)) 

A -----, Vx( :3:yTutor(x,y)--+ Barba(x)). 
Todo tutor de un menor le enseña. 
(4.6) V x Vy( (Tutor(x,Y)AMenor(y))--+ Enseña(x,y)). 
Algún miembro de la comunidad tiene más de un tutor. 
(4.7) :3:x :3:y:3:z(Tutor(x,z)A Tutor(y,z)A -----, x:=:; y). 
Por último, hay una (única) persona que es e! director de la comu­

nidad. 
(4.8) :3:x(Director(x)A Vy(Director( y)-+x:=:; y)). 

En las fórmulas anteriores, palabras como «Adulto», «Barba» y 
«Tutor» se han utilizado como predicados. Claro que no todos los pre­
dicados son sintácticamente de! mismo tipo. Los dos primeros, por ejem­
plo, son monádicos, es decir, exigen solamente una variable o constante 
individual para formar una fórmula (algo análogo a una oración). El ter­
cero es diádico (es decir, exige dos variables o constantes). Similarmente, 
en un lenguaje de primer orden puede haber predicados triádicos, tetrá­
dicos, etc., es decir, predicados n-ádicos, para cualquier n. 

Las fórmulas ilustran, de formas diversas, la interacción de los cuan­
tificadores entre sí y de éstos con las conectivas, que como puede presu­
mirse, puede llegar a ser muy compleja (no existe límite teórico para esta 
complejidad). En general, como vemos, «todos», «todo», se expresan 
mediante e! cuantificador universal, mientras que «algunos», «alguien», 
«un» lo hacen mediante el existencial. Pero hay excepciones. Cuando hay 
una condición de unicidad y con «un» «<uno», «una») se quiere decir 
«exactamente uno» (como en la última oración), la expresión en primer 
orden requiere además de! cuantificador existencial, e! universal y e! signo 
de identidad. Y hay casos especiales que hacen traducir «un» mediante 
e! cuantificador universal, como en (4.6) 13. 

Todas las fórmulas ilustran e! hecho ya señalado de que el dominio 
se determina contextualmente. En este caso el discurso es acerca de los 
miembros de una determinada comunidad, de manera que los valores 
que adoptan las variables son objetos o individuos de tal conjunto. Esta 
no ha sido una idea adoptada desde el origen de la lógica de primer orden. 

13. El tipo de oración que traduce (4.6) se denomina a veces oración de burrito», debido a 
un ejemplo tradicional (<<Todo granjero que tiene un burro le pega»). Para los problemas semánticos 
que plantean, d. Neale, 1990. 
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Frege, uno de los lógicos a quien más se debe el impulso de la lógica con­
temporánea, consideraba fijo el dominio de cuantificación, con lo cual 
se trivializaba éste, al tratarse del dominio de absolutamente todo. La dife­
rencia puede explicarse en términos de nuestra ilustración tomando, por 
ejemplo, la fórmula (4.1). Mientras que para nosotros puede parafrasearse 
así: «Para todo individuo de la comunidad, ese individuo es varón», con 
la expresión «de la comunidad» dada por el contexto, para Frege habría 
que leerla de este otro modo: «Para todo individuo, ese individuo es varón». 
Si quisiéramos decir lo que decimos pero a la manera de Frege, con un 
solo universo de cuantificación, deberíamos utilizar una fórmula como: 

(4.9) Vx(Comunidad(x)---> Varón(x)), 
donde la expresión «comunidad» expresaría la propiedad de ser un miem­
bro de la comunidad en cuestión. Y algo análogo valdría para todos los 
demás casos. 

Las dos últimas fórmulas permiten hacer ver el valor expresivo del 
símbolo de identidad, pues sin él en ninguno de los dos casos sería posi­
ble expresar la idea que se intenta expresar. 

V. VERDAD E IMPLICACIÓN 

La definición de las propiedades lógicas fundamentales para los lengua­
jes de primer orden sigue los mismos pasos que en la lógica de enuncia­
dos. Ello quiere decir que, ante todo, se debe caracterizar exactamente 
la sintaxis del lenguaje y el concepto de verdad en una estructura, para 
la noción de estructura adecuada al nuevo tipo de lenguajes. 

La sintaxis delimita la noción de fórmula, mediante una definición 
recursiva como la de la sección 1, sólo que ahora es algo más compli­
cada. La nueva cláusula 1 dice que anteponiendo un predicado -del 
<<número ádico» adecuado- al correspondiente número de variables o 
constantes (si el predicado es n-ádico, n constantes o variables) se obtiene 
una fórmula. Las cláusulas 2 y 3 quedarían igual en la nueva definición. 
Se añadiría ahora una cláusula al efecto de que anteponiendo a una fór­
mula un cuantificador acompañado de una variable, se obtiene también 
una fórmula. La nueva definición se cerraría con lo que en la anterior 
es la cláusula 4. 

Es preciso hacer ahora una distinción que se revelará importante en 
lo que sigue: la que se da entre las fórmulas que contienen al menos una 
variable libre es decir, una variable que, al menos una de las veces que 
aparece no está afectada o ligada por ningún cuantificador (si x está en 
el alcance de Vx entonces está ligada por el cuantificador) y fórmulas 
que, o bien no contienen variables, o en las que todas las veces que éstas 
aparecen lo hacen ligadas por un cuantificador. A las primeras las lla­
maremos fórmulas abiertas y a las segundas sentencias (todos los ejem­
plos del apartado anterior lo eran de sentencias). Es posible formular esta 
distinción con mayor precisión, pero no es necesario hacerlo aquí. 
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Por lo dicho en la sección anterior, una estructura para un lenguaje 
de primer orden es un conjunto de objetos individuales (e! dominio, que 
estipulamos no vacío), junto con algún «mecanismo» que asocie las cons­
tantes individuales de! lenguaje con objetos del dominio y los predicados 
con propiedades adecuadas dado e! «número ádico» de aquéllos (por ejem­
plo, si e! predicado es diádico, con una relación binaria). 

Ahora bien, lo que realmente se asocia a los predicados son conjun­
tos adecuados, obtenidos a partir de los objetos del dominio. A un predi­
cado monádico, por ejemplo, se le asocia un subconjunto cualquiera (y 
uno sólo) de objetos del dominio; a uno diádico un conjunto de «día­
das», es decir, de pares ordenados de objetos de! dominio. Y así sucesi­
vamente. El conjunto asociado a un predicado monádico contiene los 
objetos de los cuales es verdadero el predicado, a los que se aplica con 
verdad el predicado, como se reflejará más tarde en la definición de ver­
dad para e! lenguaje. El conjunto de pares asociado a un predicado diá­
dico, contiene los pares de objetos de! dominio a los que se aplica (en 
e! orden que presenta e! par) tal predicado. Etc. 

Con ello, hablar de la propiedad o la relación asociada a un predi­
cado queda sólo como una manera intuitiva de hablar que mantenemos 
cuando conviene. 

Expresamos estas ideas de un modo más sucinto ayudándonos de la 
letra «P» que tomamos aquí para representar a cualquier predicado de 
L, e! lenguaje de que se trate (ahora un lenguaje de primer orden) 14. 

DEFINICIÓN 5.1. Una estructura A para L es un par (A, 1> en e! que 
A es un conjunto cualquiera no vacío e 1 una función (llamada a veces 
interpretación) tal que: 

1) 1 asigna a cada constante individual de L, un elemento de A. 
2) 1 asigna a cada predicado P n-ádico de L, un conjunto de n-tuplas 

de elementos de A. (n?l). 

El próximo paso es definir la noción de verdad en una estructura. Se 
presenta aquí, sin embargo, una dificultad que no se daba en el caso de 
la lógica de enunciados. Allí se explicaba e! modo en que e! valor de ver­
dad de un enunciado complejo dependía de los valores de verdad de sus 
constituyentes. El problema consiste en que ahora tenemos fórmulas com­
plejas (las sentencias cuantificadas) cuyo valor veritativo no depende de! 
de sus constituyentes, por la sencilla razón de que éstos, por el tipo de 
expresión que son, no tienen un valor veritativo. Por ejemplo, e! valor 
veritativo de --, <1> depende de! de <1>, pero e! de :3:xP(x) no depende del 
supuesto valor veritativo de P(x) pues esta fórmula, sencillamente, no 
tiene valor veritativo. Más intuitivamente: e! valor veritativo de :3:xVa­
rón(x) no depende del supuesto valor de Varón(x). 

14. Utilizamos así esa letra de una manera ambigua, pues antes figuraba como un predicado 
de un lenguaje de primer orden, y ahora figura como una «letra esquemática» del metalenguaje. Pero 
el contexo resuelve bien estas ambigüedades y se evita así introducir aparato adicional. 

90 



LÓGICA CLÁSICA DE PRIMER ORDEN 

Tarski, uno de los lógicos importantes del presente siglo, dio con la 
manera de salvar el escollo, introduciendo una nueva noción, la noción 
de satisfacción, y un recurso técnico '5. Puede decirse que, esencialmente, 
todas los procedimientos que hoy se utilizan para hacerlo son variantes 
del suyo. 

La noción de satisfacción es en principio muy sencilla. Consideremos 
una estructura A= (A, T). Sea a, un elemento de A (utilizamos las 
negritas como expresiones del metalenguaje para referirnos a elementos 
del dominio). Decimos que a, satisface P(x) si a, es un elemento del con­
junto T(p) (el conjunto que T asigna a P). Ahora bien, para el caso de 
un predicado diádico, digamos R, se necesitaría algo diferente: el par 
(a" az) satisface R(x,y) si ese par es un elemento del conjunto T(R) (un 
conjunto de pares). Análogamente, habría que cambiar la definición para 
el caso de que el predicado fuera triádico, tetrádico, etc., por lo que, 
en rigor, se obtendría una familia de conceptos de satisfacción y no uno 
sólo. Además hay que considerar «casos mixtos», como la fórmula R(x,b) 
con predicado diádico pero una sola variable libre. 

Tarski solucionó el problema apelando a secuencias infinitas de obje­
tos y a la noción de satisfacción por una secuencia. Pero su definición 
original no está hecha tomando en consideración la posibilidad de cam­
biar de dominio y de estructura. Por ello las variantes actuales son algo 
distintas. Aquí se utilizará la noción de asignación de objetos (de un domi­
nio) a variables como noción auxiliar. Con esta noción resolvemos el pro­
blema original esencialmente con la observación de que, si bien una fór­
mula abierta como P(x) no tiene en una estructura un valor veritativo 
«absoluto», sí lo tiene relativamente a la asignación de un objeto a la varia­
ble. Cuando se trate entonces de dar las condiciones de verdad de un 
enunciado como �xP(x) simplemente se le declara verdadero si hay un 
objeto en el dominio que al ser asignado a la variable hace verdadera 
la fórmula. Esta es la idea básica que será desarrollada técnicamente a 
continuación. 

Para ello necesitamos introducir nueva notación y algunas nociones 
auxiliares. 

En la definición utilizamos las letras ti' ... , t" para cualesquiera tér­
minos individuales (constantes individuales o variables). Nos servimos 
de la letra s para referirnos a una asignación de objetos del dominio a 
variables. Mediante s(x / a) nos referimos a una asignación que es exac­
tamente como s excepto posiblemente en que, sea lo que fuere lo que 
ésta asigna a la variable x, aquélla le asigna el objeto a. 

Es necesario un recurso para hacer referencia en general al objeto asig­
nado a un término individual, sea éste una constante individual (caso en 
que la asignación la hace la función T de la estructura) o a una variable 
(caso en que el objeto lo determina una asignación s). A tal fin introduci-

15. Cf. el famoso Tarski 1935, editado por vez primera en polaco en 1933. 
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mas una función s como extensión de s, de modo que s(t) = s(t), si t es 
una variable, y s(t) = 1 (t), si t es una constante individual. (El símbolo 
«=» es un símbolo del metalenguaje, a distinguir de «"'" », el símbolo 
de identidad del lenguaje, aunque su función sea la misma). 

La expresión «syss» abrevia a «si y sólo si». Utilizamos también la 
letra x para referirnos a cualquier variable (vale aquí también la obser­
vación de la nota 14). con <1> nos referimos ahora a una sentencia cual­
quiera del lenguaje de primer orden y con <I>(x) a cualquier fórmula que 
tenga una variable libre. 

Finalmente, utilizamos 11 <1> IIA,s = V para abreviar «<1> es verdadera en 
A con respecto a s», la noción que vamos a definir recursivamente. 

Sea A= (A, 1) una estructura para un lenguaje de primer orden L. 

DEFINICIÓN 5.2. 
1) Si P es un predicado n-ádico, 

11 P(t" ... , tn)A.s 11 = Vsyss la n-tupla (s(t,), ... , s(tn) 
es un elemento de 1 (P). 

2) 11 t,""'t2 IIA,s=V syss s(t,)=s(t2). 
3 )-7) Igual que en la definición 2.1 pero con la relativización a s. 

8) 11 Vx<l>(x) IIA,s = V syss, para todo elemento a de A, 
11 <I>(x) IIA,s(xla)=V, 

9) 11 a x <1> (x) 11 A.s = V syss, para al menos un elemento a de A, 
11 <I>(x) IIA,s(xla)=V, 

La noción de modelo de una sentencia o un conjunto de sentencias 
la podemos tomar ahora directamente de la sección 11 (teniendo en cuenta, 
claro está, la diferente noción de estructura subyacente) y llegamos así 
a la caracterización de las propiedades lógicas fundamentales para el caso 
de los lenguajes de primer orden. Sea L uno de estos lenguajes. 

DEFINICIÓN 5.3. 
a) r � <1> syss todo modelo de r es también un modelo de <1>. 
b) �<I> syss toda estructura (para L) es un modelo de <1>. 

Éstas son, para el caso de los lenguajes de primer orden, las nociones 
precisas de implicación lógica (o consecuencia) y, de verdad lógica o vali­
dez, como se dice en este caso (el término «tautología» no suele utilizarse 
fuera de la lógica de enunciados). Como puede comprobarse, son del todo 
análogas a las nociones correspondientes del caso más restringido de la 
lógica de enunciados. La diferencia radica en el tipo de estructura que 
es apropiada para uno y otro. 

En el contexto más amplio de la lógica de primer orden también nos 
preguntamos por su capacidad como teoría lógica para dar cuenta de razo­
namientos intuitivamente válidos. En realidad es en el marco global de 
esta lógica, y no en el más limitado de la lógica de enunciados, cuando 
adquiere realmente sentido una respuesta. Pero en el planteamiento algo 
artificial «en dos tiempos» que aquí se hace, simplemente a las anterio-

92 



LÓGICA CLÁSICA DE PRIMER ORDEN 

res consideraciones añadimos lo que haya que decir acerca de los cuanti­
ficadores y oraciones cuantificadas. 

También respecto a éstos es posible defender la lógica de primer orden 
en una línea similar a la que se esbozó en el caso de la lógica de enuncia­
dos. Puede decirse que las reglas semánticas para los cuantificadores (las 
correspondientes cláusulas de la definición de verdad) son una buena teo­
ría de su contribución a las condiciones de verdad de las oraciones de 
las que forman parte, pues las condiciones de verdad de una oración cuan­
tificada no dependen sino de los conjuntos de objetos a los que se apli­
can los predicados. 

Una fuente de posibles objeciones concierne a la falta de presuposi­
ciones existenciales del cuantificador universal en el análisis cuantifica­
cional. Vx(P(x)->Q(x)) no implica :3:xP(x); es más, la primera sentencia 
es verdadera si en el dominio no hay objetos a los que se aplique P. Ello 
origina en ciertos contextos algunos juicios aparentemente poco intuiti­
vos sobre la verdad de las oraciones. Las consecuencias se ponen de mani­
fiesto claramente en el rechazo por incorrectas de inferencias que en la 
lógica silogística tradicional se dan por correctas 16. Por ejemplo, la infe­
rencia (5.1) sería incorrecta. 

(5.1 ) Todos los mamíferos son vivíparos 
T odas los mamíferos tienen pulmones 

Algún vivíparo tiene pulmones 
Al juicio de incorrección se llega representando las dos premisas 

mediante sentencias cuantificadas universalmente como la del párrafo 
anterior y la conclusión mediante una sentencia existencial del tipo 
:3:x(Q(x)I\R(x)). Sea A = (A,!) un modelo en el l' que asigna a P y a 
Q el conjunto vacío, siendo P y Q los representantes de «es un mamí­
fero» y «es vivíparo», respectivamente. A es entonces un modelo de las 
premisas, pero no de la conclusión. Las premisas son verdaderas en esa 
estructura porque, como se desprende de la definición 5.2, una cuantifi­
cación universal de un condicional es verdadera (vacuamente verdadera) 
cuando el predicado del antecedente no se aplica a ningún objeto del 
dominio. 

Las causas relevantes del juicio negativo sobre (5.1) son, por tanto, 
dos: nuestra decisión de representar las premisas como lo hemos hecho 
y el veredicto que emite la definición 5.2 sobre las cuantificaciones uni­
versales de condicionales con antecedente «vacuo». De tener serios moti­
vos para defender la validez intuitiva de (5.1) habría que revisar una, 
al menos, de estas dos cosas. Revisar la segunda nos llevaría, desde luego, 
fuera del marco de la lógica cuantificacional clásica. Revisar la primera 
es mucho más fácil. Podríamos admitir que en el lenguaje cotidiano (al 
contrario de lo que sucede en el lenguaje matemático) afirmaciones uni-

16. Se rechazan los modos silogísticos Darapti, Fe/aptan, Bramantip y Fesapa. Cf. la monogra­
fía sobre Historia de la lógica en el presente volumen. 
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versales como las de las premisas de (5.1) tienen también un cierto con­
tenido existencial, de modo que habría que representarlas adecuadamente 
mediante una fórmula del tipo :3:xP(x)J\ Vx(P(x)-->Q(x)). Con ello se blo­
quearían contraejemplos como el anterior. 

La cuestión es entonces si en el lenguaje cotidiano el significado de 
las oraciones en cuestión incluye el mencionado «contenido existencia!». 
Para dilucidar esto sería aquí también relevante hacer la distinción entre 
las condiciones de verdad de una oración y los principios pragmáticos 
que rigen su uso (d. nota 6). 

VI. PROPIEDADES DE LA LÓGICA DE PRIMER ORDEN 

Los cálculos de la lógica de primer orden no son sino ampliación de los 
de la lógica de enunciados, a los que basta con añadir unas pocas reglas, 
o axiomas (según de qué cálculos se trate) para las fórmulas con cuanti­
ficadores y el símbolo de identidad 17. 

Sólo se dará aquí un ejemplo. Del cálculo analítico que se presentó en 
la sección 3 se obtiene un cálculo de la lógica de primer orden (dejando 
en este punto de lado la identidad) añadiendo las siguientes cuatro reglas 

18: 

Vx<l>(x) 
<1> (a) 

---, :3: x <1> ( x) 
---, <1>( a) 

:3: x <1> ( x) 
<1> (a) 

---, V x <1> ( x) 
---, <1>( a) 

Aquí, como anteriormente, la línea horizontal separa la fórmula a 
la que se aplica la regla de la fórmula resultado de su aplicación. Indica 
también que la aplicación de la regla no tiene por qué hacerse inmediata­
mente debajo de la fórmula a la que se aplica. 

Las dos últimas reglas están sometidas a la restricción de que a sea 
una constante nueva, en el sentido de no utilizada aún en la derivación 
de que se trate. 

Los cálculos ocuparon un papel central en la lógica clásica mientras 
las consideraciones semánticas se hacían sólo intuitivamente, al no haberse 
desarrollado aún las nociones semánticas de un modo sistemático, den­
tro de un marco matemático 

19
. Hoy en día se ve su significación a tra­

vés del teorema de completud. Por tanto, vamos a pasar ahora a exponer 
el contenido y el significado de este resultado y otros resultados impor­
tantes relacionados con él 20. 

17. Todas las referencias de la nota 9 son pertinentes aquí. 
18. <I>(a) es el resultado de sustituir en la fórmula <I>(x), con la x variable libre, esta variable por 

la constante individual a. En la formulación de la regla, la letra «a» figura como representante de cual­
quier constante. 

19. Otro tanto puede decirse de las lógicas no clásicas. En las últimas décadas, la introducción 
de consideraciones semánticas sistemáticas ha revolucionado completamente el estudio de éstas. ef. 
las monografías correspondientes de este mismo volumen. 

20. La demostración de todos estos resultados exige el desarrollo del aparato de las pruebas por 
inducción y las nociones de teoría de conjuntos que las justifican. Estas pruebas pueden encontrarse 
en excelentes libros de texto como Boolos y]effrey, 1990; Enderton, 1972; Ebbinghaus, Flum y Tho· 
mas, 1984 y Smullyan, 1971. 
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Consideremos en adelante uno cualquiera de los cálculos lógicos a 
los que se ha aludido. Introducimos el signo «f-» para abreviar la afir­
mación de que algo es derivable en él. Así, r f- <1> significa que <1> es deri­
vable a partir del conjunto de premisas r, y f- <1> significa que <1> es deri­
vable sin premisas, que, como se dice, es un teorema lógico. (Este caso 
simplemente es el caso particular del anterior en el que r es el conjunto 
vacío, por lo que lo consideramos incluido en el caso general.) 

La propiedad básica esencial para que un sistema de manipulación 
formal sea un cálculo lógico es la corrección, expresada en el siguiente 
teorema. 

TEOREMA 6.1 (Corrección): Si rf-<I>, entonces r�<I>. 

Los cálculos de primer orden son completos, en el sentido del siguiente 
teorema 21, que expresa la primera propiedad interesante que esos cál­
culos poseen. 

TEOREMA 6.2 (Completud): Si r�<I>, entonces rf-<I>. 

Una manera de explicar el significado profundo de este teorema es 
que muestra la medida en que es posible aproximarse al ideal leibniziano 
de sustituir la discusión racional por un procedimiento calculístico. En 
efecto, consideremos el conjunto de las verdades lógicas de un lenguaje 
de primer orden o de fragmentos del lenguaje natural representables en 
ese lenguaje. Es decir, el conjunto de las fórmulas u oraciones <1> de esos 
lenguajes tales que � <1>. Por el teorema de completud, existe una prueba 
formal de <1> en un cálculo de primer orden, es decir <1> es un teorema 
lógico, derivable sin premisas. Ahora bien, la cuestión de si algo consti­
tuye o no una prueba formal o deducción de una fórmula, es decidible 
mecánicamente. Pero esto implica que existe la posibilidad de un <<lis­
tado mecánico» de tales teoremas: genérense mecánicamente todas las 
cadenas de símbolos y decídase mecánicamente cuáles son derivaciones 
de una fórmula; cada vez que se obtenga una que lo sea, añádase la fór­
mula a la lista. 

La existencia de este procedimiento se expresa diciendo que el con­
junto de los teoremas lógicos de primer orden es recursivamente (o efecti­
vamente) enumerable. Pero, dada la corrección de los cálculos, esto signi­
fica que también el conjunto de verdades lógicas que considerábamos es 
recursivamente enumerable: es mecanizable la tarea de construir una lista 
tal que si una sentencia (de primer orden o representable en primer orden) 
es una verdad lógica, entonces aparecerá en la lista «en algún momento». 

Esto no implica en absoluto que tengamos un procedimiento de deci­
sión, en el sentido aludido arriba y brevemente descrito en la sección III. 
En este respecto la lógica de primer orden está en claro contraste con 
la de enunciados. 

21. La primera prueba de este teorema se dio en Cadel, 1930. Las demostraciones que suelen 
darse en la actualidad proceden de Henkin, 1950. 
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El caso teóricamente más interesante, sin embargo, es el de las impli­
caciones lógicas. Ahora bien, cuando el conjunto de premisas es finito, 
este caso simplemente se reduce al anterior por (sucesivas aplicaciones 
de) el teorema 2.2 (que vale también en el contexto más amplio de la 
lógica de primer orden). 

Piénsese que entre las inferencias que interesan se encuentran espe­
cialmente aquéllas en las que el conjunto de premisas es el conjunto de 
axiomas de una teoría matemática formulada en un lenguaje de primer 
orden. Los resultados anteriores revelan así la medida en que es posible 
mecanizar la prueba matemática 22, Y son por ello de importancia para 
los fundamentos y la filosofía de la matemática. Y también son de signi­
ficación para teorías de otras ramas de la ciencia, en tanto éstas puedan 
axiomatizarse en un lenguaje de primer orden o «contengan» teorías mate­
máticas. 

Hemos explicado la relevancia del teorema de completud en el con­
texto de la mecanización de una prueba. La del teorema de compacidad, 
el siguiente de los importantes resultados lógicos de nuestra lista, ha de 
explicarse por su estrecha vinculación con la existencia de una prueba. 
Si r � <1>, el teorema de completud garantiza la existencia de una prueba 
formal (y, por lo tanto, de una prueba en definitiva), cualesquiera que 
sean r y <1>. Pero ¿cómo es esto posible en el caso de que r sea infinito 
si una prueba es necesariamente algo que ha de ser inspeccionable, cons­
tatable y, por tanto, finito? La respuesta se deriva del teorema de 
compacidad 23. 

TEOREMA 6.3 (Compacidad): Si todo subconjunto finito de un con­
junto de fórmulas es satisfacible, entonces este conjunto es también satis­
facible. 

La relevancia de este teorema se ve inmediatamente a través del 
siguiente teorema, llamado a veces teorema de finitud, que puede pro­
barse con su ayuda24• 

TEOREMA 6.4 (Finitud): Si r � <1>, entonces hay un subconjunto finito 
ro de r tal que ro�<I>. 

La propiedad de compacidad (o finitud) es así necesaria para la exis­
tencia de una prueba. Pero, juntamente con la enumerabilidad de los teo­
remas lógicos, es también suficiente. En efecto, la primera garantiza la 

22. Para las teoríasfinitamente axiomatizables (axiomatizables con un conjunto finito de axio­
mas). La discusión se podría extender tomando en consideración las teorías cuyos axiomas, aunque 
infinitos, son enumerables recursivamente, pero no podemos aquí tomar este caso en consideración. 

23. Probado por primera vez en Godel, 1930. 
24. De hecho, los dos teoremas son equivalentes, pues también es posible demostrar el de com­

pacidad a partir del de finitud. La equivalencia de ambos teoremas hace que a veces se los formule 

como variantes el uno del otro. 
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reducción de las implicaciones lógicas al caso de un conjunto finito de 
premisas. Pero, como hemos visto, el teorema 2.2 reduce el caso al de 
averiguar la validez de una fórmula, y, si ésta es válida, el procedimiento 
de enumeración antes aludido proporcionaría su prueba. 

Otro de los teoremas fundamentales, el llamado teorema de L6wen­
heim-Skolem 25, revela algo importante sobre las descripciones teóricas 
de un dominio. 

TEOREMA 6.5 (Lowenheim-Skolem): Si r tiene un modelo, entonces 
tiene un modelo numerable. 

El teorema de L6wenheim-Skolem fue en algún momento conside­
rado paradójico. Así el propio Skolem se hizo la pregunta (llamada pos­
teriormente paradoja de Skolem) de cómo era posible que un conjunto 
de fórmulas o proposiciones verdaderos sobre los números reales, que 
forman un conjunto no numerable, pudiera también ser verdadero de un 
ámbito numerable. Sin embargo, esta situación sólo puede verse como 
paradójica en el supuesto de que el objetivo de las teorías sea «definir» 
un ámbito determinado, es decir, caracterizar unívocamente un ámbito, 
de modo que no haya otro ámbito que responda a esa caracterización. 
El teorema nos señala lo injustificado de ese supuesto. Siempre que ten­
gamos una teoría de una estructura infinita (en un lenguaje de primer 
orden), hay modelos de esa teoría «esencialmente distintos», es decir, no 
isomorfos (se dice entonces que la teoría en cuestión no es categórica). 
Lo mismo podemos decir, en particular, del método axiomático, que no 
es sino una forma distinguida de dar una teoría. 

El teorema de compacidad y el de L6wenheim-Skolem describen pro­
piedades «absolutas» de los lenguajes de primer orden, propiedades inde­
pendientes de cualquier cálculo. Estas propiedades se utilizan para carac­
terizar el poder expresivo de los lenguajes de primer orden y de lenguajes 
que son extensiones de aquéllos26• ASÍ, en la denominada lógica coJco se 
tienen fórmulas con un número infinito numerable de conjunciones o dis­
yunciones, con lo que, por ejemplo, es posible expresar enunciados como 
«Todo objeto es un número natura¡" del siguiente modo: 

(5.2) Vx(x,,=,Ovx::::lvx::::2v ... ). 
Surge así la cuestión de cuáles de esas extensiones «añaden realmente» 

algo a la capacidad expresiva de los lenguajes de primer orden. En este 
sentido no se añade nada si, por ejemplo, para cualquier sentencia de 
uno de esos lenguajes hay otra de primer orden que «dice lo mismo», 
es decir que es verdadera en las mismas estructruras. El teorema siguien-

25. L6wenheim (1915) ofreció una prueba del teorema para el caso de una sola fórmula y Sko­
lem (1920) generalizó el resultado a conjuntos cualesquiera de fórmulas. Este teorema tiene variantes 
significativas; cf. Manzano, 1989. 

26. Los lenguajes de segundo orden no tienen ninguna de las dos propiedades. Tampoco puede 
haber cálculos completos para ellos. Cf. la monografía sobre Lógica de orden superior en este volumen. 
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te27, que presentamos en una formulación simplificada, caracteriza de 
una manera abstracta los lenguajes (y con ello la lógica) de primer orden. 

TEOREMA 6.6 (Teorema de Lindstrom). Sea L una extensión del len­
guaje de la lógica de primer orden para e! que vale e! teorema de 
L6wenheim-Skolem y el teorema de compacidad. Entonces toda senten­
cia de L tiene exactamente los mismos modelos que alguna sentencia de 
primer orden. 

Las propiedades descritas en los teoremas anteriores son propieda­
des de gran importancia epistemológica (puesto que conciernen a lo que 
es posible demostrar y cómo), propiedades cuya presencia en la lógica 
de primer orden podemos probar precisamente por ser ésta una teoría 
matemática (en el sentido de «formulada matemáticamente», es decir, 
en e! mismo sentido en que lo son las teorías de la física o la economía). 

Hay otros lugares en que e! hecho de que las teorías lógicas sean teo­
rías matemáticas (en e! sentido apuntado), tiene consecuencias dignas de 
ser notadas. Quizá la más prominente de todas sea que, al pasar de la 
presentación intuitiva de los conceptos a una teoría lógica, los dominios 
de que hablamos intuitivamente se precisan como conjuntos, y, como son 
precisamente las teorías matemáticas acerca de los conjuntos las que nos 
dicen lo que éstos son, las alternativas en esas teorías tienen repercusio­
nes para la teoría lógica (d. Jané, 1988-1989). 

VII. VARIANTES DE LA LÓGICA DE PRIMER ORDEN 

Filósofos contemporáneos tan importantes como Quine identifican la 
lógica de primer orden como la lógica sin más, proponiendo un lenguaje 
de primer orden -con la adecuada elección de predicados para satisfa­
cer requisitos epistemológicos mínimos- como e! lenguaje canónico de 
la ciencia 28. Davidson hace que los lenguajes de primer orden jueguen 
un pape! de condición cuasitranscendental de la inte!igibilidad de! 
discurso 29. 

La defensa de tales afirmaciones depende de teorías filosóficas subs­
tanciales. Y la propia capacidad general de los lenguajes de primer orden 
para, con su ayuda, dar cuenta de diversos fenómenos semánticos y lógi­
cas es controvertida (como se menciona en e! apartado anterior). Lo que, 
sin embargo, parece menos dudoso es que la introducción de algunas 
variantes aumentaría la plausibilidad de ver en los lenguajes de primer 
orden buenos «modelos» de los lenguajes naturales, en e! sentido que a 
esta palabra se le da frecuentemente en la ciencia empírica, es decir, ana-

27. Demostrado por vez primera en Lindstrom, 1969. Sobre la cuestión general de las propieda­
des y los límites de la lógica de primer orden, d. Hodges, 1983. 

28. Cf. Quine, 1960. 
29. Cf. Davidson, 1967-1974. 
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logías simplificadas e idealizadas (no en el sentido técnico que tiene en 
secciones anteriores). 

Versiones de la lógica de primer orden que no es infrecuente encon­
trar en los libros de texto incluyen los símbolos funcionales y, menos fre­
cuentemente, un operador para expresar las descripciones definidas. Con 
ello se gana naturalidad en la representación del lenguaje natural y mate­
mático en muchos contextos, sin obtenerse ninguna ampliación sustan­
cial (al menos en el caso de los símbolos funcionales). 

Las variantes de los lenguajes de primer orden que resultan de añadir 
símbolos funcionales y/o descripciones definidas no inciden, sin embargo, 
en el aspecto más central y seguramente más problemático, desde el punto 
de vista del presente tema, de los lenguajes de primer orden: la expresión 
de la cuantificación. Las dos variantes siguientes se dirigen precisamente 
a este aspecto central. 

La primera obedece a una doble motivación, sintáctica y semántica. 
Desde el punto de vista sintáctico, tenemos la evidencia lingüística que 
apunta a la estructuración de la oración en sintagma nominal y sintagma 
verbal. Desde el semántico, tenemos la posibilidad de extender la capa­
cidad expresiva de los lenguajes de primer orden introduciendo cuantifi­
cadores como <<la mayoría», «más de la mitad», «ambos», «muchos», 
«pocos», «unos cuantos». Para ello habría que renunciar a la idea, debida 
a Frege, de que una afirmación cuantificada consiste en predicar algo, 
usualmente complejo, de todo o algún objeto del dominio de cuantifica­
ción. Así, «todo A es B» se analiza como una predicación compleja «<si 
algo es A, entonces es B») de todo objeto, haciendo que el término res­
trictivo, A, pase a formar parte del predicado. Este rasgo es uno de los 
más característicos de los lenguajes de primer orden tal como se los for­
mula en forma estándar y hace que, por ejemplo, <<la mayoría de los A 
son B» no pueda expresarse en un lenguaje de primer orden, pues una 
afirmación de este tipo no puede reducirse a otra sobre la mayoría de 
los objetos de un dominio. 

La nueva idea es construir un lenguaje de primer orden de manera que 
respete la unidad del determinante «<todo», «algún», «el (la»>, «muchos», 
etc. con el término restrictivo) 30. Más precisamente, reemplazaríamos la 
cláusula para la introducción de los cuantificadores que se mencionaban 
al comienzo de la sección V por las dos cláusulas siguientes: 

(7.1) Si <l>(x) es una fórmula donde x está libre, entonces 
[Vx:<l>(x)] y [:3:x:<l>(x)] es un sintagma cuantificacional. 

(7.2) Si 'P(x) es una fórmula donde x está libre, entonces 
[Vx:<l>(x)] ('P(x)) y [:3:x:<l>(x)] ('P(x)) son fórmulas 

donde [Vx:<l>(x)] y [:3:x:<l>(x)] son sintagmas cuantificacio­
nales. 

30. Cf. Barwise y Cooper, 1981 y Neale, 1990, para mayores detalles y para ver cómo se utiliza 
la nueva versión, respectivamente, en un análisis general de la cuantificación y en el de ciertos fenóme­
nos anafóricos. El primero contiene además una prueba de la afirmación anterior acerca de «la mayoría». 
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Ejemplos similares a los que servían de ilustración en la sección IV 
serían los siguientes: 

(7.3) Algunos adultos llevan barba. 
[ :tIx: Adulto(x)) (Barba(x)). 

(7.4) Todos los menores tienen un tutor. 
[Vx: Menor(x)) ([ :tIy: Cosa(y)] (Tutor(y,x))); 
[:tIy: Cosa(y)) ([ Vx: Menor(x)] (Tutor(y,x))). 

Hemos introducido el predicado monádico «Cosa» para ayudarnos 
en la representación de (7.4). Además, esta oración es ambigua, de modo 
que la primera fórmula vierte la interpretación en que los menores tie­
nen tutores posiblemente distintos, mientras que la segunda corresponde 
a la interpretación en la cual el tutor es el mismo para todos ellos. 

Si se quiere ahora extender el lenguaje de modo que incluya otros 
cuantificadores, ello se puede hacer reformulando las cláusulas anterio­
res de un modo muy sencillo. 

También es sencilla la manera de modificar la definición 5.2 para 
obtener una definición de verdad para el nuevo lenguaje, restringiéndo­
nos ahora de nuevo a los dos cuantificadores clásicos. Simplemente sus­
tituiríamos las cláusulas 8 y 9 por las cláusulas siguientes: 

(7.5) 11 [Vx:<I>(x)]('P(x)) IIA,s = V syss para todo elemento a de 
A tal que 11 [<I>(x) IIA,s(xla)=V, sucede 11 'P(x) IIA,s(xla)=V, 

(7.6) 11 [:tIx:<I>(x)]('P(x)) IIA,s= V syss para al menos un elemento a 

de A tal que 11 <I>(x) IIA,s(xla)=V, sucede 11 'P(x) IIA,s(xla)=V, 
Veamos ahora para terminar otro tipo de modificación de la lógica 

de primer orden. 
En muchos contextos, es natural suponer que los objetos de que se 

habla se agrupan en dominios distintos. Son de distinta «naturaleza», o 
como diremos, introduciendo el término técnico, son de variedades dife­
rentes. Por ejemplo, supongamos que estamos hablando de las propie­
dades de ciertas familias y de sus miembros. Parece natural distinguir dos 
dominios o universos del discurso, uno constituido precisamente por fami­
lias y otro por personas o individuos. 

Podemos «modelar» las afirmaciones de ese tipo mediante una exten­
sión del lenguaje de primer orden. Distinguimos tipos distintos de varia­
bles, utilizando unas para hablar de objetos de una variedad y otras para 
objetos de otras variedades. ASÍ, siguiendo con el ejemplo anterior, y uti­
lizando las letras x, y, ... para los individuos y a, �, ... para las familias, 
podríamos hacer afirmaciones (posiblemente falsas) como las siguientes: 

(7. 1) Los hijos menores de una familia son inconformistas. 
Vx(:tIa Menor(x,a)--> --, Conformista(x)). 

(7.2) En toda familia de más de un hijo, de cada dos hijos siempre 
uno es «superior jerárquico» del otro. 
Va:tlx:tly(( --, x = yA Hijo(x,a)A Hijo(y,a))--> 
(Superior(x,y) v Superior(y,x))). 

En general, en la sintaxis de un lenguaje multivariado se distinguen 
distintas variedades de constantes individuales y de variables. Los predi-
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cados del lenguaje sólo se combinan sintácticamente con n-adas de cons­
tantes o variables de las variedades apropiadas. Semánticamente, una 
estructura multivariada A consta de una serie de dominios A 1> • • •  , A"" 
uno para cada variedad, sin elementos comunes, y una función l' que 
asigna a cada constante un objeto del dominio de la variedad correspon­
diente a esa constante y a cada predicado n-ádico un n-tuplo donde cada 
miembro es de la variedad apropiada. 

Siguiendo las pautas descritas en secciones anteriores, se introduciría 
entonces el concepto de verdad en una estructura multivariada, modelo de 
una sentencia o conjunto de sentencias de un lenguaje multivariado y a conti­
nuación los de sentencia válida e implicación lógica para la lógica multivariada. 

La cuestión ahora es si con ello tendríamos una teoría lógica dife­
rente, quizás una ampliación de la lógica de primer orden en el mismo 
sentido que ésta amplía la de enunciados. La respuesta es que no, pues 
es posible reducir la lógica multivariada a lógica de primer orden, por 
el procedimiento que a continuación describimos en líneas generales. 

En primer lugar, introducimos un lenguaje de primer orden L ". para 
el lenguaje multivariado L de que se trate, simplemente añadiendo a todos 
los símbolos de L una serie de predicados monádicos Pj, • • •  , P"" uno 
para cada variedad. (En nuestro ejemplo, añadiríamos los predicados 
<<Individuo» y «Familia».) A continuación establecemos una correspon­
dencia entre las fórmulas de uno y otro de manera que a las fórmulas 
de las formas de (7.3) les hacemos corresponder, respectivamente, fór­
mulas de las formas de (7.4): 

(7.3) Vwi'P(w,) y :tIw''P(w') 
(7.4) Vx(P;(x)-->'P(x)) y :tIx(p,(x)/\'P(x)), 

donde wi es una variable cualquiera de la variedad i, y x es una varia­
ble usual de primer orden. Llamemos <1>'" a la sentencia correspondiente 
a <1>. (La correspondiente a (7.1), por ejemplo, sería Vx(Individuo(x)--> 
(:tIz(Familia(z)/\ Menor(x,z))--> --, Conformista(x))).) 

A continuación, convertimos cada estructura multivariada A para L 
en una estructura A ':. para L ' :. tomando como nuevo dominio el conjunto 
de objetos que están en cualquiera de los dominios de A y con la misma 
asignación de objetos a constantes y predicados. Puede probarse enton­
ces que una sentencia multivariada <1> es verdadera en A si y sólo si <1>':' 
es verdadera en A':'. Consideremos ahora cualquier inferencia lógica r 1= <1> 
de la lógica multivariada. Consideremos el conjunto r':' de sentencias 
correspondientes a las de r. Añadamos a éste un conjunto de fórmulas, 
E, en el que estén precisamente, para cada variedad i, las fórmulas P;(c) 
(para cada constante del lenguaje) y :tIxP;(x). El teorema siguiente nos 
da entonces la relación exacta que hay entre una inferencia en la lógica 
multivariada y una en la de primer orden. 

TEOREMA 7.1. r 1= <1> si y sólo si r, E 1= <1>. 

En realidad basta con cumplir lo estipulado anteriormente para los 
predicados y constantes que aparezcan en la inferencia. Siguiendo con 
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nuestra ilustración, consideremos, por ejemplo, la siguiente afirmación 
de lógica multivariada: 

Vx( �aMenor(x,a)-> -----, Conformista(x)) , �aMenor(a,a) 
� -----, Conformista(a). 

Por el teorema anterior, esta afirmación es verdadera si y sólo si la 
siguiente afirmación de la lógica de primer orden lo es: 

V x (In d i v i d u o ( x )->( � y (F a m i l i a ( y ) " M e ­
nor(x,y))-> -----, Conformista(x))), 

:3:y(Familia(y)"Menor(a,y))� -----, Conformista(a). 
Debido al teorema 7.1 podemos decir que la lógica multivariada no 

supone ninguna extensión esencial de la lógica de primer orden. No es 
necesario elaborar una teoría independiente de la lógica multivariada: 
las propiedades de la de primer orden (completud, compacidad, Lowen­
heim-Skolem) se transmiten a aquélla. Por otro lado, precisamente por 
esto mismo, podemos aprovechar cualesquiera ventajas en cuanto a intui­
tividad o naturalidad ofrezcan los lenguajes multivariados, sin perder nin­
guna de las que encontremos a la lógica de primer orden. 

Los lenguajes multivariados tienen un interés teórico al permitir mos­
trar cómo el caso de la lógica de segundo orden con una semántica basada 
en las estructuras generales es reducible al de la lógica de primer orden. 
Simplemente, las variables de segundo orden toman valores en uno de 
los dominios de una estructura multivariada 31. 
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Ig n ac i o  fané 

1. INTRODUCCIÓN 

Lo que distingue los lenguajes de primer orden de los segundo orden y, 
en general, de los de orden superior, es su restricción a cuantificar sólo 
sobre elementos del universo del discurso. Así, en el lenguaje de primer 
orden de la aritmética, es decir en el lenguaje de primer orden apropiado 
para hablar de números naturales con respecto al orden, la suma y el 
producto, podemos expresar propiedades de números (como la de ser 
par, primo, o perfecto), relaciones entre números (como la de divisibili­
dad o la de congruencia módulo 5) Y podemos formular aseveraciones 
sobre números (como que hay un número infinito de primos, o que todo 
número natural es la suma de cuatro cuadrados) siempre que en las expre­
siones en cuestión nos limitemos a cuantificar sobre números naturales. 
Así, podemos expresar en primer orden que un número n es primo 
diciendo que no hay ningún número distinto de n y de 1 que divide a 
n; podemos expresar que un número n divide a m diciendo que hay un 
número cuyo producto con n es m; y podemos expresar que hay un 
número infinito de primos diciendo que para todo número n hay un 
número m que es primo y mayor que n. Pero en este lenguaje no pode­
mos expresar hechos aparentemente tan simples como que todo conjunto 
de números naturales no vacío tiene un elemento mínimo; o que toda 
p ropiedad poseída por el cero y transmitida de un número a su sucesor 
(es decir: si un número la posee, su sucesor también) es poseída por todo 
número natural. En estas oraciones cuantificamos sobre conjuntos de 
números o sobre propiedades de números, no sobre números: cuantifi­
camos no sobre elementos del universo del discurso, sino sobre subcon­
juntos de este universo o sobre propiedades de sus elementos. En lo que 
sigue, apenas hablaremos de propiedades, ya que todo cuanto podamos 
decir con su ayuda podremos reformularlo en términos de conjuntos. A 
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menudo (sobre todo en contextos matemáticos) lo único que importa de 
las propiedades es su extensión, y la extensión de una propiedad (razo­
nable) es un conjunto. 

Todos los lenguajes de que nos vamos a ocupar -ya sean de primer 
orden o de orden superior- serán lenguajes formales con símbolos de 
dos clases: lógicos y no lógicos (además de los símbolos impropios: los 
paréntesis). Los símbolos no lógicos de un lenguaje constituyen el tipo 
de semejanza del lenguaje en cuestión. Pueden ser de tres clases: constan­
tes de predicado, constantes funcionales y constantes individuales. Las 
constantes funcionales y de predicado pueden serlo de distinto número 
de argumentos. Diremos que una constante funcional o de predicado de 
n argumentos (n � 1) es una constante n-aria. Así, el tipo de semejanza 
de un lenguaje apropiado para la aritmética constaría de: 

-una constante de predicado binaria ( < ); 
-dos constantes funcionales binarias (+ y x); 
-dos constantes individuales (O y 1); 

mientras que el tipo de semejanza del lenguaje usual de la teoría de con­
juntos contiene un único símbolo no lógico: la constante de predicado 
binaria E. 

Los símbolos lógicos comunes a todos los lenguajes que aquí consi­
deraremos (de todos los órdenes) son: 

-los conectores ( --, ,V,II,---', +-+); 
-el símbolo de igualdad ( = ) ; 
-los cuantificadores (:3:, V). 

Lo que, sintácticamente, distingue los lenguajes de órdenes distintos 
son las variables (que incluimos entre los símbolos lógicos). Los lengua­
jes de primer orden contienen una sola clase de variables: las variables 
individuales: XI' Xl> ... , Xb." Los lenguajes de segundo orden, además 
de las variables individuales contienen variables de predicado: para cada 
entero positivo n hay un número infinito de variables de predicado n­
arias: XI;., X�, ... , X'¿, .. . 

Las variables toman valores. A cada clase de variable le corresponde 
un dominio de variabilidad, constituido por la totalidad de los valores 
que pueden tomar las variables de la clase. El dominio de variabilidad 
de las variables individuales es el universo del discurso. Los posibles valo­
res de las variables de predicado unarias son subconjuntos de este uni­
verso, y los de las variables de predicado n-arias son relaciones n-arias 
en este universo. (Relaciones en extensión, se entiende, del mismo modo 
que los conjuntos son propiedades, o sea, relaciones unarias, en exten­
sión. Una relación n-aria en un universo U es, pues, un conjunto de n­
tuplas de elementos de U, es decir: un subconjunto de un). 

Los lenguajes de orden superior a 2 (o los de orden infinito) contie­
nen otras clases de variables. De ellos hablaremos más adelante. Ahora 
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es el momento de precisar los elementos sintácticos y semánticos de los 
lenguajes de segundo orden. 

n. SINTAXIS DE LOS LENGUAJES DE SEGUNDO ORDEN 

Supongamos que L es un tipo de semejanza. 
Los términos de cualquier lenguaje sobre r son las expresiones (es decir, 

las sucesiones finitas de símbolos) caracterizados por las siguientes cláu­
sulas recursivas: 

1) Toda variable individual y toda constante individual es un término; 
2) si f es una constante funcional n-aria y t" ... , t" son términos, 

entonces la expresión ft, ... tn es un término; 
3) sólo son términos las expresiones obtenidas con ayuda de 1) y 2). 

Una fórmula atómica del lenguaje de segundo orden sobre L es una 
expresión de una de las tres formas siguientes: 

t, :=:; t2> Rt, ... t", Xt, ... t", 

donde t¡, ... , t" son términos, R es una constante de predicado n-aria de 
L y X es una variable de predicado n-aria (asÍ, X = X'�, para algún k). 

Finalmente, las fórmulas del lenguaje de segundo orden sobre L se 
caracterizan recursivamente así: 

1) Toda fórmula atómica es una fórmula; 
2) si a y p son fórmulas, también lo son ----, a, (avp), (a/\p), (a->p) 

y (a<->p); 
3) si a es una fórmula y x es una variable individual (asÍ, x = Xb 

para algún k), entonces :3:xa y Vxa son fórmulas; 
4) si a es una fórmula y X es una variable de predicado (asÍ, 

X = X'�, para algún n y algún k), entonces :3:Xa y VXa son fór­
mulas; 

5) sólo son fórmulas las expresiones obtenidas con ayuda de 1) - 4). 

Las variables, tanto individuales como de predicado, pueden apare­
cer libres o ligadas en una fórmula. No damos aquÍ la definición de estos 
términos, ya que es análoga a la correspondiente para lenguajes de pri­
mer orden. Baste recordar que una variable está ligada por un cuantifi­
cador en una fórmula si está en el alcance del cuantificador. Una fór­
mula con variables libres es una fórmula abierta; una fórmula sin variables 
libres es una sentencia. 

[JI. SEMÁNTICA DE LOS LENGUAJES DE SEGUNDO ORDEN 

Construimos lenguajes para hablar de objetos (los elementos del universo 
del discurso, muchas veces implícito) con respecto a ciertas relaciones 
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y operaciones entre ellos. Algunos de estos objetos, no necesariamente 
todos, tienen nombre en el lenguaje. Así, en aritmética hablamos de núme­
ros con respecto a las operaciones de suma y producto y a la relación 
de orden; en la teoría de conjuntos hablamos de los conjuntos con res­
pecto a la relación de pertenencia; en una posible teoría de las relaciones 
sociales de cierta sociedad hablaríamos de los individuos de esta socie­
dad con respecto a ciertas relaciones de parentesco; etc. El concepto gene­
ral que engloba estos y otros muchos casos es el de estructura. 

Si t es un tipo de semejanza, una estructura de tipo r es un par 
A = (A,!), donde A es un conjunto no vacío -el universo de la estruc­
tura- e l' es una función (de interpretación) con dominio t tal que: 

1) Si R es una constante de predicado n-aria, 1'(R) es una relación 
n-aria en A, es decir, un subconjunto de An; 

2) si f es un símbolo funcional n-ario, 1'(f) es una operación n-aria 
en A, es decir una función de A n en A; 

3) si c es una constante individual, 1'(c) es un elemento de A. 

Los términos sin variables denotan elementos del universo de la estruc­
tura y los términos con variables (necesariamente individuales) toman 
valores en la estructura dependiendo de qué elementos asignemos a estas 
variables. Así, si A es el conjunto de los números naturales, A es una 
estructura cuyo universo es A, 1'(f) es la operación suma e 1'(c) e 1'(d) 
son los números O y 1, respectivamente, entonces el término ffcdfdd 
denota el número 3 [= (O + 1) + (1  + 1) 1 ; mientras que el término ffxyfyz 
toma el valor 12 [= (2 + 3) + (3 + 4) 1 , si asignamos los números 2, 3 Y 

4 a las variables x, y y z, respectivamente. 
Las sentencias son verdaderas o falsas en una estructura, mientras 

que las fórmulas abiertas son satisfechas o no en la estructura por los 
objetos o relaciones que asignamos a sus variables libres. Un modelo de 
una sentencia es una estructura en la cual la sentencia es verdadera. Los 
conceptos de verdad y satisfacción para fórmulas de segundo orden son 
extensiones naturales de los correspondientes para fórmulas de primer 
orden, por lo que es innecesario definirlas con detalle (ver Enderton, 1972 
o Boolos-]effrey, 1980). Basta tener presente que para determinar lo que 
una fórmula expresa en una estructura basta conocer la interpretación 
de los símbolos no lógicos, el significado de los conectores y cuantifica­
dores, y recordar los dominios de variabilidad de las distintas clases de 
variables que en ella aparecen. Así, la fórmula VxXxx, donde X es una 
variable binaria, es satisfecha en una estructura A si asignamos a X cual­
quier relación reflexiva en A, el universo de A, mientras que la fórmula 
Vx(Yx->Zx), donde Y y Z son variables unarias, es satisfecha en A si 
asignamos a Y y a Z dos subconjuntos de A, el primero de los cuales 
está incluido en el segundo. Finalmente, la sentencia 

INF: :tIX( Vx----, Xxx/\ Vx Vy Vz((Xxy/\Xyz)-> Xxz)/\ Vx:tIyXxy) 
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es verdadera en una estructura A si y sólo si hay una relación binaria 
en A irreflexiva, transitiva y sin elementos maximales. Relaciones de este 
tipo las hay en conjuntos infinitos y sólo en ellos. Así: 1) es verdadera 
en una estructura si y sólo si su universo es infinito. 

IV. ISOMORFISMO 

Un isomorfismo entre dos estructuras A = (A, !) y A' = (A', X') es una 
biyección h entre A y A' tal que: 

1) Si R es una constante de predicado n-aria, !(R) = R, !(R') = R'; 
y al"", an son elementos de A, entonces R(a¡, ... , an) si y sólo si 
R'(h(a¡), ... , h(an)). 

2) Si f es una constante funcional n-aria, !(j) = 1, !(/') = l' y a¡, ... , 
an son elementos de A, entonces h(I): (aj, • • •  , an))=I'(h(al), ... , h(an)). 

3) Si c es una constante individual e !(c) = C, entonces !'(c) = h(C). 

Dos estructuras A y A' son isomorfas (A == A') si hay un isomorfismo 
entre ellas. Así, dos estructuras isomorfas sólo difieren, por así decir, en 
la naturaleza de los elementos de su universo. Por lo demás, toda des­
cripción «formal» o «esquemática» o «estructura}" de una de ellas lo es 
también de la otra. En particular, dos estructuras isomorfas son mode­
los de las mismas sentencias de primer y de segundo orden. 

V. CAPACIDAD EXPRESIVA DE LOS LENGUAJES DE SEGUNDO ORDEN 

La capacidad expresiva de los lenguajes de segundo orden es muy supe­
rior a los de primer orden. Hay muchos conceptos importantes que no 
son expresa bIes mediante sentencias de primer orden pero sí de segundo 
orden. A continuación discutimos algunos de ellos. Unos nos permiten 
caracterizar clases de estructuras; otros definir ciertas relaciones u ope­
raciones entre los elementos del universo de una estructura. 

1. Finitud e infinitud 

Consideremos el concepto de infinitud. Hemos visto que la sentencia INF 
de III es verdadera en las estructuras con universo infinito y sólo en ellas. 
Así, esta sentencia caracteriza la clase de las estructuras infinitas. El con­
cepto de infinitud es, pues, expresable mediante una sentencia de segundo 
orden. Pero no lo es mediante una sentencia de primer orden. 

En primer orden podemos expresar la infinitud del universo de la 
estructura de que hablamos mediante un conjunto infinito de sentencias: 

0= (8z, 83, 84,,,, 8n, .. . ), donde 
8z= :3:xj:3:xz--'xl"='xz 
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pues, para cada n, la sentencia en es verdadera en una estructura si y 
solo si su universo tiene por lo menos n elementos. Sin embargo, el con­
cepto de finitud no puede expresarse en primer orden ni siquiera mediante 
un número infinito de sentencias. Un modo de verlo es el siguiente: Si 
suponemos que <1> es un conjunto de sentencias de primer orden verda­
deras en todas las estructuras con universo finito y sólo en ellas, enton­
ces todo subconjunto finito de eU<I> tiene un modelo (pues todo sub­
conjunto finito de e tiene un modelo finito). Así, por el teorema de 
compacidad de la lógica de primer orden, eU<I> tiene un modelo: infi­
nito, por serlo de e; finito, por serlo de <1>. Esto es absurdo. No existe, 
pues, un conjunto <1> tal. 

Pero el concepto de finitud sí es expresable en segundo orden: me­
diante la negación de la sentencia INF. 

FIN: --,INF 

2. Identidad 

La relación de identidad es definible mediante una fórmula de segundo 
orden, ya que el bicondicional 

x:::::y-VX(Xx-Xy) 

es satisfecho en una estructura por el par de objetos a y b si y sólo si 
a y b pertenecen a los mismos subconjuntos del universo de la estruc­
tura, lo cual ocurre si y sólo si a es igual a b. (Esta fórmula es una ver­
sión trivial del principio de la identidad de los indiscernibles: trivial por­
que debe su verdad al hecho de que para todo objeto, a, hay un conjunto 
cuyo único elemento es a.) 

Pero la relación de identidad no es definible en primer orden. De ahí 
la necesidad de introducir en los lenguajes de primer orden el símbolo 
::::: como símbolo lógico y, por tanto, no sujeto a reinterpretación; en 
segundo orden, como vemos, podemos prescindir de él. 

3. Transitivización de una relación 

La relación de antepasado a descendiente no es más que la transitiviza­
ción de la relación de progenitor a hijo; es decir, es la menor relación 
transitiva que la extiende: a es un antepasado de b si y sólo si a es un 
progenitor de b, o un progenitor de un progenitor de b, o ... Cuantifi­
cando sobre conjuntos de personas podemos definir la relación de ante­
pasado a progenitor observando, con Frege, que ser un antepasado de 
b es ser miembro de todo conjunto de personas al que pertenecen los pro­
genitores de b y los progenitores de todos sus miembros. 
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En general, si R es una relación, podemos definir en segundo orden 
la relación R ':. , la transitivización de R, como sigue: 

R ':·xy<-+ VX((Rzy--> XZ)J\ Vu Vw((RuwJ\Xw)--> Xu))--> Xx). 

4. Operaciones aritméticas 

Con los medios de primer orden no podemos definir la relación que ordena 
el conjunto de los números naturales a partir de la relación R, que se 
da entre un número n y su sucesor inmediato: R(n, m) si y sólo si m = Sn. 
Pero la relación que ordena los números naturales según su magnitud 
no es más que la transitivización de R: n < m si y sólo si m = Sn, o hay 
k tal que m = S(k) y k = S(n), etc. Así: la relación de orden familiar entre 
los números naturales es definible en segundo orden a partir de la opera­
ción de sucesor: 

x< y<-+ VX((XSxJ\ Vu(Xu--> XSu))--> Xy). 

También, y en contraste con lo que ocurre en primer orden, son defi­
nibles en segundo orden las operaciones de suma y de producto a partir 
de la de sucesor. La relación ternaria R que subsiste entre los números 
n, m y k si y sólo si n + m = k es la menor relación ternaria Z tal que 
(1) para todo número i: Z(i,O,i), y (2) para cualesquiera números i, j, 
r: si Z(i, j, r) entonces Z(i, Sj, Sr). Así, si c es la constante cuya interpre­
tación es el número cero: 

x + y =;:;<-+ VZ(( VuZucuJ\ Vu VvVw(Zuvw--> ZuSvSw))--> Zxyz). 

La definición del producto en términos de la suma (y, en definitiva, 
en términos de la operación de sucesor) es análoga. Basta observar que 
n X m = k si y sólo si n, m y k están relacionados por la menor relación 
ternaria Z tal que (1) para todo número i: Z(i, O, O), y (2) para cuales­
quiera números i, j, r: si Z(i, j, r) entonces Z(i, Sj, r + i). 

5. Los números naturales 

Con sólo los medios disponibles en primer orden no podemos caracteri­
zar el conjunto de los números naturales en términos de la operación de 
sucesor y del número cero. Ahora bien, los números naturales constitu­
yen el menor conjunto que contiene el cero y también el sucesor de cada 
uno de sus miembros. Esto es expresable en segundo orden mediante el 
principio de inducción: 

PI: VX((XcJ\ Vx(Xx--> XSx))--> VxXx). 

Nos falta añadir las propiedades básicas del sucesor: (1) ° no es suce­
sor de ningún número, y (2) la operación de sucesor es inyectiva. (1) y 
(2) son expresa bIes en primer orden: 

Vx---, Sx"'=' c 
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Vx Vy(SX "'" Sy--- X"'" y). 

Estas tres sentencias caracterizan la estructura de los números natu­
rales con el cero y la operación de sucesor. Es decir, todo modelo (de 
tipo de semejanza 1" = (S, e J) de estas sentencias es isomorfo a ella. 

6. Numerabilidad 

Podemos caracterizar el orden de los números naturales directamente, 
sin reducirlo a la operación de sucesor: Es un orden lineal sin elemento 
máximo con respecto al cual todo conjunto acotado superiormente es 
finito. Dado que con los medios disponibles en segundo orden podemos 
expresar el concepto de finitud, podemos también caracterizar salvo iso­
morfismo la estructura de los números naturales con su orden. 

Pero entonces también podemos expresar el concepto de numerabili­
dad. Un conjunto es numerable si es biyectable con el conjunto de los 
números naturales. Así, un conjunto es numerable si puede ordenarse 
con un orden isomorfo al de los números naturales, es decir, si hay un 
orden lineal en él con las propiedades recién enumeradas. Con algo más 
de detalle: Sea ORD(X) -donde X es una variable binaria- la fórmula 
que expresa que X es un orden lineal estricto (es decir, no reflexivo) del 
universo, y sea FIN(Y) -donde Y es un aria- la fórmula de segundo 
orden que expresa que toda relación irreflexiva y transitiva en Y posee 
un elemento maximal (de modo que Y es finito). Entonces la sentencia 
de segundo orden 

NUM: :tIX(ORD(X)i\ Vx:tIyXxYi\ VY( :tIzVy(Yy-- Xyz)--- FIN(Y))) 

es verdadera en una estructura si y sólo si su universo es numerable. 

7. Continuidad 

El orden de los números reales, el continuo lineal, puede caracterizarse 
por las tres condiciones siguientes: 

- Es un orden sin extremos; 
- posee un subconjunto denso numerable; 
- es condicionalmente completo. 

Sabemos cómo expresar en primer orden que R es un orden sin 
extremos: 

ORD(R)i\ Vx:tlyRxYi\ VúlyRyx. 

Un subconjunto denso de (el universo de) un orden R es un conjunto 
X tal que entre dos elementos cualesquiera del orden hay por lo menos un 
elemento de x. En segundo orden sabemos expresar que un conjunto X 
es numerable mediante una fórmula, NUM(X), obtenida de modo análogo 
a la sentencia NUM. Así, también podemos expresar la segunda condición: 
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�X(NUM(X)¡\ VxVy(Rxy-> �z(Xz¡\Rxz¡\Rzy))). 

Un orden es condicionalmente completo si todo subconjunto (de su 
universo) acotado superiormente posee una cota superior mínima. Que 
y es una cota superior mínima del conjunto X con respecto al orden R 
lo expresamos así: 

CSM(y, X, R): Vx(Xx-> Rxy)¡\ Vz(Vx(Xx->Rxz)->(Ryzvy""'z)). 

ASÍ, la siguiente sentencia de segundo orden expresa que el orden R 
es condicionalmente completo: 

CC(R): VX( �yVx(Xx-> Rxy)-> �y(CSM(y,X,R))) 

Por consiguiente, podemos expresar en segundo orden que R es un 
orden continuo, ya que los modelos de las tres sentencias que acabamos 
de escribir son precisamente los órdenes continuos lineales, es decir, los 
órdenes isomorfos al orden de los números reales. 

Pero entonces también podemos expresar que un conjunto es biyec­
table con el conjunto de los números reales o, como suele decirse, tiene 
la cardinalidad del continuo. Sea a(Z) la fórmula obtenida formando la 
conjunción de las tres sentencias que expresan la continuidad del orden 
y reemplazando en ellas la constante R por la variable de predicado binaria 
Z. ASÍ, a(Z) será satisfecha en una estructura A por una relación binaria 
en A si y sólo si ésta es un orden continuo de A. En consecuencia, la 
sentencia �Za(Z) será verdadera en una estructura si y sólo si su uni­
verso tiene la cardinalidad del continuo. 

8. Biyectabilidad 

En segundo orden podemos también expresar que dos subconjuntos del 
universo de una estructura son biyectables. Una biyección entre X e Y 
es una función inyectiva de X sobre Y. Ahora bien, siempre podemos 
asociar a una función f una relación: la que subsiste entre dos objetos 
a y b si y sólo si f(a) = b. ASÍ, dado que para expresar que una relación 
está asociada a una función y que esta función es una biyección entre 
X e Yes suficiente cuantificar sobre elementos del universo de la estruc­
tura, podemos expresar que X e Y son biyectables cuantificando sobre 
relaciones e individuos. Los recursos de segundo orden bastan para ello. 

El truco aquÍ empleado de identificar funciones con ciertas relacio­
nes es perfectamente general y nos permite concluir que todo cuanto pode­
mos expresar cuantificando sobre funciones lo podemos expresar tam­
bién cuantificando sobre relaciones y, por tanto, en segundo orden. 

VI. LA RELACIÓN DE CONSECUENCIA 

El concepto lógico fundamental es la relación de consecuencia: Una sen­
tencia a es consecuencia de un conjunto de sentencias L si a es verdadera 
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en todo modelo de L, es decir, en todo modelo de todas las sentencias 
de Lo Una propiedad fundamental de la relación de consecuencia en pri­
mer orden es su carácter finito: Si L es un conjunto de sentencias de pri­
mer orden y a es una sentencia de primer orden que es consecuencia de 
L, entonces a ya es consecuencia de algún subconjunto finito de L. Esta 
propiedad se pierde al considerar sentencias de segundo orden. Para verlo, 
basta recordar (ver v.l) que en segundo orden podemos expresar la infi­
nitud del universo del discurso mediante una sola sentencia, INF, pero 
también (ver v.2) mediante un conjunto, necesariamente infinito, de sen­
tencias de primer orden: 0 = { 82, 83, 84,,,,, 8n, . . .  ). Así, INF es conse­
cuencia de 0. Pero no lo es de ningún subconjunto finito de 0, ya que 
todo subconjunto finito de 0 tiene modelos finitos: si r es un subcon­
junto finito de 0 y n es el mayor subíndice de una sentencia de r, cual­
quier estructura cuyo universo tenga n elementos será un modelo de r. 

Otro ejemplo de que la relación de consecuencia en segundo orden 
no es de carácter finito lo obtenemos considerando la relación de ante­
pasado (ver v.3). Del conjunto infinito de sentencias que expresan que 
a no es un progenitor de b, ni un progenitor de un progenitor de b, ni 
un progenitor de un progenitor de un progenitor de b, ... se sigue que 
a no es un antepasado de b. Pero esto no se sigue, claramente, de ningún 
subconjunto finito suyo. En general, y con mayor precisión, si R es una 
constante de predicado binaria, c y d son constantes individuales, y L 
es el siguiente conjunto infinito de sentencias 

---, Rdc 
---, 'JIx,(RdxJI\Rx,c) 
---, 'JI x , 'JIx2(Rdx2I\Rx2x,I\Rx,c) 

entonces ---, R ':'dc, o, explícitamente, la sentencia 

---, VX(( Vz(Rzc---> XZ)I\ Vuw((RuwI\Xw)---> Xu))---> Xd) 
es consecuencia de E, pero no de ningún subconjunto finito suyo. 

La relación de consecuencia de un lenguaje es de carácter finito si 
y sólo si la lógica de este lenguaje es compacta. Que la lógica de un len­
guaje sea compacta significa que siempre que todo subconjunto finito de 
un conjunto infinito de sentencias de este lenguaje tenga un modelo, el 
conjunto infinito también lo tendrá. La equivalencia entre la compaci­
dad de una lógica y el carácter finito de su relación de consecuencia es 
fácilmente demostrable a partir de la observación según la cual una sen­
tencia a es consecuencia de un conjunto de sentencias L si y sólo si el 
conjunto LU[ ---, a}, obtenido al añadir ---, a al conjunto L, no tiene 
modelo alguno. 

Así, la lógica de primer orden es compacta, pero no la de segundo 
orden: todos los subconjuntos finitos de 0U[ FIN} poseen modelos, pero 
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eu{ FIN} carece de ellos. Lo mismo ocurre con el conjunto LU{ R'" 
dc} . 

Otra propiedad importante que distingue la lógica de primer orden 
de la de segundo orden es que en aquélla, pero no en ésta, valen los teo­
remas llamados «de L6wenheim-Skolem», que señalan limitaciones a la 
caracterización de estructuras con universo infinito. Así, según (una forma 
de) el teorema descendente de Lowenheim-Skolem, todo conjunto de sen­
tencias de primer orden que posea modelos infinitos poseerá también un 
modelo numerable; mientras que (una versión débil de) el teorema ascen­
dente de Lowenheim-Skolem dice que todo conjunto de sentencias de pri­
mer orden con modelos numerables tiene también modelos no numera­
bles. La posibilidad de caracterizar la numerabilidad (v.6) y la 
continuidad (v.7) en segundo orden muestra que ninguno de estos dos 
teoremas es generalizable a la lógica de segundo orden. 

VII. DEDUCIBILIDAD 

La definición de la relación de consecuencia no es en absoluto construc­
tiva. No sugiere ningún camino para determinar si una sentencia dada 
es consecuencia de un conjunto de sentencias, ni siquiera para obtener 
algunas de las consecuencias del conjunto. Si quisiéramos aplicar la defi­
nición con este fin, deberíamos tomar en consideración todas las estruc­
turas y evaluar en ellas las sentencias en cuestión. Esto es, obviamente, 
impracticable. 

Obtenemos consecuencias deduciendo, encadenando conclusiones 
obtenidas a partir de premisas mediante transformaciones formales, de 
índole sintáctica. Sistematizamos los métodos de deducción en cálculos 
deductivos. Los cálculos contienen reglas de inferencia, reglas que per­
miten obtener conclusiones de modo inmediato a partir de sus premisas. 
Tal vez contengan también axiomas, pero éstos son prescindibles, en 
cuanto un axioma puede considerarse como la conclusión de una regla 
sin premisas. Las reglas de inferencia del cálculo nos permiten construir 
deducciones. Dado un conjunto de sentencias L, una deducción a partir 
de L será típicamente una sucesión finita de fórmulas, cada una de las 
cuales o bien pertenece a 1: o bien se obtiene de las anteriores aplicando 
alguna regla de inferencia. Si a es la última fórmula de una deducción 
a partir de L decimos que a es deducible a partir de L (en el cálculo en 
cuestión). 

No en todos los cálculos las deducciones son lineales o constan de 
fórmulas obtenidas exactamente del modo aquí descrito, pero en todos 
ellos las deducciones son finitas y, por tanto, sólo dependen de un con­
junto finito de sentencias. La finitud de las deducciones es esencial si éstas 
deben servirnos para obtener fórmulas. 

Un cálculo deductivo es correcto con respecto a la consecuencia si toda 
sentencia deducible a partir de un conjunto de sentencias es una conse-
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cuencia del conjunto. Un cálculo es completo con respecto a la conse­
cuencia si toda consecuencia de un conjunto de sentencias es deducible 
en el cálculo a partir del conjunto. Así, las sentencias deducibles a partir 
de un conjunto en un cálculo correcto y completo son exactamente las 
consecuencias del conjunto: en un cálculo tal, las relaciones de deducibi­
lidad y de consecuencia coinciden extensionalmente. 

No hay ningún cálculo deductivo correcto y completo con respecto 
a la consecuencia de los lenguajes de segundo orden. La razón es simple: 
T oda relación de deducibilidad es de carácter finito (pues si d es una 
deducción de a a partir de L, d es también una deducción de a a partir 
del conjunto r de sentencias de L que aparecen en d y, por la finitud 
de las deducciones, r es finito), pero, como sabemos, la relación de con­
secuencia no lo es. Así, deducibilidad y consecuencia son extensional­
mente distintas. 

Un caso límite de la relación de consecuencia lo constituye la verdad 
lógica, entendida como validez universal. Una sentencia a es universal­
mene válida si es válida en toda estructura. 0, de modo equivalente, si 
es consecuencia de todo conjunto de sentencias. También creamos cál­
culos deductivos para obtener verdades lógicas. Un cálculo es correcto 
con respecto a la validez si toda sentencia deducible en él es universal­
mente válida, y es completo con respecto a la validez si toda sentencia 
universalmente válida es deducible en él. A partir de un cálculo correcto 
para la consecuencia obtenemos uno correcto para la validez teniendo 
en cuenta que una sentencia deducible sin premisas (es decir, deducible 
a partir del conjunto vacío de sentencias) es universalmente válida. Pero 
un cálculo puede ser correcto con respecto a la validez sin serlo con res­
pecto a la consecuencia. Para verlo, basta observar que las reglas que 
permiten substituir en una sentencia una constante de predicado por otra 
del mismo número de argumentos son reglas que transforman verdades 
lógicas en verdades lógicas; pero su conclusión no es consecuencia de su 
única premisa, por lo que no pueden formar parte de ningún cálculo 
correcto con respecto a la consecuencia. 

No hay ningún cálculo correcto y completo para la validez de las sen­
tencias de segundo orden. La razón es más profunda que en el caso de 
la consecuencia. No depende únicamente de la finitud de las deduccio­
nes, sino de su efectividad. Para que un cálculo pueda ser usado para 
obtener fórmulas de cierto tipo (en este caso verdades lógicas) debe ser 
efectivamente decidible si una sentencia dada se obtiene como conclu­
sión de una cierta regla de inferencia a partir de ciertas premisas. En tal 
caso, será posible decidir en un número finito de pasos si una sucesión 
finita de fórmulas es o no una deducción según las reglas del cálculo. 
Esto no significa que haya un método para decidir si una fórmula es o 
no deducible: sólo significa que habrá un método para determinar si una 
supuesta deducción de una fórmula lo es o no. Pero entonces habrá tam­
bién un método efectivo para generar, una a una, posiblemente con repe­
ticiones, todas las fórmulas deducibles en el cálculo. La idea es la siguiente: 
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puesto que sabemos generar efectivamente las sucesiones finitas de fór­
mulas y, de cada sucesión tal, sabemos decidir si es una deducción, pode­
mos generar efectivamente las deducciones. Para generar las fórmulas 
deducibles, basta generar las deducciones y borrar de ellas todas las líneas 
menos la última. 

En términos más precisos, e! contenido de! párrafo anterior es que 
e! conjunto de las deducciones en un cálculo es recursivo, mientras que 
el de las fórmulas deducibles es recursivamente enumerable. Así, si hay 
un cálculo completo y correcto para la validez de segundo orden, e! con­
junto de las sentencias de segundo orden universalmente válidas será recur­
sivamente enumerable. Pero, como veremos a continuación, no lo es. 

En V.5 vimos que las tres sentencias 

V x ----, Sx ::::: C 
VxVy(Sx:::::Sy�x:::::y) 
VX((XCi\ Vx(Xx� XSx))� VxXx) 

caracterizan la estructura rN de los números naturales con el cero y e! 
sucesor. Llamemos DED (por Dedekind) a su conjunción. Así, todo 
modelo de DED es isomorfo a rN, de modo que las consecuencias de 
DED son precisamente las sentencias de segundo orden (en e! lenguaje 
cuyos símbolos son S y c) verdaderas en rN. Ahora bien, es claro que 
si a es una sentencia de este lenguaje, a es consecuencia de DED si y 
sólo si la sentencia DED�a es universalmente válida. Por tanto: a es 
verdadera en rN si y sólo si DED�a es universalmente válida. De aquí 
se sigue que si hay un cálculo correcto y completo con respecto a la vali­
dez en segundo orden, entonces e! conjunto de las sentencias de segundo 
orden verdaderas en rN es decidible (recursivo). Un método para deci­
dir si una sentencia a es verdadera en rN es, a grandes rasgos, e! siguien­
te: generamos una a una las sentencias universalmente válidas de este 
lenguaje hasta que damos con DED�a o con DED� ----, a. Una de 
estas dos fórmulas debe aparecer, ya que o bien a o bien ----, a es verda­
dera en rN. Si aparece DED�a, a es verdadera en rN; si aparece 
DED� ----, a, ----, a lo es. 

Sin embargo, el conjunto de las sentencias de segundo orden verda­
deras en rN no es decidible. Pues si lo fuera lo sería también e! conjunto 
de las sentencias de primer orden verdaderas en la estructura rN ':. de los 
números naturales con la suma y e! producto, que, por resultados de 
Church, Güde! y Tarski, no lo es (véase Tarski, Mostowski, Robinson, 
1953, C.2). En efecto, en vA vimos cómo definir la suma y e! producto 
en términos del cero y e! sucesor mediante una fórmula de segundo orden. 
Podemos usar estas definiciones para eliminar los símbolos + y x de 
las fórmulas que las contengan, transformando de modo efectivo cada 
sentencia a de! lenguaje de primer orden con los símbolos + y x en una 
sentencia a ':- de segundo orden con sólo C y S, de modo que a sea verda­
dera en rN ':- si y sólo si a ':- es verdadera en rN. Pero entonces, todo 
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método de decisión para el conjunto de las sentencias de segundo orden 
verdaderas en fN da lugar a un método para decidir si una sentencia de 
primer (y también de segundo) orden es verdadera en fN"·. Dada a, cons­
trúyase a ". y decídase si es verdadera en fN. 

VIII. LENGUAJES DE ORDEN SUPERIOR FINITO 

Supongamos que estamos interesados en la existencia de cierto tipo de colec­
ciones de números naturales, por ejemplo, de cierto tipo de ideales. Un ideal 
sobre un conjunto A es un conjunto no vacío l de subconjuntos de A tal 
que, para cualesquiera subconjuntos X e Y de A, (1) si XEl e Y El, entonces 
XUY El, y (2) si XEl y y 5,; X, entonces Y EL Para expresar, pues, que l es 
un ideal sobre A cuantificamos sobre subconjuntos de A; pero para decir 
que A admite cierta clase de ideales, es decir, que hay ideales sobre A con 
tales o cuales propiedades, debemos cuantificar sobre conjuntos de subcon­
juntos de A. Es un recurso que nos ofrecen los lenguajes de tercer orden. 

En un lenguaje de tercer orden podemos cuantificar sobre individuos, 
es decir, sobre elementos del universo del discurso (como en primer 
orden); sobre conjuntos de individuos y relaciones entre ellos (como en 
segundo orden); pero además sobre conjuntos de conjuntos de individuos, 
sobre conjuntos de relaciones entre individuos, sobre relaciones entre rela­
ciones entre individuos, etc. Sistematizando: Si A es el universo de la 
estructura sobre la que hablamos, sea Do = A; sea D 1 el conjunto de 
todos los subconjuntos de A; sea Dz el conjunto de todas las relaciones 
binarias en A, y, en general, sea D" el conjunto de las relaciones n-arias 
en A. Así, D" es el dominio de variabilidad de las variables n-arias de 
segundo orden. Sea, finalmente, D la unión de los distintos D". Las 
variables de tercer orden toman como valores relaciones de cualquier 
número de argumentos entre elementos de D. Así, para cada sucesión 
finita de números naturales ni, ... , nk, un lenguaje de tercer orden con­
tendrá, además de los recursos de segundo orden, variables k-arias de 
tipo (ni,"" nk), cuyos valores serán relaciones k-arias entre un elemento 
de D"I' un elemento de D"z, ... , y un elemento de D"k' 

De modo análogo, en los lenguajes de cuarto orden podemos cuanti­
ficar sobre conjuntos de conjuntos de conjuntos de elementos del uni­
verso del discurso A, y, en general, sobre relaciones de cualquier número 
de argumentos entre elementos de los distintos dominios de cuantifica­
ción de las variables de los lenguajes de tercer orden. Un lenguaje de orden 
n + 1, en fin, se obtendrá de uno de orden n añadiéndole variables cuan­
tificables cuyos valores serán relaciones entre elementos de los dominios 
de cuantificación de las variables del lenguaje de orden n. 

IX. EL LENGUAJE DE LOS TIPOS 

Todos los lenguajes hasta ahora considerados son fragmentos naturales 
del lenguaje de los tipos, un lenguaje con variables cuantificables de todos 
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los órdenes. Al igual que los anteriores, es un lenguaje apropiado para 
hablar sobre estructuras, de modo que, como ellos, más que un único 
lenguaje, lo que tenemos es una familia de lenguajes, uno para cada tipo 
de semejanza. 

Empecemos por sistematizar e! cúmulo de variables a nuestra dispo­
sición. Cada variable lo es de un cierto tipo, al igual que cada posible 
valor de una variable. El tipo básico es e! de los individuos: O; los demás 
tipos son sucesiones finitas de otros tipos. Los tipos se obtienen mediante 
las dos reglas siguientes: 

O es un tipo; 
si 11, , . . .  , 11., son tipos, la sucesión (11, , . . .  , 11.,) es un tipo. 
Cada tipo lo es de un cierto orden. El orden de! tipo O es 1. El orden 

de! tipo (11, , . . .  ,11.,) es 1 + e! máximo de los órdenes de los tipos 11, , ... , 
11., . 

Los objetos de tipo O son los individuos, es decir, los elementos del 
universo de la estructura en que interpretemos e! lenguaje. O es e! único 
tipo de primer orden (de orden 1). Los objetos de tipo (11" . . .  , 11.,) son 
las relaciones entre objetos de los tipos 11" . . .  , 11., . Así (O) es e! tipo de 
los conjuntos de individuos (0, O) e! de las relaciones binarias entre indi­
viduos, y, en general, (O, O, ... , O) (n ceros) es e! tipo de las relaciones 
n-arias entre individuos. Éstos son los únicos tipos de segundo orden. 
((O)), ((O), (O)), ((O), O, O) son tipos de tercer orden. El primero es el tipo 
de los conjuntos de individuos, e! segundo e! de las relaciones binarias 
entre conjuntos de individuos, y el tercero el de las relaciones ternarias 
entre un conjunto de individuos y dos individuos. 

El lenguaje de los tipos contiene un número infinito de variables de 
cada tipo. El orden de una variable es e! orden de su tipo. Las variables 
individuales son las variables de tipo O. Los símbolos lógicos de este len­
guaje son las variables, los conectores, los cuantificadores y el símbolo 
de igualdad. Los símbolos no lógicos son los del tipo de semejanza que 
consideremos. 

Fijemos un tipo de semejanza L. Los·términos de tipo O del lenguaje 
de los tipos sobre L son los términos definidos en la sección 2. Si 11 es 
un tipo distinto de O, los términos de tipo TI no son más que las variables 
de tipo 11. Las fórmulas atómicas de! lenguaje de los tipos sobre L son 
las expresiones de la forma 

1) t,""'t2, donde t, y t2 son términos de tipo O. 
2) Rt, ... t." donde t" ... , t., son términos de tipo O y R es una cons­

tante de predicado n-aria de L, 

Y las de la forma 
3) Xt, ... t." donde t" ... , t., son términos de los tipos 11" . . .  , 11." res­

pectivamente, y X es una variable de tipo (11, , . . .  , 11.,) . 

Lasfórmulas se definen recursivamente como en los lenguajes de pri­
mer y de segundo orden: toda fórmula atómica es una fórmula; si a y 
13 son fórmulas, también lo son ----¡ a, (avl3), (a/\I3), (a->l3) y (a<->I3); si 
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a es una fórmula y X es una variable de cualquier tipo, :H:Xa y VXa 
son fórmulas. 

Para interpretar el lenguaje en una estructura A=(A, 1), debemos espe­
cificar los dominios de variabilidad de los distintos tipos de variables. Los 
valores de las variables de tipo 11 serán objetos de tipo 11 sobre A. Así, para 
tipo 11, definimos D�(A), el dominio de objetos de tipo 11 sobre A: 

Si 11 = 0, D�(A) = A; 
Si 11 = (111,"" 11"), D�(A) es el conjunto de todas las relaciones n-arias 

entre elementos de D�I(A), ... , D�,,(A), respectivamente. 
Es ahora claro cómo especificar cuándo una fórmula es satisfecha en 

A por una asignación de objetos a sus variables libres (donde a una varia­
ble de tipo 11 se le asigna un elemento de D �(A)). En el caso de las fór­
mulas atómicas de la forma (3), las únicas nuevas, la definición es la 
siguiente: La fórmula Xtl • • •  t" es satisfecha en la estructura por una asig­
nación de objetos a sus variables libres si los objetos asignados a tl>"" 
t" están en la relación asignada a la variable X. En cuanto a la cuantifi-
cación, basta recordar que si X es una variable de tipo 11, :H:X . . .  significa 
que hay un objeto de tipo 11 (un elemento de D�(A)) tal que ... Análoga-
mente para Vx. . .  Los conceptos de consecuencia y validez universal pue­
den definirse ahora como antes. 

La plétora de tipos puede reducirse grandemente gracias en parte a la 
posibilidad de identificar n-tuplas con conjuntos. Así, en el caso de los 
pares ordenados, podemos definir, como es usual en teoría de conjuntos, 

(x, y) = ({x),{x, y}), 
de modo que, si x e y son individuos, objetos de tipo 0, (x, y) es un 
conjunto de conjuntos de individuos: un objeto de tipo ((O)). En general, 
y con cierto cuidado, podemos reformular el lenguaje de los tipos usando 
sólo los tipos 

0, (O), ((O)), (((O))), ... (( ... (0) ... )), ... 

Los dominios de variabilidad de las variables con respecto a una 
estructura cuyo universo es A son, entonces 

Do(A) = A  
D(o)(A) = P(A) 
D((o))(A) = P(D(o)(A)) = P2(A) 

D(((o) ))(A) = P(D( (o)¡(A)) = P"+ '(A) 
... , 

donde P(A) = (X:X � A), el conjunto potencia de A; y, para cada n, 
P"+ '(A) = P(P"(A)), el conjunto potencia de P"(A). 

X. LENGUAJE Y TEORÍA DE TIPOS 

En el lenguaje de los tipos tratamos los conjuntos y las relaciones como 
objetos, de tal modo que ellos mismos pueden pertenecer a otros con-
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juntos O estar relacionados mediante relaciones de orden superior. Pero 
usamos este lenguaje para hablar acerca de los elementos del universo 
de una estructura, no para estudiar los conjuntos y las relaciones en cuya 
base están estos elementos. Se trata de un lenguaje, no de una teoría de 
conjuntos o de relaciones. Qué conjuntos y qué relaciones hay en cada 
dominio se supone entendido al usar el lenguaje. Si queremos profundi­
zar en el estudio del lenguaje, si queremos conocer mejor su semántica, 
debemos acudir a la teoría de conjuntos o, tal vez, a la teoría (en oposi­
ción al lenguaje) de los tipos. Una teoría tal nos iluminará acerca de lo 
que hay en cada dominio, nos dirá, por lo menos parcialmente, cómo 
obtener cada D"(A) a partir de A. Pero no lo olvidemos: el lenguaje que 
hemos introducido no es un lenguaje para hablar de conjuntos y relacio­
nes sobre el universo de cierta estructura, sino para hablar, con ayuda 
de aquellos conjuntos y relaciones, sobre esta estructura. Si queremos 
estudiar conjuntos o relaciones acudiremos a una teoría apropiada que 
hablará de ellos. Ellos serán los individuos bajo observación, ellos cons­
tituirán el universo del discurso, el dominio de valores de las variables 
individuales del lenguaje que decidamos usar, el lenguaje en que formu­
lemos esta teoría (que podría ser un lenguaje de tipos). 

XI. CUANTIFICACIÓN PLURAL 

En el lenguaje de los tipos y, en general, en los lenguajes con variables 
de orden tercero o superior, nos vemos obligados a tratar los conjuntos 
y las relaciones como objetos. No sólo los tratamos de hecho como obje­
tos, sino que no podemos hacerlo de otro modo. Pues los valores de las 
variables de orden mayor que dos, digamos, para concretar, de las varia­
bles de tercer orden de tipo ((O)), son conjuntos cuyos elementos son a 
su vez conjuntos. Y los elementos de un conjunto son objetos. ASÍ, el 
uso de un lenguaje con variables de tipo ((O)) nos obliga a dar cabida 
en nuestra ontología a conjuntos de individuos. En general, el uso de 
un lenguaje con variables de orden n + 2 comporta la reificación de con­
juntos y relaciones de objetos de orden n, y el uso del lenguaje de los 
tipos presupone tratar como objetos a conjuntos de cualquier orden finito 
sobre el universo de la estructura que nos ocupe. 

En segundo orden, la situación es distinta. Es cierto que, tal como 
hemos introducido la semántica, en los lenguajes de segundo orden cuan­
tificamos sobre conjuntos de individuos y sobre relaciones entre ellos, 
de modo que, en tanto que elementos de un dominio de cuantificación, 
tratamos a unos y a otras como objetos. Pero, a diferencia de lo que ocu­
rre en órdenes superiores, cabe la posibilidad de que la reificación de con­
juntos y relaciones sea sólo un requisito de nuestro modo de presentar 
la semántica, ya que, en el lenguaje mismo, las variables de segundo orden 
sólo aparecen en posición de predicados y no en la de términos que requie­
ren un predicado para constituir una fórmula; en otras palabras, no apa-
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recen en posiciones reservadas a nombres o a pronombres: en posiciones 
propias de términos que denotan objetos. Los únicos términos de un len­
guaje de segundo orden son las variables y las constantes individuales. 

De hecho, es posible interpretar los lenguajes de segundo orden sin 
objetivizar conjuntos ni relaciones. El dominio de cuantificación es el 
mismo tanto si las variables cuantificadas son individuales como de pre­
dicado: el universo de la estructura considerada. La diferencia reside en 
el modo de cuantificar: cuantificación singular en el primer caso; cuanti­
ficación plural en el segundo (ver Boolos, 1984 y Lewis, 1991, 62-71). 
Es la diferencia que se ejemplifica en el par de oraciones: «Hay personas 
que se admiran sólo a sí mismas» y «Hay personas que se admiran sólo 
unas a otras». En el primer ejemplo, cada persona que sólo se admire 
a sí misma puede aducirse como prueba de la verdad de la oración; no 
así en el segundo, donde lo que se afirma es la existencia de varias perso­
nas con cierto comportamiento mutuo: cada una de estas personas, si 
admira a alguien, es a otra de ellas. La primera oración puede formali­
zarse en primer orden. Su forma es: :>Ix Vy(Rxy� x"'" y). Para la segunda, 
recurrimos a segundo orden: :>IX(:>IxXxA VxVy((XxARxy)�(----'x"'" 
yAXy))). En la lectura usual, esta fórmula afirma la existencia de un con­
junto no vacío de personas cada una de las cuales, si admira a alguien, 
es a otro miembro de este conjunto. Pero la lectura anterior, con cuanti­
ficación plural sobre personas, parece ser perfectamente apropiada. 
Cuando hablamos de conjuntos, o de grupos, de personas, no solemos 
pensar en el conjunto, en el grupo, como un objeto. Sólo se trata de un 
útil recurso de expresión. 

Mediante la cuantificación plural, la definición de antepasado en tér­
minos de progenitor (ver v.3) sería: «a es un antepasado de b si y sólo si 
siempre que hay personas tales que 1?) cada progenitor de b es una de 
ellas, y 2?) si cada progenitor de cualquiera de ellas es una de ellas, a es 
también una de ellas». Tal vez esta formulación no sea más directamente 
inteligible que la de v.3, pero lo interesante es que es inteligible y que en 
ella se cuantifica sólo sobre personas, no sobre conjuntos de personas. 

Hay dos puntos que es preciso mencionar acerca de la cuantificación 
plural como semántica de los lenguajes de segundo orden. El primero 
hace referencia al lugar del conjunto vacío. En la semántica usual, este 
conjunto es un valor de las variables de predicado, por lo que la cláusula 
«:>IX ... » no debe, en rigor, interpretarse como «Hay objetos tales que ... » 

sino más bien como «Hay cero o más objetos tales que ... » .  Si no lo hace­
mos, ciertas fórmulas, como :>IXVy(Xy-(PyA ----, Py)), toman distinto 
valor de verdad en las dos semánticas. El segundo punto tiene que ver 
con la interpretación de las variables de predicado de más de un argu­
mento. Si la cuantificación de variables unarias se interpreta como cuan­
tificación plural sobre los elementos del dominio, la cuantificación de 
variables binarias debería interpretarse como cuantificación plural sobre 
pares de elementos del dominio, la de variables ternarias sobre triples 
de elementos del dominio, etc. Así, si X es binaria, las sentencias 
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axvxxxx axvx Vy(Xxy-+ Xyx) 

podrían leerse, respectivamente, como: «Hay pares de objetos tales que 
para todo objeto x el par xx es uno de ellos» y «Hay pares de objetos 
tales que para cualesquiera objetos x, y: si el par xy es uno de ellos, tam­
bién lo es el par yx». Admitir pares, triples, y, en general, n-tuplas de 
elementos de un dominio no es ontológica mente mucho más comprome­
tido que admitir los elementos mismos, ya que siempre podemos preci­
sar cuáles son estos pares, estos triples, etc., en términos de los elemen­
tos del dominio. Este no es el caso con los conjuntos de elementos de 
un dominio infinito. De ahí que la cuantificación plural, incluso sobre 
pares, triples y n-tuplas, pueda verse como un intento de descargar onto­
lógicamente la lógica de segundo orden que, según el conocido aforismo 
de Quine (1970, 66), es teoría de conjuntos con piel de cordero. 

XII. ESTRUCTURAS GENERALES 

La gran capacidad expresiva de la lógica de segundo orden y superior 
se debe a la riqueza de sus dominios de cuantificación. Así, si en segundo 
orden podemos caracterizar el orden de los números reales es porque nues­
tras variables toman como valores todos los subconjuntos del universo 
de la estructura que consideremos. Si por ejemplo la relación de orden 
de la estructura considerada, digamos (A, 1), no es condicionalmente 
completa, habrá un subconjunto acotado de A sin cota superior mínima. 
Pero este subconjunto, llamémosle S, será un valor de las variables una­
rias. S satisfará la fórmula (ver V.7) 

1) ayVx(Xx-+ Rxy), 

pero no satisfará la fórmula 

2) ay(CSM(y,X,R)) 

y, por tanto, en nuestra estructura será falsa la sentencia CC(R), que 
expresa que 1(R) es un orden condicionalmente completo. 

(Lo mismo ocurriría si interpretáramos el lenguaje de segundo orden 
según la cuantificación plural, si bien la fraseología sería algo menos pers­
picua: Si S es un conjunto acotado sin cota superior mínima, sus elemen­
tos son testigos de la falsedad de CC(R), ya que 1) son números tales 
que hay un número mayor o igual que todos ellos, pero 2) no hay nin­
gún número mayor o igual que todos ellos que sea menor o igual que 
todos los números mayores o iguales que todos ellos). 

Como vimos en x, la riqueza de los distintos dominios de cuantifi­
cación se presupone en el uso de los lenguajes de segundo orden y de 
orden superior. Esto significa que si usamos un lenguaje de segundo orden 
para comunicarnos, los interlocutores debemos entender del mismo modo 
la referencia a «todo subconjunto» y a «toda relación» (ver Shapiro, 
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1985). Si no fuera así, ¿cómo podríamos concluir que, continuando con 
el ejemplo anterior, el orden que nuestro interlocutor dice satisfacer la 
sentencia CC(R) es condicionalmente completo? No podríamos. Si el con­
junto S antes citado no es uno de los valores posibles de sus variables 
de predicado un arias (porque no está en su dominio de cuantificación 
pertinente), nuestro interlocutor podrá tomar por condicionalmente com­
pleto un orden que no lo es. 

Esta presuposición puede resultar irrazonable. ¿Cómo podemos 
garantizar que, por ejemplo, nuestro dominio de cuantificación D(o)(A) 
contiene todos los subconjuntos de A si, en el caso en que A sea infinito, 
la mayor parte de ellos serán totalmente indescriptibles? Ciertamente sabe­
mos reconocer un subconjunto de A si nos es dado (descrito), también 
sabemos qué significa ser un subconjunto de A: ser un conjunto cuyos 
elementos pertenecen todos a A; pero de que sepamos estas y otras cosas 
no se sigue que tengamos una concepción precisa de qué conjuntos hay 
en P(A), es decir, de la totalidad de los subconjuntos de A. De ahí que 
se haya considerado una semántica alternativa para los lenguajes de orden 
superior, una semántica que no presuponga la comprensión unívoca de 
«todo predicado», «toda relación», etc. 

Presentemos esta semántica, debida a Lean Henkin (1950), para el 
lenguaje de los tipos. Si A = (A, 1") es una estructura, una estructura general 
sobre A consta de A y de una función, C, cuyo dominio es el conjunto 
de los tipos, tal que (poniendo 'C"' en vez de 'C(11¡'): 

Si 11 = O, C"(A) = A; 
Si 11 = (11 1 , • • •  , 11n), C"(A) es un conjunto de relaciones n-arias entre 

elementos de C"I(A), ... , C"n(A), respectivamente 

En una estructura general sobre A podemos interpretar el lenguaje 
de los tipos como hicimos en IX, con la única diferencia que ahora las 
variables de tipo 11 toman como valores elementos de C,1(A). C"(A) es, 
pues, el dominio de cuantificación de tipo 11 de la estructura general. Es 
claro que cada C"(A) es un subconjunto de D"(A). La estructura gene­
ral máxima, aquella en la cual para cada 11:C"(A) = D"(A), es la estruc­
tura principal sobre A. 

Es conveniente limitarse a considerar estructuras generales en las que 
sean verdaderos todos los axiomas de comprehensión: 

donde XI' ... ' Xn son variables de cualquier tipo, ZI' ... ' Zn son varia­
bles de tipos 1111 ... ' 11n, respectivamente, Y es una variable de tipo 
(11" ... , 11n), y a es una fórmula todas cuyas variables libres se encuen­
tran entre Xl' ... ' X",Z" ... , Zn. 

Estos axiomas garantizan que, para cada tipo 11, todas las relaciones 
definibles de tipo 11 pertenecerán al dominio de cuantificación C"(A). En 
particular, el complemento, la unión y la intersección de elementos de 

124 



LÓGICA DE ORDEN SUPERIOR 

C"(A) serán a su vez elementos de C"(A). Esto es algo que esperamos 
de un dominio de cuantificación razonable: Si SI' ... ' Sn son posibles 
valores de las variables, también debe serlo toda relación definible en el 
lenguaje a partir de S" ... , Sn. 

Una estructura general sobre A puede ser muy distinta de la corres­
pondiente estructura principal. ASÍ, si A es numerable, hay estructuras 
generales sobre A tales que cada dominio de cuantificación C"(A) es 
también numerable. Pero la cardinalidad de los dominios de cuantifica­
ción de la estructura principal sobre A crece exponencialmente con el 
orden de los tipos. Do(A) tiene cardinalidad X o; D(o)(A) tiene la cardi­
nalidad del continuo: e = 2 K 0 ; D«o»(A) tiene cardinalidad 2 c; etc. (La 
enorme cardinalidad de los dominios de cuantificación en la interpreta­
ción principal del lenguaje de los tipos puede aducirse en contra de la 
razonabilidad de la semántica usual.) 

Con la semántica de las estructuras generales, el lenguaje de los tipos 
se convierte esencialmente en un lenguaje de primer orden. Definamos 
los conceptos lógicos de esta semántica: una sentencia es consecuencia 
de un conjunto de sentencias L si es verdadera en todos los modelos gene­
rales de L; y una sentencia es universalmente válida si es verdadera en 
todas las estructuras generales. Para esta relación de consecuencia en sen­
tido general hay un cálculo correcto y completo, y, por tanto, hay tam­
bién un cálculo correcto y completo para la validez lógica (Henkin, 1950). 
Por la existencia de un cálculo completo y correcto para la consecuen­
cia, esta relación es de carácter finito y, por consiguiente, vale el teo­
rema de compacidad. También los teoremas de L6wenheim-Skolem se 
cumplen: Si un conjunto finito o numerable de sentencias tiene un modelo 
general con universo infinito, tiene también un modelo con universo infi­
nito de cualquier cardinalidad. 

Pero el gran poder expresivo de los lenguajes de orden superior se 
desvanece al darles la semántica de las estructuras generales. No pode­
mos caracterizar la finitud: la sentencia ----,INF de V.1 tiene modelos 
generales infinitos; no podemos definir la transitivización de una rela­
ción (ver V.3): si el conjunto de los antepasados de a no está en C(o)(A), 
b puede pertenecer a todos los conjuntos de C(o)(A) que contengan a los 
progenitores de a y a los progenitores de todos sus miembros sin ser por 
ello un antepasado de a; no podemos tampoco caracterizar los números 
naturales (V.5) ni el orden de los números reales (V.7), etc. Ni siquiera 
podemos definir la relación de identidad (V.2): si no introducimos el sím­
bolo de igualdad como un símbolo lógico del lenguaje (interpretándolo 
como identidad) sino que lo introducimos mediante la definición 

X"" y- VX(Xx- Xy), 

podemos mostrar sin gran dificultad que hay estructuras generales que 
contienen elementos distintos que, sin embargo, satisfacen la fórmula x""y 
porque no hay suficientes conjuntos en C(o)(A) para distinguirlos. 
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Así, la semántica de las estructuras generales desvirtúa la lógica de 
orden superior, rebajándola en cierto sentido a primer orden. La razón 
de que esto ocurra es, a grandes rasgos, la siguiente: Como hemos visto, 
en esta semántica los dominios de cuantificación superiores están sujetos 
a interpretación; no están, como en la semántica usual, determinados por 
el universo individual de la estructura. La libertad en la elección de estos 
dominios de cuantificación es tanta que la totalidad de las estructuras 
generales sobre estructuras de un tipo de semejanza 't puede describirse, 
salvo isomorfismo, mediante un conjunto de sentencias de primer orden 
en un tipo de semejanza ampliado 't"', obtenido al añadir a 't constantes 
de predicado que se interpretarán como los distintos universos de cuan­
tificación. De este modo, hacer lógica de orden superior sobre estructu­
ras de tipo de semejanza 't es equivalente a hacer lógica de primer orden 
sobre estructuras de tipo de semejanza 't'" (ver Enderton, 1972, C. 4). 

XIII. CONSIDERACIONES FINALES 

Dejemos atrás la semántica de las estructuras generales y volvamos a la 
semántica usual, la que da a los lenguajes de orden superior su gran poten­
cia expresiva. Permanezcamos, además, en segundo orden, el lenguaje 
que, en parte por razones de simplicidad, hemos descrito con mayor deta­
lle. Restringirnos a segundo orden no es una decisión arbitraria, ya que 
el gran salto en la capacidad de caracterización de estructuras y de clases 
de estructuras se da entre primer y segundo orden. En cierto modo, los 
lenguajes de orden mayor que dos pueden reducirse a los de segundo orden 
(ver Van Benthem, Doets, 1983, 323-324). 

Una diferencia fundamental entre los lenguajes de primero y los de 
segundo orden tiene que ver con la evaluación de una sentencia en una 
estructura. Si a es una sentencia de primer orden, la verdad o falsedad 
de a en una estructura A depende únicamente de a y de lo que está explí­
citamente dado al dar A, a saber: su universo, A, y la función de inter­
pretación, 1", de los símbolos del lenguaje. Nada más es necesario. La 
evaluación de a en A puede llevarse a cabo con sólo estos ingredientes, 
pues 1? el valor de una fórmula atómica depende únicamente de la inter­
pretación de las constantes que en ella aparecen y de los elementos de 
A asignados a sus variables; 2? el valor de una fórmula obtenida a partir 
de otras con ayuda de los conectores ( ---, , v, /\. ->, .... ) sólo depende 
del valor de aquéllas; y 3? el valor de una cuantificación �xB o VxB está 
determinado por los valores que toma B al asignar a x cada uno de los 
elementos de A. 

Sin embargo, para determinar si una sentencia de segundo orden es 
verdadera en una estructura A debemos salir fuera de A; nos hace falta 
recurrir a la totalidad de subconjuntos de A y a la de relaciones de cual­
quier número de argumentos entre elementos de A. Y, como vimos en 
los primeros párrafos de XII para evaluar correctamente las fórmulas de 
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segundo orden es esencial que consideremos todos estos subconjuntos 
y todas estas relaciones. 

Entendemos qué es un subconjunto de un conjunto y qué una rela­
ción entre elementos del conjunto. Pero esto no significa que seamos capa­
ces de precisar qué subconjuntos tiene un conjunto dado y qué relacio­
nes se dan entre sus elementos. Esto es un tema principal de la teoría 
de conjuntos. De ahí que para resolver problemas en lógica de segundo 
orden debamos recurrir una y otra vez a las enseñanzas de la teoría de 
conjuntos (ver Jané, 1988). De hecho, la relación entre lógica de segundo 
orden y teoría de conjuntos es más íntima de lo que estas frases sugieren 
(y se mantiene si interpretamos la lógica de segundo orden en términos 
de cuantificación plural). 

Uno de los principios comúnmente admitidos de la teoría de conjun­
tos es el axioma de elección. En una de sus múltiples formulaciones equi­
valentes, este axioma dice que toda relación incluye una función con su 
mismo dominio. Más detalladamente: Si R es una relación y A es un con­
junto tal que para todo aEA hay algún objeto b tal que R (a, b) entonces 
hay una función/tal que para todo aEA, R (a,f(a)). Así, para cada aEA, 

/ «elige» un objeto,f(a), entre todos aquéllos con los que a se relaciona. 
El axioma de elección ha sido el más polémico de los axiomas de la teo­
ría de conjuntos (ver Russell, 1919, C. 12) debido a su carácter pura­
mente existencial: afirma la existencia de una función sin decirnos nada 
acerca de cómo calcularla. Ahora bien, hay una sentencia de segundo 
orden que es lógicamente válida si y sólo si el axioma de elección es ver­
dadero. Esta sentencia, una formalización del axioma, es 

VX� Y( Vxyz(( Yxy/\ Yxz)--->y"" z)/\ Vx( �yXxy---> �y(Xxy/\ Yxy))), 

donde X e Y son dos variables de predicado binarias. Así, si el axioma 
de elección es verdadero, la semántica usual de segundo orden le otorga 
la categoría de verdad lógica. 

Algo análogo ocurre con la llamada hipótesis del continuo, según la 
cual todo conjunto infinito de números reales es o bien numerable o bien 
tiene la cardinalidad del continuo. La verdad o falsedad de esta hipóte­
sis, propuesta por Cantor, nos es desconocida. Más aún, es independiente 
de los axiomas usuales de la teoría de conjuntos, y, en la medida en que 
éstos recogen todo cuanto sabemos acerca de los conjuntos, es indepen­
diente de nuestro conocimiento matemático. Sin embargo, hay una sen­
tencia de segundo orden que es lógicamente válida si y sólo si la hipóte­
sis del continuo es verdadera. La sentencia diCe: «Para cualesquiera 
conjuntos (de elementos del universo considerado) X, Y, Z: si X tiene 
la cardinalidad del continuo, Y es numerable, e Y� Z � X, entonces Z 
es biyectable con Y o  Z es biyectable con X». No es difícil construir esta 
sentencia con los medios de V; y no es difícil ver que su validez lógica 
es equivalente a la verdad de la hipótesis del continuo. 

Estos hechos no son excepcionales. Hay muchas proposiciones con­
juntistas cuya verdad nos es desconocida y que, sin embargo, es equiva-
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lente a la validez lógica de cierta fórmula de segundo orden. La lógica 
de segundo orden es, pues, de una potencia extraordinaria, ya que tiene 
la solución a muchos problemas matemáticos. Pero al no poder disponer 
de un cálculo que nos permita generar las verdades lógicas de segundo 
orden, esta solución nos es inaccesible. 

BIBLIOGRAFÍA 

Boolos, G. (1984), "To be is to be a value of a variable (or to be some values of some 
variables)>>: The ¡oumal 01 Philosophy, 81, 430-449. 

Boolos, G. y ]effrey, R. (21980), Computability and Logic, Cambridge University Press, 
Cambridge-London-New York. 

Enderton, H. (1972), A mathematical introduction to logic, Academic Press, New York­
London. 

Gabbay, D. y Guenrhner, F. (1983), Handbook 01 Philosophical Logic J, Reidel, Dordrecht­
London-Lancaster-Tokyo. 

Henkin, L. (1950), "Completeness in the theory of types»: The ¡oumal 01 Symbolic Logic, 
15, 81-9l. 

]ané, 1. (1988), «Lógica y Ontología»: Theoria, 10, 81-106. 
Lewis, D. (1991), Parts 01 Classes, Basil Blackwell, Oxford-Cambridge. 
Quine, W. V. (1970), Philosophy 01 Logic, Prenrice Hall, Englewood CJiffs. 
Russell, B. (1919), Introduction to Mathematical Philosophy, George Allen&Unwin, 

London. 
Shapiro, S. (1985), "Second-order languages and mathematical practice»: The ¡oumal 01 

Symbolic Logic, 50, 714-742. 
Tarski, Mostowski y Robinson (1953), Undecidable Theories, North Holland, Amsterdam. 
Van Benrhem y Doets, K. (1983), "Higher-order Logic», en Gabbay y Guenrhner, 1983. 

128 



LÓGICA DEÓNTICA 

Eugenio Bulygin 

1. INTRODUCCIÓN 

La lógica deóntica tiene una fecha de nacimiento muy precisa: 1951, año 
en que aparece el famoso artículo de Georg Henrik van Wright «Deontic 
Logic» (van Wright, 1951)\ sin perjuicio de que se pueda encontrar 
numerosos antecedentes, por lo menos desde el siglo XIV2• Entre los ante­
cedentes más recientes cabe mencionar a Bentham, Leibniz y MalIy3. 

El impulso inmediato para la creación de una lógica de óntica fue la 
observación hecha ya por Leibniz y luego, independientemente, por van 
Wright sobre una serie de analogías sugestivas entre el comportamiento 
lógico de los conceptos modales aléticos (posible, imposible, necesario) 
y los conceptos deóntico s o normativos de permitido, prohibido y obli­
gatorio. Tomando uno de esos conceptos como primitivo, se puede defi­
nir los otros dos de una manera estructuralmente similar. En efecto, si 
tomamos como primitivo los conceptos de posible (M) y permitido (P), 
los otros dos pueden ser definidos con la ayuda de la negación. Colo­
cando 1 por imposible, N por necesario, F por prohibido y O por obliga­
torio y usando el símbolo habitual para la negación ( -), obtenemos el 
siguiente cuadro: 

1= -M F= -P 
N= -M- (=I-) Op = -P - ( = F -) 

Naturalmente se puede tomar como primitivo cualquiera de los otros 
dos conceptos, por ejemplo, N (O) y definir los otros en función de éste: 

1. En la misma época aparecieron dos trabajos más, dedicados al tema de la lógica deóntica: 
Becker, 1952 y Kalinowski, 1953. Pero la influencia decisiva se debe a la contribución de van Wright 
y es por eso que se le considera generalmente, con razón, como el padre de la lógica deóntica. 

2. Cf. Knuuttila, 1981. Sobre antecedentes más inmediatos véase F�llesdal-Hilpinen, 1971. 
3. Cf. J. Bentham, 1970, Leibniz, Elementa furis Naturalis, 1672, y E. Mally, 1926. 
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P= -0-

F=O-

El otro aspecto similar está dado por las leyes de distribución: tanto 
los conceptos modales, como los deónticos se distribuyen de igual manera 
respecto de la disyunción y la conjunción. 

M(pvq)-MpvMq 
I(pvq)-Ip&Iq 
N(p&q)-Np&Nq 

P(pvq)-PpvPq 
F(pvq)-Fp&Fq 
O(p&q)-Op&Oq 

Hay, sin embargo, una diferencia significativa entre e! comporta­
miento lógico de las modalidades aléticas y las correspondientes modali­
dades deónticas: mientras que en todos los sistemas de lógica modal las 
fórmulas «p ...... Mp» y «Np ...... p» son válidas, las correspondientes fórmu­
las deónticas «p ...... Pp» y«Op ...... p» no pueden serlo. Claramente de! hecho 
de que algo sea (verdad) no se sigue que esté permitido y no todas las 
obligaciones se cumplen de hecho. 

En el primer sistema de van Wright (1951) se acepta que toda tauto­
logía de la lógica proposicional es una fórmula válida de! sistema cuando 
las variables proposicionales son reemplazadas por fórmulas deónticas, 
es decir, fórmulas en las que un operador deóntico es seguido por una 
expresión de la lógica proposicional. Además, se aceptan las definicio­
nes de prohibido y obligatorio en términos de permisión (que figura como 
término primitivo), conforme al esquema dado más arriba. Finalmente, 
se aceptan como axiomas la ley de distribución P(pvq) -PpvPq y e! lla­
mado principio de permisión: PpvP-p (que equivale a Op ...... Pp). A este 
sistema lo llamaré e! sistema clásico. (El mismo van Wright presenta este 
sistema en forma axiomatizada en van Wright, 1968t. 

No es mi propósito analizar aquí e! desarrollo de la lógica de óntica 
a partir de la primera obra de van Wright. Dejaré de lado también los 
problemas de aplicación de la lógica deóntica con sus conocidas parado­
jas, así como muchos temas que han preocupado a los lógicos deónticos 
en estos últimos cuarenta años. Me concentraré, en cambio, en el pro­
blema de la interpretación de las fórmulas deónticas, que presenta inte­
resantes facetas filosóficas. 

II. EL DILEMA DE ]Q>RGENSEN 

El tema de la interpretación de la lógica deóntica está en buena medida 
influenciado por el problema que en los años treinta fue formulado por 

4. Por razones de simplicidad paso por alto una complicación: en su presentación originaria van 
Wright usaba en lugar de variables proposicionales letras mayúsculas (A, B, ete.) interpretadas como 
nombres de actos y sólo con posterioridad comenzó a usar las variables proposicionales, siguiendo una 
propuesta de Prior. 
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el filósofo danés J. ]<brgensen y que desde entonces es conocido en la lite­
ratura como el dilema de jorgensen5• El dilema se apoya en las cuatro 
tesis siguientes: 

1) En el lenguaje corriente se usan en contextos normativos los tér­
minos lógicos típicos tales como «no», «y», «o», «si», - «entonces», etc. 
de la misma manera o al menos de una manera muy similar como en 
el lenguaje descriptivo, lo que sugiere la idea de considerarlos como conec­
tivas proposicionales. Además, se hacen inferencias en las que las nor­
mas figuran como premisas y como conclusiones y tales inferencias tie­
nen todo el aspecto de ser lógicamente válidas. Por lo tanto, hay una 
lógica de normas que subyace al lenguaje corriente. 

2) En la tradición lógica desde Aristóteles hasta nuestros días las rela­
ciones lógicas de implicación (consecuencia lógica) y contradicción se defi­
nen en términos de verdad. (Lo mismo ocurre con las conectivas propo­
sicionales.) En consecuencia, sólo expresiones verdaderas o falsas pueden 
ser objeto del estudio de la lógica. 

3) Las normas carecen de valores de verdad. 
4 ) No hay relaciones lógicas entre normas y, por consiguiente, no 

hay una lógica de normas. 

La tesis 4), que se infiere de 2) Y 3), contradice la tesis 1), que puede 
ser considerada como expresión de un hecho preanalítico. Si se quiere 
evitar la tesis 4) hay que abandonar la tesis 2), o bien la tesis 3). Si, en 
cambio, se acepta la tesis 4), hay que desarrollar una teoría sustitutiva 
capaz de reemplazar la lógica de normas para dar cuenta del hecho expre­
sado en 1). Buena parte del desarrollo de la lógica deóntica desde la publi­
cación del primer artículo de van W right hasta nuestros días puede ser 
considerado como una discusión del dilema de ]<brgensen. 

En van Wright (1951), la lógica deóntica es concebida como una lógica 
de normas y las normas son tratadas -sin ofrecer mayor fundamentación­
como entidades verdaderas o falsas. Pocos años después (en el Prefacio a 
van Wright, 1957) el autor calificó su primer ensayo como «filosóficamente 
poco satisfactorio» justamente por haber atribuido a las normas valores 
de verdad y expresó la idea de que la importancia de la lógica de óntica 
residía precisamente en el hecho de que las normas, aunque alejadas del 
ámbito de la verdad, están sin embargo sometidas a leyes lógicas «<though 
removed from the realm of truth, yet are subject to logical law»). Esta obser­
vación sugiere la ampliación del concepto de lógica y, por lo tanto, el rechazo 
de la tesis 2), pero van Wright no ha desarrollado luego esta idea6• 

Algunos lógicos y filósofos del derecho han intentado escapar al 
dilema de ]<brgensen mediante el rechazo de la tesis 3), ya sea atribuyendo 

5. Cf. Jolrgen Jolrgensen, «Imperatives and Logio,: Erkellllll1is, 7, 1937·38. 

6. Sólo en un trabajo no publicado, presentado en un simposio de Pisa en 1989, van Wright 
admite la posibilidad de las relaciones lógicas entre normas, pero le da una fundamentación diferente 
a la de Alchourrón y Martina, 1990. 

131 



EUGENIO BUlYGIN 

valores de verdad a las normas, ya sea postulando valores análogos a 
la verdad y falsedad, como por ejemplo validez e invalidez (cabe men­
cionar en este contexto a Kalinowski, Klug y Rodig). Pero ninguno de 
estos autores ha llevado a cabo una realización satisfactoria de esta idea. 

IIl. INTERPRETACIÓN DESCRIPTIVA DE LA LÓGICA DEÓNTICA 

Aquellos autores que en los años cincuenta y en los comienzos de los años 
sesenta han trabajado en el campo de la lógica deóntica (Prior, Ander­
son, Lemmon) atribuyeron a las expresiones deónticas valores de ver­
dad, sin preocuparse de la cuestión de si éstas expresaban normas o pro­
posiciones acerca de las normas. Es tan sólo en el transcurso de los años 
sesenta que esta distinción entre normas y proposiciones normativas fue 
formulada con claridad (sobre todo en von Wright, 1963), si bien ya se 
encuentran atisbos de esa distinción en muchas obras anteriores (por ejem­
plo, en Bentham, Kelsen, Hedenius y Alf Ross). Esa distinción, que parte 
del hecho de que las oraciones del lenguaje corriente en las que figuran 
términos típicamente deóntico s ('obligatorio', 'prohibido', 'permitido', 
etc.) son sistemáticamente ambiguas, pues pueden ser interpretados tanto 
prescriptivamente (como expresiones de normas), como descriptivamente 
(como expresiones de proposiciones acerca de las normas), abre el camino 
para la construcción de una lógica de óntica (inobjetable desde el punto 
de vista de la concepción tradicional de la lógica) como una lógica de 
las proposiciones normativas. Este camino fue recorrido por von Wright 
en Norma y Acción (1963) al concebir la lógica desarrollada en ese libro 
como una lógica de las expresiones deónticas interpretadas descriptiva­
mente. Pero su idea fue que la peculiaridad de esa lógica de las proposi­
ciones normativas consiste en que en ella se reflejan las propiedades de 
las normas mismas. En consecuencia, von Wright propuso en lugar de 
dos simbolismos diferentes (uno para la lógica de normas y uno para la 
lógica de las proposiciones normativas) desarrollar un solo simbolismo 
que admita dos interpretaciones diferentes, una interpretación prescrip­
tiva y otra descriptiva. Esto resultó ser, en mi opinión, un serio error, 
pues muchos lógicos creyendo que se trata tan sólo de un problema de 
interpretación han caído en la tentación de interpretar los sistemas clási­
cos de lógica de óntica como una lógica de las proposiciones normativas. 
Pero en realidad los operadores deónticos (obligatorio, prohibido, per­
mitido) tienen propiedades lógicas muy diferentes cuando son usados pres­
criptiva o descriptivamente, es decir, cuando figuran en las normas o en 
las proposiciones normativas. Por esta razón es imprescindible usar dife­
rentes símbolos. Usaré los símbolos habituales "O» y "P» para los ope­
radores prescriptivos: en consecuencia la fórmula "Op» expresará una 
norma que ordena p; "o - p» expresará una norma que prohíbe p y «Pp», 
una norma que permite p. Una orden (esto es, una norma que ordena 
o hace obligatorio p) exige que p se dé; una prohibición (esto es, una 

132 



LÓGICA DEÓNTICA 

norma que prohibe p) excluye a p, es decir, exige que p no se dé, y una 
norma permisiva autoriza que se dé p, es decir, dice que p puede darse. 

Los operadores deónticos descriptivos enuncian qué status deóntico 
tienen determinados estados de cosas o acciones. Este status deóntico lo 
confieren las normas: cuando una norma N prescribe que p debe ser o 
se debe hacer (Op), decimos que p es obligatorio en relación a la norma 
N; cuando una norma N prescribe que p no debe ser o no se debe hacer 
(O -p), decimos que p está prohibido en relación a la norma N; cuando 
una norma N prescribe que p puede ser o se puede hacer (Pp), decimos 
que p está permitido en relación a N. 

Podemos también plantear la cuestión bajo qué condiciones una acción 
o estado de cosas p es obligatorio, permitido o prohibido en relación a 
un conjunto de normas a. La respuesta es: p es obligatorio en relación 
a a si y sólo si una norma que prescribe que p debe ser, es decir, una 
norma de la forma «Op» pertenece a las consecuencias de a. Y p está 
prohibido en relación a a si y sólo si una norma que prohibe p (es decir, 
una norma de la forma «O -p») pertenece a las consecuencias de a. 

La situación es bastante más complicada en el caso de la permisión. 
La oración descriptiva «P está permitido en a» es ambigua; a veces lo 
que se quiere decir con esta oración es que una norma que permite p (es 
decir, una norma de la forma «Pp») pertenece a las consecuencias de a, 
pero otras veces la misma oración es usada en un sentido diferente, a 
saber, en el sentido de que p no está prohibido en a, esto es, que una 
norma de la forma «O -p» no pertenece a a. Esto significa que nos tene­
mos que ver aquí con dos conceptos de permisión diferentes; los dos ope­
radores permisivos descriptivos serán denominados en lo sucesivo per­
misión positiva y permisión negativa 7. 

Las proposiciones normativas son siempre relativas a una norma o 
a un conjunto de normas, esto es, a un sistema normativo; por eso vamos 
a usar los siguientes símbolos para los operadores deóntico s descripti­
vos: «Da», «P +a» y «P -a», que se leen «p es obligatorio en a», «p está 
positivamente permitido en a» y «p está negativamente permitido en a», 
respectivamente. 

Las definiciones correspondientes son: 

DI. Dap = def. «Op»ECn(a) 
D2. Da - p = def. «O -p»ECn(a) 
D3. P +ap = def. «Pp»ECn(a) 
D4. P-ap=def. «O-p»f:Cn(a) 

Como ya se ha mencionado, la distinción entre normas y proposicio­
nes normativas ha hecho posible interpretar las expresiones deónticas 

7. En trabajos anteriores de Alchourrón y Bulygin fueron usados, siguiendo a van Wright, los 
términos «permisión fuerte" y «permisión débiL, (cf. Alchourrón, 1969 y Alchourrón-Bulygin, 1971 
y 1984a). Esa terminología tiene, sin embargo, la desventaja de sugerir la idea de que la permisión 
fuerte implica a la permisión débil, cosa que en realidad no se da. De ahí el cambio terminológico. 
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como proposiciones acerca de las normas y con ello construir una lógica 
deóntica en forma inobjetable desde el punto de vista de la concepción 
tradicional de la lógica (tesis 2). Esta lógica de las proposiciones norma­
tivas fue interpretada como una teoría sustitutiva para la lógica de nor­
mas. Pero la caracterización de los operadores deóntico s descriptivos dada 
más arriba muestra claramente que no es suficiente interpretar descripti­
vamente el simbolismo de los sistemas clásicos de la lógica deóntica; la 
lógica de las proposiciones normativas exige un simbolismo propio, por­
que se distingue en aspectos muy esenciales de la lógica de normas. 

Las notas distintivas más importantes son las siguientes: 

1) Las expresiones de la lógica de las proposiciones normativas son 
siempre relativas a un sistema, por eso aparecen los suscriptos a. La misma 
acción p puede naturalmente estar prohibida (permitida, obligatoria) en 
un sistema normativo y al mismo tiempo no estar prohibida (permitida, 
obligatoria) en otro. Por eso la proposición normativa «p está prohibido» 
no es completa: mientras no se indique de qué sistema normativo se trata, 
esta oración carece de valor de verdad. En cambio, las expresiones de 
la lógica de normas no están referidas a un sistema normativo; se trata 
de conceptos absolutos, no relativos 8. 

2) En el ámbito del lenguaje prescriptivo no hay nada análogo a la 
distinción entre la permisión positiva y negativa. Sólo hay un concepto 
de permisión. 

3) Los operadores prescriptivos «O» y «p» son interdefinibles: 
Op=def.-P-p Pp=def.-O-p O-p=def.-Pp P-p=def.-Op 
Contrariamente a la opinión de algunos autores como Weinberger 

(efr. C. y O. Weinberger, 1979, 105) esta interdefinibilidad no presu­
pone en modo alguno que el sistema normativo en cuestión esté cerrado 
y coherente, pues los operadores prescriptivos no están referidos a un 
sistema determinado, esto es, tienen el mismo significado con indepen­
dencia del sistema en que figuran. 

En cambio, los operadores deóntico s descriptivos no son interdefini­
bIes sin más, justamente porque hay dos operadores permisivos distin­
tos. Sólo la permisión negativa es interdefinible con la prohibición: 
P - ap = def. - Oa - p, pero no la permisión positiva. 

4) La definición de los operadores deóntico s descriptivos presupone 
ya la existencia de las relaciones lógicas entre normas: las consecuencias 
lógicas de a es la clase de todas las normas que se siguen lógicamente de 
a. Por lo tanto, la lógica de las proposiciones normativas es una extensión 
de la lógica de normas y los operadores descriptivos se definen en térmi­
nos de operadores prescriptivos. Sobre este tema volveré más adelante. 

5) Finalmente, la negación de los operadores deóntico s descriptivos 
es considerablemente más complicada que la de los prescriptivos. Esto 
será analizado más detenidamente en la próxima sección. 

8. Cf. Carnap, 1942,41 ss. y 89 ss. 
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IV. LA NEGACIÓN DE LAS PROPOSICIONES NORMATIVAS 

El papel de la negación en el ámbito de las normas es distinto del de la 
negación en el ámbito de las proposiciones normativas, por de pronto 
porque hay dos tipos de negación de las proposiciones normativas: la 
externa y la interna. En el lenguaje corriente la negación de la proposi­
ción normativa "p está permitido en a», es decir, "p no está permitido 
en a» es ambigua: puede significar que a contiene una norma que pro­
hibe p o que a no contiene una norma que permite p. Por lo tanto, resulta 
conveniente introducir dos signos de negación: «-» para la negación 
externa y «----,» para la interna, cuyas definiciones son las siguientes: 

Negación externa: 

-P +ap = def. «Pp»�Cn(a) 
-P-ap=def. «-Pp»ECn(a) 
-Oap=def. «Op»�Cn(a) =def. «-P-p»�Cn(a) 

Negación interna: 

----,P+ap=def. ,,-Pp»ECn(a) 
----, P -ap = def. «Pp» � Cn(a) 
----,Oap=def. «-Op» E Cn(a) =def. "P-p» E Cn(a) 

De estas definiciones surge que la negación externa de la permisión 
negativa equivale a la negación interna de la permisión positiva y, en 
forma similar, la negación interna de la permisión negativa es equiva­
lente a la negación externa de la permisión positiva. Por lo tanto, sólo 
hay dos formas de negación de la proposición «p está permitido en a» 
(y no cuatro, como se podría creer), Y también hay dos formas de nega­
ción de la proposición "p es obligatorio en a»: la negación externa signi­
fica que la norma que ordena p no pertenece a a y la negación interna 
significa que una norma que permite -p, es decir, una norma de la forma 
«-Op» (o "p -p») pertenece a a. En otras palabras: la negación externa 
niega la pertenencia de la norma al sistema, mientras que la negación 
interna afecta a la norma misma. 

Si se considera a la norma "p -p» como norma-negación de "Op» 
(y correspondientemente, la norma «Pp» como norma-negación de 
«O -p» ) 9, entonces resulta que la negación interna es una operación que 
lleva de la proposición normativa que afirma la existencia de una norma 
a la proposición normativa que afirma la existencia de su norma-negación. 
Pero la negación interna no cumple -a diferencia de la negación ex­
terna- los requisitos habituales que se espera debe cumplir una nega­
ción. Estos requisitos pueden ser expresados mediante los siguientes cinco 
postulados 10: 

9. Cf. von Wrighr, 1983, 133-134. 
10. Cf. von Wrighr, 1963, 138. 
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1) La negación de una proposición ha de ser una proposición. 
2) Tiene que haber una y sólo una negación de una proposición. 
3) La negación tiene que ser recíproca, esto es, si una proposición 

es negación de otra proposición, entonces la segunda proposición ha de 
ser la negación de la primera. 

4) U na proposición y su negación tienen que ser mutuamente exclu­
yentes, es decir, no pueden ser verdaderas las dos. 

5) Una proposición y su negación tienen que ser conjuntamente 
exhaustivas, es decir, no pueden ser falsas las dos. 

Claramente sólo la negación externa satisface estos cinco postulados; 
la negación interna no satisface los postulados 4) y 5), pues tanto la pro­
posición normativa como su negación interna pueden ser ambas verdade­
ras y también ambas falsas. Son ambas verdaderas cuando el sistema nor­
mativo en cuestión es inconsistente (contradictorio) y son ambas falsas 
cuando el sistema es incompleto. Es justamente la posibilidad de sistemas 
normativos inconsistentes e incompletos la que hace tan importante la dis­
tinción entre operadores deónticos prescriptivos y descriptivos, pues cuando 
a es un sistema consistente y completo las distinciones entre la permisión 
positiva y negativa y entre negación externa e interna se desvanecen. 

Es interesante investigar el papel de la negación en el ámbito del len­
guaje prescriptivo. En los primeros tres postulados es suficiente reem­
plazar el término «proposición» por el de <<norma» para poder aplicarlos 
a las normas, pues las normas satisfacen claramente estos tres postula­
dos: la negación de una norma es también una norma (por ejemplo, «Op» 
y «P - p»); para cada norma sólo hay una norma-negación; una norma 
y su norma-negación son recíprocas (si «Op» es la negación de «P - p», 
«P - p» es la negación de «Op»). 

Los dos últimos postulados, es decir, los postulados 4) y 5) sólo pue­
den valer para las normas en un sentido analógico, pues las normas care­
cen de los valores de verdad. Sin embargo, cabe afirmar que una norma 
como «Pp» «<Op») y su norma-negación «- Pp» «< - Op») son mutua­
mente excluyentes y que las dos normas son conjuntamente exhaustivas, 
pues las fórmulas «Pp v - Pp» y « - (Pp& - Pp)>> son válidas en la lógica 
de normas, tal como ésta ha sido desarrollada en Alchourrón (1969). 
Pero es importante darse cuenta cuál es exactamente su significado. 
Cuando se dice que «Pp» y « - Pp», es decir, una norma permisiva y una 
norma prohibitiva de p, se excluyen mutuamente, esto no significa que 
un sistema normativo no pueda contener estas dos normas. Sólo signi­
fica que estas dos normas son incompatibles (porque la satisfacción de 
la prohibición hace imposible hacer uso de la permisión y viceversa, el 
hacer uso de la permisión de hacer p hace imposible la satisfacción de 
la prohibición). La lógica de normas establece criterios para la consis­
tencia, pero no dice nada respecto de la existencia de las normas 11. 

11. Cf. Alchourrón y Bulygin, 1989, 684-85. 
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Por razones similares, cuando se afirma que las normas «Pp» y «- Pp» 
son conjuntamente exhaustivas, esto no significa que todo sistema norma­
tivo necesariamente contiene una permisión o una prohibición de p. Sólo 
significa que toda regulación de la acción p implica necesariamente la per­
misión o la prohibición de p. Sería un error pretender inferir de allí que toda 
acción esté siempre regulada en todo sistema normativo (y que, por lo tanto, 
todos los sistemas normativos sean completos y no puedan tener lagunas), 
justamente porque la lógica de normas nada puede decir sobre los hechos 
(existencia de normas). En consecuencia, la aceptación de «Ppv-Pp» y 
«-(Pp&-Pp»> como fórmulas válidas de la lógica de normas no implica 
en modo alguno que todos los sistemas normativos sean por razones lógi­
cas completos y consistentes, como lo han afirmado algunos filósofos del 
derecho. Esas fórmulas sólo establecen dos condiciones que las normas han 
de satisfacer: a) una condición mínima que toda formulación normativa ha 
de satisfacer para expresar una norma (cuando una formulación normativa 
no permite ni prohibe la acción p, no expresa ninguna norma respecto de 
p), y b) una condición para la consistencia, es decir, una condición que toda 
norma ha de satisfacer para ser consistente (una norma que permite y a la 
vez prohibe p es contradictoria respecto de p). 

He analizado en algún detalle el problema de la negación en la lógica 
de normas y en la lógica de las proposiciones normativas, porque suele 
haber no poca confusión respecto de este problema inclusive entre los 
lógicos que se ocupan de la lógica deóntica 12. 

V. LA LÓGICA DE LAS PROPOSICIONES NORMATIVAS 

La importancia de la lógica de las proposiciones normativas -que, como 
surge de las consideraciones anteriores, acusa diferencias importantes res­
pecto de la lógica de las normas- reside en que puede ser entendida como 
una lógica de los sistemas normativos en el mismo sentido en que la lógica 
normativa es una lógica de las normas. Las proposiciones normativas son 
afirmaciones acerca de un sistema normativo -en nuestro simbolismo 
acerca de Cn(a)- que dicen que determinadas normas pertenecen o no 
pertenecen a un sistema normativo dado . Una norma pertenece a un sis­
tema normativo cuando o bien ha sido promulgada por alguna autori­
dad competente del sistema o bien puede ser derivada (es consecuencia 
lógica) de otras normas que forman parte del sistema . Estas últimas son 
las normas derivadas . (Para simplificar omito toda referencia a las nor­
mas consuetudinarias .) 

Las proposiciones normativas se formulan en un lenguaje que es un 
metalenguaje con respecto al lenguaje en el cual están formuladas las nor-

12. Por ejemplo, en C. y O. Weinberger, 1979 (pp. 121-122) encontramos una noción de nega­
ción normativa que no satisface ninguno de los cinco postulados: la negación de una norma no es una 
norma, la reiteración de la negación no es admisible y la fórmula (CppV - Pp» no es válida. 
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mas. Por lo tanto, las oraciones de esta lógica son expresiones metal in­
gÜÍsticas acerca de los sistemas normativos. Es indispensable introducir 
símbolos especiales para esas expresiones, porque algunas propiedades 
sumamente importantes de los sistemas normativos, tales como la com­
pletitud y la consistencia no pueden ser expresadas adecuadamente en 
la lógica deóntica tradicional, tanto en su interpretación prescriptiva, 
como en la descriptiva. En este sentido es interesante comparar los teo­
remas de los sistemas clásicos (LD) con los de la lógica de las proposicio­
nes normativas (LPN). 

Las tesis siguientes son características del sistema DL: 

TI. -(Op&O - p) 
T2. Pp<--+ - O - P 

T3. O(p&q)<--+Op&Oq 
T4. P(pvq)<--+PpvPq 
TS. Op--->Pp 
T6. PpvP-p 

(Op---> - O - p) 

Estas tesis reflejan las propiedades lógicas de los operadores norma­
tivos O y P. Si se los compara con los operadores deónticos descriptivos 
Da, P +a y P -a obtenemos el siguiente cuadro: 

1) T1 no es válida en LPN, pues la fórmula « - (Dap&Da -p »> puede 
ser falsa, ya que Cn(a) puede contener tanto «Op», como «O -p» (cuando 
esto ocurre a es inconsistente). 

2) Hay una fórmula análoga a T2, pero sólo para la permisión nega­
tiva: P-ap<--+-Da-p. 

3) El principio de distribución T3 vale en LPN para Da. 
4) El principio de distribución T 4 sólo vale para la permisión nega­

tiva P -a. 
5) TS vale en cambio sólo para la permisión positiva: «Dap--->P +ap» 

es una fórmula válida. Pero la fórmula «Dap--->P -ap» no es válida. 
6) La fórmula análoga a T6 no vale, ni para la permisión positiva, ni 

para la negativa: «P+ap v P+ap» no es válida en LPN porque el sistema 
normativo puede tener lagunas, esto es, puede ser incompleto. De 1) se sigue 
que la fórmula «P-ap V P-a-p» tampoco es válida, porque el sistema 
puede ser inconsistente. Esto ocurre cuando a contiene tanto la prohibi­
ción de p, como la prohibición de -p, es decir, cuando la acción p es, a 
la vez, obligatoria y prohibida en el sistema Cn(a). La contradicción con­
siste en que las dos normas no pueden ser ambas obedecidas por razones 
lógicas. Cuando una acción es a la vez prohibida y permitida positivamente 
el sistema normativo correspondiente también es inconsistente. Cabe mos­
trar que este último caso es un caso especial y no un tipo diferente de incon­
sistencia (aquí las dos normas son inconsistentes porque es lógicamente impo­
sible hacer uso de la permisión sin violar la norma prohibitiva). 

Un estado de cosas p es normativamente determinado en un sistema 
normativo a si, y sólo si, p está o bien permitido positivamente o bien 
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prohibido en a, esto es, cuando la fórmula «P +ap v Oa - p» es verda­
dera. El concepto de determinación normativa puede servir para la carac­
terización de los conceptos de laguna y de completitud de los sistemas 
normativos. Un sistema normativo Cn(a) tiene una laguna o es incom­
pleto cuando un estado de cosas p no está normativamente determinado 
en a. Sólo cuando todos los estados de cosas (de una cierta clase) están 
determinados, decimos que Cn(a) es completo (en relación a esa clase). 

Puesto que las normas (y muy en especial las normas jurídicas) no 
sólo pueden ser creadas, sino también anuladas o derogadas, necesita­
mos un aparato conceptual capaz de dar cuenta del carácter dinámico 
del orden normativo. La lógica de las proposiciones normativas es ade­
cuada para ello. Un orden jurídico puede concebirse como una secuen­
cia temporal de sistemas normativos que cambian o se modifican con el 
transcurso del tiempo J3. 

VI. EL SISTEMA CLÁSICO COMO LÓGICA DE NORMAS 

He tratado de mostrar que no se puede escapar al dilema de ]0rgensen 
recurriendo simplemente a la interpretación descriptiva de las fórmulas 
de la lógica deóntica. La lógica de las proposiciones normativas tiene sus 
propias leyes que son muy diferentes de las del sistema estándar. La lógica 
LPN es una herramienta importante para el análisis lógico de los siste­
mas normativos, pero no sirve sin más como una teoría sustitutiva de 
la lógica de normas, en particular, para la justificación de las inferencias 
normativas. Además ella (al menos en la forma en que ha sido expuesta 
aquí) presupone ya una lógica de normas, pues sus conceptos fueron defi­
nidos en términos de consecuencia lógica y esto implica ya que hay rela­
ciones lógicas entre normas (de lo contrario las normas no tendrían con­
secuencias lógicas). Por lo tanto, si pensamos que las relaciones lógicas 
sólo pueden ser definidas en términos de verdad (tesis 2) y que las nor­
mas carecen de valores veritativos (tesis 3), estamos de nuevo frente al 
mismo dilema: o bien abandonamos la tesis 2 o tenemos que desarrollar 
una teoría sustitutiva para dar cuenta de las relaciones lógicas entre nor­
mas. Este último camino fue elegido en Alchourrón-Bulygin (1981) bajo 
la forma de la concepción expresiva de las normas. Esta teoría tiene su 
punto de partida en la comprobación de que muchos autores, especial­
mente los filósofos del derecho, conciben a las normas no como una cate­
goría semántica, sino como una categoría pragmática: lo específicamente 
normativo estaría dado en el momento pragmático del uso del lenguaje. 
En Alchourrón-Bulygin, 1981, se intentó investigar esta concepción para 
determinar su alcance. En esta conceptión las relaciones lógicas no se 
dan entre las normas (que son actos de ordenar), sino entre sus conteni­
dos, esto es, entre las proposiciones ordenadas. Esto conduce a una lógica 

13. Cf. Alchourrón y Bulygin, 1981. 
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de las proposiciones normativas inobjetable desde el punto de vista de 
la tradición lógica. 

Hoy este intento no me parece totalmente satisfactorio. No tanto por­
que esta lógica «expresiva» de las proposiciones normativas se apoye en 
una lógica de normas encubierta, como fue señalado por Weinberger1\ 
ni tampoco porque la concepción expresiva no haya podido hasta ahora 
ofrecer una teoría satisfactoria de las normas condicionales, sino básica­
mente porque la justificación de una sentencia judicial -que tiene carácter 
normativo- requiere premisas normativas. Esto significa que el juez ha 
de derivar su decisión de las normas mismas y no de meras proposicio­
nes acerca de las normas. Por eso una lógica de normas es imprescindible. 

Qué aspecto ha de tener una genuina lógica de normas ya fue seña­
lado en Alchourrón, 1969. Más tarde, estos análisis fueron usados en 
Alchourrón-Bulygin, 1971, donde fueron construidos dos sistemas lógi­
cos, uno para la lógica de normas y otro para la de las proposiciones 
normativas. Esto puso de manifiesto un hecho interesante, a saber, que 
el sistema estándar de lógica deóntica resultó ser una reconstrucción bási­
camente correcta de las propiedades lógicas de los operadores normati­
vos O y P. Pero es fundamental que esta lógica de normas sea suplemen­
tada con una lógica de las proposiciones normativas. 

Sin embargo, ni en Alchourrón, 1969, ni en Alchourrón-Bulygin, 
1971, se encuentra una fundamentación satisfactoria de la lógica de nor­
mas. Se trabaja allí con conectivas proposicionales y se habla de relacio­
nes lógicas entre normas, sin explicar de qué manera esto es compatible 
con el hecho de que las normas carecen de valores de verdad. Y es signi­
ficativo que en los últimos años justamente von Wright, uno de los fun­
dadores de la lógica deóntica, se ha vuelto escéptico respecto de su posi­
bilidad. 

Si se acepta que las normas carecen de valores de verdad, no cabe 
duda de que una lógica de normas genuina sólo es posible si se amplía 
el concepto de lógica de tal manera que las conectivas proposicionales 
y los conceptos de implicación (consecuencia) lógica y de consistencia 
puedan ser definidos sin hacer referencia a la noción de verdad. Una pro­
puesta en tal sentido fue formulada recientemente en Alchourrón-Martino, 
1990. Estos autores proponen definir la noción de consecuencia lógica 
sobre la base del concepto abstracto de consecuencia (caracterizado por 
Tarski), que se usa como concepto primitivo y que no es ni sintáctico, 
ni semántico. Las conectivas proposicionales se definen luego a la manera 
de Gentzen mediante reglas de introducción y eliminación. Para eludir 
los peligros señalados en Prior, 1960, tales reglas se introducen en el sen­
tido de Belnap, 1962, en un contexto de deducción caracterizado axio­
máticamente. 

Esta propuesta consiste fundamentalmente en justificar la idea, ya 
expresada en von Wright, 1957, de que el campo de la lógica es más 

14. Cf. Weinberger, 1984a. 
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amplio que el de la verdad. Ésta no será objeto de análisis en este tra­
bajo, pero es claro que si tal propuesta resultara viable, se lograría un 
terreno firme para fundamentar una auténtica lógica de normas. 
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LÓGICA E INTELIGENCIA ARTIFICIAL 

Raúl J. Carnota 

... there is very little difference between traditional work in philosophical 
logic and logical research in theoretical Al. . . (R. Thomason). 

1. INTRODUCCiÓN 

En las primeras épocas de la Inteligencia Artificial (lA), dos de sus pio­
neros señalaban: 

... A computer program capable of acting intelligently in the world must have a general 
representation of the world in terms of which its inputs are interpreted. Designing 
such a program requires commitments about what knowledge is and how it is obtai­
ned. Thus, some of the major traditional problems of philosophy arise in artificial 
intelligence ... More specifically we want a computer program that decides what 
ro do by inferring in a forlllal language that a certain strategy will achieve its assig­
ned goal. This requires forlllalizing concepts of causality, ability, and knowledge. 
Such forlllalisllls are also considered in philosophical logic ... (McCarthy y Hayes, 

1969). 

Esta cita es representativa de la fascinación que ejerció la Lógica sobre 
una buena parte de los pioneros de la lA. Sin embargo, durante mucho 
tiempo existió un cierto aislamiento entre los dos campos, hasta que a 
fines de los 70 y comienzos de los 80, el auge de la lA promovió el inte­
rés de científicos de disciplinas como la filosofía, la lógica, la lingüística 
y la psicología, que se introdujeron, con su bagaje previo, en el nuevo 
campo. 

A partir de ese momento, las interconexiones comenzaron a ser más 
ricas: no sólo desde la lA se utilizaban los resultados de la Lógica, sino 
que las necesidades surgidas de la aspiración de inculcar raciocinio «in te-
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ligente» a una máquina y la intención de hacerlo a través de reconstruir 
formalmente los procesos del razonamiento, motivaron a muchas perso­
nas relevantes del área de la lógica. 

Este artículo intenta reflejar algunas de las facetas de estas relacio­
nes, poniendo el énfasis en cómo las dificultades halladas en los intentos 
de uso de la Lógica Clásica, reverdecen discusiones que vienen de anti­
guo en el campo filosófico y en cómo el objetivo de producir el diseño 
de sistemas computacionalmente operables provoca al interior de la Lógica 
un nuevo estímulo para responder a viejas preguntas en una forma que 
debe ahora ser mucho más concreta y no discursiva. 

No pretendemos ignorar que la lA está atravesada por distintas 
corrientes, cada una de ellas con sus puntos de vista notoriamente diver­
gentes acerca de cómo llevar adelante los objetivos del campo, y que 
muchos de sus más prominentes investigadores no son, ni mucho menos, 
partidarios del uso de la Lógica (incluso en sus variantes no clásicas) para 
reconstruir la «inteligencia» en los robots. 

Las propias expresiones de McCarthy-Hayes que citamos antes, 
podrían ser refutadas por otros investigadores y la referencia al «conoci­
miento» que el programa posee como el resultado de un proceso inferen­
cial en un lenguaje formal sería señalada, más como una limitación (en 
el sentido de sus hipótesis acerca de la inteligencia humana), que como 
una aspiración. 

No abordaremos aquí esta polémica (salvo una mínima referencia en 
la sección II) y consideraremos sólo los enfoques «proposicionales» de 
representación y manipulación de la información que han sido los esti­
muladores del desarrollo de nuevos formalismos basados en lógica. Una 
discusión extensa de los fundamentos de la lA y de las distintas corrien­
tes que coexisten en la disciplina puede encontrarse, entre otras fuentes, 
en números especiales de las revistas Dedalus (1987) y Artificial Intelli­
gence, Al (1991). 

Un objetivo esencial en la lA es la formalización del «razonamiento 
de sentido común». En la vida cotidiana extraemos conclusiones en base 
a generalizaciones que tienen excepciones «<1os pájaros vuelan», «si el 
auto tiene combustible y batería, arranca»). Sin embargo estas conclu­
siones, ante la adquisición de nueva información (que el pájaro en cues­
tión es un pingüino, que existe un cable cortado en el motor), pueden 
resultar erróneas. 

La representación directa en Lógica Clásica (LC) de estos razonamien­
tos trae problemas. Si tenemos: 

Yx (Mamífero(x) ---> - Vuela(x)), y 
Yx (Murciélago(x) ---> Vuela(x)), 

se deriva en LC que no pueden existir individuos que sean a la vez mamí­
feros y murciélagos. Esto es debido a que la LC es monótona en el sen­
tido de que, al ser las premisas condición suficiente para la conclusión, 
el agregado de nuevas premisas no puede invalidar nunca la conclusión. 
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Los intentos de formalización del Razonamiento No Monótono 
(RNM) son, quizás, el caso más claro de desarrollos que han afectado 
al propio campo de la lógica, tal vez por sus conexiones con viejos pro­
blemas ya planteados en aplicaciones científicas (suposiciones «ceteris 
paribus» ), deónticas (obligaciones «prima facie» ), del discurso cotidiano 
(condicionales contrafácticos), etc. Su análisis será el tema central del pre­
sente trabajo. 

La búsqueda de inspiración para el diseño de sistemas inteligentes en 
las características de la inteligencia humana es una fuente de otras críti­
cas y de desafíos que afectan a la lógica. La constatación de que los seres 
humanos no siempre somos consistentes ha motivado la aplicación de 
lógicas paraconsistentes. El convencimiento de que la mente humana toma 
decisiones sin analizar todas las alternativas (sorteando los problemas 
de complejidad computacional por medio de supuestos) es también una 
incitación al desarrollo de procedimientos y lenguajes que reconstruyan 
esa performance. Lo mismo puede decirse de las caracterizaciones vagas 
o difusas, los razonamientos por analogía, el aprendizaje como proceso 
inductivo, etc. Si bien es imposible en pocas páginas desarrollar todos 
estos aspectos, vale su mención por tratarse de cuestiones vivas y actua­
les en la investigación conjunta de Lógica e Inteligencia Artificial. Final­
mente, la Lógica es usada, también, como «metalenguaje» de los lengua­
jes de representación, esto es, como herramienta para caracterizar el poder 
inferencial de un lenguaje, tal como ha sido propuesto por A. Newell, 
en Newell (1981), al caracterizar el <<nivel del conocimiento» en los sis­
temas inteligentes. 

En la próxima sección se hace un breve repaso de los objetivos 
de la lA. La sección III presenta, bajo la hipótesis de una representa­
ción «declarativa» del conocimiento, las conexiones «naturales» entre 
la Lógica y la lA. La sección IV reseña los principales cuestionamien­
tos al uso de la Lógica Clásica, en particular a su capacidad para cap­
turar el razonamiento «de sentido común». En la sección V, la cen­
tral del trabajo, se discuten algunas cuestiones lógicas ligadas a la 
formalización del raciocinio no monótono. Finalmente, en la sección 
VI se realizan algunas reflexiones finales sobre el rol de la Lógica en 
la lA. 

11. INTELIGENCIA ARTIFICIAL 

... Most practitioners would agree on two main goals in Al. The primary 
goal is to build an intelligent machine. The second goal is ro find out about 
the nature of intelligence ... (R. Schank). 

Desde tiempos inmemoriales los seres humanos han imaginado artefactos 
animados -ídolos, imprevisibles dioses, obedientes esclavos, robots-, 
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que compartieran la «esencia humana». Qué componía esa «esencia" es 
algo que fue cambiando con el tiempo, pero con un elemento invariante: 
ser humano es pensar, razonar, asociar, crear. 

Mitos, historias, argumentos filosóficos o búsquedas científicas -co­
mo elixir de la vida- reflejan a través de los siglos esa obsesión. 

Pero recién con la existencia de las computadoras, los primeros ins­
trumentos aptos para procesar símbolos en forma totalmente general, 
es que esta búsqueda mítica pasa a constituirse en una zona de investiga­
ción formal, con posibilidad de definir rigurosamente aspectos de la acti­
vidad inteligente, testearlos y lograr la realimentación rápida que per­
mita el avance de la experimentación. Y hemos dicho aspectos, porque 
la definición de inteligencia es una bruma que envuelve a cualquiera que 
desee comenzar a caracterizar el área. 

Desde su fundación formal en la Conferencia de Darmouth en 1956, 
la investigación en lA se ha realizado siguiendo dos enfoques conectados 
y enfrentados mutuamente. El primero tiene por meta principal la cons­
trucción de sistemas orientados a la resolución de problemas, sin necesa­
riamente imitar la forma en que la mente humana realiza esta tarea aun­
que sí buscando alcanzar su performance. El segundo intenta imitar los 
modos de funcionamiento de la inteligencia humana por medio de un 
programa de computación, buscando arrojar luz sobre el proceso cogni­
tivo humano 

En un caso se busca producir conductas que podrían ser producidas 
a través del uso de la inteligencia, independientemente de los medios 
empleados en obtener el resultado. Si la conducta obtenida tiene un grado 
considerable de inteligencia, la simulación es exitosa. 

En el otro se pretende construir modelos. Un modelo debe producir 
también una salida apropiada, pero debe hacerlo mediante procesos y 
representaciones de información que sean espejo de los procesos inteli­
gentes que se producen en la mente humana. 

En esta dirección la corriente que iniciaron en los 40 McCulloch y 
Pitts y que se inspiraba en los paralelos entre la naturaleza binaria de 
las neuronas y los componentes electrónicos de las computadoras, luego 
de casi dos décadas de marginalidad, revive en la investigación actual 
en redes neuronales. Sin embargo, más que por aquella analogía, mucho 
del impulso actual de esta corriente se explica por su aparente capacidad 
para encarar eficientemente problemas que el enfoque simbólico no ha 
resuelto. 

l. El paradigma simbólico 

A physical symbol system has the necessary and sufficient means for general 
intelligent action. By necessary, we mean that any system that exhibits general 
intelligence will prove upon analysis ro be a physical symbol system. By suf­
ficient we mean that any physical sym bol system of sufficient size can be 
organized further ro exhibit general intelligence (Newell y Simon, 1976). 
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En la primera corriente, Newell y Simon suponen que el cerebro 
humano y la computadora, siendo totalmente distintos en estructura y 
en mecanismos, tienen una descripción funcional común en cierto nivel 
de abstracción. En ese nivel ambos pueden ser vistos como ejemplos de 
un «aparato» que genera conductas inteligentes manipulando símbolos 
por medio de reglas formales. 

En la cita previa, physical significa que dichos sistemas obedecen las 
leyes de la física -en particular son construcciones ingenieriles concre­
tas-. Por symbol system se entiende una colección de patrones y proce­
sos. Los procesos son capaces de producir, destruir y modificar los sím­
bolos. Los patrones tienen la capacidad de designar objetos, procesos u 
otros patrones. Cuando un patrón designa a un proceso, puede ser «inter­
pretado», lo que implica llevar adelante el susodicho proceso. 

Inteligencia es, en este punto de vista, la habilidad para procesar sím­
bolos. 

Dentro del paradigma simbólico, se pueden distinguir numerosas pos­
turas diferentes sobre la naturaleza de los procesos mentales y las subse­
cuentes actividades de los científicos de la lA. En un extremo se encuen­
tran los llamados «logicistas», cuyas posiciones están desarrolladas en 
Nilsson (1991), que sostienen la posición de que la «inteligencia» está 
basada en una representación declarativa de las creencias acerca del mundo 
y que la actividad cognitiva está basada esencialmente en procesos infe­
renciales. En este enfoque, la cuestión determinante para un diseñador de 
una Base de Conocimientos sería la conceptualización del «mundo» que 
quiere reflejar. Esta conceptualización se volcaría luego en esta Base bajo 
la forma de un conjunto de sentencias de algún lenguaje proposicional. 
La representación así alcanzada aspira a ser lo más independiente posible 
del modo en que puede llegar a ser usada la información. 

Alrededor de la aceptación o rechazo de algunas de estas hipótesis 
giran otras corrientes de investigadores. Polemizando con Nilsson, en 
Birnbaum (1991) se resalta la imposibilidad de una caracterización del 
conocimiento totalmente independiente del uso y se propone, como alter­
nativa a la semántica de la teoría de modelos, una «semántica funcio­
na]", basada en la idea de que la representación toma sentido en función 
de su rol causal en los procesos mentales, y, en última instancia, en la 
percepción y en la acción. El concepto de número primo, ejemplifica, 
no significa lo mismo para mí (Birnbaum), que para un matemático espe­
cializado en teoría de números. Y su sentido cambiará también para mí 
si comienzo a estudiar alguna de tales teorías. Con esta aproximación, 
no se puede lograr una especificación de lo que un organismo conoce 
independientemente de lo que hace. 

En el resto de este trabajo vamos a adoptar un enfoque de tipo «sim­
bolista», por ser el marco en el cual se producen las conexiones más ricas 
entre la Lógica y la lA. 

En particular, al hablar de estructuras de Representación del Cono­
cimiento (RC) en un sistema, nos limitaremos a las «proposicionales», 
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es decir, estructuras de datos interpretables como fórmulas lógicas de 
algún tipo. 

De acuerdo con Levesque (1986a), este tipo de estructuras deben 
ser interpretables proposicionalmente, es decir, como expresiones en un 
lenguaje con una teoría de verdad. Debe ser posible señalar una de 
dichas estructuras y decir cómo debe ser el mundo para que ella sea 
verdadera. 

2. La Inteligencia Artificial como interdisciplina 

En todo caso, más allá de las facciones, la lA se constituye creciente­
mente en una zona de convergencia de las más diversas disciplinas: la 
lógica, la psicología, la filosofía, la economía, la matemática y, también, 
las ciencias de la computación. Un resultado valedero en lA lo es en la 
medida en que aporte en alguno de los aspectos que requerimos para con­
siderar un agente como inteligente: capacidad de comunicación, conoci­
miento de sí mismo (conocimiento de su conocimiento), conocimiento 
del mundo, acumulación de experiencia para reusarla en la interacción 
con él, intencionalidad en sus objetivos (capacidad de construir y adap­
tar planes según las circunstancias), creatividad (al menos en algún sen­
tido débil, como la adaptación a cambios en el ambiente, en suma, apren­
dizaje). Tópicos que, sin duda, están mejor tratados en libros de psicología 
o filosofía que en los textos de lA. En consecuencia, si ese resultado existe, 
deberá ser reconocido «fuera» de la lA, como un aporte. La caracterís­
tica específica de estos aportes de la lA es la mecanización, particular­
mente cuando las formas standard de mecanización han demostrado ser 
intratables (en el sentido de la complejidad computacional). 

Todos los campos del conocimiento son, en alguna medida, lA. 
Todos tratan acerca de la naturaleza del hombre. La importancia de la 
lA está dada en la medida en que sus aportes tecnológicos sean significa­
tivos. Las preguntas que intentamos responder es lo único que realmente 
importa. 

IlI. LA CONEXIÓN CON LA LÓGICA 

... Iogic is at the heart of reasoning, and reasoning is at the heart of intelli­
gence (W. J. Rapaport). 

Como ya vimos, en el contexto del paradigma simbólico de la lA, un 
sistema «inteligente» es aquel con habilidad para procesar símbolos 
mediante reglas formales. 

En un sistema que se inspire en las funciones inteligentes de los huma­
nos, podemos distinguir varios tipos de procesamientos de símbolos. Las 
funciones perceptuales, que detectan los distintos datos del mundo; los 
procesos de memorización, que almacenan y organizan la información 
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y luego son capaces de recuperarla de acuerdo a ciertos objetivos; los 
que podríamos llamar procesos deliberativos, el núcleo del «razona­
miento», en los que se construyen hipótesis, se analizan alternativas, 
se deciden caminos, etc.; y las funciones efectoras que actúan sobre 
el mundo de acuerdo a las acciones decididas en los procesos delibe­
rativos. 

Para construir un sistema computacional que realice estas activida­
des, se precisan definir ciertos procedimientos destinados a cumplir esas 
funciones. En particular nos interesan los procedimientos destinados a 
elaborar la información. 

Aceptemos que las unidades mínimas en que se recoge y almacena 
la información son los enunciados de algún lenguaje formal. El asunto 
no es trivial, ya que según como sea el instrumento que usemos para 
receptar y almacenar la información, será el modo en que podamos ela­
borarla. 

Supongamos que Al ... An son distintas oraciones del lenguaje ele­
gido, almacenadas mediante algún procedimiento. Ese conjunto finito 
de oraciones representará cierta información significativa que interesa 
retener. 

Convengamos que «elaborar inteligentemente» esa información sig­
nifica obtener nueva información a partir de la misma. Esta nueva infor­
mación será representada por enunciados, en principio diferentes de los 
de partida y que, de alguna manera, están vinculados a éstos. Estos enun­
ciados amplían la información que el sistema posee. 

Si AI, ... ,An es la información de partida, llamaremos B a la infor­
mación que se alcanza luego de un número finito de pasos. 

Esta imagen secuenciada de pasos en los que la información poseída 
se va enriqueciendo, tiene una cierta connotación psicológica y no es 
extraño que haya sido tomada como una metáfora del funcionamiento 
del raciocinio humano. 

¿De qué manera, bajo qué condiciones y qué cosas se agregan en cada 
paso a la Base de Conocimientos existente? Bajo nuestras hipótesis de 
partida, esto tiene que estar bien especificado por medio de «reglas for­
males», para que la máquina sepa qué hacer frente a cada situación o 
estado. Cada información agregada se vincula a algunas de las informa­
ciones existentes (eventualmente a todas). Por ejemplo, cierto Bl se agre­
gará a resultas de la presencia de Al y A2• Llamemos al procedimiento 
que permitió este paso Regla 1 (regla de transformación 1). Así, cada 
uno de los pasos estarán justificados por algún conjunto R¡, R2, ••• , Rm 
de reglas de transformación, cuyo sentido es incorporar nuevas informa­
ciones a partir de las originales. 

El proceso así descrito no es otra cosa que lo que la lógica siempre 
tuvo en su historia como su objetivo: cómo (bajo qué condiciones) justi­
ficar ciertos enunciados, apoyándose en otros enunciados. Siguiendo la 
tradición escolástica, dadas las oraciones: 
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Sócrates es un hombre y 
Todos los hombres son mortales, 

cómo justificar la oración 

Sócrates es mortal (B) 

Si tenemos los enunciados Al' ... ,An y se ha podido construir un pro­
ceso de transformaciones que terminan en B, anotamos: 

(".) Al, ... ,An f-- B, 
que se lee «B es conclusión sintáctica de las premisas A¡, ... ,An». 

Lo que (".) representa es abreviatura de la siguiente afirmación exis­
tencial: existe una secuencia de enunciados del lenguaje utilizado, tal que 
el último de la secuencia es B, y tal que los enunciados de la secuencia, 
o bien son los A;, o bien se van construyendo, a partir de los anterio­
res, en base a reglas de transformación (reglas de inferencia en el len­
guaje de la lógica). 

La clave de lo enunciado hasta aquí, parece estar en las reglas de trans­
formación. 

Si lo único que le pedimos a una regla es que transforme unos enun­
ciados en otros, una regla podría, por ejemplo, convertir enunciados que 
comienzan en vocal en otros que terminan con consonante. 

Ver a las reglas lógicas como reglas de transformación es correcto. 
Pero no cualquier regla de transformación es considerada una regla lógica. 

¿Cuál es el «control de calidad» que tenemos que reclamar de las reglas 
de transformación? 

La respuesta de la filosofía de la lógica contemporánea está en el con­
cepto de consecuencia lógica. Para evitar meras transformaciones sintác­
ticas que puedan llevar a verdaderos absurdos, las transformaciones deben 
tener cierta calidad que, según Tarski (1956), puede formularse así: 

(1) Si A" ... ,An f-- B entonces A¡, ... ,An 1= B y se lee «para que B 
sea una conclusión de A; "aceptada", debe ocurrir que B sea lógicamente 
implicado por los enunciados A;». 

La noción de <<lógicamente implicado» se define así: B está lógica­
mente implicado por los A; si, en cualquier contingencia posible en la 
que los A; sean verdaderos, B no tenga más remedio que ser verdadero. 
O sea que la verdad se hereda a todo lo que se va obteniendo como resul­
tado de la aplicación de las reglas de transformación. O también que B 
tenga justificada su verdad toda vez que se tenga justificada la verdad 
de los A;. Esta relación de justificación la tendrá cada enunciado de la 
secuencia respecto a los enunciados de partida y es una condición adi­
cional en la construcción de la secuencia. 

La idea central de la lógica vira hacia el estudio de estas «condicio­
nes de calidad» de las inferencias. Una inferencia será «buena» si cumple 
con la condición de (1). Se está pidiendo que la conclusión tenga garan­
tizada su verdad a partir de la verdad de las premisas. 
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La cuestión conversa es pedir que, en el caso de que la verdad de B 
esté garantizada por la verdad de los A, se pueda construir una secuen­
cia, mediante reglas de transformación, que empiece por los A; y ter­
mine con B: 

(2) Si A" ... ,An � B entonces A, , ... ,An f- B. 

Cómo encontrar, dado B, y un conjunto de reglas de transforma­
ción, una secuencia de pasos que partiendo de nuestras «premisas», lle­
gue a B, es el problema de la decisión para la noción de consecuencia 
sintáctica. 

De lo expuesto hasta aquí se podría concluir que existe una casi total 
superposición entre las actividades de la lógica y los procedimientos de 
elaboración de la información en un sistema de lA. 

Aquí surge, sin embargo, una pregunta: 
¿ Son las restriccione.s expresadas en (1) y (2) adecuadas respecto a 

los objetivos de la lA? Este es el tema que discutiremos en la próxima 
sección. 

IV. LOS CUESTIONAMIENTOS A LA LÓGICA DEDUCTIVA 

... Iogical reasoning is more appropiate for displaying or confirming the results 
of thinking than for thinking itself ... (M. Minsky). 

¿Cómo impartir nociones de sentido común a un robot? 
¿Cómo diseñar un robot con una capacidad de razonamiento sufi­

cientemente poderosa y útil como para que, una vez provisto de un sub­
conjunto de ese «sentido común», sea capaz de generar suficiente del resto 
como para adaptarse a su entorno y operar inteligentemente sobre él? 

¿Será la Lógica el marco adecuado para afrontar este desafío? 
Partiendo de su referente básico, la naturaleza del raciocinio humano, 

muchos investigadores de la lA encuentran a la lógica como demasiado 
formal y limitada, y perciben que los procesos de razonamiento abarcan 
un espectro mucho más amplio que el análisis lógico deductivo. 

Curiosamente, estos cuestionamientos no son nuevos: 
Stuart Mili (citado en Cohen y Nagel, 1957), afirmaba que era incon­

testable que, en el ejemplo de Sócrates, (B) está presupuesta en (A 1 ) Y que 
-peor aún- no podemos asegurar la mortalidad de todos los hombres, 
a menos que estemos convencidos de la de cada hombre en particular. 

Por su parte, en Cohen y Nagel (1957), se formula así la llamada 
«paradoja de la inferencia»: Si en una inferencia la conclusión no está 
contenida en la premisa, la inferencia no puede ser válida; y si la conclu­
sión no es diferente de las premisas, la inferencia es inútil; pero la con­
clusión no puede estar contenida en las premisas y al mismo tiempo poseer 
novedad; en consecuencia las inferencias no pueden ser a la vez válidas 
y útiles. 
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M. Minsky, exponente de los que consideran inadecuada a la pos­
tura logicista (entendida como la reducción del proceso de construcción 
de un sistema inteligente a la selección de un conjunto de sentencias en 
un lenguaje lógico, sobre el que opera un demostrador de teoremas como 
emulador de los mecanismos de razonamiento), sintetiza, en Minsky 
(1975), sus cuestionamientos. 

Los principales problemas que señala son los siguientes: 
1. El problema de la relevancia. La información contenida en una 

Base de Conocimientos (BC) precisa de meta-información que indique 
en qué circunstancias y de qué manera va a ser usada. Asimismo un sis­
tema inteligente debería tener claro cuándo es pertinente o no realizar 
ciertas deducciones. 

2. El problema de la monotonía, que ya se ilustró en la Introducción. 
3. La separación entre axiomas y deducción (que equivale a inde­

pendizar el conocimiento de su forma de uso), dificulta la clasificación 
de las proposiciones y el control del proceso deductivo. Si, por ejemplo, 
se desea axiomatizar la relación de proximidad, resulta natural que sea 
transitiva: 

(A prox B) /\ (B prox C) ---> (A prox C). 

Sin embargo, una aplicación irrestricta de esta regla, puede conducir 
a que todo esté próximo a todo. En un sistema lógico «puro» no es fácil 
hacer un nuevo axioma que «prohíba» aplicar la transitividad más de 
cierto número de veces. 

4. La explosión combinatoria. Los sistemas basados en lógica no esca­
pan al problema de la explosión combinatoria, cuando se encaran domi­
nios complejos. 

5. La exigencia de consistencia. En un sistema basado en la LC, no 
es posible representar una sentencia y su negación, sin que el proceso 
inferencial «trivialice» las conclusiones (permita derivar cualquier sen­
tencia). Esta propiedad, lejos de ser una virtud, es, para M. Minsky, ni 
necesaria ni deseable, ya que hace que los sistemas así constreñidos resul­
ten muy débiles en relación al poder de raciocinio de los agentes huma­
nos inteligentes. Nadie es completamente consistente. Lo que es impor­
tante es cómo el agente maneja paradojas o conflictos, cómo aprende 
de los errores, cómo intenta sortear las situaciones de las que sospecha 
que puedan resultar inconsistentes. 

Minsky reconoce la necesidad del uso de mecanismos deductivos, pero 
los circunscribe: 

.. .T do not mean to suggest that «thinking» can be proceeded very far without some­
thing Iike «reasoning». We certainly need (and use) something like syllogistic deduc­
tion; but 1 expect mechanisms for doing such things to emerge in any case from 
processes for «matching» and «instantiation» required for other functions. Tradi­
tional formal logic is a technical tool for discussing either everything that can be 
deduced from sorne data or whether a certain consequence can be so deduced; it 
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cannot discuss at all what ought to be deduced under ordinary circunstances. Like 
the abstract theory of Sintax, formal Logic without a powerful procedural seman­
tics cannot deal with meaningful situations ... (Minsky, 1975). 

Como se ve, Minsky señala las dificultades de la LC, tanto para la 
representación de propiedades «típicas», como para decidir qué debería 
inferirse en condiciones «típicas» o «normales». 

1. La relevancia 

... The logical view of thinking has considerable attraction, since logic offers 
valuable insight into the relation between rational held beliefs. Unfortuna­
tely, it does not cover all such relations. Its more striking omission is any 
consideration of the purpose (or purposes) of reasoning. That is, the logical 
view of thinking ignores questions of whether one should or should not draw 
sorne inference, and whether one inference is better or more appropiate than 
another. .. (J. Doyle). 

La lógica propone inferencias seguras, pero no siempre las útiles para 
determinados propósitos. Una inferencia apropiada en un dominio, 
puede ser irrelevante en otro. Similares reclamos se realizan desde el 
campo filosófico (teoría de la argumentación). En ambos casos se pos­
tula la necesidad de una «racionalidad útih>, ya que el mero razonar 
correcto -que es lo que garantizan los procesos deductivos- puede 
ser «irraciona],> considerando los propósitos del razonador y el domi­
nio en que está operando. 

Un concepto de «racionalidad útil», presentado en Doyle (1989), pos­
tula que cada paso de razonamiento sea dado en el sentido de maximizar 
la función de valor que el agente establece en base a sus expectativas y 
preferencias. En ese caso, antes que formular la pregunta acerca de si 
las inferencias son «seguras», importa preguntarse si los pasos de razo­
namiento dados y las conclusiones alcanzadas sirven eficientemente a los 
propósitos del razonador. 

En otras palabras, si el razonar del robot tiene como paradigma el 
razonar humano y quiere, al menos, imitar su performance no le servirá 
cualquier inferencia, por más que sea lógicamente válida, si no es rele­
vante para sus objetivos. 

Contrario sensu, hay situaciones en las que el sistema debe actuar aun­
que no posea una descripción completa del estado de cosas existente o 
aunque, en caso de poseerla, no resulte tolerable en el tiempo el análisis 
de todos los factores en juego. En este caso actuará a partir de extraer 
conclusiones no seguras (en el sentido del «control de calidad» exigido 
por la lógica standard), corriendo el riesgo de que, ante la llegada de nueva 
información, las decisiones adoptadas hayan resultado erróneas. Esta con­
tracara de la racionalidad útil nos lleva a la cuestión de las extensiones 
no monótonas de las inferencias deductivas. 
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2. La monotonía 

... A key property of intelligence -whether exhibited by man or by machine­
is f1exibility. This f1exibility is intimetely connected with the defeasible nature 
of commonsense inference(s) ... ; we are all capable of drawing conclusions, 
acting on them, and then retracting them, if necessary in the face of new 
evidence. Jf our computer programs are ro act intelligently, they will need 
ro be similarly flexible . . . (M. Ginsber). 

Supongamos que un amigo nos menciona un pájaro, llamado Pi-pio, que 
tiene en su casa. Seguramente lo imaginaremos en una jaula ya que, si 
no tenemos más información sobre el mismo, es razonable suponer que 
vuela. 

¿Cómo representar esta asociación heurística? 
U n camino en Lógica de primer orden es la formulación «Todos los 

pájaros vuelan»: 

Vx Pájaro(x) --> Vuela(x) (1). 

¿Qué ocurre en ese caso si Pi-pio es un pingüino? 
Podemos representar nuestro conocimiento sobre los pmgüinos 

mediante otro condicional standard: 

Vx Pingüino(x) --> Vuela(x) (2). 

El problema es que la representación conjunta de (1) y (2) determina 
que no pueden existir individuos que sean a la vez pájaro y pingüino. 

En la LC, si T es un conjunto de sentencias y P es una sentencia, 

si T 1- P entonces T U N 1- P, 

para cualquier conjunto N de sentencias. Si consideramos que: 

Pájaro(Pi-pio) (3), 
y T es (1), (2) y (3) resulta que T 1- Vuela(Pi-pio). 

Por la monotonía de la consecuencia clásica, si conocemos el nuevo 
hecho: 

Pingüino(Pi-Pio) (4), 

tendremos que T U [Pingüino(Pi-pio)] 1- Vuela(Pi-pio), y, a la vez, de 
(2) y (4) se deduce -, Vuela(Pi-pío). 

Sin embargo, una persona normal, aun aceptando las «reglas» antes 
señaladas, resolvería la situación aplicando un «principio de predomino 
de la información más específica», que jerarquiza (2) sobre (1), y descar­
taría esta última sentencia al opinar sobre Pi-pio, sabiendo que es pin­
güino. 

En esta deducción, hemos aplicado un esquema parecido al ejemplo 
de Sócrates. ¿Qué es lo que falla? Parecería que no hay dudas sobre que 
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«Todos los hombres son mortales», mientras que al representar nuestra 
creencia en la forma «Todos los pájaros vue!an» estamos «forzando» una 
cuantificación universal, que no es el adecuado reflejo de la expresión 
del lenguaje corriente «Los pájaros vue!an» (o al menos no lo es en nues­
tro mundo real, aunque tal vez lo sea en un mundo hipotético alterna­
tivo, sin pájaros excepcionales). 

Una solución sería representar así nuestro criterio para decidir sobre 
la capacidad de vuelo de los pájaros: 

Vx Pájaro(x) & --, Pingüino(x) --+ Vuela(x) (5). 

El problema es si Pi-pio es avestruz, o tiene e! ala rota o las patas 
amarradas a una piedra, o ... 

La regla tiene excepciones y no sabemos enumerarlas todas. Sin 
embargo la seguimos usando a propósito de cualquier pájaro que nos 
es mencionado, mientras no existan evidencias en contrario (como que 
es pingüino, que tiene alas rotas, que tiene las patas atadas, etc.). 

A estos casos se refería Minsky al indicar la incapacidad de la LC 
para tratar las propiedades «típicas» de los individuos de un dominio. 

Otro ejemplo, inspirado en J. McCarthy, es e! siguiente. Suponga­
mos que entre nuestras creencias se encuentra que: «Si el tanque de com­
bustible no está vacío y la batería está cargada, e! auto va a arrancaf». 
Pero este condicional no va a ser verdad en un mundo (que podría ser 
e! real), en e! que e! carburador está roto, o en el cual estén cortados 
los cables de la batería, o en e! cual el tanque, si bien no está vacío, está 
lleno de agua, o «qualifications», que sería necesario verificar para que 
se pueda deducir que e! auto arranca. Sin embargo, planeamos e! día de 
trabajo sobre la base de verificar sólo las premisas de la regla simple ante­
rior. Si luego se adiciona la información de que e! tanque estaba lleno 
de agua, la conclusión nueva será que e! auto no arranca. La conclusión 
previa es «derrotada» siendo que sus premisas siguen siendo verdaderas. 

El llamado Nixon Diamond, nos enfrenta a una situación más com­
plicada. Si entre nuestras creencias tenemos que «Normalmente los cuá­
queros son pacifistas» y que «Normalmente los republicanos son be!icis­
tas», ¿qué podremos afirmar de Nixon, de! que sabemos que es cuáquero 
y republicano? En una formalización «clásica» de este problema, esas dos 
características no pueden ser verdaderas a la vez en ningún individuo. 
Si en e! caso de los pájaros existía una heurística llamada «principio de 
predominancias de lo específico», y en el caso del auto otra heurística 
sobre la relevancia de los distintos factores que condicionan el arranque 
normal, en este caso, no existen principios intuitivos generales que guíen 
la respuesta de un agente inteligente. Cada uno podrá preferir una u otra 
respuesta, según la fortaleza que le asigne a cada creencia, o permanecer 
agnóstico. 

Problemas como los que hemos presentado, han aparecido, desde 
antes de! nacimiento de la lA, en otros campos, notoriamente en el Dere­
cho, la Ética y la Metodología de la Ciencia. 
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Consideremos el cuerpo legal total en un momento y país dado. 
Las premisas para que el juez resuelva el pago de un siniestro por parte 
de una compañía de seguros están todas estipuladas de un modo u 
otro. Sin embargo el juez resuelve el caso verificando algunas de esas 
premisas y dejando a la parte demandada el trabajo de presentar prue­
bas para las otras (por ejemplo una condición de excepcionalidad que 
invalida el pago). Mientras la compañía no presente pruebas, el juez 
supone «por defecto» que dichas condiciones de excepcionalidad no 
existieron, y, si se verifican las premisas principales, concluye que debe 
pagarse. 

En este caso, si bien son conocidas todas las posibles excepciones, 
su verificación completa resulta muy «costosa». Las conclusiones que 
surgen son derrota bIes , en el sentido de que la presentación de prue­
bas que contraríen la «asignación por defecto», significará su retrac­
tación. 

En Ética, la discusión sobre el carácter prima jacie de los principios 
morales ya trajo antaño conflictos respecto a su formalización. Conside­
remos el principio moral: «Las promesas deben ser respetadas». Una for­
malización universal como «Toda promesa debe ser respetada», pierde 
de vista el carácter prima jacie del principio, donde las posibles excep­
ciones serán reflejos de conflictos morales (una ruptura de una promesa 
que sirva para aliviar un sufrimiento). El filósofo W. D. Ross (1927), 
refiriéndose a este tipo de casos afirma: 

... Any acr rhar we do contains various elements in virrue of which ir falls under 
various caregories. In virtue of being rhe breaking of a promise, for insrance, rends 
ro be wrong; in virtue of being an insrance of relieving disrress ir rends ro be right. .. 

Sin embargo, para Ross, la ruptura de la promesa, aun justificada, 
no elimina el reconocimiento de la obligación «prima facie» de mantener 
las promesas. 

¿Cómo decidir sobre la conveniencia o no de aplicar en cada caso 
los «principios prima jacie» o sus excepciones, de forma de sortear el con­
flicto? 

En el campo del Método Científico, en Black, 1935, se afirma que, 
en general, es imposible explorar cada una de las posibilidades que 
podrían ser relevantes para la solución de un problema. El único proce­
dimiento factible es tomar la verdad de cierto número de supuestos como 
dada, y concentrar la atención en el testeo de las hipótesis principales. 
La decisión acerca de cuáles proposiciones serán consideradas hipótesis 
principales y cuáles subsidiarias, no puede especificarse en una regla y 
debe remitirse a un juicio sensato. 

La alternativa a una larga y completa, pero muy costosa, si no impo­
sible, descripción de las precondiciones de una regla es basar las conclu­
siones sólo en información parcial, y rezar para que los factores que han 
sido ignorados no aparezcan. En ese caso habrá que estar preparados 
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para que cada tanto se produzcan errores en las conclusiones (el costo 
de relajar el «control de calidad de las inferencias»). Este problema de 
equilibrar el monto de conocimiento requerido para hacer una inferen­
cia por un lado, con la exactitud de la inferencia por el otro, es el lla­
mado en lA qualification problem (el problema desaparece, por supuesto, 
si se suponen mundos ideales, de modo de operar como si las excepcio­
nes no existieran, pero el sistema así construido no será muy util). 

Tomar los atajos e ignorar mucha de la información que es poten­
cialmente relevante, pagando el precio de tener que retraer algunas con­
clusiones frente a evidencia contradictoria, es el camino que recorren los 
procedimientos para el razonamiento no monótono. 

3. Lógica y complejidad 

Supongamos que se desea interrogar al sistema, cuyas informaciones alma­
cenadas son Al , ... ,An, sobre si «cree» en B. Si entendemos esto como 
la pregunta acerca de si B se da en los estados del mundo concebidos 
por el agente en que se dan Al,'" ,An, la lógica standard nos propor­
ciona un método de prueba puramente sintáctico. La aplicación de este 
método equivale a hallar alguna secuencia de fórmulas del lenguaje, que 
termine en B y que esté compuesta sólo por Al,'" ,An y los axiomas de 
la lógica subyacente o por fórmulas derivadas de las anteriores de la 
secuencia por medio de las reglas de inferencia RI , ... ,Ron' 

El primer inconveniente es que, si el lenguaje es el del cálculo de predi­
cados de primer orden, esto no es posible en general, ya que dicho cálculo 
no es decidible. Existen subconjuntos decidibles de dicho lenguaje, pero 
incluso en esos casos, considerando que el lenguaje posea negación y dis­
yunción, el problema de la decisión (decidir si una fórmula es o no teo­
rema) resulta computacionalmente intratable. Por lo tanto existirán situa­
ciones en que la respuesta no aparecerá en tiempos razonables, y no se 
puede prever cuándo estas situaciones van a ocurrir. Esto es preocupante 
si el robot tiene que actuar en tiempo real (por ejemplo un robot industrial). 

La aceleración de los tiempos de proceso por mejoras tecnológicas 
no resuelve el problema, precisamente porque el peor caso no tiene una 
cota de tiempo fija. Imaginemos disyunciones del siguiente tipo: 

Hecho 1: Adolfo es profesor de lA o de Programación. 
Hecho 2: Jorge es profesor de Lingüística o de Sistemas Operativos. 

Es claro que tenemos cuatro posibilidades a considerar. Si los hechos 
aumentan, los casos crecen exponencialmente. Si agregamos procesado­
res para su cómputo, los tiempos decrecen linealmente. Esto conduce a 
la siguiente tabla, extraída de Levesque (1986b), donde TIEMPO 1 repre­
senta una velocidad de análisis de un millón de posibilidades por segundo, 
el TIEMPO 2, un millón de millones de posibilidades por segundo, y 
el TIEMPO 3, un millón de máquinas en paralelo, cada una de ellas ana­
lizando un millón de millones de casos por segundo: 
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Hechos Casos Tiempo 1 Tiempo 2 Tiempo 3 

2 

2 4 
5 32 

10 1.024 

25 30 millones 30 seg. 

50 10 '"'" 15 30 años 20 mino 0,001 seg. 

100 10 ,:.,. 30 10 ,:.,:. 16 años 30.000 milI. años 30.000 años 

Si estamos representando hechos simples por medio de expresiones 
atómicas o sus negaciones, las disyunciones del tipo ejemplificado arriba 
van a ser usadas cuando el conocimiento del dominio es incompleto. 

Del mismo modo, la negación de un hecho puede sugerir una dis­
yunción de muchos otros, si el dominio es rico en individuos: 

-, Profesor(Raúl), que nos dice que Raúl no es profesor, pero no 
nos dice qué es Raúl ni quiénes de los otros individuos es profesor, 

3x.Profesor(x) 1\ Dicta(x,IA) que dice que existe al menos un profe­
sor de Inteligencia Artificial, sugiriendo una disyunción sobre los indivi­
duos que podrían serlo. 

La pobreza de conocimientos acerca del dominio requiere, para ser 
representada, una mayor riqueza del lenguaje, independientemente de si 
se utiliza o no un formalismo basado en Le. En este sentido, la Lógica 
de primer orden permite un alto grado de expresión de estas «indetermi­
naciones» del conocimiento. El precio a pagar consiste, en cualquier caso, 
en mayor complejidad computacional. 

Empobrecer el lenguaje, al menos si la expresión del problema lo 
admite, es una forma de restringir la complejidad. Un ejemplo son los 
lenguajes basados en cláusulas de Horn, en que se evitan la disyunción, 
la negación y la cuantificación existencial. Esto evita reescrituras com­
plejas de hechos simples, como las derivadas de equivalencias lógicas 
(P == (p&q) V (p&-' q)). 

Otra alternativa consiste en el «forzar el completamiento» de la infor­
mación de la BC, mediante ciertos mecanismos ad-hoc que se supone que 
los agentes inteligentes utilizan para actuar frente a incertidumbre (valo­
res por defecto, reglas heurísticas, supuestos de mundo cerrado, etc.). 
Esto permite llegar a conclusiones que no están implicadas deductiva­
mente por aquello que la BC conoce y que luego pueden ser derrotadas 
al adquirirse nueva información. 

Dentro de estos mecanismos pueden encuadrarse, ahora desde otra 
motivación, las caracterizaciones prototípicas de los objetos del domi­
nio: «Si es pájaro, entonces vuela» (condiciones necesarias prototípicas 
del ser pájaro) o «Si vuela y canta, entonces es pájaro» (condiciones sufi­
cientes prototípicas). 

Consideremos el caso de un robot que, de acuerdo con sus objetivos, 
decide trasladarse en una habitación desde un punto A hasta otro punto B. 
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Las modificaciones que esta acción produzca en su BC, le permitirán saber 
que, luego de dicho traslado, su posición en el escenario en que está ope­
rando será B. Pero también necesitará saber qué ocurre con el escenario 
en su totalidad luego de ese movimiento. En verdad, nada asegura que 
otros factores presentes en la escena no hayan cambiado mientras el robot 
ejecutaba su movimiento. Volver a un proceso deliberativo que analice 
el curso de acción posterior requeriría, entonces, una nueva caracteriza­
ción de todo el escenario. Esto es muy costoso. Por otra parte no es el 
modo de actuar inteligente que queremos construir. Luego del movimiento 
del robot no parece razonable que la pintura del techo haya cambiado 
de color (¡aunque no es imposible!). Un supuesto «razonable» es que sólo 
cambia lo mínimo imprescindible de acuerdo con las acciones explicita­
das y las proposiciones que describen el escenario. Este supuesto, cono­
cido como ¡rame axiom, completa la descripción del escenario en forma 
no segura, pero permite operar al sistema con mayor eficiencia (evitando 
considerar todas las alternativas de cambios), a riesgo de cometer errores. 

Estos mecanismos de completamiento nos llevan nuevamente al 
campo del razonamiento no monótono, ya que el agregado de informa­
ción puede llevar a deshacer inferencias previas. Si bien esto también tiene 
su costo, si la elección de las suposiciones es razonable, en el sentido de 
que sea poco probable que luego deban ser levantadas, el balance final 
de limitar los casos sobre los que se razona será ventajoso. Este también 
es el caso en que se posee información completa, pero en que el análisis 
exhaustivo es muy complejo. 

Sin embargo, pese a lo atractivo del planteo, los mecanismos de «com­
pletamiento» no siempre redundan en una reducción de la complejidad, 
como se comenta en la próxima sección. 

4. La consistencia 

Otro cuestionamiento a la utilización de la lógica estándar, según las ideas 
de Minsky, es la condición de consistencia como requisito para desarro­
llar teorías no triviales (en las que no toda fórmula del lenguaje es deri­
vable de los axiomas de la teoría). 

Puede ocurrir que una BC tenga alguna inconsistencia <docal», que 
puede considerarse «irrelevante» en vista del conjunto total de informa­
ción contenida. La aspiración es poder continuar sacando conclusiones 
interesantes. Sin embargo, en LC, esta Base sería trivial, en el sentido 
de no poseer ningún modelo. 

En el área de Sistemas Expertos, distintos expertos suelen no coinci­
dir sobre un mismo aspecto del conocimiento del dominio. Si se consi­
dera un problema de diagnóstico médico, es natural que, a partir de los 
mismos síntomas observables, distintos especialistas tengan opiniones con­
flictivas. En los textos estándar del área se recomienda «evitar» esta situa­
ción por medio de algún tipo de arbitraje. Esto no siempre es posible, 
ni tampoco es posible, en general, «depurar» grandes Bases de Conoci-
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miento. Probablemente, en casos como el de la medicina, tampoco sea 
deseable: conocer la existencia de diagnósticos en conflicto es muy impor­
tante para el paciente. 

En los últimos tiempos se han desarrollado aplicaciones a lA de las 
lógicas paraconsistentes. Una lógica es paraconsistente si puede ser la 
lógica subyacente de teorías inconsistentes, pero no triviales. Estas lógi­
cas fueron propuestas en forma independiente por el lógico polaco Jas­
kowsky y por el brasileño Newton Da Costa, y desarrolladas amplia­
mente por éste último, con aplicaciones interesantes a la lA. Entre muchos 
artículos, se puede consultar Da Costa y Marconi (1989); Da Costa y 
Subrahmanian (1989) y D'Ottaviano (1990). 

El problema de mantener consistencia es central en las formalizacio­
nes del RNM, y produce una complejidad computacional extra. Los con­
flictos que se desean evitar al usar las inferencias por defecto, como en 
el caso del Nixon diamond, pueden, en un contexto paraconsistente, verse 
como situaciones normales, causadas por la falta de información com­
pleta: « ... thinking is a process of resolution of conflicts, by the analysis 
of evidences. Better saying, thinking is a process of resolution of con­
flicts, if possible. It may perfectly happen two opposite conclusions having 
equal rights to be achieved, under the light of available knowledge. Thus 
contradiction could not be removed, unless by the drastic measure of dis­
missing both conflicting conclusions. An alternative, not seriously con­
sidered so far, (is) ... holding both conclusions and keep on reasoning them 
out, no matter the contradiction, until incoming knowledge may evan­
tually enable a decision ... » T. Pequeno (1990). 

En Pequeno (1990) se sugieren formalizaciones próximas a la Lógica 
Default, pero con una lógica de base paraconsistente. 

5. Discusión 

Hemos mostrado cómo, a partir de algunos cuestiona miento s básicos al 
uso de la LC en los sistemas de lA, se motivan búsquedas en Lógica que 
intentan salvar esos problemas. Pero la lista es muy incompleta. 

El aprendizaje, aspecto clave en la definición de inteligencia, se intenta 
formalizar como un proceso inductivo. Esto reaviva el viejo proyecto de 
fundar una lógica inductiva, que viene desde los albores de la ciencia expe­
rimental. El proyecto consistía en ampliar los conocimientos elaborados 
a partir de los datos experimentales incluyendo algunos que no están total­
mente justificados por la verdad de las premisas. Nuevamente, este enfo­
que determina una noción no monótona de inferencia, ya que nuevos 
datos (nuevas experiencias de aprendizaje) pueden no encajar en las reglas 
generalizadoras e invalidar conclusiones previas. Se intentan desarrollar 
también «lógicas de la analogía», siempre con vistas a inferir consecuen­
cias plausibles a partir de casos previos similares. 

La pregunta desde la lógica es: ¿cuál es el control de calidad que le 
pedimos a estas transformaciones? Obviamente, la respuesta no podría 
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ser «ninguno», ya que entonces las conclusiones serían totalmente arbi­
trarias y no podríamos hablar de procesos inferenciales más o menos gene­
rales. 

Aun relajando el control de calidad de las inferencias, éstas deben 
tener cierto grado de confianza, en el sentido de que no nos van a defrau­
dar en la mayoría de los casos. Esto sugiere una definición ad-hoc de 
cuándo algo va a ocurrir más frecuentemente que lo opuesto. Si para infe­
rir B a partir de A ya no exijo que B sea verdadero en todas las situacio­
nes en que A es verdadero, quiere decir que existirán situaciones en que 
---, B y A son verdaderos y otras en que B y A son verdaderos. Qué será 
lo más conveniente aceptar en esos casos, dependerá de algún criterio 
de preferencia entre los A&B estados y los A& ---, B estados. 

V. INFERENCIAS NO MONÓTONAS 

... Monoronic logics lack the phenomenon of new information leading to a 
revision of old conc1usions ... (McDermott y Doyle). 

Los ejemplos de la sección IV sugieren que, dada una colección de items 
de información, representados como un conjunto P de proposiciones 
en algún lenguaje lógico, las conclusiones deductivas no son suficientes 
para satisfacer los requisitos del razonamiento de «sentido común». Esta 
constatación motivó, a partir de fines de los años 70, el desarrollo de 
numerosos procedimientos para formalizar el razonamiento no monó­
tono. 

En estos procedimientos se establecen reglas de inferencia que per­
miten «saltar» a conclusiones no establecidas deductivamente a partir 
de las premisas. Estas conclusiones no son seguras, en el sentido de 
que las premisas no son condiciones suficientes para su obtención. El 
agregado de nuevas evidencias puede llevar a la cancelación de inferen-
clas previas. 

El tipo de reglas inferenciales utilizadas ya no puede ser las del tipo: 
Si P¡"",Pn entonces Q (lógica estándar) porque en ese caso el agregado 
de nuevas premisas no invalida la conclusión. 

Las reglas de inferencia no monótonas son de tipo global y siguen 
patterns como el siguiente: 

Si PI'''' ,Pn, Y no se da que R¡, ... R"" entonces Q, 

donde el añadido de Rj puede invalidar la conclusión. 
Lo que se espera de un sistema inferencial no monótono es que, dados 

P y P' conjuntos (finitos) de sentencias y A una sentencia, si se da que 
P 1-- A, no se siga que PUP' 1-- A, donde 1-- es el símbolo usado 
para denotar una tal relación de inferencia. 

Esta caracterización negativa es muy vaga y abarca demasiados for­
malismos, motivados a veces desde perspectivas diferentes. Una de ellas 
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es la de! razonamiento «presuntivo» o por defecto, en contraposición a 
los sistemas basados en estimaciones de probabilidad o plausibilidad. No 
siempre el razonamiento presuntivo tiene una interpretación estadística. 
Esta última puede darse en e! caso de supuestos como «si me hablan de 
un pájaro, supondré que vuela», pero no en el de los criterios presunti­
vos utilizados por los jueces, como «todo acusado es inocente mientras 
no se demuestre su culpabilidad», ni en el caso de razonamientos «autoe­
pistémicos» como «no tengo hermano mayor, porque si tuviera uno lo 
sabría». 

Los sistemas más conocidos para formalizar e! razonamiento por 
defecto son: la negación por falla de Prolog, caracterizada en Clark 
(1978), la Lógica Default, en Reiter (1980), Circunscription, en McCarthy 
(1980 y 1986), Lógica Modal No Monótona, en McDermott y Doyle 
(1980), Lógica Autoepistémica, en Moore (1985), y Redes con Heren­
cia, en Touretzky (1986). Cada uno de estos sistemas se presentó con 
sus propios principios, sin que existiese un marco general en e! cual todos 
pudiesen ser comparados. 

La generación de formalismos para reconstruir e! RNM, y la bús­
queda de sus principios generales ha sido uno de los estímulos más des­
tacados desde la lA sobre el campo de la Lógica, y muchos investigado­
res de esta última disciplina se han involucrado activamente. 

1. Características de los procedimientos no monótonos 

El antecedente más difundido de los procedimientos no monótonos es 
la «hipótesis de mundo cerrado» (HMC), que se agrega a la información 
contenida en una Base de Datos (BD). La HMC estipula que, si una por­
ción atómica de información no se puede extraer de la BD, se supone 
que vale su negación. El efecto de este supuesto en una BD en que se 
representan conexiones aéreas, es que, si no se puede obtener de la BD 
una conexión entre Jujuy y Río Gallegos, es porque no existe tal cone­
xión. En ese caso, se considera que la no existencia de la conexión es 
una consecuencia de la BD extendida con la HMC. Si luego se agrega 
a la BD información que permite establecer dicha conexión, la conclu­
sión negativa previa desaparece. 

En el caso más general de una Base de Conocimientos (BC) consti­
tuida por una colección de cláusulas Horn (por ejemplo, un programa 
Prolog con negación por falla), este principio se formula aSÍ, para cual­
quier literal positivo «ground» P(t): 

(RHMC) Si BCifP(t), entonces BC 1-- ----, P(t), 

donde 1-- representa la inferencia no monótona inducida por la HMC. 
Si analizamos la estructura de la regla (RHMC), hallamos varias carac­

terísticas distintivas: 
1) la regla es de tipo global, es decir, que la inferencia depende de 

todas las consecuencias de la BC, 
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2) la inferencia depende de los conocimientos presentes en la BC, pero 
también de los ausentes, 

3) desde el punto de vista del control de calidad de las inferencias, 
si bien la regla no es segura (la presencia del conocimiento almacenado 
en la BC no es suficiente para garantizar la conclusión), sin embargo esta­
blece un criterio de resguardo de consistencia en la primera parte de su 
formulación. Este criterio estipula que ----, P(t) se satisfaga en al menos 
alguno de los mundos descritos por la BC, 

4) satisfechas las garantías, se efectiviza el «salto a las conclusiones» 
que era el objetivo original. De este modo se incorpora ----, P( t) a las con­
secuencias ampliadas de la BC (o sea, las consecuencias no monótonas 
de BC). Los modelos de la BC ampliada serán el subconjunto de los mode­
los de la BC original en que se satisface ----, P(t). Mas en general, las con­
secuencias no monótonas de la BC original serán las consecuencias stan­
dard de BC U HMC(BC) , donde HMC(BC) es el conjunto de 
informaciones agregadas por la (RHMC). 

Podemos ejemplificar este mecanismo con nuestro caso canónico: 
1) Vx (Pájaro(x)& ----, Anormal(pájaro(x))-> Vuela(x)) 
2) Vx (Pingüino(x)->Anormal(pájaro(x))) 
3) Pájaro(Pi-pio), 

que nos expresa que «normalmente los pájaros vuelan», <<1os pingüinos 
son pájaros anormales» y que «Pi-pio es un pájaro». En principio nada 
podemos afirmar sobre la capacidad de volar de Pi-pio, dado que no sabe­
mos que sea o no anormal como pájaro. Pero si aplicamos la (RHMC) 
a Anormal(pájaro(Pi-pio)), podemos concluir no monotónicamente: 

4) ----, Anormal(pájaro(Pi-pio)), y por lo tanto, 
5) Vuela(Pi-pio). 
Si luego se agrega: 
6) Pingüino(Pi-pio), 

ya no podremos derivar 4) ni 5) de la Be. 
Los «criterios de control de calidad» de las inferencias no monóto­

nas suelen tener por objetivo el impedir que la BC se convierta en incon­
sistente ante la llegada de nueva evidencia (como que Pi-pio es pingüino). 

La (RHMC) no puede aplicarse a una BC que no sea formada por 
cláusulas Horn, porque en ese caso fracasa el «control de calidad» 
impuesto por la primera parte de la regla. En efecto, si tenemos una BC 
compuesta sólo por la disyunción PVQ, la aplicación reiterada de la 
(RHMC) permite inferir ----, P y ----, Q, y luego ----, (PVQ), lo que consti­
tuye una contradicción con la BC original. 

El procedimiento de Circunscripción de McCarthy generaliza la 
noción de inferencia no monótona basada en la HMC para superar sus 
limitaciones. Se basa en la idea de seleccionar como modelos «preferi­
dos» de una BC los que posean extensiones minimales de ciertos predi­
cados como por ejemplo Anormal. Esta restricción de los modelos equi­
vale a reforzar la BC, lo que se hace por medio del «Axioma de 
Circunscripción» (AC), que depende de la BC y de los predicados que 
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se están circunscribiendo. Las conclusiones por defecto serán las que se 
obtengan deductivamente de la BC U AC(BC, Anormal), y serán satisfe­
chas en todos los modelos de esta Base ampliada, es decir, en los mode­
los preferidos seleccionados de la BC original. 

En la Lógica Default (LD) de Reiter, otro de los formalismos conoci­
dos, se aumentan las conclusiones deductivas de un conjunto de axio­
mas W, mediante el agregado de reglas de la forma: 

A:B/C 
Una lectura informal de dicha regla es: 
«si A se da en la extensión y no se da ----, B (es consistente suponer 

B), entonces infiera C>. 

Su uso genera extensiones de las consecuencias standard de W. 
Una Teoría Default es un par (W,D), donde W es un conjunto de 

fórmulas y D un conjunto de reglas Default. En nuestro ejemplo: 
D 

= 

(Pájaro(x): Vuela(x)/Vuela(x) J 
W 

= 

(Pájaro(Pi-pio) J. 
Dado que en el contexto de esa teoría no es inconsistente suponer 

que Pi-pio vuela, la extensión (única) de la teoría incluirá la conclusión 
(derrotable) Vuela(Pi-pio). No es difícil observar que el mecanismo de 
la LD, aunque distinto al de Mundo Cerrado y Circunscripción, man­
tiene las características generales comentadas más arriba. En particular, 
en cada regla del tipo <<norma¡": 

A:B/B, 
la condición «es consistente suponer B» constituye el control de calidad 
que, si es satisfecho, nos permite pasar de la premisa A a la conclusión 
por defecto B. 

Incluyendo conocimientos sobre pingüinos, obtenemos: 

DI 
= ( Pájaro(X): Vuela(x) 

; 
Pingüino(x): ----, Vuela(x) 1 

Vuela(x) ----, Vuela(x) 

Wl 
= 

(Pingüino(Pi-pio), Vx Pingüino(x) ---> Pájaro(x)J . 
En este caso nos encontramos con dos posibles «extensiones» o esce­

narios, en uno de los cuales Pi-pio vuela y en el otro no vuela. Si adopta­
mos una visión escéptica (considerar sólo las consecuencias que surgen 
en todas las extensiones) nada podemos afirmar sobre esa propiedad de 
Pi-pio. La razón del comportamiento antiintuitivo es que falta la informa­
ción de que los pingüinos son pájaros excepcionales respecto al volar (que 
en el ejemplo de aplicación de la HMC se reflejaba en (2)). Esto nos lleva 
a modificar las reglas, incluyendo en las mismas las excepciones conocidas: 

D2 
= 

(Pájaro(x) & ----, Pingüino(x): Vuela(x)/Vuela(x); 
Pingüino(x): ----, Vuela(x)/ ----, Vuela(x) J. 

Por un lado esto revela una cierta «fragilidad» en la representación, 
ante la aparición de nuevas excepciones. Por otra parte, nótese que la 
regla modificada sigue siendo una regla por defecto, ya que, en el mundo 
real, existen otros casos de pájaros que no vuelan. 
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Desde el punto de vista semántico, en la Lógica Default, se restrin­
gen los modelos de W de acuerdo a las reglas Default. En nuestro primer 
ejemplo, se descartan aquéllos en que Pi-pio no vuela. Los restantes mode­
los seleccionados de la BC son exactamente los modelos de la extensión. 
Entre estos últimos puede no estar el mundo real. La inferencia Vuela 
(Pi-pio), a partir de Pájaro(Pi-pio), puede no ser válida en dicho mundo. 
El «control» de la regla sólo nos asegura que existe algún mundo com­
patible con la BC, en que Pi-pio vuela. En el caso de la teoría (Wl, Di), 
existen dos subconjuntos de modelos de la BC en competencia. La modi­
ficación de la regla en D2 representa la preferencia por uno de los dos. 

En el caso de la HM C, si considero las sentencias (1) a (3), entre todos 
sus modelos existirán algunos en que Pi-pio es anormal (y no vuela) y 
otros en que no es anormal (y vuela). La condición de la regla (RHMC) 
nos asegura que estos últimos existen, y los modelos de las conclusiones 
extendidas serán aquellos en que la extensión de Anormal es mínima (en 
este caso, vacía). Si se agrega (4), el panorama cambia, la extensión 
mínima de Anormal ahora incluye el individuo Pi-pio, y el control de 
calidad de la (RHMC) impide la aplicación de la regla, ya que, ahora, 
en todos los mundos compatibles con la nueva BC, Pi-pio es anormal. 

La aplicación de las reglas de la Lógica Default o de esquemas como 
Circunscripción sobre alguna propiedad reflejada en la BC, equivale a 
restringir el conjunto de modelos de la BC según ciertas heurísticas que 
el constructor de la BC tiene en mente: por ejemplo, que un pájaro, del 
que no se conoce más información, vuela. Estos modelos preferidos por 
el diseñador de la BC, serán los modelos de la extensión generada por 
el procedimiento no monótono. En el "Nixon diamond» la preferencia 
puede establecerse a partir de una mayor confianza en un supuesto que 
en otro. Si no es posible establecer esta preferencia, no hay restricción 
de modelos y el sistema se mantiene «agnóstico» (o presenta las dos alter­
nativas contradictorias). 

2. La lógica de las inferencias no monótonas 

D. Gabbay, en Gabbay (1985), fue el primero en preguntarse, dada una 
relación 1-- entre enunciados, cuáles serían las propiedades formales 
que la podrían caracterizar como la relación de inferencia de un sistema 
no monótono. El punto de partida para este análisis fue la consideración 
del caso de una relación estándar deductiva 1- .  La respuesta en este caso 
había sido dada por A. Tarski. Si 1- satisface las tres condiciones que 
siguen (y que están expuestas en una versión finitaria, es decir, conside­
rando sólo conjuntos finitos de premisas), es la relación de inferencia de 
algún sistema de lógica deductiva. 

Reflexividad: A¡, ... ,A", B 1- B 

Cut: A¡, ... ,A"I-X; Aj, ... ,A", XI-B 
Aj, ... ,A"I-B 
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Monotonía: Aj, ... ,An�B 
Aj, ... ,An, X�B 

Los distintos sistemas deductivos conocidos se obtienen agregando 
diversas propiedades a este conjunto mínimo. En particular, si se desea 
trabajar con un lenguaje más rico, que contenga las conectivas clásicas, 
deben agregarse las propiedades que caracterizan a dichas conectivas. 

Gabbay propuso, análogamente, unas propiedades mínimas, que 
debería satisfacer una relación de inferencia no monótona. Estas son 
Reflexividad, Cut y una forma más débil de monotonía, que fuera bauti­
zada en Makinson (1989) como Monotonía Cautelosa (cautious 
monotony): 

Monotonía Cautelosa: Aj, ... , An 1-- X; A" ... ,An 1-- B 

A" ... ,An, XI-- B 
En este contexto, el Cut expresa el hecho de que una conclusión plau­

sible es tan segura como los supuestos en los que está basada, y por lo 
tanto se puede «acumular» en las premisas. En otras palabras, no hay 
pérdida de confianza en la cadena de derivaciones plausibles. Esto no 
ocurre en las inferencias de tipo probabilístico, y es un hecho que este 
tipo de inferencias no satisface Cut. 

Cautious Monotony expresa el hecho de que incorporar una nueva 
premisa, cuya verdad había sido concluida plausiblemente de los cono­
cimientos previos, no debería invalidar las viejas conclusiones. 

Siguiendo a Makinson, se define una relación de inferencia como 
cumulativa si y sólo si satisface Reflexividad, Cut y Monotonía Cautelosa. 

Independientemente, en Shoham (1987), se propuso una teoría de 
modelos general para las inferencias no monótonas. Sabemos que, en 
lógica estándar, una proposición B se sigue lógicamente de otra proposi­
ción A, y lo notamos: 

A 1= B si y sólo si B se satisface en todos los modelos de A. 
Es inmediato que con dicha definición, por ser los modelos de A&X 

un subconjunto de los de A, la consecuencia lógica 1= es monótona. Sho­
ham sostiene que una noción de consecuencia lógica no monótona puede 
caracterizarse a partir de algún subconjunto de los modelos de A: 

A 1-- B si y sólo si B se satisface en los modelos «preferidos» de A. 
Dada una lógica estándar L, Shoham construye una Lógica Preferen­

cial Lo añadiendo al conjunto de interpretaciones de L, una relación de 
«preferencia» ( <) entre ellas. La relación de preferencia es un orden par­
cial y un mundo V es preferible a otro mundo W, si el agente considera 
a V como «más norma),> que W. Así es posible, dado A, concluir «por 
defecto» B, si todos los mundos «más normales» entre los A-mundos, 
también satisfacen B. En otras palabras, B se sigue «por defecto» de A 
en Lo si los B-mundos son un superconjunto de los A-mundos «más 
normales». 

Esta noción de «normalidad» es una generalización de la HMC y Cir­
cunscripción, tal como lo muestra el ejemplo de V.1. Allí los mundos 
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«más normales» eran aquellos modelos de la BC que poseían la mínima 
extensión de Anormal posible. Si en todos esos mundos «más preferi­
dos», según dicho criterio, Pi-pio no es anormal, entonces concluimos, 
por defecto, que vuela. 

Para Shoham, todo sistema no monótono puede tener una semántica 
en términos de una relación de preferencia adecuada. 

En Makinson (1989) se generaliza la definición de las estructuras de 
modelos preferenciales. Una estructura M es una terna: 

M=(S, �, O, 
donde S es un conjunto arbitrario no vacío «<estados»), ( una relación 
(de «preferencias») en S y � una relación entre las sentencias del len­
guaje y los elementos de S (de «satisfacibilidad»). 

Una estructura de modelo preferencial M induce una relación de infe­
rencia 1-- m de la siguiente manera: 

A 1-- m B si y sólo si, para todo s E S, si s � (A, (satisface preferen­
cialmente A según la relación (J, entonces s � B, donde 

s � (A si y sólo si s � A y no existe s' E S, con s' (s tal que s' �( A. 
La caracterización más precisa de los elementos del modelo permite 

definir distintas familias de relaciones de inferencia inducidas, y estudiar 
las propiedades que poseen. 

En particular, la clase de las relaciones cumulativas definidas por Gab­
bay coincide con las inducidas por las estructuras de modelo preferen­
cial stoppered (se dice que M = (S, �, (> es stoppered si, dado cualquier 
subconjunto T de S y un elemento t en él, o bien t es (minimal, o bien 
existe t' en T, t' (t Y t' minimal). 

Con estas herramientas es posible analizar los sistemas de RNM pro­
puestos en la literatura. Esto se realiza en Makinson (1991). 

El procedimiento inferencial basado en la HMC y aplicable a cláusu­
las de Horn extendidas, resulta ser cumulativo. Si se considera S, el con­
junto de todas las cláusulas Horn expresables usando un conjunto de sím­
bolos de predicado y símbolos de función primitivos, { A 1, A2, • • •  ,An) un 
subconjunto finito de S, que denominaremos A, y B una sentencia, la 
relación de inferencia inducida por este procedimiento es: 

AI-- B si y sólo si A U HMC(A) 1-- B, 
donde HMC(A) es el conjunto de los átomos negativos ground que 

se infieren de A por la (RHMC), es decir: 
HMC(A) = { ---, P(t): A VP(t)). 
Con esta definición es fácil verificar que 1-- cumple las tres propie­

dades de Gabbay. 
Makinson demostró también que la noción de inferencia subyacente 

en Circunscripción de McCarthy es cumulativa. 
Por el contrario, la Lógica Default de Reiter, no resulta cumulativa, 

aun en su versión más «conservadora» (considerando las inferencias plau­
sibles de un conjunto A, con reglas Default normales D, como aquellas 
válidas en todas las extensiones Default del mismo). 

Consideremos una teoría Default con dos reglas: 
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W,: {0] y D: (0:P/P; PVQ: --,P/--,P]. 
Las consecuencias no monótonas C(W,) coinciden con Cn( ( P] ). 

Consideremos ahora otra teoría con las mismas dos reglas y con: 
W2:{PVQ]. 
Esta teoría tiene tiene dos extensiones, ya que las dos reglas son apli­

cables, pero no compatibles. Una extensión es E ¡ = Cn( (P] ) y la otra es 
E2=Cn({ --,P, Q]). Definiendo C(W2)=E¡ n E2, es claro que P no 
pertenece a C(W2). 

La situación es, entonces, la siguiente: 
Wl � W2 � C(Wl), pero C(Wl) rJ;. C(W2), y equivale a la falla 

de (CM), si definimos AI-- B si B E C(A) 

3. Sistemas no monótonos condicionales 

Un camino parcialmente distinto es el seguido en Kraus, Lehman y Magi­
dar (1990), al caracterizar varias familias de relaciones de consecuencia 
preferenciales en términos sintácticos y semánticos. Con este propósito 
aumentan el conjunto de propiedades propuesto por Gabbay, de modo 
de tratar con un lenguaje que posea las conectivas clásicas. Su objetivo 
es elucidar las relaciones entre pruebas y modelos, con el objeto de per­
mitir el diseño de procedimientos de decisión que sirvan para realizar infe­
rencias plausibles a partir de Bases de Conocimientos. 

Cada familia de relaciones se identifica con cierto tipo de modelos 
de tipo preferencial. A la vez, todas las relaciones de consecuencia defi­
nidas por los distintos modelos de una dada familia están cerradas por 
un determinado conjunto de reglas de inferencia que las caracterizan sin­
tácticamente. 

La relación de inferencia Cumulativa se presenta como la más débil 
de la familia, y coincide con la propuesta por Gabbay. 

Las dos familias que han sido mas tratadas desde entonces son la Pre­
ferencial y la Racional. 

. U na estructura de modelo preferencial KLM es una terna M = (S, 1 ( > , 
donde S es un conjunto «<estados»), l:S� U una función que asigna a cada 
estado un «mundo posible» y ( es un orden parcial estricto en S, que 
satisface la smoothness condition (stoppered, en el léxico de Makinson). 

La función 1 permite caracterizar la noción de satisfacción de una pro­
posición A en un estado s, como l(s) 1= A en el sentido usual de satisfac­
ción en un mundo. 

En Kraus et al. se prueba un resultado de representación del sistema 
P de reglas en términos de los modelos preferenciales definidos arriba. 
El sistema P está constituido del siguiente modo: 
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(RW) �A--->B, q--A (CM) AI--B, AI--C 

q--B A&BI--C 

(LLE) �A+-->B, AI--C (REF) AI--A 
BI--C 

(AND) AI--B, AI--C (OR) AI--C, BI--C 

AI--B&C AvBI--C 

Donde «1--» es una relación de inferencia: 
1-- � Lx L, y consideramos que el par A, B es equivalente a la con­

junción A&B, por lo que la representación finitaria se reduce a una sola 
fórmula en el lado izquierdo de la relación. 

En el sistema P la regla Cut es una regla derivada, lo que permite definir 
a la operación de inferencia caracterizada por el sistema P como cumulativa: 

(Cut) AI--B, A&BI--C 

AI--C 

Una relación de inferencia es racional, si es la relación inducida por 
un modelo ranked. Los modelos ranked son modelos preferenciales en 
los cuales la relación de orden tiene la propiedad ranked: existe una fun­
ción r: S--->T, donde T es un conjunto totalmente ordenado por la rela­
ción [, tal que s < s' en S si y sólo si r(s) [ r(s') en T. 

Las relaciones racionales resultan ser las cerradas por el sistema R, 
que incluye todas las reglas de P, más la siguiente de monotonía racional 
(rational monotony): 

(RM) AI--B, AI-- --, C 

A&q--B 

que expresa el grado más alto de monotonía compatible con una noción 
de inferencia no monótona. 

Llegada a este punto, la relación de inferencia 1-- ha sido embutida 
en un lenguaje, en el que juega el rol de un conectivo especial, lenguaje 
gobernado por reglas del tipo deductivo. Las expresiones de este lenguaje 
son llamadas por KLM «aserciones condicionales». Formalmente, exis­
ten notorias similaridades con los sistemas de la Lógica Condicional 
(LCOND), como algunos de los propuestos, entre otros, en Lewis (1973), 
y con los sistemas de la obligación condicional, que fueron presentados 
en van Wright (1971), y en Hansson (1971). Desde el punto de vista sin­
táctico, el condicional especial de las LCOND, que notaremos ), no posee 
la propiedad de refuerzo del antecedente, que sí posee el condicional stan­
dard o material, es decir que: de (A)B) no se sigue (A&C)B), lo que le 
da una característica de «no monotonía» en el plano del lenguaje. Ade­
más los axiomas y reglas de inferencia típicos de los sistemas de LCOND 
muestran una fuerte similaridad con las reglas de P y R. 
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La siguiente caracterización sintáctica del sistema de Lógica Condi-
cional NP de Delgrande (1987) es ilustrativa al respecto: 

(ID)f-A)A 
(CC) f- ((A)B)&(A)C)) ---+(A)(B&C)) 
(RT) f- A) B---+((A&B) )C)---+(A)C)) 
(CV) f- ----, (A)B)---+((A)C)---+(A& ----, B )C)) 
(CC) f- ((A)C)&(B )C))---+((AVB))C) 
RCM Si f-B---+C, de A)B se sigue A)C. 
Nótese la similaridad entre los 5 axiomas y las reglas (REF), (AND), 

(CUT), (RM) y (OR), respectivamente, así como entre la regla RCM y 
la regla (RW), todas del sistema R. 

En realidad las analogías son más profundas, ya que una motivación 
de dichas lógicas fue el poder representar situaciones en las que el agre­
gado de condiciones «derrote» las conclusiones del condicional, sin gene­
rar conflicto (inconsistencias potenciales). En otras palabras, que pue­
dan representarse simultáneamente los condicionales: A)B, A&C) ----, B, 
sin que esto acarree la imposibilidad de A&C. 

Por otra parte, las similitudes semánticas se hacen evidentes a partir 
del trabajo de Shoham. En la LCOND se tiene una medida de similari­
dad entre mundos posibles. La verdad de un condicional A) B en un 
mundo de referencia W se establece cuando B es verdadero en ciertos 
A-mundos «seleccionados», respecto de W. En los sistemas de LCOND 
contra fácticos clásicos, estos mundos «seleccionados» se caracterizan 
como los «más próximos» al de referencia en los cuales A es verdadero. 
En el extremo, si el mundo de referencia W es un A-mundo, el seleccio­
nado será el mismo W. 

Sin embargo, hay que señalar como restricción en estas comparacio­
nes que el signo 1--, definido por reglas como las presentadas antes, 
no permite anidamiento (ocurrencias iteradas), ya que está reflejando una 
noción metalingüística de consecuencia. Por lo tanto, una correspondencia 
con el condicional especial ) de las LCOND, sólo debería tener en cuenta 
aquellas fórmulas A) B donde ni A ni B contienen a su vez el símbolo 
) (fórmulas no anidadas o «flat»). 

Tampoco aparece en las LNM la noción de mundo de referencia, con 
lo que la relación de preferencia entre mundos es única en cada modelo 
preferencial. 

A partir de Arlo Costa y Camota (1989a y 1989b), se comenzaron 
a establecer formalmente los primeros resultados que conectan sistemas 
de LCOND y los sistemas de tipo preferencial de las LNM. Posterior­
mente los mapeos entre LNM y LCOND fueron extendidos en Arlo Costa 
y Shapiro (1991). 

4. El dilema de las lógicas condicionales 

Antes del desarrollo de los sistemas preferenciales, ya existieron intentos 
de utilizar sistemas de la LCOND para la formalización del RNM. La 
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idea era reconstruir afirmaciones prototípicas y «reglas por defecto» 
mediante el condicional especial. Así, «normalmente los pájaros vuelan», 
se representaría como: 

Vx Pájaro(x) ) Vuela(x). 
El filósofo D. Nute, atraído por las propiedades del condicional con­

trafáctico, se propuso implementar un razonador no monótono mediante 
un demostrador de teoremas de algún sistema de Lógicas de la obliga­
ción condicional, como las presentadas en Hansson (1971), que son un 
antecedente importante de los sistemas condicionales que buscan la expre­
sión del Razonamiento No Monótono. En el campo deóntico, los mun­
dos «absolutamente normales» son los «mundos ideales» donde todas las 
obligaciones y deberes son respetados. 

Las únicas conclusiones que se pueden extraer con los condicionales 
derrota bies son conclusiones en los mundos ideales o «más normales» 
(para un análisis más detallado, ver Alchourrón, 1986 y 1991, y Car­
nota, 1991). Tanto en las LNM preferenciales P y R, como en las LCOND 
correspondientes es válida esta regla (o teorema) de «modus ponens debi­
litado» : 

(WMP) True 1--A, AI--B 

Truel--B 
El (WMP) nos dice que si A es verdadero en los mundos «absoluta­

mente más preferidos» (que no suelen incluir al actual), entonces, de la 
verdad de la aserción condicional AI--B se puede inferir que B es ver­
dadero en dichos mundos «ideales». Nada nos dice sobre el mundo actual. 
El (WMP) sirve para razonar sobre las condiciones ideales, pero no sobre 
las condiciones reales. 

Los sistemas de la LCOND sin detachment, resultan ser los que for­
malmente corresponden a los sistemas de la LNM preferencial, del tipo 
de P oR, por lo que estos últimos resultan compartir las dificultades infe­
renciales de los primeros. 

En Kraus, Lehman y Magidor (1990) se sugiere la posibilidad de usar 
sistemas como P para obtener respuestas de una Be. La propuesta es: 
si se tiene A en un stock de hechos y se deriva, mediante las reglas de 
P, el condicional AI--B, a partir de la BC, a la pregunta «¿Es esperable 
B?» se respondería positivamente. Esto parece equivaler a sostener el 
«detachment» para 1--. Dado lo informal del comentario es difícil inda­
gar lo que los autores tienen en mente, pero si también es derivable 
CI-- ----, B Y el stock de hechos contiene A&C, se vuelve al conflicto ya 
comentado, salvo que se use una lógica especial en los hechos, que no 
permita derivar ni A ni C de la conjunción. 

5. Las LNM y el detachment de las reglas Default 

¿Cómo funcionan los formalismos conocidos para extraer conclusiones 
por defecto? 
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Como se vio al inicio de esta sección, los procedimientos del RNM 
poseen reglas para autorizar o bloquear el detachment de los condicio­
nales Default, de acuerdo a determinados criterios (por ejemplo criterios 
de consistencia). Nuevas evidencias incorporadas a la BC pueden provo­
car el bloqueo del detachinent de ciertos condicionales Default (para evi­
tar una inconsistencia en la BC), por lo que no se siguen derivando con­
secuencias previamente establecidas. 

Repasemos el funcionamiento de nuestro ejemplo: 
1) Vx (Pájaro(x)& ----, Anormal(aspectol(x)))-+ Vuela(x) 
2) Pájaro(Pi-pio). 
Con la (RHMC) aplicada a Anormal (aspectol(Pi-pio)), donde 

aspectol define «ser anormal como pájaro respecto al volaf», obtene­
mos Vuela(Pi-pio). De entre todos los modelos de la BC hemos preferido 
los que minimizan la extensión de Anormal. El mundo real puede no estar 
entre ellos, pero al menos sabemos que no es un conjunto vacío. 

Si ahora sabemos que Pi-pio es pingüino y que, normalmente, los pin-
güinos no vuelan, agregamos a la BC: 

3) Vx (Pingüino&----, Anormal(aspect02(x)))-+ ----, Vuela(x) 
4) Pingüino(Pi-pio). 
Si aplicamos (RHMC) nuevamente, nos encontramos en la misma 

situación anómala señalada para el caso de la Le. Si agregamos: 
5) Vx (Pingüino(x)-+Anormal(aspectol(x))), la aplicación de la 

(RHMC) ya no permite inferir Vuela(Pi-pio). 
Esto restringe los modelos de la BC a aquellos donde vale Anor­

mal(aspectol(Pi-pio)). En este punto no podemos inferir nada sobre Pi­
pio. Aquí interviene entonces la (RHMC), que infiere por defecto: 

----, Anormal(aspect02(Pi-pio)), garantizando, como «control de cali­
dad», que exista al menos algún modelo de la BC en que dicha conse­
cuencia se satisfaga (y donde Pi-pio no vuela). Evidentemente no tene­
mos certidumbre alguna de que las conclusiones por defecto sean valederas 
en el mundo real. Sólo tenemos la garantía de que, si son extraídas, no 
es imposible que se verifiquen en dicho mundo. La autorización del detach­
ment del condicional por defecto consiste en la aceptación -provisoria­
del consecuente, dado el antecedente y provista la garantía de consistencia. 

La restricción de los modelos equivale a afirmar en el antecedente 
del condicional por defecto la negación de todas las excepciones aun no 
conocidas. 

Al especificarse las propiedades de un operador 1-- mediante reglas 
al estilo de los sistemas P oR, se establecen las condiciones de deriva­
ción de condicionales a partir de condicionales, pero no se determinan 
los mecanismos concretos que controlan el «salto a las conclusiones». 
En ese sentido son postulados generales que caracterizan completamente 
una clase de relaciones de inferencia, pero no una relación de inferencia 
concreta. Cada modelo concreto de esos postulados es una LNM, en la 
que, bajo ciertos resguardos, se afirma la verdad por defecto del conse­
cuente. 
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6. Lógica no monótona y revisión de creencias 

La teoría del cambio de creencias trata de la dinámica de los estados de 
creencias, con el objetivo de modelizar las actualizaciones de los estados 
de creencias de un agente o de un sistema de computación, como resul­
tado de recibir nueva información. Existen varios tipos de cambios de 
creencias. El más simple es el que surge por el aprendizaje de algo nuevo 

y es conocido como expansión. A veces, sin embargo, estas nuevas evi­
dencias contradicen creencias previamente aceptadas, lo que lleva a una 
revisión del estado de creencias con vistas a mantener su consistencia. 
Esta revisión requiere la eliminación de viejas creencias. Otras veces el 
descubrimiento de que las razones para sostener una creencia han desa­
parecido conduce a una contracción del estado de creencias. Una revi­
sión de un conjunto de creencias K, como resultado del aprendizaje de 
una evidencia A, puede ser considerada como la sucesión de una con­
tracción de dicho conjunto por la negación de A, y luego el agregado 
(por expansión) de A. El primer paso asegura que la incorporación de 
la nueva evidencia no provocará inconsistencia en K. Una operación de 
contracción (y por ende una revisión) no es sencilla de definir: dado un 
conjunto K y una sentencia e, existen varias formas de eliminar senten­
cias que puedan implicar C. Si incorporamos, como criterio de raciona­
lidad, que la operación redunde en la menor pérdida de información posi­
ble, una manera informal de visualizar una contracción de K por una 
creencia e, es en términos de la familia de los subconjuntos maximales 
de K que no implican e, que se nota K..l C. 

Alchourrón, Gardenfors y Makinson desarrollaron una teoría del cam­
bio racional de creencias, presentando construcciones explícitas de las 
operaciones de cambio (en particular, las basadas en los subconjuntos 
maximales citados), así como postulados que dichas operaciones debe­
rían cumplir. Los dos enfoques son conectados en Alchourrón, Garden­
fors, Makinson (1985) a través de teoremas de representación. 

Los postulados AGM de revisión racional de creencias son ocho, seis 
de los cuales son denominados básicos y dos complementarios. Si deno­
tamos con ". la función de revisión, y consideramos conjuntos de creen­
cias cerrados por consecuencia lógica clásica (teorías), siguiendo a Gar­
denfors (1988), ellos son: 

K "-1) Si K es una teoría y A una sentencia, K ,,-A es una teoría. 
K"-2) A E K"-A. 
K"-3) K"-A <; K+ A (la expansión de K por A). 
K ""4) Si --, A�K, entonces K+ A <; K"-A. 
K"-5) K"-A = Kfalso si y sólo si 1- --, A (donde Kfalso denota el 

conjunto de creencias inconsistente). 
K"-6) Si I-A-B entonces K"-A=K"-B. 
K ""7) K"-(A&B) <; (K"-A) +B. 
K"-8) Si --, B�K"-A, entonces (K"-A) +B <; K"-(A&B). 
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Consideremos un ejemplo en el que un estado de creencias de un sis­
tema está reflejado por una BC y sus consecuencias lógicas. Esta situa­
ción es la normal en la práctica, y se dice que BC es una base del con­
junto de creencias K. Las funciones que efectivizan cambios en teorías 
apelando a cambios en sus bases, son llamadas «revisiones de bases» y 
están siendo estudiadas entre los investigadores de lA. 

Sea, en una situación dada, la BC constituida por: 
1) Vx (Pájaro(x)---> Vuela(x)) 
2) Vx (Pingüino(x)---> -, Vuela(x)) 
3) Pájaro(Pi-pio). 
Entre las creencias implícitas del sistema estarán: 
4) Vuela(Pi-pio), y 
5) -, Pingüino(Pi-pio). 
Si ahora obtenemos una nueva evidencia: 
6) Pingüino(Pi-pio), para acomodar (6) a la BC, manteniendo la con­

sistencia, debemos eliminar alguna creencia previa, entre 1), 2) ó 3). La 
elección de qué creencias se eliminan (o de qué subconjunto se prefiere 
conservar) dependerá de algún criterio de preferencia entre las creencias 
(o entre los subconjuntos maximales que no implican (5)). 

Entre las funciones de contracción propuestas en Alchourrón, Gar­
denfors y Makinson (1985), la «partial meet contraction» de K por una 
sentencia C, se define como la intersección de una subfamilia de K..L C. 
Esta subfamilia es elegida por medio de una función de selección S, que, 
si bien puede ser arbitraria, es razonable de suponer que escoja los sub­
conjuntos «mejores» de un cierto orden: 

S (K..LC) = {K' E K..LC:K"{K' para todo K" E K..LCJ. 
La contracción K� resulta luego: K� =nS(K..LC). 
De acuerdo al criterio indicado antes, la revisión de K por A, notada 

K':·A, se puede representar como: 
(': .) K':'A=Cn (nS(K..L-,A) U {AJ). 
En Makinson y Gardenfors (1990), se sugiere un método de traduc­

ción entre postulados de revisión de creencias y propiedades de las LNM. 
La idea básica es ver una expresión de la forma: 

B E  K':'A, como una inferencia no monótona de B a partir de A, dado 
K como conjunto de hipótesis (o expectativas por defecto) auxiliares. A 
la inversa, una expresión de la forma: 

AI--B de una LNM, se traduce a una de la forma B E  K':'A en revi­
sión, donde K es introducido como un conjunto de creencias fijo. La forma 
de traducción es, entonces: 

AI--B si y sólo si B E K':'A 
Usando esta receta, es posible traducir los 8 postulados de revisión 

de AGM en reglas que definen propiedades del operador 1--, en parti­
cular, válidas casi todas en el sistema R. A la inversa, los distintos postu­
lados para las LNM se traducen en condiciones de cambio de creencias 
que son derivadas de los 8 postulados de la revisión AGM. Por ejemplo, 
la monotonía cautelosa (CM), se traduce en: 
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Si B E K"-A Y C E K"-A, entonces B E K"-A&C, que se deriva de los 
postulados de revisión. 

Posteriormente, en Gardenfors y Makinson (1991), se proponen diver­
sos formalismos, «basados en expectativas» para generar procedimien­
tos de inferencias no monótonas. Estos formalismos se inspiran directa­
mente en distintos modelos de la teoría de cambio de creencias, y pueden 
verse como generalizaciones del trabajo de Poole (1988). Una operación 
de inferencia basada en conjuntos de expectativas puede definirse infor­
malmente así: 

A implica no monotónicamente B si y sólo si B se sigue lógicamente 
de A junto con tantos elementos como sea posible del conjunto fijo K 
de expectativas, con la condición de que sean compatibles con A. 

Más formalmente, dado un conjunto de expectativas K no vacío y 
una función de selección S del tipo de la mencionada más arriba, la ope­
ración de inferencia C se define como: 

C[K,S] (A)=n{Cn({AjUK':K' E S(K.l----,A)J. 
Esta caracterización es la misma de ("-), donde se define una revisión 

de K por A basada en una «partial meet contraction function». Lo inte­
resante es que si S selecciona los mejores subconjuntos según un orden 
transitivo, C [K ,S] satisface todas las reglas del sistema R (así como la 
respectiva revisión cumple los 8 postulados), más una regla adicional que 
no todos los sistemas R cumplen, llamada «Preservación de Consisten­
cia» y que es la traducción del K"-5 (si AI-- falso, entonces Al- falso). 

Del punto de vista semántico, es fácil ver que hay una relación uno a 
uno entre los A-mundos y los subconjuntos de la familia K.l ----, A, por lo 
que la aplicación a esta última de una función de selección que elige según 
un orden transitivo, tiene las mismas características de una selección de mun­
dos «preferidos» en una lógica preferencial del tipo de la de Shoham. 

Llegado a este punto, se evidencia una correspondencia formal muy 
sólida entre cierto tipo de revisión de creencias (la denominada AGM) 
y las relaciones de inferencia no monótonas preferenciales más «fuertes» 
(más próximas a la LC). 

En una inferencia no monótona basada en expectativas se considera 
un conjunto K fijo de hipótesis y se extraen del mismo conclusiones por 
defecto (que mantienen el control de consistencia al restringirse a las con­
secuencias clásicas de sólo un subconjunto de K). En revisión, las con­
clusiones son siempre deductivas a partir de un nuevo conjunto K', resul­
tante de la previa contracción de las premisas. En ambos casos, dado 
el mismo criterio de «preferencia» los resultados (las conclusiones extrai­
das) son los mismos. 

Esta vinculación complementa y confirma resultados previos obteni­
dos en Alchourrón y Makinson (1981) que, en su momento, por el aisla­
miento mutuo de los campos de la Lógica y la lA no tuvo repercusión 
en este último. 

Una interpretación epistemológica de esta correspondencia, sugerida 
por Gardenfars y Makinson (1991), es pensar el conjunto de creencias 
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K en dos fases. Mientras se lo está utilizando, sus elementos sonfull beliefs 
y se extraen las consecuencias deductivas de los mismos. Pero tan pronto 
se procede a su revisión, estos elementos son cuestionados, por lo que pier­
den su status de full beliefs, para convertirse en expectativas o hipótesis 
sobre el dominio, algunas de las cuales deberán ser descartadas con el fin 
de introducir creencias nuevas, preservando la consistencia del conjunto. 

7. Inferencias no monótonas y complejidad 

En la sección 4 el problema de la complejidad computacional apareció 
vinculada al tema del RNM, a partir del uso de supuestos, como el «frame 
axiom», para llenar lagunas del conocimiento. La hipótesis subyacente, 
tal como se presenta en Levesque (1988), es la siguiente: 

... The deviations from c1assical logic that will be necessary ro ensure the tractabi­
lit y of reasoning stand in very c10se correspondence ro the deviations from logic 
that we would have ro make anyway to be psychologically realistic. If we look at 
the kinds of mistakes people make, the kinds of problems people run inro, and the 
corners that are cut ro get around them, we will find modifications ro c1assical logic 
that ensure the computational tractability of the associated thinking ... 

Uno de los caminos sugeridos para el completamiento de las BC es 
el de las inferencias por defecto. Como ya se discutió, este camino puede 
verse como una restricción en el análisis de los modelos sólo a aquellos 
«preferidos», en algún sentido, por el diseñador del sistema (precisamente 
aquellos donde no se verifican ciertas excepciones). 

El efecto de esta restricción es que se deben analizar menos modelos 
con la consiguiente simplificación de los procesos de decisión. 

Pero el reflejo de esta restricción en la teoría de prueba es inverso. Ahora 
las inferencias son globales y deben realizar «controles» (usualmente de con­
sistencia), para justificar los «saltos a las conclusiones» no deductivos. 

La simplificación del proceso de decisión lleva a la pérdida de la <<natu­
ral computabilidad» de las reglas de inferencia deductivas. 

Si bien a la hora de decidir si B se sigue de A" ... ,A", ya no debemos 
explorar exhaustivamente todos los factores en juego (todos los modelos 
de Al , ... ,A,,), en cambio trasladamos a las reglas <<no monótonas» un pro­
blema de decisión aún más complejo como es el de probar que una senten­
cia no se deriva de otras (problema ni siquiera semidecidible en el caso general 
de primer orden). Es claro que muchas veces la motivación de dicha infe­
rencia no monótona es la falta de conocimiento y la imposibilidad de infe­
rencia alguna (costosa o no). Pero el problema del test de consistencia ha 
hecho que los formalismos de raciocinio no monótono carezcan, en gene­
ral, de implementaciones efectivas, salvo para casos particulares. 

Distinguiendo las dos etapas del proceso, es posible extraer conclu­
siones por defecto en forma rápida. El costo computacional está en los 
controles de calidad. 
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Este resultado es paradojal si con el «salto a las conclusiones» se 
intenta imitar el «razonar de la gente», cuando evita el análisis de todas 
las circunstancias posibles. 

Como se afirmó en 11.2., el abordaje de problemas característico de 
la lA consiste en buscar heurísticas que eviten los análisis de todas las 
posibles alternativas. De hecho estas heurísticas son «inferencias por 
defecto ad hoc». El problema que detectamos es, entonces, el fracaso en 
construir marcos formales generales de estas inferencias, que sean <<natu­
ralmente computables». 

En la práctica, sin embargo, existen casos particulares en los que los 
formalismos son implementables de modo que realicen inferencias en tiem­
pos razonables. 

Estos casos particulares surgen de imponer restricciones al lenguaje 
en que se expresan las premisas del razonamiento o al tipo de teorías 
expresables. Ejemplos de esto son las restricciones que se hacen para 
lograr computar ciertos casos de circunscripción en Gelfond y Lifschitz 
(1988), o las que se hacen en Shoham (1988), sobre la expresividad de 
las teorías representadas, o el éxito del procedimiento de negación por 
falla en programas Prolog, o el uso de valores por defecto en redes semán­
ticas representando taxonomías. 

En su trabajo, Shoham demuestra que ciertas restricciones expresi­
vas en las teorías formuladas llevan a restringir el análisis a un único 
modelo. Una de las restricciones consiste en no permitir reglas Default 
con efectos opuestos y donde las premisas puedan ser consistentes (tener 
instancias comunes). En el caso conocido del Nixon diamond: 

los cuáqueros son pacifistas, 
los republicanos son no pacifistas, 

resulta claro que las premisas son consistentes y ese tipo de situaciones 
no pueden ser expresadas para asegurar condiciones de computabilidad. 
En particular, esta restricción evita el tener que establecer criterios de 
preferencias y tener que optar entre distintos conjuntos de Defaults con­
sistentes. 

Lo antedicho sugiere la idea de que el factor de complejidad sólo puede 
ser resuelto por una combinación de inferencias Default y restricciones 
expresivas. El proceso de control para poder aplicar una regla no monó­
tona, es naturalmente más tratable en lenguajes pobres (por ejemplo que 
sólo admiten cláusulas de Horn). En lenguajes más ricos expresivamente, 
las inferencias no monótonas conocidas constituyen operaciones de alta 
complejidad. 

8. La pragmática de las inferencias no monótonas 

¿Cómo deben entenderse estos mecanismos o reglas de «salto a las con­
clusiones»? ¿Son reglas de inferencia clásicas? 

Por un lado, una regla de inferencia lógica se caracteriza por inter­
actuar con los conectivos del lenguaje al margen de todo tipo de denota-
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ciones. Una regla que afirma ----, ( ----, a)- a, no tiene «contenido» extra, 
ligado a una teoría de un dominio particular. En ese sentido, podemos 
decir que es «vacua» de contenido. 

Las hipótesis de completamiento, de uso corriente en lA, tales como 
el Frame Axiom, la HMC, etc. suponen una gran cantidad de conocimiento 
específico. Aceptar ----, P(t) si no es derivable P(t) no es una decisión trivial. 
La justificación de estas hipótesis está en supuestos heurísticos sobre el com­
portamiento del mundo (o de ciertos dominios o contextos). 

Las reglas Default tampoco son generales. En realidad, son sustanti­
vas, en el sentido de que proveen conocimiento específico de lo que se 
espera que ocurra con ciertas propiedades de ciertos individuos en cier­
tos dominios. 

Si proponemos un Default que afirme: 
«Si una casa es habitable entonces está calefaccionada», 

resultará muy razonable en Escandinavia, pero muy irrazonable en zonas 
tropicales. 

Esto es así, ya que la razón de la adopción de una hipótesis derrota­
ble es económica. Se espera que, a la larga, si el Default esta bien ele­
gido, la mayoría de las inferencias será correcta. El caso es que el con­
cepto de «bien elegido» depende de factores externos -y dependientes 
del dominio- como el daño que puede hacer una inferencia errónea. Si 
el 5% de los pájaros no vuela, adoptar el supuesto «Los pájaros vuelan» 
es razonable. Si el 5% de la gente que anda por la calle tiene la costum­
bre de dar puñaladas en la espalda, el Default «si se cruza una persona 
por la calle, no es preciso cuidarse la espalda» es peligroso (si el porcen­
taje cae a 0,000005%, ya sería aceptable). 

Este mismo criterio pragmático es el que guía la utilización de nor­
mas presuntivas en el sistema jurídico. Un principio que afirma: «Si 
alguien falta de su domicilio y no da noticias por 5 años, se lo considera, 
a todos los efectos legales, como fallecido» es adoptado por la justicia 
considerando que el margen de error será muy bajo (esta vez en base a 
consideraciones referidas a las normas de convivencia social, y no consi­
deraciones estadísticas) y el beneficio de resolver cuestiones legales tra­
badas es muy alto. 

Los formalismos basados en ordenamientos de sentencias o de con­
juntos de estados, en cada caso apelan a criterios pragmáticos (considé­
rese lo que implica en este sentido «preferir» una conclusión u otra en 
el problema de Nixon diamond). Si bien se pueden señalar sus propieda­
des generales, dadas las propiedades del orden subyacente, cada lógica 
preferencial concreta es la que se construye a partir de un orden especí­
fico. En cada modelo preferencial, el orden particular < refleja un cono­
cimiento del dominio (una intuición del diseñador acerca de cuáles son 
los «modelos preferidos» en una aplicación de lA). En realidad, cada vez 
se están considerando teorías parciales de los dominios representados, 
teorías que engendran los casos particulares de reglas, meta-reglas, orde­
namientos, etc. en que se sustentan las inferencias no monótonas. 
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En resumen, podemos decir que el RNM se inscribe dentro del razo­
namiento pragmático, en el sentido en que es particular a un contexto, 
en el cual la información es limitada, y que emplea criterios heurísticos 
para arribar a conclusiones razonables. Sus reglas son, en realidad, meta­
reglas para razonar sobre dichos contextos particulares. La monotonía 
es una propiedad característicamente libre de contexto, y por eso no puede 
caber en este tipo de raciocinio. 

Cada LNM particular esta definida en una sola estructura de modelo 
y las inferencias en este modelo, que podríamos llamar inferencias prag­
máticas, se caracterizan por la verdad del antecedente en sólo un sub­
conjunto preferido pragmáticamente de los estados del modelo. Estas res­
tricciones hacen que tal vez sea más adecuado hablar de «Procedimientos 
lnferenciales No Monotónicos basados en Lógica» y que el problema de 
la nomonotonía, más que un problema con la lógica sea un problema 
acerca de cómo la lógica es usada. 

VI. LA LÓGICA EN LA INTELIGENCIA ARTIFICIAL (A MODO DE CONCLUSIÓN) 

... Ir may appear that logical proof is being opposed ro reasoning. The correct 
view seems ro be that logical proof is a rool used in reasoning ... (D. Israel). 

La pregunta que formulamos al final de la sección III era: ¿es el pro­
ceso de elaboración de la información del «robot» un proceso deduc­
tivo? De lo discutido hasta aquí, parece evidente que no. Los objetivos 
de la lA no se satisfacen reduciendo el proceso de elaboración de infor­
mación de un sistema inteligente a un demostrador de teoremas. Esta 
evidencia ha promovido en la lA y en la Lógica, desarrollos de lógicas 
no clásicas. Los más característicos han sido los motivados por el Razo­
namiento No Monótono. Sin embargo, los formalismos lógicos para 
el RNM no han resultado satisfactorios, hasta ahora, salvo en casos 
particulares. A partir de estas dificultades, cabe preguntarse: ¿Cuál es 
el lugar de la lógica en los procesos de reconstrucción formal del «racio­
cinio inteligente»? 

Creemos que la lógica retiene al menos dos roles de importancia, uno 
al interior y otro al exterior de los procesos deliberativos de los sistemas 
inteligentes. 

El primero surge a partir de entender las diferencias entre razonar 
y deducir. 

Como hemos visto, el razonar incluye el deducir, pero requiere tam­
bién ir más allá de lo absolutamente seguro. Es un fenómeno global (y 
no local, como la inferencia deductiva) y debe tener en cuenta juicios 
acerca de la relevancia y los pesos de evidencia de los argumentos en juego. 
Puede juzgar que las evidencias no son suficientes y solicitar más infor­
mación. Puede (y debe) eliminar viejas creencias, a la luz de nuevas evi-
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dencias, de acuerdo a criterios racionales determinados para cada caso. 
Supongamos que aceptamos una sentencia de la forma «si P entonces Q» 
y aceptamos el antecedente. ¿Nos obligaría este hecho a aceptar Q? No 
necesariamente. Tal vez tengamos muy buenas razones «de jerarquía supe­
rior» para creer no-Q. En todo caso esto no llevará a rever nuestra creencia 
en el condicional o en el antecedente. 

Eliminar viejas creencias no es en manera alguna ilógico, especial­
mente si ellas implican conflictos con las que ahora tenemos buenas razo­
nes para sostener. El punto es que no debemos esperar que sea la lógica 
la que nos diga qué retener y qué eliminar, ni que nos diga que hacer 
cuando -gracias a su ay uda- descubrimos que poseemos creencias 
inconsistentes. 

La deducción lógica, lejos de estar enfrentada al razonamiento, debe 
verse como una herramienta usada en el proceso de razonar. Los crite­
rios de calidad de la lógica son un punto de referencia sólido para eva­
luar la confiabilidad de las reglas del razonar. 

Razonar es más próximo a revisar creencias. En la base de un sis­
tema de revisión racional de creencias, tendremos alguna lógica, aunque 
luego el sistema inteligente decida las acciones a tomar en base a un 
esquema de preferencias de tipo pragmático. Las reglas de inferencia 
deductivas sirven para explicitar el contenido informativo de la Base de 
Creencias, pero no alcanzan para determinar las políticas racionales de 
transformación de dicha Base, que den cuenta de los procesos de «apren­
dizaje», a partir de las interacciones entre el robot y su medio. 

El paradigma del razonamiento de sentido común ha sido, en la última 
década, el RNM. Hemos visto que es posible entender estas inferencias 
no deductivas en términos de una combinación de inferencias deductivas 
y revisión de creencias, evitando la proliferación de nuevas lógicas, que 
muchas veces llevan a resultados antiintuitivos y / o poco operativos. 

En segundo lugar, la lógica tiene un rol descriptivo y, en cierto modo 
normativo, respecto de los mecanismos implementados en los sistemas de lA. 

Aun cuando descartemos la Lógica como simbolismo de representa­
ción y elaboración de los datos que el sistema posee, ella es una herra­
mienta adecuada para dar cuenta de los procesos que el sistema realiza 
en términos más confiables que una descripción computacional. 

Frente al argumento de que la lógica es «demasiado prolija» para ata­
car problemas inherentemente complejos y poco claros -los procesos 
cognitivos-, hay que coincidir en que cualquier modelo que pretenda 
echar luz sobre los fenómenos del razonamiento, tiene que poder ser enten­
dido claramente. De lo contrario, dado que el objeto modelado es de por 
sí poco conocido y la conducta del modelo no es totalmente clara, poco 
es lo que se podrá concluir o resolver. «In extremis» dicha argumenta­
ción contra la lógica es una argumentación contra todo rigor. 

Puede argumentarse que la comprensión de los alcances del modelo 
también puede hacerse en alguna teoría matemática. Esto es cierto. Sin 
embargo, considerando que: 
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a) asumimos la restricción de la representación de conocimientos 
declarativa, que implica una estructura proposicional (aunque no nece­
sariamente en un lenguaje de la lógica), donde una pieza de estructura 
del formalismo representará una aserción (conocimiento o creencia) acerca 
del dominio, y 

b) dada una representación declarativa (red semántica, «frame», 
estructura ad hoc para posiciones del ajedrez o cualquier otra), interesa 
determinar exactamente qué conocimiento está siendo representado (no 
sólo explícitamente, lo que finalmente se reduce a una enumeración, sino 
implícitamente) y caracterizar, mediante alguna «teoría de la verdad», 
cuán confiables son los conocimientos implícitos que el sistema puede 
inferir de los explícitos, en términos del universo que queremos modeli­
zar, entonces la lógica parece la herramienta más adecuada para anali­
zar y comprender el comportamiento del sistema. 

Este enfoque es el aplicado por Brachman y Levesque (1984), a la 
caracterización funcional de un esquema de Representación de Conoci­
miento (RC). En esta visión, no interesa el detalle de cómo está cons­
truido el sistema de RC o qué estrategias usa para ser eficiente. Lo que 
importa es lo que sabe del mundo (en términos de sus creencias básicas 
y de su capacidad de derivar de ellas otras creencias). De hecho Makin­
son ha utilizado la lógica con ese sentido meta teórico al estudiar las pro­
piedades de los formalismos del RNM. La lógica es también usada en 
Balkenius y Gardenfors (1990) para caracterizar el poder inferencial de 
ciertos tipos de redes neuronales. 

En síntesis, un rol fundamental de la lógica en lA es como herramienta 
para el análisis del contenido de conocimiento involucrado en la Base 
de Conocimientos (KB) del robot, antes que para reconstruir el modo 
de razonar de seres inteligentes. Es decir, que la lógica es el marco ade­
cuado para analizar el sentido de las expresiones que aparecen en los for­
malismos de representación y para juzgar la validez de las inferencias, 
independientemente de que los lenguajes lógicos sean, en sí mismos, ade­
cuados formalismos de representación, y de que la aplicación de reglas 
de inferencia deductivas a fórmulas lógicas sea un buen método para 
reconstruir el razonar de sentido común. 
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LÓGICA PARACONSISTENTE 

Newton C. A. da Costa y Renato A. Lewin 

1. INTRODUCCIÓN 

Varias son las razones que originaron el surgimiento de la lógica para­
consistente. Mencionaremos las siguientes: 

1) En la teoría de conjuntos, tratada en forma intuitiva y no axio­
mática por Cantor, su creador, y por los matemáticos de fines del siglo 
pasado, existe un principio básico denominado el axioma de separación 
(o de comprensión). 

Toda propiedad determina un conjunto, aquél formado por los obje­
tos que poseen tal propiedad. Este postulado parece sensato y figuraba, 
de modo implícito, en el sistema lógico-formal de Frege. Como sabemos, 
usando leyes y reglas lógicas muy simples, se puede probar que este pos­
tulado conduce a contradicción (la paradoja de Russell). 

Después del descubrimiento de la paradoja de Russell a comienzos 
del siglo xx, se hizo necesario axiomatizar la teoría intuitiva de conjun­
tos, restringiendo el principio de separación para evitar las paradojas. 
El camino seguido fue el de introducir restricciones al referido principio 
manteniéndose la lógica clásica (esencialmente el cálculo de predicados 
de primer orden, con o sin identidad) como lógica subyacente de las teo­
rías de conjuntos obtenidas. Aparecen así las teorías de Zermelo-Fraenkel, 
de Von Neumann-Bernays-G6del, de Kelley-Morse, de Quine (NF y ML), 
etc. 

Surge entonces la pregunta: tanto el principio de separación como 
la lógica elemental clásica parecen ser plausibles; ¿por qué entonces modi­
ficar el primero y conservar la segunda? ¿No sería posible mantener el 
principio y modificar la lógica tradicional? Evidentemente, en caso de 
que se quiera proceder de esta manera, la lógica resultante, debe «acep­
tar» contradicciones ya que el principio en cuestión nos lleva en forma 
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natural a inconsistencias. En realidad, la lógica clásica (y muchas otras 
como la intuicionista) es tal que si basamos en ella una teoría en la que 
podemos derivar una contradicción (una proposición y su negación), 
entonces la teoría es trivial, en ella se puede «demostrar cualquier cosa». 
Luego, si queremos desarrollar teorías de conjuntos en las cuales el prin­
cipio de separación esté sujeto a restricciones más débiles que aquellas 
de las teorías de conjuntos usuales, o que no esté sujeto a ninguna res­
tricción, debemos emplear lógicas tales que puedan servir de base a teo­
rías inconsistentes (contradictorias), pero no triviales. Estas lógicas se 
denominan paraconsistentes. 

Hoy en día se sabe que se puede construir numerosas teorías de con­
juntos, inconsistentes no triviales (ver Arruda, 1964, 1970a y 1970b; 
Arruda y da Costa, 1970, da Costa 1964d, 1965 Y 1986). 

En general, tales teorías contienen al conjunto de Russell, formado 
por los conjuntos que no pertenecen a sí mismos y solamente por ellos. 
Tal conjunto pertenece y no pertenece a sí mismo. En cierto sentido son 
teorías más fuertes que las teorías de conjuntos usuales ya que, además 
de los conjuntos normales, clásicos, poseen conjuntos «inconsistentes», 
como el de Russell. Puede demostrarse también que muchas de esas teo­
rías son no triviales si y solamente si ciertas teorías clásicas, como la de 
Zermelo-Fraenkel, son consistentes (ver da Costa, 1986). 

2) Se sabe que para ciertos cultores de la dialéctica (como en el caso 
de Hegel, según algunos de sus intérpretes), esa disciplina encierra con­
tradicciones. Por eso, autores como Popper argumentan que la dialéc­
tica es lógicamente imposible: en efecto, la lógica clásica no puede ser 
la lógica subyacente a la dialéctica, pues si eso ocurriese, sería trivial; 
luego, como en la época en que Popper estudió los fundamentos de la 
dialéctica no se conocía la lógica paraconsistente (algunos pensaban 
incluso que tal lógica no podría existir, como el mismo Popper), esto pro­
baba lógicamente la imposibilidad de la dialéctica. Ahora bien, la lógica 
paraconsistente, por si sola, no la justifica pero evidencia que las críticas 
a su estructura lógica, como las señaladas, son infundadas. La lógica de 
la dialéctica, en conformidad con algunas de sus interpretaciones, tiene 
que ser paraconsistente (ver da Costa y Wolf, 1980). 

3) El filósofo austríaco Meinong desarrolló una teoría de los obje­
tos, en la cual objetos como el círculo cuadrado son legítimos; ver Mei­
nong (1907). No podemos aquí entrar en detalles sobre esa teoría, sólo 
nos limitaremos a señalar que Bertrand Russell la criticó especialmente 
por conducir a contradicciones, al infringir la ley de contradicción. Una 
manera de superar tal dificultad sería el utilizar una lógica paraconsis­
tente como lógica básica de la teoría de Meinong. 

4) La lógica paraconsistente nació también del deseo de esclarecer 
mejor determinadas cuestiones lógicas. Por ejemplo, ¿qué es la negación? 
La negación clásica posee ciertas propiedades, pero hay varias negacio­
nes paraconsistentes que poseen propiedades análogas y que pueden, por 
lo tanto, también ser tenidas por negaciones. Aquí sucede algo similar 

186 



LÓGICA PARACONSISTENTE 

a lo que sucede con el concepto de recta, que puede ser tanto la recta 
de la geometría euclidiana como de las no-euclidianas. 

5) Existen teorías paraconsistentes de la verdad que extienden la teo­
ría tarskiana. Esto significa que hay semánticas alternativas de la semán­
tica clásica, así como hay geometrías distintas de la geometría euclidiana, 
mereciendo todas ser consideradas como geometrías. El deseo de saber 
si había semánticas paraconsistentes fue otro de los motivos de la crea­
ción de la lógica paraconsistente. 

6) La manipulación sensata de sistemas inconsistentes de manejo de 
información, por ejemplo como se da hoy en inteligencia artificial, fue 
otra razón para elaborar una lógica paraconsistente. Una situación simi­
lar ocurre cuando se trata de sistematizar logicamente códigos éticos o 
jurídicos, que en general son inconsistentes, sin intentar desfigurarlos 
haciéndolos consistentes. Hacer esto o bien es imposible en la práctica, 
o bien se transforma tales códigos en otra cosa: ya no estamos hablando 
de lo mismo. Por eso, el tratamiento paraconsistente de los códigos éti­
cos o jurídicos constituye una posible solución aunque existen autores 
que proponen otras alternativas. En tanto, en inteligencia artificial parece 
no haber indicaciones de una solución alternativa a la paraconsistente. 

Otras razones para la introducción de la lógica paraconsistente resul­
tarán evidentes a medida que avance nuestra exposición. 

Podemos pasar ahora a una presentación más rigurosa de la lógica 
pa raconsistente. 

Una teoría deductiva T se caracteriza por su lenguaje L, por su lógica 
Ly por sus principios específicos (axiomas y postulados). Supongamos que 
L contiene un símbolo para la negación (por ejemplo, ---¡ ). Se dice enton­
ces que T es trivial si todos sus enunciados (fórmulas, muchas veces sólo 
nos interesan las fórmulas cerradas u oraciones) son teoremas. En caso con­
trario se dice que T es no trivial. La teoría T se dice inconsistente (o contra­
dictoria) si ella contiene, al menos, dos teoremas de la forma a y ---¡ a, uno 
de los cuales es la negación del otro. En caso contrario T se dice consistente. 

Una lógica se dice paraconsistente si puede ser la lógica de teorías 
inconsistentes pero no triviales. Una tal teoría se denomina teoría para­
consistente. Luego una lógica es paraconsistente si puede ser la lógica 
subyacente de teorías paraconsistentes. Evidentemente la mayoría de las 
lógicas usuales, como la clásica, no son paraconsistentes. Por otro lado 
en una lógica paraconsistente se puede, a veces, basar teorías consisten­
tes; además, el que una lógica Lsea paraconsistente no implica que una 
teoría basada en ella no pueda ser trivial. 

Dada un lógica L, puede ocurrir que el lenguaje L contenga más de 
una negación, digamos ---¡ y -. En este caso, L puede ser paraconsis­
tente con respecto a una de estas negaciones, por ejemplo ---¡ , pero no 
con respecto a la otra negación -. Situaciones como ésa (y otras aún 
más complicadas) han sido consideradas, pero para los objetivos de este 
trabajo, no vamos a estudiarlas. 
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El principio de contradicción tiene varias formulaciones que no son 
equivalentes entre sí. Para nosotros, las dos siguientes son importantes: 

1. Dadas dos proposiciones a y ---, a, una de las cuales es la nega­
ción de la otra, una de ellas es falsa. 

II. La proposición ---, (aA ---, a) es verdadera, donde a es una pro­
posición cualquiera, ---, es el símbolo de negación y A representa 
el conectivo de conjunción. 

En una lógica paraconsistente ...1, la formulación 1 del principio de 
contradicción no puede ser válida. En efecto, si Les paraconsistente exis­
te al menos una teoría T, basada en ...1, que tiene como teoremas propo­
siciones de la forma a y ---, a; entonces a y ---, a deben ser ambas verda­
deras en T y el principio es violado. En tanto, en la formulación II, el 
principio puede valer en una lógica paraconsistente. 

ASÍ, hay leyes y reglas que no pueden ser válidas en una lógica para­
consistente. Si ...... y v representan respectivamente la implicación (que satis­
face la regla de Modus Ponens) y la disyunción, mencionaremos aquÍ algu­
nos principios que no son válidos: a ...... (---, a ...... 0),---, a""" (a""" 0), 
(aA ---, a) ...... 0, ((av0)A ---, a)""" 0. 

En relación a la lógica paraconsistente en nuestra opinión se puede 
asumir dos posiciones: 

1) La lógica para consistente es considerada rival de la lógica clásica, 
destinada a sustituirla en todos o algunos campos del saber. 

2) Ella puede considerarse un complemento de la lógica clásica; esta 
última sería la lógica básica aplicable en principio a todas las circunstan­
cias. La lógica paraconsistente constituiría una especie de formalismo 
lógico-matemático que en ciertas situaciones, por ejemplo en inteligen­
cia artificial, debería ser usado por motivos de conveniencia práctica aun­
que la lógica clásica continúe operando. 

Decidir, en caso de que sea posible, cuál de esas posiciones es la correcta, 
lo que constituye un problema de lógica filosófica, es importante pero no 
será tratado aquí. El desarrollo de la lógica paraconsistente como disci­
plina científica importante no depende de su solución. De cualquier forma 
el nacimiento de la lógica paraconsistente produjo un cambio en el para­
digma en el campo de la lógica, de la ciencia y de la filosofía, especial­
mente si la consideramos como rival de la lógica clásica. 

Algunas lógicas paraconsistentes difieren mucho de la clásica (por 
ejemplo la lógica de la paradoja de Priest, 1979). Sin embargo, hay siste­
mas paraconsistentes, que aunque difieren del clásico, lo contienen como 
una parte que se aplica en ciertos casos, que dan origen a una matemá­
tica paraconsistente más fuerte que la clásica y que contienen a ésta pro­
piamente y significativamente (ver da Costa, 1974b). 

Para terminar esta introducción, creemos conveniente hacer algunos 
comentarios sobre una lógica que es la «dual» de la paraconsistente: la 
lógica paracompleta. 
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El principio del tercero excluido es susceptible de diversas formula­
ciones alternativas, pero no equivalentes. Aquí nos interesarán dos: 

1. Dadas dos proposiciones contradictorias a y --, a, una de ellas 
es verdadera. 

Il. La proposición av--, a es verdadera. 

Esencialmente, una lógica paracompleta viola al menos una de estas 
formulaciones del «tertium non datuf». La lógica intuicionista de Brou­
wer y Heyting es paracompleta; lo mismo ocurre con varias lógicas poli­
valentes. 

Normalmente toda lógica paraconsistente tiene una dual paracom­
pleta y recíprocamente. Existen lógicas paracompletas que no son para­
consistentes y viceversa. Cuando una lógica es simultáneamente para­
consistente y paracompleta se le llama no-alética. Lógicas de esta última 
categoría han sido empleadas en los campos de la ética y del derecho. 

II. ASPECTOS HISTÓRICOS DE LA LÓGICA PARA CONSISTENTE 

La paraconsistencia es el conjunto de temas históricos, filosóficos y cien­
tíficos relacionados con el concepto de contradicción; engloba temas como 
la filosofía de Heráclito, Hegel y Marx, la naturaleza y los límites de la 
dialéctica, contradicción y realidad y el significado de una ontología para­
consistente (esto es, basada en una lógica paraconsistente). Actualmente 
la lógica paraconsistente constituye un asunto técnico y científico bien 
definido, al igual que, por ejemplo, la lógica tradicional, y no se con­
funde con la paraconsistencia en general. 

No nos ocuparemos aquí de la paraconsistencia en general sino sólo 
de la historia de la lógica paraconsistente como disciplina científica. Ade­
más sólo trataremos los aspectos que creemos más importantes de esa 
historia. Para tener una idea más acabada del tema el lector puede con­
sultar, por ejemplo, Arruda (1980 y 1984), da Costa y Marconi (1986), 
D'Ottaviano (1990) y Priest, Routley y Norman (1989). Una introduc­
ción elemental a la lógica paraconsistente, con referencias históricas es 
Grana (1983); Marconi (1979) también contiene abundantes observa­
ciones de índole histórica. La lógica relevante, es claro, está íntimamente 
ligada a la lógica paraconsistente; por lo tanto cabe mencionar también 
la obra de Routley et al. (1983), la cual contiene numerosas referencias 
históricas pertinentes. 

Dos precursores de la lógica para consistente fueron el lógico polaco 
J. Lukasiewicz y el filósofo ruso N. A. Vasilev. Ambos en 1910, en forma 
totalmente independiente, estudiaron la posibilidad de una lógica para­
consistente. El primero, en un artículo bien conocido (1910, traducción 
inglesa, Lukasiewicz, 1971), discurrió sobre una lógica donde no fuera 
válida la ley de contradicción en alguna de sus formas. Ahora bien, en 
aquella época no es extraño que él sólo considerase la lógica tradicional 

189 



NEWTON C. DA COSTA Y RENATO A. lEWIN 

en su formulación aristotélica; no obstante, el hecho es que él habla de 
la derogación de la ley de contradicción, lo que implica el aceptar tener 
proposiciones contradictorias verdaderas (esto es, pares de fórmulas con­
tradictorias a y --, a, simultáneamente verdaderas). Sin embargo, él no 
elabora ningún sistema explícito de lógica paraconsistente. 

V asilev, por su lado, modifica la lógica en su presentación aristoté­
lica, construyendo lógicas imaginarias, las cuales no eliminaban la exis­
tencia de contradicciones verdaderas (ver V asilev, 1925). Sin embargo, 
el lógico ruso no desarrolló sus sistemas dentro de los patrones de rigor 
y amplitud de la lógica contemporánea, permaneciendo prisionero de la 
concepción aristotélica de la lógica. La obra de Vasilev ha sido muy estu­
diada últimamente, especialmente por autores soviéticos como W. Smir­
nov y V. A. Bazhanov (Bazhanov, 1989, en una obra muy buena). La 
lógica brasileña A. 1. Arruda dedicó varios artículos a la obra de Vasilev 
(ver, por ejemplo, Arruda, 1977 y Arruda, 1984). 

El primer autor en formular un cálculo proposicional paraconsistente 
fue el lógico polaco S. Jaskowski, según él mismo afirma, a sugerencia 
de Lukasiewicz, en 1948. Él llamó a su cálculo lógico discusivo o discur­
sivo, ya que una de las motivaciones para construir un sistema era la 
siguiente: si queremos reunir en una única teoría todas las afirmaciones 
hechas en una discusión, como los términos usados no son empleados 
siempre con el mismo sentido, muchas veces sucederá que la teoría con­
siderada contendrá proposiciones contradictorias, defendidas por los dife­
rentes participantes de la discusión o por el mismo participante en momen­
tos distintos. Así, si debe evitarse la trivialización, la lógica de una teoría 
como ésa deber ser paraconsistente. 

Jaskowski no axiomatizó su cálculo proposicional. Tan sólo lo defi­
nió por intermedio de una interpretación en el sistema modal S5 de Lewis. 
No fue sino hasta varios años después que su sistema fue axiomatizado 
en da Costa y Dubikajtis (1968 y 1977) y extendido a un cálculo de pre­
dicados de primer orden y de orden superior, ver también da Costa 
(1975), Kotas (1975) y Kotas y da Costa (1977). Hoy en día la lógica 
discusiva está bien desarrollada y ha encontrado numerosas aplicacio­
nes; por ejemplo, es la lógica subyacente de una nueva conceptualiza­
ción de verdad pragmática, como se demuestra en da Costa y Chuaqui 
(en prensa). Se puede constatar fácilmente que la lógica discusiva tam­
bién puede ser interpretada como una lógica de la vaguedad. 

En el presente estado de evolución de la lógica, para tener una lógica 
o sistema lógico propiamente tal, es necesario que esté desarrollado al 
menos un cálculo de predicados de primer orden con identidad; en otras 
palabras, se hace imprescindible que se sepa operar con los conectivos 
logicos, pero además, con cuantificadores y la identidad. 

Si adoptamos ese punto de vista, podemos decir que el verdadero crea­
dor de la lógica paraconsistente fue N. C. A. da Costa. En efecto, en 
las décadas de los 50 y de los 60, en Brasil e independientemente de los 
trabajos de Lukasiewicz y de Vasilev, cuyas investigaciones sobre para-
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consistencia, así como los trabajos de ]askowski, quedaron prácticamente 
olvidadas, N. C. A. da Costa construyó jerarquías infinitas de cálculos 
lógicos paraconsistentes, cálculos proposicionales, cálculos de predica­
dos de primer orden, con y sin identidad, cálculos de descriptores y teo­
rías de conjuntos paraconsistentes, ver da Costa (1958-1974). Con sus 
discípulos brasileños desarrolló enormemente tal lógica, desarrolló lógi­
cas paraconsistentes de distinta naturaleza, por ejemplo sistemas rela­
cionados con la vaguedad en Arruda y Alves (1979a y 1979b); lógica 
polivalente en D'Ottaviano (1982, 1985a y 1985b); lógica relevante en 
Arruda y da Costa (1966 y 1984); lógicas deónticas y modales en da Costa 
y Carnielli (1986), Puga, da Costa y Carnielli (en prensa) y Puga (1985). 
N umerosos otros desarrollos de la lógica paraconsistente efectuados por 
miembros de la escuela brasilera de lógica, tales como A. Loparic, C. 
A. A. P. Abar, E. H. Alves, A. 1. Arruda, W. Carnielli, L. H. dos San­
tos, 1. M. L. D'Ottaviano, L. de Moraes, W. da Silva, J. Abe, D. Krause, 
L. P. de Alcántara y A. M. Sette, son descritos en D'Ottaviano (1990) 
y da Costa y Marconi (1989). 

La lógica paraconsistente dio origen a varios desarrollos técnicos que 
tienen un significado que trasciende el campo de la paraconsistencia. Aun­
que no podemos entrar en detalles, creemos conveniente señalar los 
siguientes: 

1) La algebrización de ciertas lógicas paraconsistentes no puede 
hacerse mediante las técnicas tradicionales de la lógica algebraica, a tra­
vés de las denominadas álgebras de Lindenbaum. Luego fue preciso que 
se elaborasen nuevas técnicas como se hizo por ejemplo en da Costa, Sette 
(1969). 

2) Se creó semánticas para las lógicas paraconsistentes; un método 
para ello es el método de las valuaciones (ver Grana, 1990b). Se verificó 
entonces que la teoría de la verdad de Tarski, como dijimos anterior­
mente, puede ser ampliada al caso en el que hay contradicciones «verda­
deras». También Routley y Meyer construyeron semánticas para la lógica 
relevante que se aplican al caso de la paraconsistencia (ver Routley y 
Meyer, 1976, y Routley, 1979). 

3) Se está desarrollando una matemática paraconsistente. Para citar 
dos ejemplos, ya se estudió una geometría afín paraconsistente en da Costa 
(1989), y en Mortensen (1990) se formula una versión paraconsistente 
del cálculo diferencial. Notemos, para terminar esta referencia a la mate­
mática, que ésta está Íntimamente relacionada con la matemática «fuzzy». 

La lógica paraconsistente se ha convertido en una de las disciplinas 
más cultivadas en el mundo, en gran medida, por sus aplicaciones a las 
ciencias de la computación, en especial, a la inteligencia artificial. 

Describiremos ahora superficialmente lo que se ha hecho en el campo 
de la lógica paraconsistente en algunos centros fuera de Brasil. 

En Estados Unidos, C. Pinter (1980) investigó un interesante sistema 
lógico, emparentado con la lógica discusiva de ]askowski que se deno-
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mina lógica de la ambigüedad inherente, la cual tiene aplicaciones en inte­
ligencia artificial y en lingüística. R. L. Epstein (1990) se ocupó de la 
paraconsistencia dentro del campo de una visión propia de la lógica. R. 
C. Wolf trató cuestiones filosóficas relacionadas con las lógicas paracon­
sistentes y relevantes (da Costa y Wolf, 1980 y 1985). N. Belnap (1977) 
trabajando en fundamentos de computación formuló una lógica tetra va­
lente que es paraconsistente. Otros lógicos y filósofos como]. M. Dunn 
y S. French han trabajado en tópicos cercanos a la paraconsistencia. 
Merece destacarse el artículo pionero de Nelson (1959), y el libro de N. 
Rescher y R. Brandon (1964). 

En Chile, R. Chuaqui trató la lógica de la verdad pragmática, en una 
de sus posibles interpretaciones, evidenciando con da Costa que ella es 
una lógica discusiva (ver da Costa y Chuaqui, en prensa). Otros lógicos 
chilenos han estudiado fundamentalmente aspectos algebraicos de la 
lógica paraconsistente; aplicando los conceptos desarrollados por Blok 
y Pigozzi han establecido la algebrizabilidad de algunos sistemas como 
el sistema Pj de Sette (1973). Asimismo, han demostrado la no algebri­
zabilidad de otros simplificando demostraciones anteriores (ver Lewin, 
Mikenberg y Schwarze, 1990; 1991). También han estudiado las álge­
bras que se obtienen en el proceso de algebrización (ver Lewin, Miken­
berg y Schwarze, 1994). 

Dentro de lo realizado en Argentina, recordemos el trabajo de lógica 
algebraica paraconsistente de M. Fidel (1977) y las investigaciones de 
A. R. Raggio en la formulación estilo Gentzen de ciertos sistemas para­
consistentes en Raggio (1968). El lógico argentino F. Asenjo, hoy radi­
cado en Estados Unidos, construyó una lógica antinómica y trató los fun­
damentos de la teoría de conjuntos, obteniendo, con]. Tamburino, una 
teoría de conjuntos paraconsistente extremadamente fuerte (ver Asenjo, 
1966 y Asenjo y Tamburino, 1975). Asenjo fue uno de los pioneros de 
la lógica paraconsistente, sus estudios iniciales se hicieron independien­
temente de los de da Costa y otros. 

En Uruguay hay un pequeño grupo de lógicos que se interesan sobre 
todo por las aplicaciones a la filosofía de la lógica paraconsistente. C. 
E. Caorsi ha intentado aplicar ciertos sistemas paraconsistentes a los fun­
damentos del psicoanálisis. 

El lógico F. Miró Quezada fue quien acuñó en 1976 la palabra «para­
consistencia» para designar la nueva lógica; también se deben a él los 
términos «paracompleto» y «no-alético». Miró Quezada se ha ocupado, 
principalmente, de la filosofía de la lógica paraconsistente (ver, por ejem­
plo, su artículo en Priest, Routley y Norman, 1989). 

En Israel, A. Avron (1990a y 1990b) desarrolló una versión nueva 
tanto de la paraconsistencia como de la relevancia. Sus resultados son 
significativos desde el punto de vista teórico y tienen aplicaciones a la 
informática. 

En Australia se encuentra uno de los grupos más fuertes de lógicos 
que se dedican a temas paraconsistentes. No es posible analizar aquí todo 
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lo que se ha hecho en Australia, nos limitaremos pues a hacer algunas 
indicaciones. Routley y Meyer estudiaron una forma de lógica para con­
sistente y relevante que bautizaron lógica dialéctica (ver Routley y Meyer, 
1976, importante sobre todo desde el punto de vista filosófico). Ellos 
desarrollaron una semántica para la lógica relevante que también tiene 
aplicaciones en el campo de la paraconsistencia. Routley trató temas como 
lógica deóntica paraconsistente, teoría de Meinong, teoría de la decisión, 
cálculo de probabilidades, etc. G. Priest, como ya observamos, creó un 
sistema paraconsistente, que ha intentado aplicar prácticamente a todos 
los problemas más importantes de la filosofía, la ciencia y la técnica. C. 
Mortensen ya estructuró un cálculo diferencial paraconsistente y está desa­
rrollando una matemática paraconsistente (la que incluye el álgebra, el 
análisis, la geometría y la mecánica). Otro lógico importante radicado 
en Australia es M. Bunder con una vasta contribución técnica (ver Bun­
der, 1974-1989). 

En la Unión Soviética, la lógica paraconsistente encontró un campo 
fértil para prosperar. Entre los especialistas soviéticos que desarrollaron 
nuevos sistemas, la historia o aplicaciones de la paraconsistencia men­
cionaremos a W. Smirnov, V. A. Bazhanov, A. S. Karpenko e I. S. Narski. 
El artículo de Karpenko (1984) es una muestra significativa de lo reali­
zado en la Unión Soviética. 

La contribución polaca a la paraconsistencia es fundamental. Fuera 
de ]askowski, mencionaremos a L. Dubikajtis y sus discípulos, quienes 
se dedicaron principalmente a la axiomatización de sistemas paraconsis­
tentes; también]. Kotas, quien elaboró simultáneamente sistemas poli­
valentes y paraconsistentes y profundizó una investigación de la lógica 
discusiva. 

En Italia, la obra de D. Marconi, N. Grana, S. Coradeschi, P. Bot­
tura y M. L. Dalla Chiara, entre otros, merecen mención. Dalla Chiara 
empleó técnicas paraconsistentes en los fundamentos de la física, en par­
ticular, de la mecánica cuántica. N. Grana (1983 y 1990a) escribió la 
primera introducción elemental a la lógica paraconsistente y estudió la 
lógica deóntica paraconsistente. D. Marconi, entre otras contribucio­
nes, trató la lógica de Hegel bajo el prisma de la lógica paraconsis­
tente. 

El filósofo español L. Peña (1979 y 1980) construyó una lógica para­
consistente de índole fuzzy basado en un profundo análisis filosófico. 
Fuera de eso ha aplicado sus ideas lógicas a los más variados tópicos, 
como por ejemplo, la dialéctica. 

En Francia (M. Guillaume, J. V. Béziau, . . .  ), en Bulgaria (H. Smole­
nov, S. Petrov, . . .  ) y otros países también se ha cultivado la lógica para­
consistente. 

Por motivos obvios una exposición histórica como la anterior no 
puede ser ni completa ni equilibrada, sin embargo, creemos que las refe­
rencias bibliográficas ayudarán al lector a completarla. 
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III. ALGUNOS ASPECTOS TÉCNICOS 

Describiremos en esta sección algunos sistemas deductivos paraconsisten­
tes, aspectos semánticos de éstos y por último algunos aspectos algebraicos. 

1. El sistema de Jaskowski 

Como dijimos Jaskowski no introdujo un sistema paraconsistente pro­
piamente tal sino que hizo una interpretación de sus conectivos discusi­
vos en la lógica modal S5 de Lewis. Su conjunción, implicación y equi­
valencia discusiva se definía como sigue 

Pl\dq:= pl\ Oq, 
P ..... d q : = Op ..... q 
p ...... " q : = ( Op ..... q)I\( Oq ..... p), 

donde 1\, ..... y O son los funtores de S5. El operador O se puede leer 
como «alguien afirma que». 

En da Costa y Dubikajtis (1968), se introduce la siguiente axiomati­
zación, el sistema j, para este cálculo y se inicia su estudio semántico: 

J,: D ( (A ..... B) ..... ( (B ..... C) ..... (A ..... C))) 
J2: D( (---,A ..... A) ..... A) 
J3: D (B ..... (AvB)) 
J4: D (D (A ..... B) ..... D(DA ..... DB) 
J5: D( (A ..... C) ..... ( (B ..... C) ..... ( (AvB) ..... C))) 
J6: D (A ..... (---,A ..... B)) 
J7: D (A ..... (AvB)) 
J8: D (DA ..... A) 
J9: D (A ..... D OA) 

R . A,D(A ..... B) 
l '  B 

OA 
R2 : ;r-

Allí prueban que el sistema j es equivalente a la lógica de jaskowski. 
En un trabajo posterior (da Costa, Dubikajtis, 1977), los autores intro­
ducen sistemas de lógica discusiva de orden superior basados en S5w y 
definen una semántica que extiende a los modelos de Kripke para lógica 
modal. 

Resulta claro que a cualquier lógica modal puede asociarse la corres­
pondiente lógica de jaskowski. Éstas fueron estudiadas en Kotas y da 
Costa (1977), siendo algunas de ellas interesantes. 

2. La jerarquía Cn, 1:::s n:::S w, de da Costa 

El cálculo Cl tiene como símbolos primitivos variables proposicionales 
---, , v, 1\, ..... y paréntesis. Los axiomas y reglas de C 1 son los siguientes: 
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Al: A->(B->A) 
A2 : (A->B)->((A->(B->C))->(A-> C)) 
A3 : A ->(B-> A"B) 
A4 : A"B->A 
As : A"B->B 
A6 : (A-> C)->((B-> C)->((AvB)->C)) 
A7 : A->AvB 
As : B->AvB 
A9:-----,-----,A->A 

AJO: Av-----,A 
AlI : B°->((A->B)->((A->-----, B)->-----, A)) 
AI2 : Ao"B°->(A->B)O"(A,,B)O,,(AvB)O 

MP: 
A,�->B 

donde A ° : = -----, (A" -----, A). Intuitivamente, A ° significa que A se com­
porta «bien», es decir, no es contradictoria. Esto se fundamenta en el 
axioma A 11, el que no dice otra cosa que el principio de reducción al 
absurdo se puede aplicar siempre que la oración que se «corta» no sea 
contradictoria. El axioma A 12 nos dice que el buen comportamiento se 
extiende a las oraciones complejas. Para justificación intuitiva de estos 
axiomas ver da Costa y Carnielli (1986). 

Para 1 � n < w definimos 

A n : = A o .. 0, n veces y 
A(u) :::;;Ao"Aoo" ... "Au. 

Los cálculos C'" 1 < n < w, se obtienen reemplazando los axiomas 
A" y Al2, respectivamente, por 

A;'I : Bru)->((A->B)->((A->-----, B)->-----, A)) 
A ;'2 : A ru)"Bru)->(A -> Byu)"(A,,Byu),,(AvBYu). 

Finalmente Cw está definido por los axiomas Al-AJO y la regla MP. 
En los cálculos C'" n < w, se define la negación fuerte 

-----, "·A: = -----, A"A (u) 

No es difícil verificar que -----, ". tiene todas las propiedades de la nega­
ción clásica. 

Algunos teoremas importantes que pueden encontrarse en da Costa 
(1958-1974) son los siguientes: 

T eorema: Todas las reglas y esquemas válidos del cálculo proposicio­
nal positivo clásico son válidos en Cm i � n < w. 

Teorema: Si r es un conjunto de oraciones y Al' ... ' A", son las com­
ponentes primas de las fórmulas de ru {A), entonces r 1- Co A si y sólo si 
r, A;�')co A, para 1 �n<w, donde Co es el cálculo proposicional clásico. 
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En virtud de este teorema, todos los teoremas de Co son válidos en 
C n, 1::5 n < w, para las oraciones « buenas». 

Un sistema no trivial S es finitamente trivializable si existe una fór­
mula F tal que el sistema obtenido al agregar F a S, como nuevo axioma, 
es trivial. 

Teorema: Los sistemas C'" 1::5 n::5 w, son no triviales. Los C'" 
1 ::5 n < w son finitamente trivializables, pero Cw no lo es. 

Otro resultado interesante que aparece en Alves (1976) es el siguiente: 

Teorema: Los axiomas de C'" 1 ::5n<w, son independientes. Cada 
sistema es estrictamente más fuerte que los que lo siguen. 

En Urbas (1989) se hace notar que los cálculos Cn, 1::5 n < w, no tie­
nen la propiedad de sustitución de equivalentes; también se demuestra allí 
que si agregamos reglas para remediarlo, por ejemplo RC : C--+ D 

---, D --+ ---, C 

todos los sistemas excepto Cw, colapsan a Ca. Esta debilidad está en la 
base de la no algebrizabilidad de estos sistemas, como veremos más ade­
lante. 

3. Las jerarquías C,; y C,�, 1::5 n < w 

Da Costa extendió su jerarquía al cálculo de predicados de primer orden 
y de primer orden con identidad obteniendo los sistemas C,; y C,�, 
1::5 n < w, respectivamente. 

Los axiomas para C,;, 1::5 n < w son los de Cn, 1::5 n < w, más los si­
guientes: 

A;: Si A Y B son fórmulas congruentes (ver Kleene, 1952), o una se 
obtiene de la otra eliminando cuantificadores vacíos, entonces A +-+ B es 
un teorema. 

A;: Vx(A(x)) (n)--+( VxA(x))(n) 
A;: Vx(A(x))" ')--+( �xA(x))(n) 

Los postulados de C� son los de Cw más los del cálculo de predicado 
clásico y A';. 

Los postulados de C,�, 1::5 n < w, son los de C,; más los axiomas 
usuales para la identidad. 

C¿ obtenido de C; agregando el nuevo postulado ---, (Ai\ ---, A), es 
el cálculo de predicados clásico. 

A modo de ilustración, las siguientes oraciones no son válidas en C;': 

---, �x---' A(x)+-+ VxA(x) 
---, Vx---, A(x)+-+ �xA(x). 

Teorema: Los cálculos C,; y C,�, 1::5 n < w, son indecidibles. 
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Por último, podemos decir que los cálculos C;, 1::5 n < w, son exten­
siones conservadoras de los respectivos cálculos Cn' Lo mismo ocurre 
para Cn= y C,;, 1::5 n < w. 

4. Semántica 

En da Costa y Alves (1977) se presenta una semántica estilo Henkin sobre 
la base de una generalización del concepto clásico de valuación. Con ellos 
demuestran que los sistemas de da Costa son completos. 

Una valuación para Cn, 1::5 n <w, es una función v:F-> {O,l }, donde 
F es el conjunto de las fórmulas de Cn, tal que 

i) Si v(A) = 0, entonces v( -, A) = 1, 
ii) Si v( -, -, A) = 1, entonces v(A) = 1, 

iii) Si v(B'
n
})=v(A->B)=v(A->-,B) = 1, entonces v(A)=O, 

iv) v(A->B) = 1 si y sólo si v(A)=O o v(B)=l, 
v) v(AI\B) = 1 si y sólo si v(A) = 1 Y v(B) = 1, 

vi) v(AvB) = 1 si y sólo si v(A) = 1 o v(B) = 1, 
vii) Si v(Al

n
») = v(B'

n
}) = 1, entonces v( (A -> B)I"}) = v( (AI\B)'

n
}) 

= v((AvB)l
n
}) = 1. 

Una valuación es un modelo de un conjunto de oraciones r si y sólo 
si para todo A Er , v(A) = 1. El concepto de consecuencia semántica r � A 
se define en la forma habitual. 

Podemos enunciar los teoremas demostrados en las obras citadas. 

Teorema: Todo conjunto maximal no trivial de oraciones de C'" 
1 ::5 n < w, (consistente o no) tiene modelo. 

Teorema: r f- en A si y sólo si r � A, 1::5 n < w. 
Teorema: Los cálculos Cn, n::5w son decidibles. 

Cabe aquÍ destacar que en Arruda (1975) se demuestra que estos sis­
temas no son decidibles por matrices finitas. En Arruda y da Costa (1977) 
se extiende el método de valuaciones a los sistemas c,:, 1::5 n < w. El caso 
de C� y Cw= requieren de un tratamiento especial. 

5. Aspectos algebraicos 

La construcción del álgebra de Lindenbaum de un sistema lógico ha pro­
ducido grandes frutos, sin embargo, no puede aplicarse a la mayoría de 
los sistemas paraconsistentes. El motivo de esto es que la relación de equi­
valencia correspondiente no es una congruencia, o bien, no es compati­
ble con el conjunto de los teoremas del sistema. Si bien el concepto de 
Lindenbaum-algebrizable estaba claro, no resultaba claro si existen otros 
métodos de algebrizar una lógica. El motivo de esto es que no existía 
una teoría general de la algebrizabilidad de sistemas deductivos. Cree­
mos que el trabajo reciente de Blok y Pigozzi (1989), provee ese marco. 
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Se ha intentado algebrizar los cálculos Cn, 1 :S, n:S, w, al menos de tres 
maneras distintas. Da Costa (1966b), y da Costa y Sette (1969) presen­
taron una forma de algebrización que refleja algunas propiedades de sus 
sistemas lógicos. 

Carnielli y de Alcántara (1984) presentan en términos conjuntistas 
una versión algebraica de C 1, a la que llaman álgebras paraconsistentes 
de conjuntos. Éstas contienen un cuasi-orden que representa la deduci­
bilidad lógica del sistema C j' 

Estas algebrizaciones, si bien reflejan algunas propiedades algebrai­
cas de los sistemas, tienen la dificultad de que no se puede identificar 
fórmulas intuitivamente equivalentes, luego los modelos son más com­
plicados. 

Mortensen (1980) contiene la primera demostración de que Cj (y 
por lo tanto Cn, n < 1) no es Lindenbaum-algebrizable. Allí se prueba 
que en el álgebra absolutamente libre de fórmulas de C j, no existe una 
relación de congruencia no trivial que sea compatible con los teoremas 
de CI• Lewin, Mikenberg, Schwarze (1991) contiene una versión sim­
plificada de este resultado. 

Usando los métodos desarrollados en Blok y Pigozzi (1989), se ha 
algebrizado la lógica P' de Sette (1973) y la lógica]3 de D'Ottaviano y 
da Costa (1970), el sistema de Batens (1980) y otros. Estos resultados 
pueden encontrarse en Lewin, Mikenberg y Schwarze (1990), Blok y 
Pigozzi (1989), y Lewin, Mikenberg y Schwarze (1989). 

IV. PRINCIPALES APLICACIONES DE LA LÓGICA PARACONSISTENTE 

Dividiremos las aplicaciones más significativas de la lógica paraconsis­
tente en aplicaciones filosóficas, aplicaciones científicas y aplicaciones 
tecnológicas. De la exposición anterior se entrevé muchas de tales apli­
caciones. En esta sección nos limitaremos a mencionar algunas otras que, 
en nuestra opinión, son de gran importancia. 

1. Aplicaciones filosóficas 

Gracias a la lógica paraconsistente, la lógica dialéctica y la teoría de los 
objetos de Meinong tienen formulaciones lógicamente inobjetables. Tam­
bién, comprendemos mejor la noción de negación y sus posibles varian­
tes; así también, como lo hicimos notar, existe una teoría de la verdad, 
similar a la de Tarski, que es paraconsistente. Claramente todo esto con­
lleva revisiones de algunas tesis filosóficas las que, para ser justificadas, 
requieren de nuevas indagaciones lógicas. 

Otra aplicación se refiere a la ontología, la disciplina de las caracte­
rísticas más generales de lo que existe. Si se usa la lógica tradicional como 
lógica de la ontología, entre los objetos existentes no se encuentran, auto­
máticamente, ciertos objetos «inconsistentes», como por ejemplo el con-
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junto de Russell. Sin embargo, cuando recurrimos a una lógica paracon­
sistente, todo cambia. Como dijimos, hay teorías de conjuntos donde el 
conjunto de Russell «existe». Luego, una ontología fundada en una lógica 
paraconsistente puede, en principio, contener objetos contradictorios. 
Aceptar o no esa tesis implica, obviamente, que se argumente en profun­
didad y se analice los cimientos tanto de la lógica como de la ontología. 
En cierto sentido se puede sustentar que mientras más débil sea nuestra 
lógica, tanto más rica es nuestra ontología. 

La propia lógica paraconsistente nos obliga a repensar la misma 
noción de lógica. ¿Es la lógica paraconsistente una verdadera lógica? Estos 
problemas, que surgen en relación a todas las logicas no-clásicas, pro­
puestas como rivales de la lógica clásica, asumen un cariz dramático en 
lo tocante a la lógica para consistente ya que ésta deroga el principio de 
contradicción, generalmente considerado como el más evidente de todos. 
Lo que la lógica en cuestión parece demostrar es que existe logicidad 
incluso si este principio es limitado. Sin embargo, todo indica que los 
sistemas paraconsistentes necesitan de él, al menos en parte, para su desa­
rrollo. 

La utilización de la lógica para consistente hace repensar muchos pro­
blemas filosóficos de extraordinario interés y en eso reside una de las más 
sobresalientes aplicaciones de la misma en el campo de la filosofía. 

2. Aplicaciones a la ciencia 

En matemática, la lógica paraconsistente ha originado nuevas ideas y 
métodos. Así, hoy existe una teoría de modelos paraconsistentes que, en 
su formulación general, se convierte en una semántica para cualquier sis­
tema lógico (ver Grana, 1990b). Las versiones paraconsistentes de la geo­
metría y del cálculo dieron origen a nuevos conceptos y estructuras mate­
máticas. Creemos que eso no destruye la matemática tradicional sino que 
la amplía y pone en evidencia sus limitaciones. Hay aquí un progreso 
efectivo y ampliación de horizontes. 

Ya mencionamos que la paraconsistencia entró en el campo de la 
física. Ciertas formulaciones de la mecánica cuántica involucran nocio­
nes paraconsistentes como pusieron en evidencia Dalla Chiara y su 
escuela. 

También se ha intentado aplicaciones a la psicología (ver da Costa 
y French, 1990). 

3. Aplicaciones tecnológicas 

Sin duda las más significativas y atractivas aplicaciones de la lógica para­
consistente se verifican en el dominio de la informática, en particular, 
de la inteligencia artificial. 

Para manipular informaciones inconsistentes, no existen sistemas lógi­
cos apropiados y como dejamos claro anteriormente, éstos deben ser para-

199 



NEWTON C. DA COSTA Y RENATO A. lEWIN 

consistentes. Así, en Subrahmanian (1987), y Blair y Subrahmanian (en 
preparación, 1987a y 1987b) se introduce un sistema lógico paraconsis­
tente, denominado lógica anotada, estableciendo una forma de progra­
mación paraconsistente. La lógica anotada empleada por estos autores 
fue construida sólo parcialmente, dado que su finalidad inicial era servir 
de base a una programación paraconsistente. La formulación de la lógica 
anotada como un sistema lógico completo es obra de da Costa, Subrah­
manian y Vago. Ésta está siendo desarrollada por estos autores y por 
J. Abe. Se intenta desarrollar una lógica anotada de orden superior, una 
teoría de modelos anotada y una teoría de conjuntos anotada. 

No es posible entrar aquí en los detalles técnicos del tema ya que son 
altamente matematizados. Lo único que debe quedar claro es que la pro­
gramación anotada evidencia una enorme fuerza y simplicidad, encon­
trando las más variadas aplicaciones en numerosos sistemas expertos de 
la economía, la medicina, etc. Para una descripción de la programación 
paraconsistente, consultar da Costa y Subrahmanian (1989). 

Técnicas paraconsistentes no anotadas importantes en programación, 
demostración automática de teoremas e inteligencia artificial son las de 
Carnielli (1987, 1990), Carnielli y Marques (1990) y Buschbaum y 
Pequeno (en prensa). 

En síntesis, la manipulación de sistemas complejos de información, 
que generalmente aparecen por ejemplo en inteligencia artificial, sólo 
puede ser efectuada de modo natural y cómodo por medio de técnicas 
paraconsistentes. Quizás no sea una exageración afirmar que las máqui­
nas del futuro serán, básicamente, paraconsistentes. 
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LOGICA EPISTÉMICA 

Max A. Fr eund 

INTRODUCCiÓN 

Nuestro discurso sobre el conocimiento y creencia adquiere diversas pers­
pectivas y niveles de generalidad. Podemos establecer, por ejemplo, rela­
ciones entre los mecanismos biológicos del ser humano y el conocimiento 
de éste, concentrarnos en la fundamentación del conocimiento matemá­
tico o ligar los elementos psicológicos a las creencias cosmológicas. Este 
tipo de discurso ha sido denominado «epistémico» y es la forma de dis­
curso presente en este artículo. Sin embargo, no todas las perspectivas 
y niveles de generalidad de este discurso se desarrollarán aquí. No trata­
remos, por ejemplo, las dimensiones filosóficas o sociopsicológicas ya 
apuntadas. 

La dimensión de nuestro discurso interpretará la entidad presupuesta 
en los conceptos de conocimiento y creencia, esto es, aquello que conoce 
o cree (el cual llamaremos «el agente»), de una manera muy general. Este 
enfoque, entonces, no se concentrará solamente en un agente con ciertas 
características definidas (como podría ser un ser humano), sino que con­
templará las diferentes posibilidades que ofrece el uso de los conceptos 
de creencia y conocimiento. De este modo, nuestra dimensión permitirá 
identificar, en ciertos casos, aquello que conoce o cree como un ser 
humano particular y, en otros, como un grupo social, individuo ideal, 
computador, serie de computadores o, en forma más general, como un 
autómata o serie de autómatas l. 

Nuestro discurso toma como punto de partida la posibilidad misma 
de razonar relativo a un agente o agentes dados. Este punto de partida 
considera el hecho patente de que ciertos razonamientos, dentro de con­
textos epistémicos, no parecen regirse por las lógicas clásicas pro po si-

1. Cf. Hopcroft y Ullman (1979) para detalles sobre teoría de autómatas. 
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cional o de primer orden con identidad 2. Recuérdense dos principios 
básicos en estas lógicas: la regla de reemplazo de oraciones equivalentes 
y la ley de Leibniz de substitución de los idénticos 3. 

Debería ser posible, de acuerdo con la ley de Leibniz, argumentar 
que (C) José Rubí sabe que César Augusto Sandino fue mandado asesi­
nar por el padre del dictador nicaragüense que murió en Paraguay, a partir 
de las afirmaciones: i) José Rubí sabe que César Augusto Sandino fue 
mandado asesinar por el padre de Anastasia Somoza Debayle, y ii) Anas­
tasia Somoza Debayle es el dictador nicaragüense asesinado en Paraguay. 
Por otra parte, la regla de reemplazo debería justificarnos en la siguiente 
inferencia: i ,:.) Julio Ramírez cree que una función computable es recur­
siva. ii':') Una función es recursiva si y sólo si es computable por una 
máquina de registros ilimitados. Por lo tanto, (C:·) Julio Ramírez cree 
que una función computable es computable por una máquina de regis­
tros ilimitados. 

Los razonamientos antes descritos, sin embargo, no pueden ser con­
siderados válidos, pues es posible que (i), (ii), (i':') tanto como (ii':') fue­
sen verdaderas, pero (C) y (C:·) falsas. En el caso de C, es posible, por 
ejemplo, que Rubí no supiera a dónde se fue Somoza al huir de Nicara­
gua o si murió. En el segundo caso, podría ser que los conocimientos 
de Julio sobre funciones recursivas se hubiesen limitado a un curso intro­
ductorio de teoría de computabilidad en donde el tema de los registros 
ilimitados nunca fue considerado. 

Hay argumentos, por lo tanto, que no parecen obedecer a principios 
importantes de la lógica clásica. Una manera de explicar estas anoma­
lías ha sido suponer que los operadores de la forma « 8 sabe que �» y 
« 8 cree que �» son, en realidad, relaciones sintácticas de primer orden, 
esto es, en forma más precisa, relaciones entre individuos y nombres de 
oraciones. Si S es una oración, designaremos el nombre de esta oración 
con «S». De acuerdo con esa propuesta, entonces, las oraciones (i':') e 
(i) deberían ser expresadas, respectivamente, como Cree (Julio, «una fun­
ción computable es recursiva») y Sabe (José Rubí, «César Augusto San­
dino fue mandado asesinar por el padre de Anastasia Somoza Debayle»). 
Esta interpretación mostraría, evidentemente, por qué los principios lógi­
cos de primer orden mencionados son inaplicables: en el primer razona­
miento, porque el término «Anastasia Somoza Debayle» en (ii) y en (i) 
constituirían diferentes nombres; en el segundo, porque la oración «una 
función computable es recursiva» en (i':') ya no sería una oración, sino 
un nombre. 

La propuesta sintáctica permitiría tratar principios relativos a opera­
dores, ligados a los conceptos de creencia y conocimiento, como teorías 
de primer orden. Sin embargo, esta propuesta, sugerida, por ejemplo, 

2. el. Quesada, 1994, 
3. ¡bid. 
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en Quine (1975), ha presentado varios problemas. Entre éstos, el funda­
mental, el cual se sigue de resultados expresados en Montague (1963) 
y Thomason (1980), es que cualquier teoría de primer orden que con­
tenga niveles de aritmética suficientes para permitir expresar la sintaxis 
de la teoría y ciertos principios epistémicos relativos a las relaciones Sabe 
(o, «R») o Cree (o, «R») es inconsistente4• Estos principios, sin embargo, 
son de amplia aceptación. 

Por los problemas apuntados, nuestro enfoque no se orientará den­
tro de la interpretación sintáctica. Asumirá, más bien, que los operado­
res de la forma «o sabe que R», y «o cree que R», así como muchos otros 
ligados a los conceptos de conocimientos y creencia, hacen inoperantes 
algunos de los principios de la lógica clásica 5. El estudio de las propie­
dades lógicas de esos operadores o, en forma más precisa, el análisis 
lógico-formal del razonamiento sobre conocimiento y creencia se deno­
mina <<lógica epistémica» 6. La dimensión del discurso epistémico en el 
presente artículo se centrará en este análisis. Sin embargo, no intentare­
mos hacer una compilación de la literatura existente en lógica epistémica. 
Preferiremos referir al lector a ciertas obras que cumplen esta función, 
tales como Lenzen (1978), y Baeuerle y Cresswell (1989). AquÍ nos ocu­
paremos, más bien, de describir, en forma general, los métodos que ha 
tomado tal lógica en su objetivo de establecer principios y condiciones 
bajo las cuales se da la relación de consecuencia lógica en contextos epis­
témicos. 

1. LENGUAJES FORMALES EPISTÉMICOS 

Como análisis formal que es, la lógica epistémica enuncia los principios 
generales de consecuencia lógica, en contextos epistémicos, en relación 
con lenguajes formales. Diversos niveles de complejidad con respecto a 
estos lenguajes han sido explorados. Se han considerado lenguajes muy 
simples como los proposicionales así como más complejos como los de 
primer orden o de órdenes superiores, a los cuales se han agregado ope­
radores epistémicos 7. 

En el caso de lenguajes proposicionales, encontramos que contienen 
un conjunto enumerable de proposiciones atómicas, PI' P 2'" Y un con­
junto de constantes lógicas -->, ---, , (, ). Estas constantes han de inter­
pretarse, intuitiva y respectivamente, como la implicación, negación, 
paréntesis izquierdo y paréntesis derecho. El lenguaje ha de contener tam­
bién un conjunto finito de operadores proposicionales O j ••• O n, cuya 

4. Sobre cómo la aritmética puede expresar la sintaxis de una teoría, ef. Mosterín, 1994. 
5. Sin embargo, para desarrollos ulteriores de la propuesta sintáctica, d. Hass, 1986; Asher y 

Kamp, 1986; Koons, 1988; y Perlis, 1988. 
6. La idea de una lógica epistémica se remonta a van Wright. 
7. Para detalles sobre lenguajes y lógicas de órdenes superiores, d. Jané, 1994. 
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interpretación intuitiva los constituye en operadores epistémicos. Lo que 
es una fórmula bien formada (fbf) es definida en estos lenguajes de la 
siguiente manera: 1) toda variable proposicional es una fbf; 11) si o y 
u son fbfs entonces ---'0, (o--->u), Omo (m:sn) también lo son. Como 
ejemplo, podemos citar el lenguaje que tiene como operadores So ... Sn 
(para algún número natural n) y en donde «S¡o» (i:s n) es interpretado 
intuitivamente como «el agente i sabe que o». Otros operadores episté­
micos que han sido expresados en lenguajes proposicionales incluyen «u 
cree que íS», «es cognoscible que íS», «es cognoscible en forma construc­
tiva que íS», «íS puede ser probado» y «íS es de conocimiento común». 
Nótese que no siempre un operador tiene que hacer explícito el agente, 
como sucede en los dos últimos operadores. 

En el caso de lenguajes epistémicos de primer orden, encontramos 
que contienen, además de las constantes lógicas de lenguajes proposicio­
nales y operadores epistémicos, un conjunto enumerable de variables de 
individuos Xl' x2 • • •  , un conjunto enumerable de constantes de indivi­
duos al' a2, a3 • • •  , así como un conjunto enumerable de predicados y 
otro de funciones de cualquier número de argumentos PI' P 2, P 3,··· Y f" 
f2 • • •  ; y un operador V (llamado el cuantificador universal). Podemos 
extendernos a lenguajes de órdenes superiores agregando, como es bien 
conocido, un conjunto enumerable de variables por cada orden. 

Cómo hemos de definir los que es una fbf dentro de lenguajes de pri­
mer o de órdenes superiores se vuelve problemático, fundamentalmente 
por las objeciones expuestas en Quine (1971) respecto a la cuantifica­
ción dentro de contextos intensionales. Por razones de espacio no pro­
fundizaremos en estas objeciones y las respuestas a éstas. Preferimos referir 
al lector a Lenzen (1978) para un resumen de la situación. Sí podemos 
hacer notar que nuestra actitud ante estas objeciones determinará si hemos 
de asumir, por ejemplo, en el caso de lenguajes de primer orden episté­
micos, la cláusula (lIla): si o es una fbf, entonces (Vx)o es una fbf; la 
cláusula (lIIb): si o es una fbf no epistémica (esto es, sin operadores epis­
témicos), entonces (Vx)o es una fbf; o la cláusula (lIIc): si o es una fbf 
que no es a la vez abierta (esto es, con variables libres) y epistémica, enton­
ces (Vx)o es una fbf. En otros términos, de acuerdo con nuestras sensi­
bilidades, podríamos aceptar o no que se cuantifique dentro de contex­
tos epistémicos como podría ser (Vx)---, SnFx (para algún nEN), en el 
caso de un lenguaje de primer orden con los operadores S, ... Sn antes 
mencionados. 

Designemos con LE- {O 1 • • •  On J un lenguaje (ya sea proposicional, de 
primer o de orden superior) con operadores O, ... On. Como hicimos 
notar anteriormente, se parte de una interpretación intuitiva epistémica 
de estos operadores, así como en LE- {S , ... Sn}, por ejemplo, partimos 
de la interpretación intuitiva de S¡o (i:s n) como el «agente i sabe que 
o». La lógica epistémica puede proceder en dos direcciones (no exclu­
yentes) de análisis lógico de operadores epistémicos: una, que llamare­
mos «sintáctica», y la otra «semántica-formal». 
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En la dirección sintáctica se contempla un subconjunto Ax de fbfs 
del lenguaje (los axiomas) y un conjunto R de reglas de transformación 
(las reglas de inferencia). Obtenemos de este modo un sistema formal 
axiomático, esto es, un triple < L-{On ... On L Ax, R>. La idea general 
es que el sistema formal capture los aspectos lógicos esenciales de los ope­
radores. 

A manera de ejemplo, consideremos el lenguaje proposicional 
LE-{Sl",SnL para algún número natural n. Relativo a este lenguaje, 
podemos formular un sistema formal, el cual llamaremos «el sistema H". 
Sean o y a fbfs del lenguaje e i:5n. H está constituido por las siguientes 
reglas y esquemas de axiomas 8. 

Axiomas 

Al. Todas las tautologías proposicionales, 
A2. (S¡o & S,(0-+8))-+S¡8, 
A3. S¡o-+o, 
A4. S¡o-+S¡S¡o, 
AS. ----, S¡o-+S¡----, S¡o; 

Reglas de inferencia 

Rl. si o, o -+ a, entonces a 
R2. si a, entonces S¡a. 

Al y R1 son elementos de la lógica proposicional clásica. A2 afirma 
que el conocimiento de un agente está cerrado bajo la implicación y R2 
que está cerrado bajo las deducciones del sistema. A3 expresa la idea clá­
sica de que se conocen sólo verdades. A4 y AS son axiomas de introspec­
ción: el agente puede contemplar su conocimiento y sabrá lo que él conoce 
y no conoce. Es importante hacer notar que se ha discutido ampliamente, 
dentro de círculos filosóficos, sobre lo apropiado de este sistema como 
una formalización del concepto «a sabe que B». El lector puede consul­
tar Lenzen (1978) para una guía completa sobre estas discusiones. Sin 
embargo, queremos mencionar que A2 y R2 son los elementos que más 
controversia han causado, pues nos fuerzan a concebir el agente como 
un cognoscente ideal: un agente que conoce todas las fórmulas válidas 
así como todas las consecuencias lógicas de su conocimiento. Esto, obvia­
mente, no va de acuerdo con una interpretación del agente como un ser 
humano o como un computador limitado por tiempo y espacio en la 
memoria que puede usar. Sin embargo, como mencionaremos más ade­
lante, existen otros tipos de agentes para los cuales el sistema H sí es apro­
piado. 

8. H constituye uno de los sistemas formales más importantes de lógica epistémica. Fue enun­
ciado en Hintikka (1962) y ha servido de referencia a investigaciones y desarrollos posteriores. 
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Aparte de la dirección sintáctica, podemos proceder a construir una 
semántica que interpreta el lenguaje formal epistémico. Se persigue con 
esto que la semántica constituya un modelo, en términos de conjuntos, 
de nuestras intuiciones relativas a los operadores epistémicos. Con esto 
obtenemos, a la vez, una caracterización de los aspectos lógicos de los 
operadores epistémicos. Dado esto, se explora la posibilidad de enun­
ciar un sistema formal F tal que toda fuf o caracterizada como una ver­
dad lógica en la semántica sea un teorema en F y viceversa. Sin embargo, 
no podemos esperar que esto último sea siempre posible. Podría ser el 
caso que semánticas de segundo orden epistémicas siguieran la suerte de 
las estándar de segundo orden. 

[1. SEMÁNTICA DE MUNDOS POSIBLES 

Las primeras semánticas formales de lógica epistémica fueron desarro­
lladas utilizando la noción de mundo posible, esto es, la idea intuitiva 
de que, además del presente mundo, existen otras formas o maneras en 
que el mundo pudo haber sid09• De estas semánticas iniciales, sólo 
expondremos, por razones de espacio, la primera formulada para len­
guajes epistémicos proposicionales o de primer orden con operadores de 
la forma "Q sabe que {S» '0. La importancia de ésta radica en que ha ser­
vido de referencia para los desarrollos semánticos posteriores. El lector 
puede consultar, por ejemplo, Halpern y Mases (1984) así como Baeuerle 
y Cresswell (1989) para semánticas de otros operadores. 

La semántica parte de la idea de que la información que un agente 
posee no le permite decidir cuál de los mundos (que él considera posi­
bles) describe el mundo como es actualmente. Sobre la base de esta ima­
gen, se interpreta intuitivamente el que un agente sepa que o como «o 

es verdadera en todos los mundos que el agente considera posibles (dada 
su información actual»>. Por ejemplo, dada cierta información, el agente 
puede considerar posibles dos tipos de mundos, unos en donde no hay 
tuberculosis ni cáncer y otros donde no hay tuberculosis, pero sí hay cán­
cer. Siguiendo la interpretación intuitiva, se diría entonces que el agente 
sabe que la tuberculosis es capaz de ser eliminada, pero su información 
no le permite saber si el cáncer puede ser prevenido. 

9. Para diversas concepciones sobre la naturaleza de los mundos posibles, cf. Loux, 1979. Alter· 
nativo a la noción de mundo posible, también se utiliza la noción de situación o escenario. Para esta 
última, cf. Barwise y Perry, 1983. 

10. La primera exposición de este tipo de semántica se encuentra en Hintikka, 1962. Una for­
mulación alternativa, históricametne importante, constituye la de R. Monrague y que difiere de la 

expuesta en este apartado, entre otros aspectos, por la exclusión de la relación de accesibilidad. Tam­

bién, esta semántica, él diferencia de la de Hintikka, se ubica dentro de un proyecto lógico-lingüístico 
más amplio, cuyo propósito, entre otros, es el desarrollo de una lógica intencional general. Para deta­
lles, cf. Anderson, 1984 y Partee, 1976. 
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Las ideas antes expresadas han sido formalizadas en términos de 
estructuras de Kripke 11. Entenderemos por una estructura E de Kripke 
un tuplo < M, n, P1, ... P m>, en donde M es un conjunto de mundos 
posibles, n es una asignación de valores de verdad a las proposiciones 
atómicas para cada mundo posible mEM, de tal modo que n(m, p)E 
{Verdad, Falsedad} para cada mEM y proposición atómica p, P; es una 
relación sobre M (para i = 1, ... , m). P; es la relación de posibilidad de 
i (llamada, también, la relación de accesibilidad de i). De este modo, 
hemos de entender intuitivamente que (s, m)EP;, esto es, m es accesible 
de acuerdo con la relación P; desde s, como el agente i considera a m 
posible dada la información que posee en s. 

Caracterizamos ahora la verdad de una fuf en una estructura y mundo 
m (en símbolos, E, mf-o) como sigue: 

E, m f-p sii n(m, p) = V, para toda proposición atómica. 
E, mf------,o sii no es el caso que E, mf-o. 
E, m f-0--->8 sii E, m f- -----, o o E, m f-8 
E, mf-S;o sii E, rf-o para todo r tal que (m, r)EPi. 

Esta semántica puede ser extendida para lenguajes de primer orden 
epistémicos. En este caso agregamos un dominio de objetos D y una fun­
ción F que asigna diversas extensiones a los predicados en cada mundo 
posible, esto es, para todo mEM y predicado P de n argumentos, F(P, 
m) es un subconjunto de D". 

De acuerdo con las propiedades de las relaciones de accesibilidad P;, 
se obtienen nociones de verdad lógica que formalizan diversas interpreta­
ciones intuitivas del operador «i sabe que B». Por ejemplo, si se asume que 
P; es reflexivo, simétrico y transitivo, entonces la noción de verdad lógica 
que proporciona esta semántica puede ser caracterizada por el sistema for­
mal H. Esto es, los axiomas de H se constituirían en esquemas de verda­
des lógicas y las reglas nos llevarían de verdades lógicas a verdades lógi­
cas. Por otra parte, toda verdad lógica en la semántica y regla que preservara 
verdad lógica podría ser demostrada en el sistema H. Si estipuláramos, 
por otra parte que P; no fuese necesariamente simétrico, entonces perde­
ríamos a AS como un esquema de verdad lógica en la semántica resultante. 

Independientemente de las propiedades que las relaciones de accesi­
bilidad pueden poseer, cualquier semántica de este tipo siempre justifi­
cará A2 y R2. Por lo tanto, esta semántica nos obliga a concebir al agente 
como una entidad capaz de conocer todas las consecuencias lógicas de 
su conocimiento, lo cual la hace inadecuada como un modelo de agentes 
tales como seres humanos o computadores con limitaciones de espacio 
y tiempo en su memoria 12. Este problema, denominado el problema de 

11. Para detalles sobre estas estructuras, cf. Ora yen, 1994. 
12. Es importante notar, sin embargo, que la semántica es apropiada para representar sistemas 

distribuidos, esto es, colecciones de procesadores conectados por una red de comunicación. En este 
caso, los agentes serían los procesadores. Para detalles, cf. Halpern y Mases, 1985. 
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la omnisciencia lógica, ha estimulado el desarrollo de semánticas alter­
nativas. 

Dentro de la semántica misma de mundos posibles, se ha sugerido, 
por ejemplo, en Cresswell (1973) Y Rantala (1982) introducir mundos 
no estándar, esto es, mundos que no cumplen, en forma general, con 
las leyes de la lógica clásica. Ejemplos de este tipo de mundos podrían 
ser aquellos en donde ciertas proposiciones no son ni verdaderas ni fal­
sas o en donde determinadas proposiciones son verdaderas y falsas. El 
problema con este enfoque radica en que ese tipo de mundos no ha sido 
motivados en forma satisfactoria. Sin embargo, cf. Hintikka (1975) para 
una posible motivación. Es importante mencionar que mundos no están­
dar han permitido, en Levesque (1984), desarrollar una semántica que 
logra distinguir entre conocimiento implícito y explícito, lo cual ofrece 
un escape al problema apuntado: se posee sólo conocimiento implícito 
de todas las consecuencias lógicas de nuestro conocimiento, pero no así 
explícito. 

Se han propuesto también enfoques alternativos al de los mundos posi­
bles. El más prometedor de éstos ha sido el expuesto en Konolige (1985). 
La idea intuitiva detrás de esta propuesta consiste en lo siguiente: sea 
A un agente determinado, al cual asociamos un conjunto de oraciones 
RA, las cuales llamaremos las creencias básicas de A, y un conjunto de 
reglas de inferencia RA• Ahora diremos que A sabe que (J si y sólo si A 
puede inferir (J a partir de RA y RA• Esta idea permitiría solucionar el 
problema de la omnisciencia lógica: el conjunto de reglas RA no ha de 
coincidir necesariamente con un conjunto completo de reglas de deduc­
ción y esto posibilitaría el que A no conociera ciertas consecuencias lógi­
cas de su conocimiento. 

IV. CONSIDERACIONES FINALES 

Existen varios temas de interés filosófico relacionados con la lógica epis­
témica que no hemos tratado hasta el momento. Por su desarrollo e impor­
tancia relativa, nos interesa mencionar ahora el de la matemática 13 epis­
témica. 

Partamos de la idea de que el agente posee ciertas capacidades o niveles 
de información que le permiten adquirir un grado importante de conoci­
miento matemático. Por otra parte, asumamos que el agente no se encuen­
tra limitado por aspectos de factibilidad tales como tiempo, memoria y 
desarrollo tecnológico. Podemos preguntarnos ahora cuáles limitaciones 
cognoscitivas tendría, en general, tal agente. La solución a este problema 
ha estimulado la construcción de diversos sistemas formales matemáti­
cos, en los cuales la lógica subyacente es epistémica. De acuerdo con la 

13. Por razones de espacio no expondremos los otros temas. E¡lector encontrará varios de éstos 
en las obras citadas. 
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lógica o la base matemática asumida, los sistemas varían. Esto es, rela­
tivo al tipo de agente que contemplemos, podemos admitir o rechazar 
ciertas formas de razonamiento y teorías matemáticas. Diversos agentes 
contemplados han justificado la introducción de operadores tales como 
«puede ser probado en principio que p», «puede ser decidido en forma 
algorítmica que p» y «es cognoscible en forma constructiva que p». Los 
diferentes tipos de agentes asumidos han justificado la introducción de 
teorías matemáticas como la aritmética de Peano, la teoría de conjuntos 
finitos o diversas teorías lógicas de conjuntos. 

Lo interesante de los sistemas de matemática epistémica es que han 
permitido establecer algunos teoremas limitativos relativos a ciertas for­
mas de conocimiento. Esto ha de tener una influencia futura en teorías 
epistemológicas sobre la matemática y disciplinas afines. El lector puede 
consultar Shapiro (1985), Freund (1991) y Reinhardt (1986) en donde 
se exponen así cómo se justifican varios de esos sistemas y teoremas limi­
tativos. 

Hemos descrito en forma muy general los aspectos importantes del 
enfoque lógico-formal del discurso epistémico. Hemos visto que la lógica 
epistémica primero construye lenguajes formales con operadores, cuya 
interpretación intuitiva los constituye en operadores epistémicos. Luego, 
busca la formulación de sistemas y semánticas formales que capturen los 
aspectos lógicos de esa interpretación. Gran parte de los trabajos en lógica 
epistémica se han concentrado en la formulación de sistemas formales. Falta 
desarrollar más la dirección de semánticas formales. Dentro de esta direc­
ción creemos que surgirán los problemas y soluciones más interesantes. 
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LÓGICA TEMPORAL 

Margarita Vázquez Campos 

1. INTRODUCCIÓN 

Los antecedentes de lo que hoy conocemos como <<lógica temporal» o 
<<lógica del tiempo» son casi tan antiguos como la misma lógica. Se suele 
citar como primer antecedente a Aristóteles, quien en el «Perí Herme­
neias» escribe que el tiempo puede modificar el valor de verdad de las 
proposiciones. Aristóteles no desarrolla esta idea. Es Diodoro de Cro­
nos, perteneciente a la Escuela Megárica, quien da los primeros pasos 
en esta disciplina al tratar el tema de la definición de las modalidades. 
Las ideas de Diodoro tuvieron una gran difusión en toda la lógica anti­
gua y medieval. 

Ya en nuestro siglo, la figura fundamental dentro de este campo es 
Arthur Prior. De hecho, Prior es el padre de la lógica temporal como 
una rama autónoma dentro de la lógica. Su idea básica es que el tiempo 
(el momento del tiempo) al que se refiere una proposición es decisivo para 
atribuir un valor de verdad a dicha proposición. En sus múltiples libros 
y escritos, Prior, que parte de una lógica temporal muy fuertemente vin­
culada a la modal, defiende la importancia de una lógica temporal autó­
noma (frente a los opositores a esta idea, como Quine) y ofrece multitud 
de axiomatizaciones de sistemas de lógica temporal, dependientes de las 
concepciones que se tengan en cada caso acerca del tiempo. Es decir, un 
sistema que recoja una concepción del tiempo circular será diferente de 
un sistema que, por ejemplo, recoja una concepción del tiempo como 
ramificado en el futuro. 

A partir de los años 50, que es de donde datan las primeras aporta­
ciones de Prior, el desarrollo de la lógica temporal ha sido enorme, espe­
cialmente en las dos últimas décadas. Esto es no sólo debido al interés 
formal intrínseco de este tipo de sistemas, sino también a la amplia varie­
dad de campos a los que se puede aplicar. Burgess (1984) señala cinco 
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tipos diferentes de motivos que justifican el desarrollo de la lógica tem­
poral: filosóficos, exegéticos, lingüísticos, informáticos y matemáticos. 
Desde e! momento en que Burgess planteaba esto ha habido muchos desa­
rrollos, sobre todo en lingüística y en informática. 

En lingüística nos encontramos con la utilización de la lógica tempo­
ral para e! estudio de las estructuras lógicas de las formas de razonamiento 
asociadas con el lenguaje natural (Bras, 1990). Estos modos de razona­
miento pueden llevar, además, al desarrollo de importantes aplicaciones 
prácticas. En este campo, es especialmente destacable e! cálculo de even­
tos y el razonamiento por defecto (especialmente interesante es Kowalski 
y Sergot, 1986). 

En informática, la lógica temporal se ha manifestado como especial­
mente apta para ser aplicada a la teoría de la programación, especial­
mente para el estudio del comportamiento tanto de programas secuen­
ciales como de programas paralelos (Pnue!i, 1977; Audureau, Enjalbert 
y Fariñas del Cerro, 1989; Bahsoun, 1988). En este campo, los sistemas 
pueden ser de lógica temporal lineal o ramificada. Aquí, tras el estudio 
de los formalismos, se pueden definir métodos de deducción automática 
para ellos y realizar máquinas de inferencia abstracta que los soporten. 
En esta línea, cabe señalar que la semántica de mundos posibles, utili­
zada en lógica modal y heredada con ciertas modificaciones en lógica tem­
poral, puede ser sustituida por una semántica basada en autómatas (por 
ejemplo, Thayse, 1989). 

El tipo de lógica temporal que aquí se va a tratar se corresponde con 
lo que se ha llamado lógica de! tiempo gramatical. Hay otro tipo de lógica 
de! tiempo llamada lógica cronológica, que en lugar de introducir nue­
vos operadores para e! pasado y el futuro, está basada en relaciones tem­
porales. Para una lógica de este tipo, véase Peña (1989). 

II. AXIOMATIZACIÓN DE LA LÓGICA TEMPORAL 

Como se ha dicho en el apartado anterior, la axiomatización de los siste­
mas de lógica temporal va a depender de la concepción que se tenga del 
tiempo. Una axiomatización constará de un conjunto de axiomas de la 
lógica proposicional clásica y de los axiomas necesarios para reflejar las 
propiedades de! tipo de tiempo. En algunos casos, será necesario intro­
ducir axiomas de la lógica modal (por ejemplo, en un sistema ramificado 
en e! futuro, pero cuya ramificación provenga de la modalidad y no de 
la temporalidad). Las principales propiedades que e! tiempo puede tener, 
quedarían recogidas en los siguientes axiomas: 

Ax. lo 

Ax.2. 
Ax.3. 
Ax.4. 

G(A -+ B)-+(GA -+GB) 
H(A -+ B)-+(HA -+ HB) 
A-+HFA 
A-+GPA 
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Ax.5. 

Ax.6. 

Ax.7. 
Ax.8. 
Ax.9. 
Ax.10. 
Ax. 1l. 
Ax.12 . 
Ax.13. 
Ax.14. 
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GA, cuando A es una tautología de la lógica proposicional 
clásica 
HA, cuando A es una tautología de la lógica proposicional 
clásica 
FFA--->FA 
(FA&FB)--->(F(A&B)v(F(A&FB)vF(FA&B))) 
(PA&PB)--->(P(A&B)v(P(A&PB)vP(PA&B))) 
GA--->FA 
HA--->PA 
FA--->FFA 
GA--->A 
GA--->HA 

En estos axiomas, además de los operadores binarios clásicos, --->, 
& Y v, encontramos nuevos operadores monarios: G, H, F Y P. G Y F 
son los operadores relativos al futuro y H Y P los del pasado. F puede 
ser entendido como «será el caso que», P como «ha sido el caso que». 
A partir de ellos, pueden ser definidos G y H, G = df----' F----, Y 
H = df----' p----, . La similitud con los operadores M y L de lógica modal 
es evidente. 

Entre las propiedades del tiempo que reflejarían estos axiomas, pode­
mos ver que el Ax. 7 refleja la transitividad, el Ax. 8 la linearidad hacia 
la derecha (futuro), el Ax. 9 la linearidad hacia la izquierda (pasado), 
el Ax. 10 la infinitud en el futuro, el Ax. 11 la infinitud en el pasado, 
el Ax. 12 la densidad, el Ax. 13 la reflexividad y el Ax. 14 la simetría 
Estas propiedades habrán de quedar igualmente expresadas en la 
semántica. 

IlI. SEMÁNTICA DE LA LÓGICA TEMPORAL 

La semántica de la lógica temporal está basada en la noción de momento 
histórico (W es el conjunto de momentos). Entre estos momentos se da 
una relación de ulterioridad R (o relación antes/después). 

Así, un modelo para la lógica temporal, modelo-T, es una estructura 
del tipo <W,R,v> donde, 

i) W¡.0 
ii) R�W2 y es una relación cuyas propiedades dependerán de la con­

cepción del tiempo. 

iii) Siendo F el conjunto de todas las fórmulas bien formadas (f.b.f.), 
v: FxW ---> ( 1 , 0 J que cumple las siguientes condiciones, para cualesquiera 
w;,w¡EW, A,BEF y variable proposicional p: 

1) v(p,w;) = 1 ó v(p, w;) = O 
11) v(A---> B,w;) = 1 si y sólo si v(A,w;) = O ó v(B,w;) = 1 

III) v( ----, A,w;) = 1 si y sólo si v(A,w;) = O 
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IV) v(PA,w,) = 1 si y sólo si para algún w¡, tal que w¡Rw¡, 
v(A,w;) = 1 

V) v(FA,w;) = 1 si y sólo si para algún w¡, tal que w¡Rw¡, 
v(A,w;) = 1 

VI) v(HA,w;) = 1 si y sólo si para todo w¡, tal que w¡Rw¡, 
v(A,w;) = 1 

VII) v(GA,w;) = 1 si y sólo si para todo w¡, tal que w¡Rw¡, 
v(A,w;) = 1. 

Una fuf A es T-satisfacible si y sólo si existe un modelo-T, <W,R,v>, 
y un momento w¡EW, tales que v(A,w;) = 1. Una fbf A es T-válida si y 
sólo si para todo modelo-T, <W,R,v>, y todo w¡EW, v(A,w;) = 1. 

Las propiedades de R, de las que se hablaba en ii), son las que van 
a quedar recogidas en los axiomas del sistema. En los sistemas básicos 
de tiempo lineal, R es transitiva. Si el tiempo es, por ejemplo, circular, 
R ha de ser reflexiva, simétrica y transitiva. Tal simetría no es habitual 
en la lógica temporal, puesto que la primera propiedad que se suele exi­
gir a la relación de ulterioridad es la antisimetría. 

IV. EL SISTEMA MÍNIMO 

El sistema mínimo de lógica temporal, kt (Lemmon, 1965), está formado 
por los siguientes axiomas: 

Ax. O. Un conjunto suficiente de axiomas para derivar todas las tau­
tologías de la lógica proposicional clásica Ax. 1, Ax. 2, Ax. 3, Ax. 4, 
Ax. 5 y Ax. 6. 

Como regla de derivación tenemos el modus ponens (MP). 
El lenguaje formal de kt consta de: 
i) un conjunto enumerable de variables proposicionales, p, q, r, etc. 
ii) ..... Y ---, como conectivas primitivas, 
iii) ( , ) como signos auxiliares, 
iv) A, B, etc. como variables metalingüísticas, y 
v) F, P, G Y H como operadores temporales. 
Una fbf en kt será una concatenación de signos primitivos de kt, de 

alguno de los tipos siguientes: 

1) Toda variable proposicional es fbf. 
2) ---, A, donde A es fbf 
3) A ..... B, (A ..... B), donde A y B son fufs 
4) FA, donde A es fbf 
5) PA, donde A es fbf 
6) GA, donde A es fbf 
7) HA, donde A es fbf. 
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V. OTROS SISTEMAS 

El sistema para e! tiempo lineal, en su primera formulación debido a Coc­
chiarella en 1965, añadiría a kt: 

". En e! lenguaje formal, 
ii) -+, --', & Y v, como conectivas primitivas, 
8) AvB, (AvB), donde A y B son fbfs, y 
9) A&B, (A&B), donde A y B son fbfs. 

::. En la axiomática, Ax. 7, Ax. 8 y Ax. 9. 
::. En la semántica, la relación R ha de cumplir las propiedades rela­

tivas a los axiomas 7,8 Y 9. Éstas son: transitividad (Ax. 7-P1), 
linearidad a la derecha (Ax. 8-P2) y linearidad a la izquierda (Ax. 
9-P3), 
PI. (x)(y )(z)( (xRy&yRz) -+xRz) 
P2. (x)(y)(z)((xRy&xRz)-+((x = y)vyRzvzRy)) 
P3. (x)(y)(z)((yRx&zRx)-+((x = y)vzRyvyRz)) 

El sistema para e! tiempo ramificado tiene muchas formulaciones. 
El sistema básico ramificado es también debido a Cocchiarella y diferirá 
de kt sólo en que incluiría e! Ax. 7 y la PI. Si e! sistema es ramificado 
sólo hacia e! futuro, pero lineal en e! pasado (como e! presentado por 
Rescher y Urquhart en 1971, llamado kb), añadiría e! Ax. 10. 

VI. EL SISTEMA OT 

A partir de kb, se construyó un sistema llamado Ot (Okhamist Tense), 
expuesto por primera vez por Prior, que, siendo lineal en e! pasado, inter­
preta en e! futuro la posibilidad y la necesidad como ramificadas, mien­
tras que F y G son lineales. Si se construye un modelo ramificado consi­
derándolo como una colección de modelos lineales parciales desembocaría 
en una concepción lineal de! tiempo. Pero e! sistema Ot prevé esto, e!i­
giendo arbitrariamente una ramificación para ser e! futuro prima-jacie 
de! actual momento histórico. Esto permite hablar de! futuro con pleno 
sentido, pues se está haciendo referencia a lo que hemos tomado como 
futuro actual y, al mismo tiempo, las ramificaciones permiten seguir 
hablando de posibilidades y necesidades. Para ello, en el lenguaje for­
mal, se añaden L y M como operadores modales. 

Como axiomas, Ot, tal y como es presentado en McArthur (1976), 
tiene Ax. O, Ax. 1, Ax. 2, Ax. 3, Ax. 4, Ax. 5, Ax. 6, Ax. 7, Ax. 8, 
Ax. 9, Ax. 10, Ax. 11 y: 

Ax. 15. L(A-+B)-+(LA-+LB) 
Ax. 16. MMA-+MA 
Ax. 17. LA, cuando A es una tautología de la lógica proposicional 

clásica 
Ax. 18. LA-+GA 
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Ax. 19. A-+LPA, donde A no tiene ninguna ocurrencia de F. 

Como regla de derivación tenemos el modus ponens (MP). 
Esta axiomatización del sistema ockhamista no representa adecua­

damente un tiempo ramificado en el futuro. Para una axiomatización de 
este tipo de tiempo puede verse Anderau, Enjalbert y Fariñas (1989), 
Zanardo (1985) y Gabbay (1994). 

VII. CONSISTENCIA Y COMPLETUD 

A continuación vamos a demostrar la consistencia y la completud para 
el sistema mínimo kt, axiomatizado en el apartado IV, así como algunas 
otras propiedades semánticas de interés. 

El sistema kt será consistente, para un conjunto de modelos, si toda 
tesis de kt es T-válida en ese conjunto de modelos y kt será completo, 
para un conjunto de modelos, si toda fórmula T -válida es ese conjunto 
de modelos es una tesis de kt o, de manera equivalente, si toda fórmula 
consistente con kt es T -satisfacible en ese conjunto de modelos. 

Teorema 1 (teorema de consistencia): kt es consistente para el 
conjunto de todos sus modelos 

Prueba: Hay que mostrar que cada una de las tesis de kt es válida sobre 
el conjunto de sus modelos. Para ello basta con mostrar que cada uno 
de los axiomas de kt es válido. 

Para demostrar que el Ax. 1 es válido, debemos mostrar que para todo 
<W,R,v> y para cualquier W;, si v(G(A-+B),w;) = 1 y v(GA, w;)=l, 
entonces v(GB, w;) = 1. Por la hipótesis tenemos que siempre que w;Rw¡ 
y v(A,w;l = 1, entonces v(B,w¡) = 1 Y que siempre que w;Rw¡, 
v(A,w¡) = 1. De aquÍ se sigue inmediatamente que siempre que w;Rw¡, 
v(B,w¡) = 1. La demostración del Ax. 2 es similar. 

Para demostrar el Ax. 4, debemos mostrar que para todo <W,R,v> 
y para cualquier W;, si v(A,w;) = 1, entonces v(GPA,w;) = 1. Puesto que 
la conclusión es que para todo W¡, tal que w;Rw¡, hay un Wb tal que 
WkRw¡, Y que v(A,wk) = 1, basta con que Wk = W;. De forma similar, se 
demuestra el Ax. 3. 

El Ax. 5 y el Ax. 6 se demuestran de manera inmediata. Puesto que 
para todo <W,R,v> y w tenemos que v(A,w) = 1, entonces v(HA,w) = 1 
Y v(GA,w) = 1. 

Para la prueba de completud, tipo Henkin, se seguirá, fundamental­
mente, Burgess (1984). El concepto central es el de conjunto máxima­
mente consistente y, para llegar a él, necesitamos varias definiciones 
previas. 

Def. 1. r es un conjunto inconsistente si y sólo si r 1- A& -, A para 
alguna fbf A. 
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Def. 2. r es un conjunto consistente si y sólo si r no es inconsistente. 
Def. 3. r es un conjunto máximamente consistente, CMC, si y sólo si: 

i) r es consistente, y 
ii) si rUlA} es consistente, AEr. 

Teorema 2 (lema de Lindenbaum): Si 1t es un conjunto consistente, 
hay un conjunto máximamente consistente r tal que 1t � r 

Prueba: 
Sea Aj, ... , An una enumeración de las fbfs. Defínase la serie de con­

juntos ro, r j , ... 
i) ro = 1t 

ii) Para cada i�O, r;+, =r;U{A;} si r;U{A;} es consistente. Si no 
es consistente r; + j = r;. 

iii) r = uo",;<�r;. 
Es claro que existe un r tal que 1t � r: 
a) r es consistente. Por inducción, roes consistente y, por construc­

ción, cada r; lo es. Por tanto, ur; = r es consistente. 
b) Si ru {A} es consistente, AEr. Si ru {A} es consistente, hay un 

rk tal que rk=rk_1U{A}. 
Entonces AErk y, por tanto, AEr. 

Teorema 3: Si r es consistente y r 1- A, ru {A} es consistente 

Prueba: 
Si ru {A} fuera inconsistente, tendríamos que ru {A} 1- B& --, B, y, 

por lógica de proposiciones, que r 1- --, A, con lo cual r 1- A& --, A y 
r es inconsistente, lo que contradice la hipótesis. 

Teorema 4: Si r es eMe, 

i) r 1- A si y sólo si AEr 
ii) A&BEr si y sólo si AEr y BEr 

iii) AvBEr si y sólo si AEr o BEr 
iv) A -+ BEr si y sólo si AI!T o BEr 
v) AEr ó --, AEr. 

Pruebas: 
i) a) AEr, entonces rl-A. 

b) rl-A, r es consistente, rUlA} es consistente. Entonces, AEr 

por def. 3. 
ii) a) A&BEr, rl-A&B, rl-A, rl-B, AEr, BEr. 

b) AEr y BEr, rl-A, rl-B, rl-A&B, A&BEr. 
iii) a) AUBEr, 

si AI!T y B�r, ru {A} es inconsistente, ru {B} es inconsistente, 
rUlA} I- e& --, e, rU{B} 1- D&--, D, r 1- --, A, r 1- --, B, r 1-
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-----,A&-----,B, rl------,(AvB). Pero como AUBEr, rl-AUB. Por 
tanto, r sería inconsistente. 
b) AEr o BEr. Por un lado, si AEr, r 1- A, r 1- AvB, AvBEr. Por 
otro lado, si BEr, rl-B, rl-AvB, AvBEr. Con lo cual AvBEr. 

iv) a) A ---+ BEr, si AEr y B�r, r 1- A ---+ B, r 1- A, r 1- B, BEr. Enton­
ces BEr y B�r. 
b) A�r o BEr. Por un lado, si A�r, rUlA} I-C&-----, C, rl­
-----,A, rl------,A---+(A---+B), rl- A---+B, A---+BEr. 
Por otro lado, si BEr, r 1- B, r 1- B---+(A ---+ B), r 1- A ---+ B, A ---+ BEr. 
Por tanto, A---+BEr. 

v) Si A�r y -----,A�r, rU{A}I-B&-----,B, rU{-----,A}I-C&-----,C, 
rl------,A, rl------, -----,A, rl------,A&-----, -----,A. Pero r es CMC, 
-----, A& -----, -----, A es inconsistente, luego AEr o -----, AEr. 

Teorema 5: Si tenemos dos CMs r y r', las cuatro cláusulas siguientes 
se cumplen, siendo equivalentes entre sí: 

i) si AEr, entonces PAEr' 
ii) si BEr', entonces FBEr 

iii) si GCEr, entonces CEr' 
iv) si HDEr', entonces DEr. 

Prueba: Para mostrar que i) implica iii), se asume i) y que GCEr. Enton­
ces PGCEr' y, por lógica de proposiciones y el Ax. 3, tenemos que 
PGC---+C, con lo que CEr'. Se utilizan pruebas similares para los demás 
casos (que iii) implica ii), que ii) implica iv) y que iv) implica i)). 

Def. 4. Para los CMCs r y r', decimos que r es seguido en potencia 
por r', y escribimos A�B, si cumple las condiciones impuestas en las cláu­
sulas del teorema 5. Intuitivamente, esto significaría que una situación 
del tipo descrito por r podría ser seguida de una situación del tipo des­
crito por r'. 

Teorema 6: Si r es CMC, 

i) Y FAEr, hay un CMC r' tal que r�r' y AEr', 
ii) y PAEr, hay un CMC r" tal que r"�r y AEr". 

Prueba: i) El esquema de demostración sería como sigue. Tenemos FAEr 
y tenemos que conseguir r' tal que r�r' y AEr'. Por def. 4 y teorema 
5 i), si r�r', entontes para cualquier BEr', se dé que PBEr' y tal que 
AEr', siendo r' un CMe. Por teorema 2, si demostramos que el con­
junto r' 0= (PB, A) es consistente, habríamos demostrado que puede 
conseguirse. r' sería simplemente una extensión suya. Tenemos ahora 
que demostrar que r' o es consistente. Habría que demostrar que para 
cualquier BEr, PB&A es consistente. Para esto llega con demostrar que 
F(PB&A) es consistente (puesto que si fuese verdad que -----, (PB&A) ten-
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dríamos ---, F(PB&A), a partir de Ax. 5 y definición de G), lo que es 
cierto puesto que F(PB&A)Er, ya que (B&FA)---> F(PB&A) es una fór­
mula demostrable y B&FA lo tenemos por hipótesis. La prueba para ii) 
seguiría un esquema similar. 

Def. 5. Una crónica en un marco <W,R> (W y R entendidos de 
la forma habitual) es una función T que asigna a cada w¡EW un CMC 
T(wJ (Empleamos el concepto de marco en el sentido de Segerberg, tal 
como es recogido por Hughes y CressweIl, 1984). Intuitivamente, si W 
representa el conjunto de momentos y R la relación de ulterioridad, T 
proporcionaría una descripción completa de lo que pasa en cada 
momento. T es coherente si tenemos T(w;)T(w¡) siempre que w¡Rw¡. Si 
T es coherente y satisface la condición i) siguiente es profética, si satis­
face la ii) es histórica: 

i) Siempre que FAET(w;) hay un W¡ tal que w¡Rw¡ y AET(w). 
ii) Siempre que PAET(w;) hay un W¡ tal que w¡Rw¡ y AET(w). 

T es perfecta si es tanto histórica como profética. 
Además, T será coherente si y sólo si satisface las dos condicio­
nes siguientes: 

iii) Siempre que GAET(w;) y w¡Rw¡, entonces AET(w). 
iv) Siempre que HAET(w;) y w¡Rw¡, entonces AET(wJ 

Respecto a la evaluación, si v es la evaluación en < W ,R > la cró­
nica inducida Tv, en W¡, Tv(w;) estaría formada por todo A, tal 
que v(A,w;) = 1. Tv es siempre perfecta. Si T es una crónica per­
fecta en <W,R> , la evaluación inducida Vt, en W¡, Vt(A,w;)=l 
si y sólo si AET(wJ 

Para probar la completud de kt para un conjunto de modelos, debe­
mos mostrar que toda fórmula consistente Ao es satisfacible. El teorema 
7 ofrecerá una estrategia para mostrar que Aa es satisfacible. Esta estra­
tegia consiste en construir una crónica perfecta T, de acuerdo con la def. 5, 
en algún marco <W,R> que contenga un Wa tal que AET(wo). 

Teorema 7: Si T es una crónica perfecta en un marco <W,R> y 
v=Vt es la evaluación inducida por T, entonces T=Tv es la 
crónica inducida por v. En otras palabras tenemos que 
v(A,w;) = 1 si y sólo si AET(wJ En particular, cualquier 
miembro de cualquier T(w) es satisfacible en <W,R> 

Prueba: Se demuestra por inducción sobre la complejidad de A. Por ejem­
plo para G, asumimos que v(A,w;) = 1 si y sólo si AET(w;) para A y lo 
probamos para GA. Por un lado, si GAET(w;), entonces por def. 5 (iii) 
siempre que haya un W¡ tal que w¡Rw¡, entonces AET(w¡) y, por la hipó­
tesis de la inducción, v(A,w¡) = 1. Esto muestra que v(GA,w;) = 1. Por 
el otro lado, si GAET(w;), entonces, puesto que F---, A = def---' GA, 
F---, AET(w;) y, por def. 5 (i), para algún W¡ tal que w¡Rw¡, tenemos que 
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---, AET(w¡) y AitT(w¡). De donde, por hipótesis de la inducción, 
v(A,w¡) = O. Esto muestra que v(GA,w¡) = O. 

Def. 6. Tómese un conjunto infinito enumerable X. Sea M el con­
junto de todos los triples < W ,R,T >, tales que: 

i) Wt-0 y W�X, 
ii) R � W Z y es antisimétrica. 

iii) T es una crónica coherente en < W ,R > . 
Para J.! = <W,R,T> y J.!

' = <W',R',T'> en M, decimos que J.!
' 

es una extensión de J.! si, estando las relaciones y funciones iden­
tificadas con conjuntos de pares ordenados, tenemos: 

i') W�W'. 
ii') R = R'n(WxW'), 

iii') T�T'. 
Una condición de la forma de la establecida por la def. 5 (i) o 
(ii) será llamada no nacida para J.! = <W,R,T> si su antecedente 
no se cumple, es decir, si w¡itW o si w¡EW pero FA oPA, 
dependiendo del caso, no pertenece a T(wJ Será llamada viva 
para J.! si su antecedente se cumple pero su consecuente no; en 
otras palabras, no hay ningún w¡EW tal que w¡Rw¡ o w¡Rw¡, 
según el caso, y AET(w¡). Será llamada muerta para J.! si el con­
secuente se cumple. 

Teorema 8: Si J.! = <W,R,T>, para cualquier condición de 
forma de la def. 5 (i) o (ii) que esté viva para J.!, existe una 
extensión J.!' = < W' ,R', T' > de J.! en la que esta condición esté muerta 

Prueba: Tomemos la condición de la forma de la def. 5 (i). Si w¡EW y 
FAET(w,), por el teorema 6 (i), hay un eMe Y, tal que T(w,)�Y y 
AEY. Esto sirve para fijar un W¡, tal que w¡EX-W, y para construir los 
conjuntos: 

a) W'=WU{w¡}, 
b) R'=RU{ <w¡, w¡> J y 
c) T'= TU{ <w¡, y> J. 

Teorema 9 (teorema de completud): kt es completo para un 
conjunto de modelos E 

Prueba: Dada una fórmula consistente Ao, deseamos construir un marco 
<W,R> y una crónica perfecta T en él, con AoET(wo) para algún Wo. 

Para este fin, fijamos una enumeración wo, W¡, Wz, . . .  de X y una enu­
meración Ao, Al, Az, • • •  de todas las fórmulas de kt. A la condición de 
la def. 5 (i) (o (ii)) se le asigna un número de código, dependiente de esta 
enumeración. Se fija un eMe ro, con AoEr 0' y sea J.!o = <Wo, Ro, T ° > , 
donde Wo= {wo}, Ro=0 y To= {<wo, ro> J. Si J.!n está definido, con-
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sidérese aquella condición que, entre todas las que estén vivas para J.ln 
tenga el número de código menor. Sea J.ln+), según el teorema 8, una 
extensión de J.ln para la cual la condición esté muerta. Sea <W,R,T> la 
unión de los J.ln = < W n, Rn, T n >; de manera más precisa, sea W la 
unión de los W n, R la unión de los Rn y T la de los T n. Así se verifica 
que T es una crónica perfecta de < W ,R > . 
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LA LÓGICA CUÁNTICA 

Serg io F. Martínez Muñoz 

1. INTRODUCCIÓN 

La mecánica cuántica constituye la teoría más revolucionaria y funda­
mental de la física moderna. Si bien su adecuación empírica (en tanto 
que descripción de procesos estadísticos) está ampliamente confirmada, 
su estructura conceptual nunca ha sido elucidada a cabalidad. Esta estruc­
tura conceptual es tan diferente de la estructura conceptual de las teo­
rías de la física clásica que desde los inicios de la teoría ha sugerido pro­
puestas radicales en los fundamentos de la teoría de la probabilidad, la 
lógica, y la filosofía en general. En este artículo veremos cómo el exa­
men de la estructura semántica de la teoría cuántica nos lleva al estudio 
de una clase de lógicas no clásicas genéricamente conocidas con el nom­
bre de lógicas cuánticas. No asumiremos ningún conocimiento de la física 
cuántica, pero sí cierta familiaridad con el análisis semántico de la lógica 
(ver el artículo 1 en este volumen). En la segunda sección muestro cómo 
surge la lógica cuántica a partir de la consolidación de una analogía entre 
la estructura semántica de la teoría cuántica y la estructura semántico­
algebraica del cálculo proposicional clásico. En la tercera sección exa­
mino muy brevemente intentos, sobre todo interesantes desde un punto 
de vista histórico, de entender la lógica cuántica como una lógica de 
varios valores. En la cuarta sección quiero dar una idea de cómo puede 
entenderse la lógica cuántica como lógica formal, reconstruida sintácti­
camente. En la quinta sección resumo algunos resultados sobresalientes 
de los esfuerzos por encajar a la lógica cuántica dentro de la semántica 
de marcos de Kripke, y de su interpretación como lógica modal. En el 
apéndice matemático se incluyen las definiciones básicas de la teoría de 
retículos necesarias para darle una precisión mínima a nuestra presen­
tación. 
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II. LA LÓGICA CUÁNTICA COMO ESTRUCTURA PROPOSICIONAL NO CLÁSICA 

La lógica cuántica fue propuesta inicialmente por Carett Birkhoff y John 
von Neumann (1936), como un intento por dar una solución radical al 
problema de la interpretación de la teoría cuántica. Su objetivo explícito 
era descubrir la estructura lógica que yace debajo de las teorías físicas 
que como la mecánica cuántica no se conforman a la lógica clásica. Sugi­
rieron ellos en este trabajo seminal que la transición de la mecánica clá­
sica a la mecánica cuántica involucra el paso de un cálculo proposicional 
clásico a un cálculo proposicional con una estructura no clásica. Sucin­
tamente, la tesis de Birkhoff y von Neumann era que deberíamos consi­
derar a una cierta estructura algebraica generada por la teoría cuántica 
como el álgebra de Lindebaum-Tarski de una nueva lógica, la lógica del 
mundo empírico, asumiendo que la mecánica cuántica es la teoría física 
que describe más fielmente ese mundo empírico. 

Intentos por clarificar y elaborar esta propuesta desde perspectivas 
muy diferentes han generado una serie de investigaciones muy variadas. 
Principio por clarificar el sentido en el que la transición entre la física 
clásica y la física cuántica sugiere un cambio de lógica. Esto requiere que 
establezcamos una relación entre la estructura semántica de teorías físi­
cas y un análisis semántico de la lógica. Esto lo haremos partiendo de 
la concepción semántica de teorías físicas que se origina con los trabajos 
de Beth y que ha sido desarrollada posteriormente por Van Fraassen (y 
otros). Llamaremos lógica (proposicional) concreta a una lógica (propo­
sicional) que describe las relaciones semánticas entre las sentencias ele­
mentales en las que se ha fijado de antemano una intensión fija para los 
términos predicacionales (fija en el sentido que es respetada por todas 
las valuaciones admisibles). En este caso hablamos de un lenguaje semi­
interpretado (Van Fraassen, 1970). Tradicionalmente la lógica se con­
cibe como caracterizando la validez en virtud de la forma de los argu­
mentos únicamente; a la lógica así entendida la llamaremos lógica for­
mal. En lógicas concretas, a diferencia de las lógicas formales, se utilizan 
criterios semánticos, además de los puramente formales, para juzgar la 
validez de argumentos. Estos criterios semánticos adicionales, en el caso 
de la lógica cuántica concreta, se consideran dados implícitamente por 
la teoría cuántica. En esta sección hablamos de lógica cuántica concreta 
siempre. Posteriormente diremos algo muy breve acerca de la lógica cuán­
tica formal. Una última aclaración previa es que hablaremos de la lógica 
cuántica haciendo referencia únicamente al cálculo proposicional cuán­
tico. Esto no es una distorsión seria de nuestra presentación ya que las 
características peculiares de la lógica cuántica surgen al nivel del cálculo 
proposicional. El lector interesado en un compendio de la lógica cuán­
tica de primer orden puede consultar Dalla Chiara (1986). 

Según Van Fraassen, una teoría física puede caracterizarse por medio 
de un lenguaje semi-interpretado y un conjunto de leyes. El lenguaje semi­
interpretado L, el portador de la estructura lógica (concreta) de la teo-
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ría, consiste en una terna <E,H,h>; E es un conjunto de «sentencias 
elementales» l. Una sentencia elemental tiene la forma «La magnitud M 
tiene un valor en el conjunto (de Borel) X». La idea intuitiva es que M 
describe una propiedad física de un sistema dado. Por ejemplo, una mag­
nitud de los sistemas conocidos como «partículas clásicas» es la veloci­
dad V de una partícula. Una sentencia elemental es la sentencia «V tiene 
un valor en el intervalo [1,2]» (las unidades de la magnitud se dejan 
implícitas)2. H es el conjunto de estados posibles del sistema en cuestión. 
La función h es una función de satisfacción que asigna a cada sentencia 
elemental A en E el conjunto h(A) de estados que satisfacen A. A cada 
sentencia elemental A (un objeto sintáctico) corresponde la proposición 
h(A) (un objeto semántico). El conjunto de proposiciones elementales es 
la imagen h [E] de E bajo h. 

Podemos ahora formular informalmente ciertas relaciones semánti­
cas familiares en el contexto de la lógica cuántica: 

1. A es verdadera si y sólo si el estado de un sistema se representa 
por un estado de h(A). 

2. A es válida si y sólo si h(A) = H. 
3. A es una consecuencia semántica de B si y sólo si h(B)s;h(A). 

El álgebra proposicional de un lenguaje es el conjunto de proposicio-
nes elementales h(E) junto con las operaciones lógicas asociadas con ese 
lenguaje. Los lenguajes (semi-interpretados) cuánticos tienen una estruc­
tura sintáctica pobre. Las sentencias son todas atómicas. La estructura 
lógica de un lenguaje cuántico es más bien una característica de su estruc­
tura semántica tal y como ésta se expresa a través de su álgebra proposi­
cional. Esta estructura puede expresarse en términos de conectores defi­
nidos semánticamente. Aquí no podemos adentrarnos en la presentación 
detallada que requeriría una discusión a fondo del problema de la intro­
ducción de los conectores en la lógica cuántica. Daremos sin embargo 
una idea de la problemática involucrada y de las razones de su interés 
filosófico. Seguiremos la convención de identificar dos sentencias A y B 
cuando h(A) = h(B), esto es, cuando las sentencias son semánticamente 
equivalentes. 

En las definiciones siguientes A, B, e, D son sentencias en un len­
guaje L= <E,H,h>. 

1. Hay una tendencia en la lógica cuántica, empezando con el trabajo de Birkhoff y von Neu­
mann, a hablar indistintamente de propiedades de sistemas físicos y de proposiciones. Esta ambigüedad 
reaparece en la manera como hemos definido el conjunto de sentencias elementales. Más correctamente 
E es un conjunto de predicados monádicos elementales. Las sentencias elementales propiamente dichas 
pueden construirse a partir de estos predicados elementales en el contexto de una teoría física particu­
lar. Este tipo de ambigüedades las ignoraremos en pro de una mayor claridad expositiva. 

2. Una magnitud puede definirse de manera abstracta como un conjunto de proposiciones (o 
propiedades) mutuamente excluyentes (i.e. tal que a lo más uno de los valores de la magnitud es el 
caso en un momento dado). Esta es la definición de magnitud apropiada en la formulación de una teo­
ría de la mecánica en el marco de una teoría de retículos. 
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Definición: una sentencia e es la conjunción de A y B precisamente 
si h(C) = h(A)nh(B). 

Definición: una sentencia D es la disyunción exclusiva de A y B preci­
samente si h(D) = h(A)Uh(B). 

Definición: una sentencia A en un lenguaje L es una negación exclu­
siva de la sentencia B precisamente cuando h(A) = H - h(B). 

Las operaciones «n», «U», y « - » son las operaciones usuales de la 
teoría de conjuntos (intersección, unión y complementación relativa). 
Estas definiciones corresponden a los conectores clásicos (por lo general 
introducidos sintácticamente) si la estructura proposicional es clásica. Esto 
es, si el conjunto de proposiciones es el conjunto P(H), el conjunto poten­
cia del conjunto de los estados posibles al que llamamos H, entonces 
<P(H), n, U> es un álgebra booleana de conjuntos isomórfica al álge­
bra de Lindebaum-Tarski del cálculo proposicional clásico. Similarmente, 
podríamos definir otros conectores modales e intensionales en este marco 
conjuntista. Decimos que un lenguaje es cerrado con respecto a la con­
junción o disyunción (exclusiva) si cada par de sentencias tiene una con­
junción o disyunción (exclusiva). Decimos que un lenguaje es cerrado con 
respecto a la negación (exclusiva) si cada sentencia en L tiene una nega­
ción (exclusiva). Si la conjunción corresponde a la operación de intersec­
ción de conjuntos en P(H), y la disyunción corresponde a la unión de 
conjuntos en P(H), entonces es claro que las operaciones lógicas son cerra­
das en H (ya que por definición de conjunto potencia, P(H) incluye todos 
los conjuntos que puedan formarse por medio de las operaciones de con­
juntos). Sin embargo, si la estructura impuesta en H por la teoría es tal 
que el álgebra proposicional no corresponde al álgebra de conjuntos gene­
rada por P(H), entonces no está garantizado que las operaciones lógicas, 
correspondientes a los conectores exclusivos tal y como fueron definidas 
arriba, sean cerradas en H. Por ejemplo, los lenguajes intuicionistas y las 
lógicas de varios valores no son cerrados con respecto a la negación exclu­
siva. Son cerrados con respecto a otro tipo de negación «selectiva» o de 
«alcance restringido», que es la negación semánticamente apropiada para 
estos lenguajes3• Este tipo de negación selectiva se caracteriza porque 
una sentencia A y su negación selectiva A'" pueden ser ambas no verda­
deras simultáneamente (véase por ejemplo Rasiowa, 1974). 

Algo similar sucede en la lógica cuántica. El conjunto H, según la 
mecánica cuántica, tiene asociada una estructura proposicional que no 
es cerrada con respecto a la negación exclusiva; además, y esto es algo 
peculiar de la lógica cuántica, no es cerrada con respecto a la disyunción 
exclusiva. 

En la mecánica cuántica el conjunto de estados H tiene una estruc­
tura matemática significativamente diferente al conjunto de estados clá-

3. Van Fraassen le atribuye esta distinción entre «negación exclusiva» y «negación selectiva» 

(choice negation) a Mannoury, en sus trabajos de fundamentación del intuicionismo (ver Van Fraassen, 

1974). 
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sicos (es un espacio complejo separable de Hilbert). Las sentencias e!e­
mentales corresponden en este caso a subespacios (cerrados) del espacio 
H, y hay subconjuntos de H que no son subespacios. No es necesario 
que e! lector entienda esta terminología matemática para captar la dife­
rencia básica entre un lenguaje clásico y un lenguaje cuántico, ya que 
la diferencia, como vemos a continuación, se refleja en la semántica no­
clásica de un lenguaje cuántico. Para explicar esta afirmación requerire­
mos e! uso de algunos términos algebraicos que se definen en e! apéndice. 

El álgebra proposicional cuántica es una estructura (reticular) cerrada 
bajo la operación de intersección en H, pero no es cerrada ni bajo la unión 
de conjuntos, ni bajo la operación de complemento relativo (que corres­
ponde a la negación exclusiva). No obstante, la lógica cuántica tiene defi­
niciones alternativas de operaciones algebraicas cerradas que pueden pen­
sarse como las operaciones lógicas correspondientes a la negación y 
disyunción cuántica. Estas operaciones son la ortocomplementación y la 
operación de junta (e! resultado de la cual es e! «extremo superior» de 
un par de elementos) en el retículo de los subespacios de H. No entrare­
mos a definiciones detalladas, en su lugar pasamos a ilustrar estas ope­
raciones en un ejemplo simple de un álgebra proposicional cuántica. 

El conjunto de los subespacios de un espacio euclidiano de tres dimen­
siones, E, con las operaciones de intersección de conjuntos, n, y la ope­
ración de suma lineal EB, forma un retículo cuántico, esto es, un retículo 
que puede interpretarse como una lógica cuántica. Los subespacios de 
este espacio son e! origen de! sistema de coordenadas que se identifica 
con e! cero de! retículo, los subespacios de una dimensión (que geométri­
camente corresponden a las líneas que atraviesan e! origen), los subespa­
cios de dos dimensiones (que geométricamente corresponden a los pla­
nos que intersectan e! origen en cualquier ángulo), y e! espacio total, e! 
único subespacio de tres dimensiones. La intersección de dos líneas cua­
lesquiera es el origen, la suma lineal de dos líneas es e! subespacio (plano) 
generado por las líneas. La intersección de dos planos es la línea en que 
se intersectan, y la suma lineal de dos planos (diferentes) es el espacio 
total H(S). Nótese que en este retículo < E,n,EB > podemos definir siem­
pre un orden parcial como sigue: A::5 B si AEBB = B. Este orden parcial 
en nuestro ejemplo corresponde a la relación de inclusión de conjuntos. 
Una magnitud en este ejemplo es un conjunto de subespacios mutuamente 
excluyentes (i.e. para todo par de subespacios en la magnitud su inter­
sección es 0) y cuya unión es e! conjunto total. Una magnitud máxima 
en general es un conjunto máximo de proposiciones mutuamente exclu­
yentes. En nuestro ejemplo una magnitud máxima es un conjunto de tres 
líneas linealmente independientes (no paralelas entre sí) que geométrica­
mente describen un sistema de coordenadas. Es fácil ver con un ejemplo 
que este retículo no es distributivo. Consideremos una línea D que no 
coincide con ninguna de las líneas (direcciones) A, B, C. Es claro que 
Di\A = 0, Di\B = 0, Di\C = 0, y por lo tanto: (Di\A)v(Di\B)v(Di\C) = O. Sin 
embargo, (Ai\Bi\C)i\D = D :;t0. 
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Este ejemplo muestra que un retículo proposicional cuántico no satis­
face la ley distributiva. Sin embargo, puede mostrarse que un retículo cuán­
tico satisface la condición de ortomodularidad: A<B=>B = Av(BAA J. ) . 

A J. es el orto-complemento de A, correspondiente a la negación selec­
tiva de A (ver apéndice). Una buena parte del desarrollo del programa 
de lógica cuántica posterior al trabajo de Birkhoff y van Neumann puede 
verse como un intento por interpretar esta ley de orto-modularidad (ver 
Jauch, 1968, por ejemplo), y de entender el sentido en que, supuesta­
mente, esta ley ortomodular podría jugar un papel similar al que juega 
la distributividad en los cálculos clásicos. En el trabajo original de Birk­
hoff y van Neumann, así como en el ejemplo que dimos anteriormente, 
la estructura proposicional satisfacía una condición más fuerte que la orto­
modularidad, la modularidad. Un retículo es modular si satisface la 
siguiente ley: A::s B =>(A, B, X) es una tripleta distributiva, para cualquier 
X en L. Puede mostrarse que un retículo modular es la estructura más 
débil en la cual una teoría de las probabilidades clásica puede formu­
larse. Esto les sugirió a Birkhoff y van Neumann que la estructura pro­
posicional podía pensarse como una teoría generalizada de conjuntos en 
la que la dimensionalidad jugaba el papel de la cardinalidad y las proba­
bilidades de transición entre sucesos eran inducidas por automorfismos 
del retículo. Este programa sin embargo nunca llegó a desarrollarse más 
allá de algunas notas no publicadas de van Neumann, aunque sí dio lugar 
al desarrollo de una teoría matemática de envergadura (La teoría de las 
geometrías continuas de van Neumann). 

Hay una serie de trabajos que parten de la convicción de que la estruc­
tura reticular incluye estructura que no puede justificarse físicamente, y 
tratan de estudiar estructuras más débiles. Trabajos significativos en esta 
dirección son los de Kochen y Specker (1967), Strauss (1937). Nuestra 
exposición, así como estos trabajos recién mencionados, se enmarcan en 
lo que se denomina el enfoque algebraico a la lógica cuántica. 

La lógica cuántica es también otras cosas. Menciono a continuación 
algunas de las principales tradiciones alternativas. 

III. LA LÓGICA CUÁNTICA COMO LÓGICA DE VARIOS VALORES 

Una formulación de la lógica cuántica como una lógica de varios valores 
fue propuesta por Hans Reichenbach (basado en un formalismo de Luka­
siewicz) en su libro sobre los fundamentos filosóficos de la mecánica cuán­
tica (Reichenbach, 1944). Reichenbach proponía una lógica de tres valores 
como una manera de resolver los problemas de la interpretación de las 
descripciones mecánico-cuánticas del mundo. Sin embargo, a diferencia 
de la manera como presentamos la lógica cuántica en la sección ante­
rior, Reichenbach pretendía no una descripción de la estructura lógica 
de los postulados descriptivos de la mecánica cuántica, sino más bien la 
formulación de la base lógico-lingüística para la formulación de una teo-
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ría alternativa. La exposición más clara y detallada, así como el análisis 
más a fondo, de la propuesta de Reichenbach se encuentra en una serie 
de trabajos de Gary Hardegree (ver, por ejemplo, Hardegree, 1977). Har­
degree introduce una distinción entre lenguaje observacional y lenguaje 
de la formulación de la teoría y arguye convincentemente que no hay nece­
sidad de implementar una lógica no clásica en el lenguaje de formula­
ción de la teoría, si bien reconoce que el lenguaje observacional tiene una 
estructura no clásica. El programa de Reichenbach ha sido abandonado, 
pero las intuiciones básicas de su enfoque se han retomado y desarro­
llado fértilmente en el enfoque modal del que hablaremos en la sección V. 

IV. LA LÓGICA CUÁNTICA COMO LÓGICA FORMAL 

La lógica cuántica concreta trata de la estructura lógica de las proposi­
ciones generadas por la estructura semántica de la mecánica cuántica. 
La lógica cuántica formal, como toda lógica formal, requiere que haga­
mos explícita una sintaxis y que abandonemos los postulados semánti­
cos (y el lenguaje semi-interpretado) que en la lógica cuántica concreta 
nos limitan a un discurso de objetos. En la lógica formal tanto los obje­
tos como los símbolos que utilizamos para referirnos a ellos son parte 
de la teoría. No hay, sin embargo, una sola sintaxis que pueda recons­
truirse a partir de la estructura lógico-algebraica de la teoría cuántica. 
Los diferentes sistemas que se han propuesto y se siguen proponiendo 
tienen diferencias lógicas y metalógicas importantes. Para varios siste­
mas de lógica cuántica formal se ha demostrado su correcci6n y comple­
titud. Por lo general las pruebas de completitud proceden de la manera 
usual, construyendo el álgebra asociada de Lindenbaum-Tarski determi­
nada por la axiomatización propuesta (ver, por ejemplo, Stachow, 1976; 
Dalla Chiara, 1986). 

Con respecto a la decidibilidad de los diferentes sistemas de lógica 
cuántica hay una serie de resultados interesantes. La decidibilidad de la 
lógica clásica puede mostrarse utilizando tablas de verdad. Este método 
no funciona para demostrar la decidibilidad de la lógica intuicionista, 
pero en este (y muchos otros casos) la decidibilidad puede demostrarse 
a través del establecimiento de la propiedad del modelo finito (una téc­
nica muy desarrollada en lógicas modales). Estas técnicas no pueden apli­
carse en el caso de muchas lógicas cuánticas formales. Otras técnicas han 
sido ensayadas, pero para una buena parte de las lógicas cuánticas for­
males la decidibilidad no ha sido demostrada. En el caso de lógicas cuán­
ticas débiles (orto-lógicas por ejemplo) es posible demostrar la decibili­
dad por medio de la traducción en lógicas modales. Pero para lógicas 
cuánticas que incluyen la propiedad ortomodular, y que supuestamente 
serían aquellas lógicas sancionadas por la mecánica cuántica como físi­
camente significativas, esta técnica no es aplicable. Goldblatt (1984) ha 
mostrado que la orto-modularidad del retículo de subespacios de un espa-
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cio de Hilbert H no está determinada por ninguna propiedad de primer 
orden de la relación de ortogonalidad. Este resultado sugiere que la lógica 
cuántica tiene limitaciones de capacidad de expresión serias, por lo menos 
si se identifica como es usual con lógicas ortomodulares. Quizás valga 
la pena retomar la idea inicial de Birkhoff y van Neumann según la cual 
la lógica cuántica obedece la condición de modularidad, partiendo de la 
hipótesis de que la formulación de la mecánica cuántica en términos de 
espacios de Hilbert es sólo aproximadamente correcta. Lo más probable 
es que este tipo de desarrollo tenga que esperar nuevos adelantos en la 
manera de conceptualizar teorías físicas. 

V. SEMÁNTICA DE KRIPKE E INTERPRETACIÓN MODAL 

DE LA LÓGICA CUANTICA 

La semántica de Kripke desarrollada en los años cincuenta y sesenta de 
este siglo (por Kripke y otros) es una teoría unificada de la semántica 
que permite una clasificación bastante general de muchos sistemas lógi­
cos (ver capítulo 12 en este volumen). Es posible extender esta teoría y 
formular una semántica de marcos de Kripke para la lógica cuántica. Una 
característica de los modelos de Kripke generalizados que resultan ser 
adecuados para la lógica cuántica es que la relación de acceso es refle­
xiva y simétrica, pero no transitiva. En las lógicas no-clásicas más comu­
nes (como la lógica intuicionista y muchas lógicas modales) la relación 
es por lo menos reflexiva y transitiva. Es posible también dar una semán­
tica algebraica para la lógica cuántica y mostrar que esta semántica es 
equivalente a la semántica de modelos de Kripke (Dalla Chiara, 1986). 

No sólo es posible dar una semántica de Kripke para la lógica cuán­
tica, sino que es también posible traducir la lógica cuántica a una lógica 
modal de una manera paralela a la traducción de Mckinsey-Tarski de 
la lógica intuicionista en la lógica modal S4. Goldblatt (1974) ha hecho 
una traducción de una lógica cuántica débil, que él llama orto-lógica (en 
la que los marcos, llamados por él orto-marcos, son orto-retículos) en 
el sistema modal B. Posteriormente Dishkant (1977) ha construido una 
traducción de la lógica orto-modular en un sistema que él llama B + , que 
es intermedio entre B y Ss. 

VI. RESUMEN Y CONCLUSIONES 

En la primera parte de este artículo hemos visto cómo surgió la lógica 
cuántica a partir del desarrollo de una analogía entre la estructura reti­
cular de la lógica clásica concreta (generada por la física clásica) y la 
estructura reticular de las proposiciones físicas sancionadas por la mecá­
nica cuántica. La mecánica cuántica es supuestamente la teoría más con­
fiable y general que tenemos. Esto sugiere que la lógica cuántica es la 
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lógica del mundo empírico. Putnam, elaborando ideas de Finkelstein, ha 
sugerido la analogía con el abandono de la geometría euclideana debido 
al desarrollo de la teoría de la relatividad de Einstein (Putnam, 1969; 
Finkelstein, 1969). Sin embargo, como hemos visto, no hay una sola 
lógica cuántica, sino una serie de sistemas lógicos con diferencias lógicas 
y meta-lógicas significativas. Además, en tanto que la relación de acceso 
de la lógica cuántica no reciba una interpretación física y lógica satisfac­
toria no es posible clarificar el sentido en que se propone la lógica cuán­
tica como lógica alternativa, o por lo menos no es clara la pertinencia 
de la adecuación empírica de la mecánica cuántica para tal proyecto. 

VII. APÉNDICE 

En este apéndice se incluyen algunas definiciones de la teoría de retícu­
los requeridas para clarificar la exposición. 

Un conjunto ordenado es un par ordenado L = < A,::5 >, donde A 
es un conjunto no vacío y ::5 es una relación parcialmente ordenada. L 
es un retículo si además para cada par de elementos existen el extremo 
superior y el extremo inferior. Un elemento z es el extremo inferior de 
un par de elementos {x,y l si x � z, y � z, y además, si hay otro elemento 
w con la misma propiedad, entonces z�w. De manera dual se define 
la noción de extremo superior. El extremo inferior de un par de elemen­
tos se designa por el símbolo XII y, y se lee «cuña de x, p. El extremo 
superior de un par de elementos se designa por el símbolo xvy, y se lee 
«junta de x, p. El ejemplo paradigmático de un retículo es el retículo 
formado por todos los subconjuntos de un conjunto (el conjunto poten­
cia) con las operaciones de intersección y unión. 

Un retículo ortocomplementado, o simplemente, un orto-retículo, es 
un retículo con O y 1 Y con una ortocomplementación. Una ortocomple­
mentación es un mapeo de L en L que satisface: 

i) ava.l. = 1, alla.l. = O 
ii) a::5b=>a.l.�b.l. 

iii) a.l..l. = a 

Una tripleta de elementos es distributiva si 
(D) all(bvc) = (allb)v(allc) 
Un retículo es distributivo si para cada tripleta a, b, c en L se satis­

face (D). Un retículo es modular si satisface la condición 
(M) a::5 b =>(a,b,x) 
es una tripleta distributiva para todo xEL. Un retículo es orto-modular 

si satisface la siguiente condición: 
(OM) a::5b=>b=av(blla.l.) para cualquier par de elementos a y b. 
Un retículo booleano es un orto-retículo distributivo. Para retículos 

distributivos la ortocomplementación es un automorfismo dual, por lo 
que el orto-complemento de un elemento es único. El retículo < P(A), 
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n, U>, en donde P(A) es el conjunto potencia de cualquier conjunto A, 
es un retículo booleano. El álgebra de Lindebaum-Tarski del cálculo pro­
posicional clásico es un retículo booleano. Una introducción elemental 
a la teoría de retículos distributivos en español es Hermes, 1963. 
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LA LÓGICA DE LA RELEVANCIA 

José M. Méndez 

1. INTRODUCCIÓN 

El origen de la lógica de la relevancia actual es, sin duda, el excelente 
artículo de W. Ackermann «Begründung einer strengen Implikation» 1 

(Hay traducción española: cf. la bibliografía que cierra este trabajo; res­
pecto de los antecedentes históricos, cf. Sylvan, 1988), pero su sistema­
tización y desarrollo se deben a A. R. Anderson, N. D. Belnap y sus cola­
boradores. En «The pure calculus of entailment» (Anderson y Belnap, 
1962), Anderson y Belnap establecen las bases filosóficas que validarían 
el intento de construir una lógica de la relevancia. En Entailment (vol. 
1, Anderson y Belnap, 1975; vol. 1I, Anderson, Belnap y Dunn, 1992) 
se incluyen todos los resultados sobre el tema hasta 1989 aproximada­
mente. 

La motivación fundamental tras la lógica de la relevancia fue inicial­
mente filosófica: Anderson y Belnap querían definir una alternativa a la 
Lógica clásica en la formalización del discurso ordinario. El objetivo, 
como se ve, no puede calificarse de modesto. Y, así, la Lógica de la rele­
vancia es, en la actualidad, un campo en continua expansión que, des­
bordando las (necesariamente desbordables) coordenadas iniciales, ha 
dado, y está dando lugar, a importantes desarrollos técnicos en álgebra 
intensional, teoría de sistemas formales, semántica de los mundos posi­
bles no-estándar, teoría de la computación, teoría de conjuntos no clá­
sica y filosofía de la lógica. 

El objetivo del presente artículo es introducir al lector a todas estas 
cuestiones. Debido a limitaciones de espacio sobre las que no es preciso 
insistir, y, por otra parte, a la amplitud del tema, hemos centrado nues­
tra exposición en los puntos siguientes. En § " - § IV hemos intentado 
explicar la motivación subyacente a la Lógica de la relevancia. Comen­
zamos planteando el problema de las llamadas «paradojas del condicio-
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nal clásico» que es el origen de la Lógica de la relevancia (§ II). Se exa­
mina a continuación la solución al problema propuesta por C. 1. Lewis, 
el creador de la moderna lógica modal, que es, en nuestra opinión, el 
auténtico pionero en las investigaciones sobre la relevancia (§ m). Por 
último, estudiamos el origen, fundamentación y constitución del sistema 
R que es la solución al problema de las paradojas defendida por Ander­
son y Belnap. 

En § v - § Vil se expone con detalle este sistema, R, sin duda el más 
importante sistema de la lógica de la relevancia. Estos tres apartados, 
de carácter técnico, son, nos parece, un complemento imprescindible a 
los tres anteriores. Nuestro propósito al redactarlos, ha sido que el lec­
tor, además de conocer los fundamentos filosóficos de la Lógica de la 
relevancia, la maneje al menos en su parte proposicional o enunciativa, 
y tanto sintáctica (§ v) como semánticamente (§ VI, § VII). Por esta razón, 
sólo presuponemos un cierto conocimiento sintáctico de la lógica propo­
sicional clásica y de la semántica estándar de la lógica modal (cfr. los 
artículos «Lógica clásica de primer orden» y «Lógica moda]" en este 
mismo volumen). Por esta razón, también, hemos explicitado con todo 
detalle todas las pruebas salvo aquellas que proponemos al lector como 
ejercicio una vez que le hemos proporcionado previamente las claves para 
desarrollarlas. 

En § VIII - § IX nos ocupamos de otros sistemas alternativos a R siem­
pre en la línea iniciada por Anderson y Belnap. El tratamiento de todos 
ellos es como el empleado para el sistema R, pero, aun siguiendo las direc­
trices de § V - § VII, hemos intentado ser breves. Entendemos que estos 
dos apartados son esenciales para un conocimiento cabal de la lógica de 
la relevancia en el sentido de Anderson y Belnap, pero, de todos modos, 
han sido redactados para que pueda prescindirse de ellos al leer este artí­
culo. En tal caso, el presente trabajo sería una exposición del origen, fun­
damentos y estructura del sistema R. 

Finalizamos, en § x, mencionando algunos resultados capitales sobre 
el tema no abordados en este artículo debido a su complejidad y, tam­
bién, con algunas conclusiones sobre lo expuesto. 

11. EL PROBLEMA: LAS PARADOJAS DEL CONDICIONAL MATERIAL 

1. Definición de lógica. Definición de lógica clásica 

La lógica se define tradicionalmente como la ciencia que se ocupa de for­
malizar y sistematizar el concepto de inferencia (argumentación) deduc­
tiva correcta. La tarea de la lógica consiste, por tanto, en definir el con­
junto de todas las inferencias deductivas correctas que se corresponden 
con un determinado concepto de validez. Así, «inferencia correcta» e 
«inferencia válida» pueden considerarse, si el objetivo de la lógica se cul­
mina, conceptos sinónimos. 

238 



LÓGICA DE LA RELEVANCIA 

Si nos circunscribimos al contexto de la lógica proposicional o enun­
ciativa, la Lógica clásica puede caracterizarse por (i) bivalencia y (ii) fun­
cionalidad de verdad. Es decir, la Lógica clásica se ocupa de definir el 
conjunto de inferencias cuya validez es función de (depende exclusiva­
mente de) la verdad (entendida ésta en sentido bivalente) de los enuncia­
dos que las componen. 

2. Las paradojas del condicional material clásico 

La definición clásica de validez determina la interpretación de las conec­
tivas proposicionales. Y, así, enunciados del tipo condicional A --> B (Si 
A, entonces B) son falsos syss (si y sólo si) A (antecedente) es verdadero 
y B (consecuente) es falso. 0, dicho contraposicionalmente, A-->B es ver­
dadero syss A es falso o bien B es verdadero. De esta interpretación del 
condicional se sigue que esquemas inferenciales tales como 

1) A-->(B-->A) 
o 2) A-->(--,A-->B) 
son válidos. Pero 1) y 2), interpretados extralógicamente, dan lugar, p. 
ej., a inferencias como 

3) Si la Luna es un queso de bola, entonces 2 + 2 = 4 

Y 4) Si 2 + 2 *4, entonces la Luna es un queso de bola. 

(Sustitúyase «A» por «2 + 2 = 4», y «B» por «La Luna es un queso 
de bola». Entonces, 3) y 4) se siguen de 1) y 2) respectivamente, dado 
que «2 + 2 = 4» es una afirmación incuestionable). 

Pues bien, 1) y 2) son dos ejemplos paradigmáticos de las denomina­
das, en sentido etimológico, «paradojas del condicional material (clá­
sico»>: 1) y 2) apoyan la validez de, respectivamente, 3) y 4) que entran 
en conflicto, obviamente, con la idea intuitiva (ordinaria) de argumenta­
ción o inferencia válida. Por esta razón, el condicional clásico y, en con­
secuencia, la propia lógica clásica han sido tachados de paradójicos. 

JI!. LA LÓGICA DE LA IMPLICACIÓN ESTRICTA DE C. !. LEWIS 

1. La lógica de la implicación de C. 1. Lewis 

En la actualidad, C. 1. Lewis es considerado con toda justicia el creador 
de la moderna lógica modal; es decir, la lógica de la necesidad y la posi­
bilidad lógicas (cf. el capítulo «Lógica moda],> de este volumen). Sin 
embargo, el propósito de Lewis fue, inicialmente, definir una lógica libre 
de paradojas como las comentadas más arriba; una lógica cuyo condi­
cional se ajustara de modo más estricto al uso que hacemos en el len­
guaje ordinario de la locución «Si o o . , entonces o o . » . 

Partiendo de una crítica a la lógica clásica semejante a la esbozada 
en el apartado anterior, Lewis concluye que las meras relaciones veritativo-
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bivalentes entre el antecedente y el consecuente de un condicional son 
insuficientes para dar razón de su validez. Propone, por consiguiente, 
que un condicional se considere válido syss (si y sólo si) hay relación de 
necesidad entre antecedente y consecuente: syss es imposible (lógicamente) 
que el antecedente sea verdadero y el consecuente falso. 

Siguiendo estas directrices, Lewis define en Symbolic logic (Lewis y 
Langford, 1932) cinco sistemas lógicos de la implicación estricta diferen­
tes (desde entonces denominados 51-SS) que son otras tantas formulacio­
nes del concepto «relación de necesidad entre antecedente y consecuente» 
de un condicional. Ha podido comprobarse posteriormente que las cinco 
alternativas propuestas por Lewis delimitan, de hecho, el espectro en el 
que en la actualidad cabe formalizar las nociones (esencialmente relati­
vas) de necesidad y posibilidad lógicas más interesantes. Ahora bien, ¿cuá­
les fueron los resultados de Lewis respecto de la eliminación de las para­
dojas del condicional?, ¿alguno de sus sistemas (SI-SS) es la representación 
formal de la noción ordinaria reflejada en la locución «Si ... , entonces ... »? 

2. Las paradojas de la implicación estricta 

En ninguno de los sistemas de Lewis son válidos esquemas inferenciales 
como 1) y 2) (d. § 11.2), pero sí lo son, por ejemplo, en un sistema tan 
débil como S2: 

o 
5) LA>-3(B>-3LA) 
6) --, MA>-3(A>-3B) 

De acuerdo con Lewis, 1) Y 2) pueden interpretarse como sigue: 

1') Si A es un enunciado verdadero, A es implicado por cual­
quier otro enunciado B. 

2') Si A es un enunciado falso, A implica a cualquier otro 
enunciado B. 

Así pues, 5) y 6) pueden interpretarse de modo paralelo: 
5') Si A es un enunciado necesariamente verdadero (LA), A 

es implicado estrictamente (>-3) por cualquier otro enun­
ciado B. 

6') Si A es un enunciado necesariamente falso (imposible, 
--, MA) A implica estrictamente (>-3) a cualquier otro enun­
ciado B. 

Por tanto, a pesar de que ninguno de los sistemas de Lewis daría lugar 
a

. 
consecuencias como las ejemplificadas en 3) y 4), sí darían lugar, p. 

ej., a 

y 

7) Si la Luna es un queso de bola, entonces 2 + 2 = 4 ó 
2 + 2 *4. 

8) Si 2 + 2 = 4 Y 2 + 2 *4, entonces la Luna es un queso de 
bola. 
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Pues bien, 5) y 6) son dos ejemplos paradigmáticos de las denomina­
das «paradojas de la implicación estricta» porque 5) y 6), al igual que 
1) Y 2), originan condicionales extralógicos en los que el consecuente no 
tiene nada que ver con el antecedente, no se sigue, no está implicado por 
él. Es, entonces, obvio que la crítica de Lewis a la Lógica clásica es apli­
cable a sus propios sistemas: ya que todos contienen paradojas de la impli­
cación, ninguno de ellos puede ser la representación formal del concepto 
de inferencia del lenguaje ordinario. 

La conclusión del propio Lewis fue, sin embargo, distinta. Tras subra­
yar la diferencia entre las paradojas del condicional material y las de la 
implicación estricta (claramente ejemplificadas en 1') - 2') y 5') - 6'), res­
pectivamente), afirmó que estas últimas eran ineliminables. En su opi­
nión, eliminarlas equivaldría a eliminar también algunos principios esen­
ciales (y no paradójicos) sobre el concepto de implicación, de modo que 
el sistema lógico resultante sería tan débil que, a la postre, carecería de 
interés por ser pragmáticamente inaplicable. Comprobamos en lo que 
sigue hasta qué punto esta opinión puede sostenerse. 

IV. LA LÓGICA DE LA RELEVANCIA R 

1. La caracterización semántica de la relevancia 

1.1. Definición de «paradoja de la relevancia» 

A fin de definir una lógica no paradójica (una lógica de la implicación 
estricta), Lewis tomó como punto de referencia expresiones paradójicas 
como 1) y 2), pero no dispuso de una definición precisa del término «para­
doja de la implicación». Anderson y Belnap, en cambio, partieron de una 
definición precisa de dicho término que, en una primera aproximación, 
podría rezar como sigue: 

C1) Una expresión de forma condicional (una implicación) A ---> B 
es una paradoja de la relevancia si el contenido semántico 
de A y B es, eventualmente, disjunto. 

De acuerdo con C1), 3), 4), 7) y 8) son, claramente, paradojas de 
la relevancia pues se establece relación de implicación entre proposicio­
nes cuyo contenido semántico no está relacionado de modo alguno. Es 
decir, se establece relación de implicación entre antecedente y consecuente 
sin que aquel sea relevante (pertinente) para establecer éste: de la verdad 
o falsedad de la proposición «La Luna es un queso de bola» nada puede 
seguirse sobre la verdad o falsedad de la proposición «2 + 2 = 4». Así pues, 
la Lógica clásica y la Lógica de la implicación estricta son, para Ander­
son y Belnap, igualmente paradójicas sin que sea en absoluto esencial 
si ha de ser una verdad factual o bien una verdad necesaria el paradigma 
de las proposiciones implicadas por cualquier proposición. El hecho real-
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mente esencial es que de una y otra lógica se sigue la posibilidad de esta­
blecer relaciones de implicación entre proposiciones que, en realidad, no 
mantienen tal relación. 

1.2. La caracterización semántica de «relevancia» 

Con C1) como criterio directriz, Anderson y Belnap inician la definición 
de una lógica proposicional no paradójica. El primer paso ha de ser, 
entonces, traducir formalmente C1). Pues bien, puesto que en lógica pro­
posicional el contenido no lógico está representado por las variables pro­
posicionales, la siguiente es la traducción formal de C1): 

C2) Una fórmula de la forma A --+ B es una paradoja de la rele­
vancia, si A y B no tienen en común al menos una variable 
proposicional. 

De acuerdo con C2), 1),2),7) Y 8) son, p. ej., paradojas de la rele­
vancia, pues es fácil derivar a partir de ellas fórmulas que incumplen el 
requisito impuesto en C2) (p. ej., B--+(A--+A), --, (A--+A)--+B, B--+L(A--+A), 
--, M(A --+ A)--+ B son derivables de 1),2), 7) Y 8) respectivamente, susti­
tuyendo A por A--+A. 

La definición C2) sugiere la siguiente caracterización semántica de 
relevancia: 

E ) L es una lógica de la relevancia si en todo teorema de L de 
la forma A --+ B A Y B tienen al menos una variable proposi­
cional en común. 

El criterio E) es, por tanto, una condición necesaria de relevancia: 
si un sistema de lógica cuenta con la propiedad E), tenemos la garantía 
de que el antecedente y el consecuente de todo condicional derivable com­
partirán contenido semántico. Ahora bien, ¿cuál es la condición de sufi­
ciencia?, ¿cómo construir un sistema tal? Nos ocupamos de estas cues­
tiones en los apartados siguientes. 

2. La caracterización sintáctica de «relevancia» 

2.1. La definición de premisa «relevante» 

Volvamos a fórmulas como 1). El problema de 1) y, en general, de las 
paradojas de la relevancia, es, desde un punto de vista semántico, que 
el antecedente nada tiene que ver con el consecuente. Desde el punto de 
vista sintáctico, esta deficiencia puede reformularse diciendo que el ante­
cedente es inútil para probar el consecuente: operando, razonando úni­
camente con el antecedente nada podemos establecer sobre la derivabili­
dad del consecuente. Pues bien, precisamente es éste el punto de partida 
de Anderson y Belnap. A diferencia de Lewis, no exigen, para evitar las 
paradojas, que entre antecedente y consecuente se dé relación de necesi-
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dad; exigen que el antecedente se use para probar el consecuente. No, 
por supuesto, que el antecedente haya de usarse, sea imprescindible para 
probar el consecuente (pues un mismo consecuente puede seguirse de 
diversos antecedentes), pero sí que pueda usarse, sí que para afirmar 
A -+ B, A haya sido usado para demostrar B. 

2.2. La caracterización semántica de «relevancia» 

Esta noción intuitiva de «uso» puede traducirse, formalmente, en los 
siguientes términos: 

C3) A se usa para probar B en una deducción dada II syss A es 
una premisa en una aplicación de una regla de inferencia en ll. 

Tomando como criterio C3), es obvio que, p. ej., 1),2), 7) Y 8) no 
pueden ser teoremas de ninguna lógica de la relevancia L pues, p. ej., 
de 1) se sigue fácilmente B-+(A-+A), y, en la demostración de esta fór­
mula es claro que el antecedente no juega ningún papel en la demostra­
ción del consecuente. La definición C3) sugiere la siguiente caracteriza­
ción sintáctica de relevancia: 

s ) L es una lógica de la relevancia si en todo teorema de L de 
la forma A -+ B, A se usa para probar B. 

3. La lógica de la relevancia R 

3.1. Insuficiencia de la caracterización sintáctica y de la 
caracterización semántica 

Tenemos ya a nuestra disposición caracterizaciones sintáctica y se­
mántica de «relevancia», ¿cómo definir a partir de ellas el sistema de la 
lógica de la relevancia? Supongamos que tomamos la caracterización 
semántica I:) como directriz. El problema que se plantea es el siguiente: 
el conjunto de todos los condicionales no paradójicos en el sentido de 
C2) no es axiomatizable en ninguna lógica L. Comprobémoslo con un 
sencillo ejemplo. Sea L una lógica con los axiomas siguientes: 

9) (A!lB)-+ A 
10) A-+(B-+(A!lB)) 
1 1) (B-+C)-+((A-+B)-+(A-+C)) 

y con modus ponens (Si 1-A y 1-A -+ B, entonces 1-B) como regla de deriva­
ción. Es obvio que 9),10) Y 11) son condicionales no paradójicos en el sentido 
de C2), y, sin embargo, es fácil probar que de este sistema se sigue el teorema 

1) A -+(B-+ A) 
cuyo carácter paradójico ha sido pormenorizada mente discutido más 
arriba. La caracterización semántica I:) es, por tanto, insuficiente para 
definir la lógica de la relevancia R. 
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Tomemos, pues, como directriz la caracterización sintáctica S). Des­
graciadamente, nos topamos con un problema semejante: 9), 10) Y 11) 
son no paradójicos en el sentido de C3) y, sin embargo, dan lugar a l) 
que, evidentemente, sí lo es. La caracterización sintáctica S) es, en con­
secuencia, también insuficiente. ¿Es, entonces, imposible como Lewis 
sugería la construcción de la Lógica de la relevancia? 

3.2. La lógica de la relevancia R 

Hemos comprobado en el apartado anterior la insuficiencia de las carac­
terizaciones intuitivas (sintáctica y semántica) de «relevancia» propues­
tas por Anderson y Belnap. Es por esta razón por la que hemos hablado 
de caracterizaciones, y no de definiciones. Parece, por tanto, inevitable 
deducir la imposibilidad de definir una lógica de la relevancia a no ser 
que se propongan caracterizaciones sintáctica y semántica alternativas 
a las defendidas por Anderson y Belnap. Y, sin embargo, no es así. Dada 
la situación descrita, la estrategia de estos autores consiste, en esencia, 
en corregir la insuficiencia del requisito del uso de la premisa con la que 
la exigencia de que las fórmulas derivables sean no paradójicas en el sen­
tido semántico. Con mayor precisión, la solución de Anderson y Belnap 
podría reformularse como sigue. Sean R¡, ... ,R" el conjunto de reglas de 
derivación basadas en el criterio S). Pues bien, el sistema de la lógica de 
la relevancia R es el sistema lógico con la propiedad 1:) que equivale al 
máximo subconjunto posible de ese conjunto de reglas que no permitan 
la derivación de fórmulas paradójicas. 

Anderson y Belnap demuestran que lo que hoy conocemos como sis­
tema de la lógica de la relevancia R es un sistema equivalente a uno de 
los máximos subconjuntos posibles antes mencionados. Muestran tam­
bién que el sistema R es, en contra de los augurios de Lewis, un sistema 
muy potente y que, en particular, no está incluido en ninguno de los sis­
temas definidos por el propio Lewis. Volveremos sobre estas afirmacio­
nes al final de este trabajo. Por el momento, finalizamos este apartado 
describiendo con más detalle la solución propuesta por Anderson y 
Belnap. 

La estrategia consiste en generalizar la caracterización de «teorema 
de la lógica de la relevancia» implícita en S) a 

C4) Si A¡--->( ... --->(A"--->B) ... ) es teorema, entonces cada 
A¡( 1:5 i:5 n) se usa para probar B. 

Demostraron entonces que el siguiente sistema implicativo R ---> (un 
sistema es implicativo syss su única conectiva es ---»: 

Axiomas: Al. A ---> A 
A2. A--->((A--->B)--->B) 
A3. (A---> (A--->B))---> (A--->B) 
A4. (A--->B)--->((B---> C)--->(A---> C)) 
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Reglas de derivación: Modus ponens (Si f- A Y f- A ---> B, entonces f- B), 
es deductivamente completo respecto de C4). Es decir, A¡--->( ... --->(An--->B) 
... ) es teorema de R ---> syss cada A;(1 :5 i:5 n) se usa en la prueba de B. 
Mostraron, además, que R ---> es un sistema relevante desde el punto de 
vista semántico. Concluyeron, por tanto, que R ---> es el fragmento impli­
cativo de la Lógica de la relevancia. 

Posteriormente, demostraron que los axiomas siguientes (para la con­
junción (1\), disyunción (v) y negación (----, )): 

AS. (AI\B)--->A/(AI\B)--->B 
A6. ((A--->B)I\(A---> C))--->(A---> (BI\C)) 
A7. A--->(AvB)/B--->(AvB) 
A8. ((A--->C)I\(B--->C)--->((AvB)--->C) 
A9. (AI\(BvC))--->((AI\B)vC) 
Al O. A ---> ----, ----, A 
A11. (A ---> ----, A)---> ----, A 
A12. (----,A--->B)--->(----,B--->A) 

y la regla Adjunción (si f- A y f- B, entonces f- AI\B) son compatibles con 
R ---> en el sentido de que se preserva el concepto de relevancia en sus dos 
sentidos, sintáctico y semántico. Anderson y Belnap concluyeron que el 
sistema anterior (A1-A12, modus ponens y adjunción), al que denomi­
naron R, es la Lógica de la relevancia. 

V. EL SISTEMA R DE LA LÓGICA DE LA RELEVANCIA 

El lenguaje proposicional está compuesto por un conjunto enumerable 
de variables Po, ... , P" . .. , las conectivas --->, 1\, v, ----', <--* y los signos 
auxiliares (,). El conjunto de las fbf es el habitual. El bicondicional ( <--* ) 
se define también al modo habitual. 

1. El sistema R 

Axiomas: 
Al. A--->A 
A2. A--->((A--->B)--->B) 
A3. (A--->(A--->B))--->(A--->B) 
A4. (A--->B)--->((B--->C)--->(A--->C)) 
AS. (AI\B)--->A/(AI\B)--->B 
A6. ((A--->B)I\(A---> C))---> (A--->(BI\C)) 
A7. A--->(AvB)/A--->(BvA) 
A8. ((A--->C)I\(B---> C))---> ((AvB)---> C) 
A9. (AI\(BvC))--->((AI\B)vC) 

Al O. A ---> ----, ----, A 
All. (A ---> ----, A)---> ----, A 
A12. (----,A--->B)--->(----,B--->A) 
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Reglas de derivación: 

Modus ponens: Si 1- A Y 1- A ---> B, entonces 1- B 
Y Adjunción: Si 1- A Y 1- B, entonces, 1- A/\B. 
A fin de que el lector pueda relacionar el sistema anterior con otros 

más conocidos, señalamos 
Nota 1. Si en R sustituimos Al y A2 por A --->(B---> A), Y eliminamos 

Al2 el resultado es una axiomatización de la lógica proposicional intui­
cionista. (A9 no sería independiente.) 

Nota 2. Si en R sustituimos Al y A2 por B--->(A ---> A) el resultado es 
una axiomatización del sistema 54 de Lewis con ---> (implicación estricta) 
como conectiva primitiva. 

Nota 3. Si en R sustituimos Al y A2 por A--->(B--->A), el resultado 
es una axiomatización de la lógica proposicional clásica definida con --->, 
/\, v, --, como conectivas primitivas. 

2. Algunos teoremas característicos de R 

Anotamos una serie de teoremas característicos del sistema R con un 
esquema de prueba de cada uno de ellos. Al final de la lista desarrolla­
mos con detalle alguna de estas pruebas. 

TI. ((A--->A)--->B)--->B ............. . 
T2. (A--->(B--->C))--->((A--->B)--->(A--->C)) .. 
T3. (A--->(B--->C))--->((B--->(A--->C)) ..... 
T4. (A--->B)--->((A--->(B--->C))--->(A--->C)) .. 
TS. (B--->C)--->((A--->B)--->(A--->C)) ..... . 
T6. (AvB)-(BvA) ............... . 
T7. (Av(BvC))-((AvB)vC)) ........ . 
T8. A -(AvA) .................. . 
T9. (A/\B)-(B/\A) ............... . 

TIO. (A/\(B/\C))-((A/\B)/\C) ........ . 
Tl1. A-(A/\A) .................. . 
T12. A -(Av(A/\B)) ............... . 
T13. A -(A/\(AvB)) ............... . 
T14. (Av(B/\C))-((AvB)/\(AvC)) ..... . 
TIS. (A/\(BvC))-((A/\B)v(A/\C)) ..... . 
T16. (A--->(B---> C))---> ((A/\B)---> C) ...... . 
T17. (A--->(B/\C))--->((A--->B)/\(A--->C)) 
T18. ((A--->B)v(A--->C))--->(A--->(BvC)) 
T19. ((A---> C)v(B---> C))--->((A/\B)--->C) 
T20. ((AvB)---> C)---> ((A---> C)/\(B---> C)) 
T2I. --, --,A--->A ................ . 
T22. (--, A ---> --, B)--->(B---> A) ........ . 
T23. (A--->B)--->(--,B--->--,A) ........ . 
T24. (A--->--,B)--->(B--->--,A) ........ . 
T2S. (--,A--->A)--->A ............... . 
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AI,A2 
A2,A3,A4 
A2,A4 
T2, T3 
A4, T3 
A7,A8 
A7,A8 
A7;AI,A8 
AS,A6 
AS,A6 
Al, A6; AS 
A7; Al, AS, A6 
Al, A7, A8; AS 
AS-A8; AS-A9 
AS-A9; AS-A8 
AS, T4 
AS,A6 
A7,A8 
AS,A8 
A6,A7 
Al, Al2 
AIO, Al2 
AIO, A12 
AIO, T23 
AIO, Al1, T21 
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T26. (A-+B)-+((A-+-,B)-+-,A) ..... All, T23 
T27. (-, A -+ -, B)-+(( -, A -+ B)-+ A) .. T22, T25 
T28. (A-+B)-+((-,A-+B)-+B) ........ T23, T25 
T29. -,(AvB)-(-,A/\-,B) ........ A6, A7, T23; A5, A6, T24 
T30. -,(A/\B)-(-,Av-,B) ........ A6, A7, A12; A5, A8, T23 
T31. (AvB)--, (-, A/\ -, B) ........ A12, T24, T30 
T32. (A/\B)--, (-, Av-, B) ........ A12, T24, T30 
T33. (-, A -+B)-+(AvB) ............. A7, T23, T27 
T34. (A-+B)-+-,(A/\-,B) .......... A5, T26 
T35. (A-+B)-+(-,AvB) ............. T21,T23 
T36. (A/\B)-+ -, (A -+ -, B) .......... A6, A10, T24, T34 
T37. Av-, A ..................... A7, A12, T23, T27 
T38. -,(A/\-,A) ................. A5, T26 

La mayoría de las pruebas son como las que daríamos en un sistema 
axiomático de lógica clásica formulado de modo igual o semejante al des­
crito en la Nota 3 (cfr. supra). Comprobémoslo con un par de ejemplos. 

Observación 1. « 1», «2», etc., designan en las pruebas que siguen 
los teoremas que aparecen en las líneas correspondientes. Las mismas con­
sideraciones se aplican al uso de TI, T2, etc. 

Observación 2. El uso de los teoremas implicativos TI - T 5 (y, en 
especial e! de A4 - A5 (-transitividad de! condicional-) en las pruebas 
subsiguientes no aparece reflejado, y así sucede en general, en la justifi­
cación esquemática que aparece a la derecha de cada teorema de la lista. 

Ejemplo 1. T27. (-, A -+ -, B)-+(( -, A -+B)-+A) 

Prueba. 
1. (B-+A)-+((-,A-+B)-+(-,A-+A)) .............. T5 
2. (-,A-+-,B)-+(B-+A) ...................... T22 
3. (2)-+((1)-+(A-+-,B)-+((-,A-+B)-+(-,A-+A))) .. A4 
4. (-,A-+-,B)-+((-,A-+B)-+(-,A-+A)) ........ 2 MP, 1,2,3 
5. (-,A-+A)-+A ............................. T22 
6. (5)-+(((-,A-+B)-+(-,A-+A))-+((-,A-+B)-+A)) .. A4 
7. (( -, A -+B)-+( -, A-+A))-+(( -, A -+B)-+A) ... . . " MP, 5, 6 
8. (4)-+((7)-+T27) ............................ A4 
9. T 2 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MP, 4, 7, 8 

Ejemplo 2. T29. -, (AvB)-( -, A/\ -, B) 

Prueba. (De izquierda a derecha; en e! otro sentido, la prueba es seme­
jante). 
1. A-+(AvB) ................................. A7 
2. B-+(AvB) ................................. A7 
3. (1)-+( -, (AvB)-+ -, A) ...................... T23 
4. (2)-+(-, (AvB)-+-,A) ...................... T23 
5. -, (AvB)-+ -, A ...................... . ... . MP, 1, 3 
6. -, (AvB)-+ -, B ........................... MP, 2, 4 
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7. (5)/\(6) .. . . . . . . . . . . . . . ... . . . .. . .... . . .. . .. ADJ., 5, 6 
8. (7)->T29 .. . . . . . . . . . . . . . ..... . ..... . .... . . A6 
9. T29 . . . .... . .. . ....... . . . . . . ... . . ... . . . . . MP, 7, 8 

3. El Metateorema de Intercambio de los Equivalentes. 
El Metateorema de Deducción 

Una formulación habitual del Metateorema de Intercambio de los Equi­
valentes (M.I.) es la siguiente: 

Si f-A<-+B, entonces f-C(A)<-+C(A/B) 
Su significado vendría a ser éste: 
si dos fórmulas son sintácticamente equivalentes, entonces son intercam­
biables dentro de cualquier contexto (fuf) en el que aparezcan. En Lógica 
clásica, M.1. se prueba por inducción sobre la complejidad (grado lógico) 
de C(A). Para mostrar su validez basta con las siguientes reglas: 

a) Si f-A->B, f-(B->C)->(A->C) 
b) Si f-A->B, f-(C->A)->(C->B) 
c) Si f-A -> B, f- --, B-> --, A 

Como a), b) y c) son, obviamente, reglas derivadas de R, M. 1. se 
prueba para R exactamente igual que para la Lógica clásica. 

Por otro lado, el Metateorema de Deducción clásico (M.D.) rezaría 
(M.D.) Si Al'"'' Anf-B, entonces Al'"'' An_l f-An->B 
En Lógica de la Relevancia en general, y en el sistema R en particu­

lar, se modifica como sigue (Metateorema de Deducción Relevante 
(M.D.r.)): 

(M.D.r.) Si A¡, ... , Anf-B, y cada A,(l :5i:5n) se usa en la demostra­
ción de B, entonces A¡, ... , An_¡f-An->B 

Hemos explicado con detalle más arriba (d. §Iv.2) las razones que 
justifican esta modificación. La prueba de M.D.r. es, en esencia, seme­
jante a la prueba de M.D., pero se requieren algunas especificaciones téc­
nicas en las que no podemos entrar aquí (d. Dunn, 1986). 

VI. SEMÁNTICA PARA R 

Describimos a continuación la semántica para R definida por Routley 
y Meyer (d. Routley y Meyer, 1973; Routley y otros, 1984). Semánti­
cas esencialmente equivalentes son las propuestas por A. Urquhart y K. 
Fine (d. Urquhart, 1972; Fine, 1974). La semántica de Routley y Meyer 
para R es semejante a la semántica kripkeana para la lógica modal (cf. 
el capítulo «Lógica Modal» de este mismo volumen). 

Como se sabe, una «estructura kripkeana» es una estructura del tipo 
< 0, K, R> donde K es un conjunto, OEK, y R es una relación binaria 
definida en K. Desde un punto de vista intuitivo, K es el conjunto de los 
mundos posibles, ° es el «mundo actual» y R representa la relación de 
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accesibilidad entre mundos posibles. Para definir un «modelo kripkeano» 
añadimos a una estructura kripkeana una función de evaluación con la 
que se valora cada fórmula bien formada en cada mundo posible con­
forme a requisitos que respecto de las conectivas ->, 11, v, - y --, son 
exactamente igual a los clásicos. 

Pues bien, las estructuras para R son estructuras del tipo < 0, K, R, 
,,- > donde 0, K y R son como antes y ,,- es una operación monaria defi­
nida en K. Las diferencias respecto de las estructuras kripkeanas están­
dar pueden resumirse en lo siguiente: 

i) El conjunto K de los mundos posibles puede contener elementos 
inconsistentes o incompletos o inconsistentes e incompletos. 

ii) R es una relación ternaria. Así, si en los modelos estándar «Rab» 
puede leerse «el mundo posible a tiene acceso al mundo posible 
b», en los modelos para R, «Rabo> podría leerse «el mundo posi­
ble c es accesible desde a y b ». Naturalmente, el hecho de que 
R sea una relación ternaria, dificulta, a diferencia de lo que ocu­
rre en los modelos estándar, la elección de las propiedades que 
cabe imponerle. 

iii) La operación ,,- proporciona una, diríamos, «imagen inversa» de 
cada mundo posible. Para cada mundo posible a, a ,,- contiene 
todas las fórmulas negativas cuyos argumentos están en a; o, dicho 
de otro modo, a ,,- carece de los argumentos de las fórmulas nega­
tivas que están en a. 

iv) Las diferencias respecto de la semántica estándar expresadas en 
los dos puntos anteriores tienen como objetivo valorar el condi­
cional y la negación de forma alternativa (cfr. in/ra) con vista a 
falsar las paradojas de la relevancia. 

A continuación exponemos con detalle esta semántica, y probamos 
el Teorema de Consistencia. 

1. Estructuras modelo, modelos, validez 

Def. 1. Una estructura modelo para R (EMR) es una estructura del tipo 
< 0, K, R, ,,- > donde 

i) K;iq> (K es un conjunto no vacío) 
ii) O c;; K (O es un subconjunto de K) 

iii) R c;; K 3 (R es una relación ternaria definida en K) 
iv) "- C;; K ( "- es una operación monaria definida en K) 

tales que las siguientes definiciones y postulados se cumplen para cuales­
quiera a, b, c, d, EK (los cuantificadores tienen como dominio K; «=»> puede 
leerse «si ... , entonces ... »; es decir, como un condicional metalingüístico). 

dI. a:5b=df(xEO y Rxab) 
d2. R 2abcd = df:tt:X(xEO y Rabx y Rxcd) 
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PI. aS-a 
P2. aS-by Rbcd=?Racd 
P3. Rabc=?Rbac 
P4. R 2abcd =? 'JIx(Racx y Rbxd) 
P5. Raaa 
P 6. a':' ': . <FI a 
P7. Rabc=?Rab':'c':' 

Def. 2. Un modelo para R (MR) es una estructura del tipo < O, K, 
R, ':', v> donde < O, K, R, ':. > es una estructura modelo y v una fun­
ción de verdad con la que asignamos 1 ó O a cada fbf en cada mundo 
posible de acuerdo con las restricciones siguientes (para cualesquiera varia­
ble proposicional p, fbf A, B Y aEK): 

i) aS-b y v(A, a) = 1 =?v(B, b) = 1 
ii) V(At\B) = 1 syss v(A, a) = 1 Y v(B, a) = 1 

iii) v(AvB) = 1 syss v(A, a) = 1 ó v(B, a) = 1 
iv) v(A --+ B) = 1 syss para todo b, c, EK, Rabc y v(A , b) = 1 =? v(B,c) = 1 
v) v(-,A, a)= l syss v(A,a':')= O 

Def. 3. A es válida ( 1=  A) syss para todo modelo M y aEK tal que 
aEO, v(A, a) = 1. 

2. Teorema de consistencia 

Para simplificar la prueba del Teorema de Consistencia, utilizamos la 
siguiente definición: 

Def. 4. A implica semánticamente a B en R syss para todo MR yaEK, 
v(A, a) = 1 =?v(B, a) = 1 
Y los siguientes Lemas: 

Lema 1. A implica semánticamente a B syss 1= A --+ B. 

Prueba. Considérese cualquier MR en el que aEO y b, cEK. Entonces, 

i) Si A implica semánticamente a B en R, entonces 1= A --+ B. 
Suponemos, pues, 
1. A implica semánticamente a B en R ..... Hip. 
2. Rabc y v(A, b) = 1 ................... Hip. 
para demostrar, de acuerdo con DF2(iv) y DF3, v(B, c) = 1. Entonces, 
3. aS-b ... ........... ...... ... ....... 2, dI, pues aEO 
4. v(A, b) = 1 ......................... 2, 3, Def. 2(i) 
5. v(B, b)=I .......................... 1,4, Def. 4 

ii) Si 1= A --+ B, entonces A implica semánticamente a B en R. 
1. I=A--+B .. ..... ... .. ....... ......... Hip. 
2. v(A, b) = 1 ......................... Hip. 
De acuerdo con Def. 4, hemos de demostrar ahora v(B, b)=l. Entonces, 
3. Rxbb ..... ...... ................... PI, dI 
4. v(A --+ B, x) = 1. . . . . . . . . . . . . . . . . . . . . .. 1, Def. 3, pues xEO 
5. v(B, b) = I .......................... 2,3,4, Def. 2(iv) 
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Lema 2. v(A, a) = 1 syss v( ---, A, a "�o ) = a 

Prueba. v(A, a) = 1 syss v(A, a ,,-" ) = 1 (por P6) syss v( ---, A, a "�o ) = a 
(por Def. 2 (v)). 

Lema 3. Los postulados siguientes: 

P5(a). R 2abcd�R 2acbd 
P5(b). Rabc�R 2abbc 
P5(c). Raa':-a 

se cumplen en todas las EMR. 

Prueba. (i) P5(a) R2abcd�R2acbd 
1. R 2abcd ............................ Hip. 
2. Racx y Rbxc ........................ 1, P4 
3. Racx y Rxbd ....................... 2, P3 
4. R 2acbd .. . ......................... 3, d2 

ii) P5(b) Rabc�R 2abbc 
1. Rabc . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Hip. 
2. Rbac .............................. 1, P3 
3. Rbbb .............................. P5 
4. R2bbac ............................ 2,3, d2 
5. R2babc .............. . ............. 4,P5(a) 
6. Rbax y Rxbc ....................... 5, d2 
7. Rabx y Rxbc ....................... 6, P3 
8. R 2abbc ............................ 7, d2 

iii) P5(c) Raa"-a 
1. Ra "-a "-a ,,- ........................... P5 
2. Ra"-a"-"-a"-"- ......................... 1, P8 
3. Ra"-aa ............................. 2, P6 
4. Raa"-a ............ . ................ 3, P3 

Podemos ahora probar e! 

Teorema de consistencia (semántica) 

Si 1- A, entonces 1= A (si A es teorema, entonces A es válida) 

Prueba. La prueba consiste, como es habitual, en demostrar que los 
axiomas son válidos y que las reglas de derivación preservan la validez. 
Pues bien, como todos los axiomas son de la forma A ----> B, por el Lema 
1 basta probar que en cualquier MR y para cualquier aEK, v(A, 
a)= l�v(B, a)= 1. Entonces, Al, A5, A6, A7, A8, A9, Modus ponens 
y Adjunción se siguen inmediatamente de Def. 2. Por otro lado, A2, A3, 
A4, Ala, All y A12 se siguen fácilmente de, respectivamente, P3, P5(b), 
P4, Lema 2, P5(c) y P8. Desarrollamos a continuación algunas de estas 
pruebas. Procederemos por reducción al absurdo. Es decir, supondre­
mos que e! axioma de! caso no es válido. Como todos los axiomas son 
de la forma A ----> B, esto significa por e! Lema 1 que para algún aE O en 
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algún MR, v(A, a) = 1 Y v(B, a) = O. Demostraremos que de tal suposi­
ción se sigue una contradicción: 

A4. (A->B)->((B->C)->(A->C)) 

1. (i)v(A->B, a)=l 
(ii) v((B->C)->(A->C), a)=O . ... .. Hip. 

2. (i) Rabe 
(ii) v(B->C, b) = 1 
(iii) v(A->C, e)=O ..... ...... .. . l(ii), Def. 2(iv) 

3. (i) Rede 
(ii) v(A,d) = 1 
(iii) v(C,e ) = O .. . .... ..... ..... 2(iii), Def. 2(iv) 

4. R 2abde . . . . . . . . . . . . . . . . . . . . . .. 2(i), 3(i), d2 
5. (i) Radx 

(ii) Rbxe ..... .... .... ........ 4, P4 
6. v(B, x) = 1 .................... l(i), 3(ii), 5(i), Def. 2(iv) 
7. v(C,e ) = 1 ..................... 2(ii), 5(ii), 6 

Pero 7 y 3(iii) se contradicen. Por tanto, A4 es válido. 

Al O. A -> ----, ----, A. 
1. (i) v(A, a) = 1 

(ii) v( ----, ----, A) = O . . . . . . . . . . . . .. Hip. 
2. v(----,A, a':' )=O ...... . .... . . ... l(i), Lema 2 
3. v( ----, ----, A, a ) = 1 ............... 2, Def. 2) v) 

Pero 3 y l(ii) se contradicen. Por tanto, AlO es válido. 

A12. (----, A -> B)->( ----, B-> A) 
1. (i) v( ----, A ->b, a) = 1 

(ii) v(----,B->A)=O .............. Hip. 
2. (i) Rabe 

(ii) v(B, b ) = 1 
(iii) v(A, e) = O . ....... . . .... ... l(ii), Def. 2(iv) 

3. Rae ':-b ': - ...................... 2(i), P8 
4. v( ----, A, e ,:- ) = 1 .  . . . . . . . . . . . . . . .. 2(iii), Lema 2 
5. v(B, b':- )=l ................... l(i), 3, 4, Def. 2(iv) 
6. v( ----,B, b)=O .. .. ...... ... .... 5, Def. 2(v) 
Pero 6 y 2(ii) se contradicen. Por tanto, A12 es válido. 

Nota 1. La cláusula (ii) de la Def. 2 se restringe normalmente al caso 
de las variables proposicionales, y, entonces, rezaría: 

Def. 2(ii)'. a�b y v(p, a)=l�v(p, b)=l 
El lector puede demostrar sin dificultad que Def. 2(ii)' se extiende 

a Def. 2(ii) por inducción sobre el grado lógico (la longitud, la compleji­
dad) de las fbf. 

Nota 2. Hemos utilizado «modelos no-reducidos» para R en lugar 
de los «modelos reducidos» (es decir, modelos sin un «mundo actual») 
(cfr. Routley y otros, 1982). La razón es que así podemos exponer de 
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modo unificado la semántica para otras lógicas de la relevancia alterna­
tivas. 

3. Algunos conocidos teoremas de la lógica proposicional 
clásica que no son teoremas de R 

1. A -+(B-+ A) 
2. ((A -+B)-+C)-+(B-+C) 
3. ((A-+B)-+B)-+((B-+A)-+A) 
4. ((A-+B)-+A)-+A 
5. (A-+C)-+((B-+C)-+((AvB)-+C) 
6. (A-+B)-+((A-+C)-+(A-+(BJ\C)) 
7. A-+(B-+(AJ\B)) 
8. ((AJ\B)-+C)-+(A-+(B-+C)) 
9. (A-+B)-+((AJ\C)-+(BJ\C)) 

10. (A-+B)-+((AvC)-+(BvC)) 
11. (A-+(BvC))-+((A-+B)v(A-+C)) 
12. ((AJ\B)-+C)-+((A -+C)v(B-+C)) 
13. (A-+B)v(B-+A) 
14. -,A-+(A-+B) 
15. -,(A-+-,B)-+(AJ\B) 
16. (AvB)-+(-,A-+B) 
17. (-,AvB)-+(A-+B) 
18. (AJ\-,B)-+(A-+B) 
A pesar de la indecidibilidad de R (cfr. §x) sugerimos al lector como 

ejercicio dos posibilidades de mostrar que las fórmulas anteriores no son 
teoremas de R: 

(1) Sintaxis. 
i) No es difícil demostrar que si añadimos a R cualquiera de (1)-(4), 

(7)-(8) ó (14 )-(18), entonces A -+(B-+ A) es demostrable. Pero el resul­
tado de añadir A -+ (B -+ A) a R es, evidentemente, la Lógica clásica. 

ii) R en unión de (5), (6 ), (9)  ó (lO) da lugar a teoremas como 
(A-+B)-+(A-+A) ó (B-+A)-+(A-+A); R en unión de (11), (12) ó 
(13) da lugar a (A-+B)v(B-+A) como teorema. Como hemos dis­
cutido más arriba, uno y otro resultado son indeseables. 

(U) Semántica. 
Siguiendo la estrategia utilizada en la demostración de la validez de 

los axiomas de R, no es difícil, en la mayoría de los casos, construir mode­
los que muestran la no-validez de (1 )-( 18). Por ejemplo: 

i) (1) A-+(B-+A) se falsa en un MR en el que (a) K= (a, b, e], (b) 
O=K, (e) Rabe, (d) utA, a)=O, utA, b)=l, u(C, e)=O. 

ii) (14) -,A-+(A-+B) se falsa en un MR en el que (a) K= (a, b, 
e], (b) O=K, (e) Rabe, (d) utA, a':o )=O, utA, b)= 1, u(B, e)=O. 

iii) (15) -, (A-+ -, B)-+(AJ\B) se falsa en un MR en el que (a) K = (a, 
b, e) (b) O = K, (e) Ra,:obe, (d) utA, b) = 1, u(B, b':o) = O, utA, a) = O. 
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Nota. En cada uno de los modelos anteriores se especifica lo estricta­
mente necesario para falsar las fórmulas del caso. Lo no especificado es 
indiferente siempre que sea compatible con los requisitos que definen un 
MR. Así, p. ej., en i) es indiferente el valor de A en b ó si se dan o no 
entre a, b y c otras relaciones que Rabc. 

VII. COMPLETUD DE R 

Damos a continuación una prueba de completud de R respecto de la 
semántica descrita en § VI. La prueba es, en esencia, una prueba tipo 
Henkin. Es decir, definiremos el «modelo canónico» (d. Def. 2), y 
probaremos que todas las fbf que no sean teoremas son falsas en algún 
mundo posible del modelo canónico. En la construcción del modelo 
canónico, utilizaremos el método de las teorías «primas»; es decir, 
interpretaremos canónicamente el conjunto K como el conjunto de 
todas las teorías primas (d. Def. 1). Comenzamos con algunas defi­
OlClones. 

1. Definiciones. Modelo canónico 

Def. 1 
i) Conjunto de fórmulas cerrado por la implicación (f--» . 

a está cerrado por la implicación syss si f-A --> B Y AEa, enton­
ces BEa. 

ii) Conjunto de fórmulas cerrado por la adjunción (&). 
a está cerrado por la adjunción syss si AEa y BEa, entonces 
Ai\BEa. 

iii) Teoría. 
a es una teoría syss a está cerrada por f--> y por &. 

iv) Teoría normal. 
a es una teoría normal syss (a) a es una teoría y (b) si f-A, enton­
ces AEa. 

v) Teoría prima. 
a es una teoría prima syss (a) a es una teoría y (b) si AvBEa, enton­
ces AEa ó BEa. 

Def. 2. Estructura modelo canónica para R. 
Una estructura modelo canónica para R (EMR) es cualquier estruc-

tura del tipo < Oc, KC, W, ':'C) donde 
i) KC es el conjunto de todas las teorías primas. 

ii) Oc es el conjunto de todas las teorías primas normales. 
iii) R C se define en KC como sigue: para cualesquiera a, b, cEK<, 

R cabc syss si A --> BEa y AEb, entonces BEc. 
iv) ':. e se define en KC como sigue: para cualquier aEKc, a ':·c = [A 

----,AEa) (Es decir, AEa':·C syss ----,AEa). 
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2. Lemas previos 

Probamos a continuación tres lemas esenciales para la demostración, en 
el apartado siguiente, de que el modelo canónico es, en efecto, un modelo. 

Lema 1. Si if A, entonces hay una teoría T tal que TEKc y A� T. 
Prueba. En la demostración que sigue utilizamos el Lema de Zorn 

que reza: Todo conjunto no vacío en el que cada cadena (es decir, cada 
subconjunto totalmente ordenado) tenga un límite superior tiene un ele­
mento máximo. 

Hay pruebas alternativas (técnicamente más complicadas) utilizando 
el Lema de Lindenbaum (efr. Routley y otros, 1982, cap. V). 

Pasamos ya a la demostración del Lema 1. Considérese la lógica R 

como el conjunto de sus teoremas. R es una teoría (la mínima) normal 
sin A. Ordénense todas las teorías normales sin A con la inclusión con­
juntista. Es evidente que el Lema de Zorn puede aplicarse, y, por tanto, 
hay una teoría normal y máxima T sin A (A� T) (que T es una teoría 
normal y máxima sin A significa: si T es una teoría y Te T' como T 
es necesariamente normal, A E T). 

Demostraremos a continuación que T es prima. Supongamos que no 
lo es. Entonces, para algunas fbf B, C, tenemos BvCET, B� T, CET (efr. 
Def. 1 (iv)). 

Definimos: 
[T, Bl = (EI�D(DET, f-(Bi\D)--->E)) 
[T, el = (E I �D(DE T, f- (ei\D)---> E)) 

Es decir, [T, Bl es el conjunto de todas las fórmulas E tales que 
(Bi\D)---> E es teorema de R, siendo D una fórmula cualquiera de T; [T, 
el se puede interpretar de modo semejante. Pues bien, probamos ahora 

i) [T, Bl y [T, el están cerrados por la implicación. 
Prueba. Probamos que [T, Bl está cerrado por la implicación; la 

prueba de que [T, Cl también lo está es similar. Supongamos (ef. Def. 
1 (i)), entonces, 

1. f-D--->E ............................ Hip. 
2. f-DE [T, Bl ........................ Hip. 
3. f-(Bi\F)--->D(FET) .................... 2, Def. de [T, Bl 
4. f-(Bi\F)--->E(FET) ..................... 1, 3, A4 
y, como había que demostrar, 
5. EE [T, Bl .......................... 4, Def de [T, Bl 

ii) [T, Bl y [T, el están cerrados por la adjunción. 

Prueba. Tomando como pauta la demostración de (i), el lector puede 
demostrar sin dificultad (úsense algunos teoremas elementales sobre la 
conjunción, ef. §v.2) que [T, Bl está cerrado por la adjunción; la prueba 
de que [T, C 1 también lo está es semejante. 

iii) Te [T, Bl, Te [T, el 
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Prueba. Demostraremos que T está incluida estrictamente en [T, Bl ; 
la prueba de que [T, el también lo está es semejante. 

a) Te:; [T, Bl (si DE T, entonces DE [T, Bl) 
Prueba. 
1. f-(BI\D)--+ D ........................ AS 
2. DE [T, Bl .......................... 1, Def. de [T, Bl 

b) Te [T, Bl (Hay, al menos, una fuf D tal que DE [T, Bl, pero 
D�T). 

Prueba. La fuf aludida es, evidentemente, B. Por hipótesis, B� T, pero 
sea EE T (T es normal: no es vacía). Entonces, 

1. f-(BI\E)--+B ..... ......... .... . ... .. . AS 
2. BE [T, Bl .......................... 1, Def. de [T, Bl 

iv) AE [T, Bl, AE [T, el. 
Prueba. T es la teoría normal máxima sin A. Como [T, Bl y [T, 

el son teorías normales que incluyen estrictamente a T((i), (ii), (iii)), 
entonces, AE [T, Bl Y AE [T, el· 

v) AET. 
Prueba. Utilizando algunos teoremas elementales sobre la conjunción, 

la disyunción y las relaciones entre ambas, el lector puede demostrar sin 
dificultad que si AE [T, Bl Y AE [T, el (iv), entonces, AE T. 

La prueba del Lema 1 es ahora inmediata: Hemos construido una 
teoría normal T tal que A� T; hemos supuesto (hipótesis de reducción 
al absurdo) que T no es prima. De esta suposición se sigue, como hemos 
comprobado en (v), que AET. En consecuencia, T es una teoría normal 
y prima tal que A�T. 

Lema 2. Para cualesquiera a, bEKc, a:5 cb syss a e:; b. 
Prueba. Supóngase a:5 cb. Por dI y Def. 2 (iv), R cxab para algún 

xEOc. Por Al, A--+AEx. Por tanto, si AEa, entonces AEb (d. Def. 2 (iv)). 
En el otro sentido, supóngase a e:; b. Como a es teoría, R CRaa (a esta 
cerrada por f-->; R es el sistema R, el conjunto de los teoremas de R); como 
a e:; b, R cRab, es decir, �x(x es normal y R Cxab) (R es normal). Queda 
por demostrar que x puede extenderse a una teoría prima z tal que zEOc 
y R czab, pues así, a:5 cb, como hay que demostrar (d. dI). 

Considérese, por tanto, el conjunto de todas las teorías normales Y 
tales que x e:; y y R cyab. Por el Lema de Zorn, hay un elemento máximo 
z en Y tal que x e:; Z y R czab. Demostraremos a continuación que z es 
prima. Supongamos que no lo es (reducción al absurdo). Entonces, A 
vBEz, A�z, B�z para algunas fuf A, B. Defínanse los conjuntos [z, Al 
y [z, Bl de modo similar a como se definieron [T, Bl y [T, el en la 
prueba del Lema 1. Siguiendo la estrategia de prueba de este Lema, el 
lector no tendrá dificultad en demostrar que [z, A 1 y [z, B 1 son teorías 
normales que incluyen estrictamente a z. Como Z es la teoría máxima 
tal que x e:; z y R czab , se concluye (d. la introducción al Lema 1) 
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1. No-W[z, Al ab 
2. No-RC[z, Bl ab 

y, entonces, tenemos, por 1 y Def. 2 (iv), 
3. C---->DE[z, Al 
4. CEa 
5. D�b 

por 2 y Def. 2 (iv), 
6. C'---->D' 
7. CEa 
8. D'�b 

por 3 y Def. de [z, Al, 
9. f-(AI\F)---->(C---->D) (FEz) 

por 6 y Def. de [z, Bl, 
10. f-(A"P)---->(C---->D') (F'Ez). 
Ahora, dado que ( (A---->C)I\(B---->D))---->( (AvB)---->(CvD)) es teorema de 

R, tenemos por 9 y 10, 
1 1. ( (AI\F)v(AI\F'))----> ((  C----> D)v( C----> D')) 

y, por las propiedades distributivas, 
12. ( (AvB)I\(FI\F'))----> ( (  C----> D)v( C----> D')). 
Pero como z está cerrada por & (z es teoría) y FEz, FEz, entonces 

FI\F'Ez; por la misma razón, como AvBEz, 
13. ( (AvB)I\(FI\F'))Ez. 
Como z está cerrada por 1-+, por 12 y 13, 
14. ( (C---->D)v(C'---->D'))Ez 
Pero el siguiente es teorema de R 
15. f-((C---->D)v(C'---->D'))----> ( (CI\C)---->(DvD')) 

y, entonces, por 14 y 15 (z está cerrada por 1-+), 
16. ( (CI\C)---->(DvD'))Ez. 
Por último, 
17. (DvD')Ez 

pues (CI\C)EC ( a y CEa, y a  está cerrada por & pues es teoría) y Wzab 
(cfr. Def. 2 (iv)). 

Pero dado que b es prima (bEKC), de ( 16) se sigue DEb ó D'Eb que 
contradice lo afirmado en las líneas 5 y 8 (D�b, D'�b). En consecuencia, 
z es una teoría prima. Como x�z y x es normal, entonces zEOc (z es 
normal) y RCzab, i.e, a:5. cb, con lo que finaliza la demostración (de la 
segunda parte) del Lema 2. 

Lema 3. ':·c es una operación en KC; es decir, si a es una teoría prima, 
entonces a ':-c también lo es. 

Prueba. Tenemos que demostrar que si a está cerrada por 1-+, & y 
es prima, entonces a ':-c también. 

i) a ':- C está cerrada por 1-+. 
Prueba. El lectür lo demostrará sin dificultad siguiendo la estrategia 

de reducción al absurdo y utilizando uno de los teoremas de contraposi­
ción (T23). 
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ii) a ':·c está cerrada por &. 
Prueba. 

1. AEa':·c .......... Hip. 
2. BEa':-c .......... Hip. 
3. AAB�a':-c ... .... . Hip. (red. ad abs.) 
4. ---¡ (AAB)Ea ..... 3, Def. 2(v) 
5. ---¡Av ---¡BEa ... 4, T30 (a está cerrada por f->, a es teoría) 
6. ---¡AEa ó---¡BEa . 5, pues a es prima 
7. ---¡A�a y ---¡B�a. 1,2, Def. 2(v) 
pero (6) y (7) se contradicen. Por tanto, a':-C está cerrada por & 

cuando a es una teoría prima. 
iii) a ':- e es prima. 
Prueba. Semejante a la de ii) utilizando ahora T29. 

3. Teorema de Completud 

Probamos a continuación que el modelo canónico es, en efecto, un modelo 
de donde se sigue ya con facilidad el Teorema de Completud. 

Lema 4. La estructura modelo canónica es, en efecto, una estructura 
modelo. 

Prueba. Tenemos que demostrar que la estructura establecida en Def. 
2 cumple con los requisitos generales de toda estructura modelo para R 
definidos en §VI.1. Pues bien, por el Lema 1 se cumplen los requisitos 
(i), (ii) y (iii). Ahora, dado que R" es, obviamente una relación ternaria 
definida en KC (requisito (iv)), y ':' c, por el Lema 3, una operación mona­
ria (requisito (vi)), sólo resta por demostrar que los postulados P1-P7 
se cumplen cuando se entienden canónicamente de acuerdo con Def. 2 
(iv), (v). 

PI. aS, Ca ..................................... Lema 2 
P2. si a s, eb y R cbed, entonces R caed. 
Prueba. 

1. aS, eb ......................................... Hip. 
2. R"bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Hip. 
Hay que demostrar Rcaed. Supongamos (d. Def. 2 (iv)), entonces, 
3. A--+BEa ....................................... Hip. 
4. AEe .......................................... Hip. 

hemos de demostrar Bcd. Pues bien, 
5. A --+ BEb ............................. 1,3, Lema 2. 
6. BEd ................................. 4, 5, Def. 2(iv) 
P3. R"abe=>R" bae 

Prueba. Suponemos [dr. Def. 2 (iv)] 

1. Rcabe........................................ Hip. 
2. A --+ BEb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Hip. 
3. AEa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Hip. 
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4. I-A--->((A--->B)--->B) ............................... A2 
5. (A--->B)--->BEa ....................... 3,4 (a es teoría) 
6. BEc .............................. 1, 2, 5, Def. 2(iv) 
Pero (6) es lo que teníamos que demostrar a partir de (1), (2) Y (3). 

P4. R 2abcd::> 'JIx(R"acx y R"bxd) 
Prueba. Supuesto que haya, b, c, d, yEKC tales que R Caby R cycd, 

hemos de demostrar que hay una teoría zEKc tal que R Cacz y R cbzd. 
Pues bien, dada la hipótesis, definimos un conjunto de fórmulas X como 
sigue: 

X = {BI 'JIA(A ---> B)Ea y AEc) J 
Es decir, X es el conjunto de las fórmulas B tales que A ---> B es fór­

mula de a y A es fórmula de c. Entonces, se prueba 
i) x es teoría. 

Prueba. Como en la demostración del Lema 1, el lector puede demos­
trar con facilidad que x está cerrada por f-+ y por &. 

ii) RCacx. 
Prueba. Inmediata a partir de la definición de x y Def. 2 (iv). 
iii) Rcbxd. 
Prueba. (cf. Def. 2(iv)). 

1. A--->BEb . ........... Hip. 
2. AEx ............... Hip. 
3. C--->AEa(CEe) ........ 2, E)ef. de x 
4. I--(C--->A)--->((A--->B)---> 

(C--->B)) .......... .. . A4 
5. (A--->B)--->(C--->B)Ea .... 3,4 (a es teoría) 
6. C--->BEy ............. 1,5 y Def. 2(iv) (pues RCaby por 

Hip.) 
7. BEd ................ 3 (CEe), 6 (pues R"ybd por Hip.) 
Por (i), (ii) y (iii) tenemos una teoría x tal que R Caex y R cbxd. Indi­

camos cómo extenderla a una teoría prima z tal que R Caez y R cbzd. 
Considérense el conjunto de todas las teorías y tales que x � y Y R Cbyd. 
Por el Lema de Zorn hay una teoría máxima z tal que R cbzd. Ahora, 
R Caez es inmediato, y que z es prima se demuestra siguiendo una estra­
tegia semejante a la utilizada en la prueba del Lema 2. 

P5. Raaa. 
Prueba. Semejante a la de P2 (Utilícese el teorema de R 

((AA(A--->B))--->B). 
P6. a "-c"-c = a. 
Prueba. AEa"-C"-C syss -------, A�a"-c syss -------, -------, AEa syss AEa (A10, T21; 

d. Def. 2 (v), a es teoría). 
P7. Si RCabe, entonces RCae"-b"-. 
Prueba. Suponemos (d. Def. 2(iv)) 

1. R"abe ......... ................ Hip. 
2. A--->BEa .. ...................... Hip. 
3. AEe"- .......................... Hip. 
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4. BEb"- .......................... Hip. (red. ad abs.) 
5. -,BEb ........................ 4, Def. 2(v) 
6. I--(A-->B) -->(-,B-->-,A) . .. ....... T23 
7. -, B--> -, AEa ................... 2, 6 (a es teoría) 
8. -,AE e ........................ 1,5,7 (d. Def. 2(iv)) 
9. AEe"- .......................... 8, Def. 2(v) 

Pero (9) contradice (3). En consecuencia, P7 se cumple y, por tanto, 
finaliza la prueba del Lema 4: la estructura modelo canónica es, en efecto, 
una estructura modelo. 

Lema 5. Sea (OC , KC , R c, "�OC) la estructura modelo canónica. Enton­
ces, hay una función de evaluación canónica vC tal que para cada fbf A 
y a EKc, vC(A, a) = 1 syss AEa . 

Prueba. Demostramos a continuación que la función de evaluación 
canónica es una función de evaluación. Es decir, que vC cumple con las 
condiciones (i)-(vi) de Def. 2 (d. §vJ. 1). Pues bien, las cláusulas (i)-(iii) 
son triviales (para (i) utilícese el Lema 2; para (ii) y (iii), los axiomas para 
1\ y v, Y las propiedades respecto de estas conectivas de los miembros de 
KC). Por tanto, las cláusulas de interés son (iv) y (v). 

Cláusula (iv). Subcaso (1?). Si vC(A --> B, a) = 1, entonces para cua­
lesquiera b, eEKc, si R Cabe y vC(A, b) = 1, entonces vC(B, e) = 1. 

Prueba . La prueba, muy sencilla, se apoya en la definición vC y de 
RC . 

Cláusula (iv). Subcaso (2?). Si para cualesquiera b, eEKc, si Wabe 
y vC(A, b) = 1, entonces vC(B, e) = 1, entonces vC(A --> B, a) = 1. Probamos 
el caso por contraposición. Suponemos, por tanto, vC(A --> B, a) = O, Y 
hemos de demostrar que hay b', e'EKc tales que R cab'e', vC(A, b') = 1 Y 
vC(B, e') = O. 

Pues bien, definimos los conjuntos de fórmulas 
b= (CI-A-->C) 

y e = ( CI 3D(DE b y D--> CEa)} 
Como en la prueba de los Lemas 1 y 3, el lector puede demostrar 

fácilmente que b y e son teorías (son conjuntos de fórmulas cerrados por 
la implicación y la adjunción) y tales que Wabe (dr. la definición de e), 
AEb ( I-A-->A) Y BEe (Si BE e, entonces vC(A-->B, a)= 1, es decir, A-->BEa , 
lo cual es imposible por hipótesis). 

Mostramos ahora cómo extender b y e a teorías primas b', e' tales 
que RCab'e', AEb'y B�e'. Considérese el conjunto Y de todas las teorías 
y tales que e � y y BEy. Exactamente igual a como se demuestra en el 
Lema 1, se prueba que hay una teoría prima e' tal que y� e'y BEe'. Dado 
R Cabe, es evidente R Cabe'. Considérese ahora el conjunto Y de todas las 
teorías y tales que b� y y RCa ye'. Exactamente igual a como se demues­
tra en la prueba del postulado P4, se prueba que hay una teoría prima 
b'tal que Rcab'e'. Dado AEb, es evidente AEb'. De este modo, tenemos 
b', e'EKc tales que Rcab'e', AEb' y BE e' como se requería. 

Cláusula (v). vC(-,A, a)=l syss vC(A, a "-)=O 
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Prueba. Ejercicio para el lector. 
Por último, demostramos el 
Teorema de Completud: Si 1= A, entonces 1- A. 
Prueba. Demostramos el teorema por contraposición. Supóngase, 

entonces, If A. Por el Lema 1, hay una teoría T normal y prima tal que 
A�T. Por los Lemas 4 y 5, vC(A, T) = O; es decir, A no es verdadera en 
el modelo canónico, y, por tanto, itA. 

VIII. OTRAS LÓGICAS DE LA RELEVANCIA. SINTAXIS 

Disponemos actualmente de innumerables sistemas lógicos de la relevan­
cia. En un trabajo reciente sobre la lógica de la relevancia, L. Peña (1993) 
ha destacado algunos de ellos clasificándolos en tres apartados: (a) Rele­
vantismo clásico: los sistemas de Anderson y Belnap (d. infra) (b) Rele­
vantismo profundo: los sistemas de la escuela australiana (d. Routley, 
Plumwood, Meyer y Brady, 1982) y (c) Relevantismo radical (d. Avron, 
1984; Méndez, 1987a, 1988a, 1988b). 

De entre todos estos sistemas destaca, además de R, el sistema (clá­
sico) E (entailment) de la implicación propuesto por Anderson y Bel­
nap como the true logic. Los sistemas encuadra bIes en los otros dos 
apartados son, en el primer caso (relevantismo profundo) esencialmente 
restricciones de los sistemas clásicos; en el segundo (relevantismo radi­
cal), extensiones del fragmento implicativo de R (cf. §IV) complemen­
tadas con restricciones del conjunto de axiomas funcionales de verdad 
de R. 

Pues bien, los sistemas pertenecientes al apartado (b) son fácilmente 
accesibles desde el conocimiento de la lógica de la relevancia R. Por otro 
lado, los interesantes sistemas de Avron presentan el inconveniente (desde 
el punto de vista de la presente exposición) de que su motivación es dife­
rente a la que sustenta a los impulsados por Anderson y Belnap. Hemos 
optado, pues, por exponer en lo que sigue la fundamentación y estruc­
tura de los sistemas E, RMO, Rm y RMOm. 

El sistema RMO (d. Méndez, 1988b) es una alternativa, en la línea 
de Anderson y Belnap, a R. Los sistemas Rm y RMOm (d. Méndez, 
1987b, 1988b) son, intuitivamente, los fragmentos positivos de R y RMO 
con negación mínima al estilo intuicionista, opción ésta descartada habi­
tualmente por los autores relevantistas (pero d. Tennant, 1987). 

La lógica de la implicación E 

Anderson y Belnap consideran el sistema R como la lógica de la relevan­
cia, la lógica del condicional relevante. Ahora bien, ¿es R la lógica de la 
implicación en el sentido que Lewis daba al término? Para definir la lógica 
de la implicación en dicho sentido, Anderson y Belnap, siguiendo preci­
samente a este autor, exigen que, además de relevancia entre antecedente 
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y consecuente, se dé entre ellos relación de necesidad. Y proponen como 
traducción formal de este requisito la siguiente: 

Propiedad Ackermann. L es un sistema de la implicación si A ---> (B---> C) 
no es demostrable cuando A no contiene a ---> entre sus símbolos. 

Este requisito podría explicarse como sigue. En un sistema de lógica 
proposicional cuyas únicas conectivas sean --->, 1\, V Y --, es la primera 
de éstas ( ---> ) la única que representa, o podría representar, fórmulas <<Dece­
sitivas» ( <<necessitive formulae») que, en un sistema estándar de lógica 
modal, estarían representadas por el operador de necesidad, L. 

Pues bien, el sistema E (descrito en §VlII 1 y §IX 1) es exactamente 
la restricción de R con la propiedad Ackermann. 

El sistema RMO de la lógica de la relevancia 

• Comprobamos en § Iv.3.2. que el sistema R se construyó definiendo el 
fragmento implicativo a partir de la siguiente caracterización sintáctica 
de relevancia: 

C4) A,--->( ... --->(A,,--->B) ... ) es teorema si cada Ai(l :s: i:s: n) se usa en 
la prueba de B. 

Esta caracterización presenta el inconveniente de que en ella no se exige 
meramente el uso de cada premisa, sino, eventualmente, el uso de cada apari­
ción de cada premisa. Por esta razón, algunas tesis como el axioma «mingle» 

M. A--->(A--->A) 

no son teoremas de R. Este resultado parece, sin duda, contrario a cual­
quier noción plausible de relevancia entendida sintácticamente como «uso 
de las premisas en la derivación de la conclusión». 

Pues bien, esta dificultad se soluciona modificando C4) como sigue 

C4') A,--->( ... --->(A,,--->B) ... ) es teorema si cada Ai(l :s:i:s:n) en el con­
junto (A" ... ,A,,) se usa en la prueba de B. 

Ahora, RMO se construye a partir de C4') como R se construyó a 
partir de C4). 

Los sistemas Rm y RMOm de la lógica de la relevancia 

Como hemos apuntado más arriba, Rm y RMOm son el resultado de 
añadir a R y RMO, respectivamente, una «negación mínima» al estilo 
de los cálculos intuicionistas mínimos de Kolmogoroff y Johannsson. 

1. El sistema E de la lógica de la implicación 

i) Lenguaje formal. Es el mismo que el del sistema R. 
ii) Axiomas. Son los mismos que los de R salvo que la Ley de 

Aserción 
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A2. A---+((A---+B)---+B) 
se sustituye por la Ley de Aserción restringida 

A2'. (A---+B)---+(((A---+B)---+ C)---+C) 
iii) Reglas de derivación. Además de Modus ponens y Adjunción, aña­

dimos Necesitación: Si 1- A, entonces (A ---+ A)---+ A. 
iv) Teoremas. El mismo conjunto que el señalado para R salvo que 

la Ley de Permutación de Premisas 
T3. (A ---+(B---+ C))---+(B---+(A ---+ C)) 

es, ahora, en E la Ley de Permutación de Premisas restringida 
T3'. (A---+((B---+ C)---+D)---+((B---+ C)---+(A---+D)) 

que se demuestra con A2' y A4 como, en R, T3 se demostraba 
con A2 y A4. 

Observación 1. Nótese que Necesitación es una consecuencia inme­
diata de A2 de R; como, además, A2' es una restricción de A2, se sigue 
que E es un sistema contenido en R. Carece, por tanto, de todos los teo­
remas clásicos de los que carecía R, además de no contar ni con la Ley 
de Aserción ni con la Ley de Permutación ni con todas las consecuencias 
de estas dos leyes. 

Observación 2. T4 y T5 que en R se prueban con T3 pueden pro­
barse ahora en E del mismo modo con T3'. 

2. El sistema RMO de la lógica de la relevancia 

i) Lenguaje formal. El mismo que el de R. 
ii) Axiomas. Todos los de R salvo A12. Además añadimos 

A13. A---+(A---+A) 
iii) Reglas de derivación. Las de R y, además, la regla Contraposi­

ción (Si 1- A ---+ B, entonces 1- -, B---+ -, A) y Reductio ad absur­
dum (Si I-A---+B, entonces I-(A---+-,B)---+-,A). 

iv) Teoremas. TI-T20 de R son teoremas de RMO y se prueban 
como en aquel sistema. De los teoremas de RMO en los que figura 
la negación, no son tesis de RMO, además de A12, T22, T23, 
T24 (las leyes de Contraposición) y T26, T27, T28 (las leyes de 
Reductio). Precisamente, la diferencia entre R y RMO radicaría, 
por un lado, en que Contraposición y Reductio sólo valen en 
RMO como reglas de derivación; por otro lado, en la adición 
del axioma «mingle» A13. El resto de los teoremas de la lista se 
prueban como en R utilizando ahora las reglas Contraposición 
y Reductio en lugar de los teoremas correspondientes como hacía­
mos en el caso de R. 

Observación 1. Tenemos como reglas derivadas todas las variantes 
de Contraposición y Reductio: 

a) Si 1- A ---+ -, B, entonces 1- B---+ -, A 
b) Si 1- -, A ---+ B, entonces 1- -, B---+ A 
c) Si 1- -, A ---+ -, B, entonces 1- B---+ A 
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d) Si f-A--+B, entonces f-(--,A--+B)--+B 
e) Si f- --, A --+ --, B, entonces f- (--, A --+ B)--+ A 
Todas ellas se prueban con las reglas primitivas y los teoremas de 

la doble negación (AlO, T2l). 
Observación 2. T2l se prueba ahora con Al y Contraposición (b). 

Por otro lado, All no es independiente: se demuestra con Al y Reductio. 

3. El sistema Rm La lógica de la relevancia con negación mínima 

i) Lenguaje formal. El mismo que R. 

ii) Axiomas. Los mismos que R salvo la Ley de Contraposición fuerte 
A12. (--, A --+ B)--+( --, B--+ A) 

no aceptable intuicionistamente, que se sustituye por la Ley de 
Contraposición débil 

Al2'. (A --+ B)--+( --, B--+ --, A) 
que sí es admitida por los intuicionistas. Así se derivan, p. ej., 

A --+ --, --, A, (A --+ --, A)--+ --, A, (A --+ --, B))--+(B--+ --, A), 
(A --+ B)--+ (A --+ --, B)--+ --, A, etc. 

iii) Reglas de derivación. Modus ponens y Adjunción como en R. 

iv) Teoremas. Tl-T20 (teoremas en los que no interviene la nega­
ción) son tesis de Rm y se prueban del mismo modo que en R. 

T2l-T38 son teoremas en los que interviene la negación; así pues, 
no son tesis de Rm todos los que no son admitidos intuicionista­
mente. En particular, son teoremas T23, T24, T26, T29, TJ.0, 
TJ.l, TJ.2, T34, T36 y T38 que se prueban como en R (cfr. 
Observación 1). No son, por tanto, teoremas T2l, T22, T2S, 
T27, T28, TJ.0, TJ.l, TJ.2, T33, T3S y T37. Por otro lado, tene­
mos, como en la Lógica intuicionista, 

T39. --,--,--,A--+A .... AlO,Al2 
T40. --, --, (Av--' A) . ... T26, T29 

Observación 1. TJ.0 designa T30 leído de derecha a izquierda; TJ.l 
designa T3l leído de izquierda a derecha. 

Observación 2. T23 es Al2. TJ.l se prueba en Rm con AS, A8 y T24; 
TJ.2 con AS, A8 y A12'. En la prueba de T40, derívese previamente 
(A--+(B,,--,B))--+--,A con Tl6, Tl7 y T26. El resto de los teoremas se 
prueba como en R. 

4. El sistema RMOm: la lógica de la relevancia RMO con 
negación mínima 

i) Lenguaje formal. El mismo que R. 

ii) Axiomas. Todos los de R salvo Al2 que se sustituye por 
Al2'. (A--+B)--+(--,B--+--,A) 

Además, añadimos 
A13. A--+(A--+A) 
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iii) Reglas de derivación. Modus ponens y Adjunción como en R. 
iv) Teoremas. Como se deduce por la descripción anterior, RMOm 

es el resultado de añadir A13 a Rm. Así pues, el conjunto de teo­
remas de RMOm es el mismo que el de Rm más todas las conse­
cuencias de A13 entre las que se encuentra, p. ej., la Conversa de 
la Ley de Contracción (A->B)->(A->(A->B)) que, por cierto, es 
intercambiable con A13 como axioma en este sistema y en RMO. 

IX OTRAS LÓGICAS DE LA RELEVANCIA. SEMÁNTICA 

1. Semántica para E 

i) Estructura modelo. Una Estructura modelo para E es una estruc­
tura del tipo (O, K, R, ". ) donde O, K, R, ". y dI, d2, PI, P2, 
P4, P 5, P6 Y P7 son como en las estructuras modelo R. La única 
diferencia, por tanto, estriba en que P3 se sustituye por 

P3'. �x(xEO y Raxa) 
ii) Modelos. Validez. Un modelo para E es una estructura del tipo 

(O, K, R, "", v) donde (O, K, R, v) es una estructura modelo 
y v cumple con las cláusulas (i)-(vi) como en los modelos para 
R. La definición de validez es la misma. 

iii) Consistencia. Completud. Para probar los Teoremas de Consis­
tencia y Completud seguimos la misma estrategia que en el caso 
de R. Dadas las diferencias entre ambos sistemas, para probar 
la consistencia de E hay que demostrar que A2' y Necesitación 
son válidos: utilícese P3' en ambos casos. Para probar la comple­
tud de E sólo hay que demostrar que P3' se cumple cuando se 
define canónicamente (efr. Lema 4). Pues bien, esto puede hacerse 
como sigue. Defínase X= {Al (A->A)->A). Es, entonces, fácil 
demostrar que x es una teoría normal tal que RCaxa. Es decir, 
�x(xEOC y RCaxa). Después, x se extiende a una teoría prima 
z tal que zEOc y R Caza siguiendo el procedimiento habitual. 

2. Semántica para RMO 

i) Estructuras modelo. Una estructura modelo para RMO es una 
estructura del tipo (O, K, R, ". ) donde O, K, R, ". y dI, d2, Pl-P6 
son como en las estructuras modelo para R. Se diferencian de ellas 
en que P7 se sustituye por 

PT. Si a"5b, entonces b"·"5a"· 
y en que se añaden los postulados 

P8. Si Rabc, entonces a"5c Ó b"5c 
P9. Ra"·aa"·(o Raa"·a) 

ii) Modelos. Validez. Un modelo para RMO es una estructura del 
tipo (O, K, R, "., v) donde (O, K, R, "" ) es una estructura modelo 
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y v cumple con las cláusulas (i)-(vi) como en el caso de los mode­
los para R. La definición de validez es la misma. 

iii) Consistencia. Completud. Para demostrar el Teorema de Con­
sistencia sólo hace falta demostrar que A13, Contraposición y 
Reductio son válidas: utilícense P8', PT Y P9, respectivamente. 
Para probar que PT, P8 Y P9 se cumplen cuando se interpre­
tan canónicamente (efr. Lema 4), utilícense, con la ayuda del 
Lema 2, Contraposición, A13 y Reductio, respectivamente. 
Hecho esto, es evidente que entonces se sigue el Teorema de 
Completud. 

3. Semántica para Rm 

i) Estructuras modelo. Una estructura modelo para Rm es una 
estructura del tipo (O, K, R) donde O, K, R, dI, d2, y PI-P5 
son como en las estructuras modelo para R. 

ii) Modelos. Validez. Un modelo para Rm es una estructura del tipo 
(O, K, R, v) donde (O, K, R) es una estructura modelo, v cum­
ple con las condiciones (i)-(v) de los modelos para R, y, final­
mente, la cláusula (vi) se sustituye por 
(vi') v( ----, A, a) = l syss para cualquier bEK y cEK-S, v(A, b) = O 

ó no-Rabc. 
(S es un subconjunto cualquiera de K). 

La definición de validez es la misma. 
iii) Consistencia. Completud. Dado que la cláusula de interpretación 

de la negación es nueva, para demostrar el Teorema de Consis­
tencia hay que probar que AIO, AH y A12' son válidos: utilizar 
P4, P5(b) (efr. §vI.2) y P5, respectivamente. Para demostrar el 
Teorema de Completud hay que probar que la cláusula (vi') se 
cumple canónicamente: sígase una estrategia semejante a la 
empleada en la prueba de la cláusula (v). 

4. Semántica para RMOm 

i) Estructura modelo. En todo iguales a las definidas por Rm salvo 
por el hecho de que se añade el postulado (efr. §Ix.2) 

P8. Si Rabc, entonces a:5 c ó b:5 c 
ii) Modelos. Validez. Se definen, con la salvedad anotada en el pará­

grafo anterior, exactamente igual que los modelos para Rm. 
iii) Consistencia. Completud. Es evidente que para demostrar el Teo­

rema de Consistencia sólo hay que probar que A13 es válido. 
Como en el caso de RMO, utilícese P8. Para probar el Teorema 
de Completud sólo hay que demostrar que P8 se cumple cuando 
se interpreta canónicamente (el resto de la prueba es como la 
correspondiente para Rm). Pues bien, al igual que hicimos en el 
caso de RMO, utilícense el Lema 2 y A13. 
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X. OTROS RESULTADOS. CONCLUSIONES 

Mencionamos a continuación algunos resultados capitales sobre el tema 
que, debido a su complejidad, no hemos podido exponer en este artí­
culo. Finalizamos con algunas conclusiones sobre lo expuesto en este 
trabajo. 

Otros resultados 

1. Indecidibilidad de toda lógica comprendida entre T + 
-W y K.R. 

A. Urquhart (1984) (d. también Anderson, Belnap y Dunn, 1992) 
ha demostrado que cualquier sistema de lógica comprendido entre 
T +

-W y K.R. es indecidible. El sistema T +-W es el fragmento posi­
tivo de R sin A3; K.R. es el sistema R más el axioma (AA -, A)-> B. 
Entre los sistemas encuadra bies en el espectro definido por T + 

-W y 
K.R. están R y E. No está, sin embargo, RMO. 

2. Incompletud de la semántica cuantificacional de dominio único o cons­
tante: 
K. Fine (1989) (d. también Anderson, Belnap y Dunn, 1992) ha pro­
bado que los sistemas estándar de lógica de la relevancia cuantifica­
cionales son incompletos respecto de la semántica habitual cuando 
el dominio en todos los mundos posibles es único o constante. 

3. Completud de la lógica de la relevancia respecto de modelos con domi­
nio variable: 
K. Fine (d. Fine, 1988; también Anderson, Belnap y Dunn, 1992) 
ha demostrado la completud de los sistemas estándar de lógica de la 
relevancia (entre ellos, R y E) respecto de la semántica operacional 
(d. Fine, 1974) cuantificacional con un dominio de individuos arbi­
trarios o genéricos (d. también Fine, 1985). 

4. Aplicaciones de la lógica de la relevancia a la informática: 
Cf. Anderson, Belnap y Dunn, 1992, §vIII.3. 

5. Resultados sobre lógicas de la relevancia de orden superior y sobre 
Aritmética relevante: 
Cf. Anderson, Belnap y Dunn, 1992, cap. XI. 

Conclusiones 

1. En contra de lo aventurado por Lewis, la definición de una lógica 
no paradójica no es tarea imposible; más aún, las lógicas no paradó­
jicas son lo suficientemente potentes como para que sean dignas de 
consideración. 

2. A pesar de que el sistema de la lógica de la relevancia R (y los que 
han tratado en §VIII y §IX) están suficientemente definidos desde el 
punto de vista formal, es preciso reconocer que su interpretación intui­
tiva es menos clara como así hemos comprobado al mostrar la insufi­
ciencia tanto de la caracterización sintáctica como de la semántica. 
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3. Precisamente este último hecho explica que la lógica de la relevancia 
sea esencialmente relativa: hay muchas posibilidades de seleccionar 
un subconjunto máximo posible de reglas que no den lugar a parado­
jas (d. §Iv.3). Algunas de estas posibilidades han sido comentadas 
en §VIII y §IX. 

4. La relatividad de la lógica de la relevancia debe causar tan poco (o 
tanto) escándalo como la relatividad de la lógica modal. 

5. La lógica de la relevancia, cuyo origen está en el artículo de W. Acker­
mann (1956) o quizá, como aquí hemos defendido, en los trabajos 
de Lewis (Lewis y Langford, 1932) es, por todo lo expuesto, un campo 
abierto. Falta, sobre todo, creemos, una explicación convincente de 
la relación entre los sistemas formales (y su semántica) y las nociones 
intuitivas que los avalan; falta la definición de un marco general en 
el que todos los sistemas actuales sean encuadrables; falta desarrollar 
en profundidad las aplicaciones informáticas, los resultados sobre las 
correspondientes lógicas de orden superior, y, así, un largo etcétera. 
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CO MPUTABILIDAD 

Jesús Mosterín 

1. PROBLEMAS Y ALGORITMOS 

La aparición y desarrollo de los métodos recursivos (o algoritmos) es 
quizás una manifestación de la llamada ley del mínimo esfuerzo. En 
efecto, tras realizar un cierto esfuerzo intelectual para resolver un pro­
blema de un determinado tipo, y volver a realizar una y otra vez un nuevo 
esfuerzo intelectual para resolver otros problemas del mismo tipo, se nos 
puede ocurrir la idea de ahorrarnos en el futuro ese tipo de esfuerzos 
mediante la invención de un procedimiento de resolución automática de 
todos los problemas del tipo dado. Es cierto que para inventar tal pro­
cedimiento tendríamos que espabilamos considerablemente y hacer un 
esfuerzo intelectual notable, pero a partir de ese momento no volvería­
mos a preocuparnos por los problemas de esa clase: cada vez que se nos 
plantease uno, podríamos resolverlo automáticamente, sin pensar ni rea­
lizar esfuerzo intelectual alguno, simplemente siguiendo las instruccio­
nes del procedimiento al pie de la letra. 0, alternativamente, podría­
mos programar un computador con las instrucciones de nuestro método 
y dejar que fuera el computador el que fuese resolviendo los problemas. 
Claro que para ello sería necesario que la aplicación del método no requi­
riese iniciativa, creatividad, imaginación alguna, sino que bastase con 
la ciega aplicación de unas instrucciones unívocas y «mecánicas». Preci­
samente son ese tipo de métodos los que reciben el nombre de métodos 
recursivos o algoritmos. 

Cuando hay un algoritmo para solucionar mecánicamente todos los 
problemas de una determinada clase, decimos que esa clase de proble­
mas es algorítmicamente dominable. 

La tarea de la teoría de la recursión consiste en: 1) precisar el con­
cepto de algoritmo o método recursivo; 2) determinar qué clases de pro­
blemas son algorítmica mente dominables y cuáles no lo son; y 3) ofrecer 
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algoritmos (o métodos recursivos) para la resolución automática de los 
problemas de cada clase algorítmica mente dominable de problemas. 

Desde un punto de vista lógico nos interesan especialmente los pro­
blemas que se plantean a nivel lingüístico (en el sentido más amplio de 
esta expresión), es decir, problemas relacionados con filas de signos o 
expresiones sobre un alfabeto determinado. Estos problemas se dividen 
en tres grupos principales: problemas de computación, problemas de deci­
sión y problemas de generación. 

Problemas de computación son aquéllos en que se nos pide hallar el 
valor de una determinada función para un (o para varios, si la función 
es de varios argumentos) determinado argumento. Así, por ejemplo, los 
problemas de «cálculo» que se plantean en las escuelas -«calcúlese la 
raíz cuadrada de 820, el triplo de 17, el máximo común divisor de 10, 
12 Y 14, el mínimo común múltiplo de 4, 7 Y 132, el producto de 8 por 
375», etc.- son todos problemas de computación. También los proble­
mas de traducción son problemas de computación, suponiendo una fun­
ción que a cada oración de una lengua aplica unívocamente otra oración 
de una segunda lengua, aquélla cuyo significado más corresponde al de 
la primera. 

Problemas de decisión son aquéllos en que se nos pide que averigüe­
mos si una determinada expresión tiene una cierta propiedad (o perte­
nece a un cierto conjunto) o si varias expresiones están en una determi­
nada relación. Así, por ejemplo, el problema de averiguar si un 
determinado número natural es primo o no, es un problema de decisión. 
También son problemas de decisión el problema de averiguar (o decicir) 
si una determinada fórmula de la lógica sentencial es una tautología o 
no, o si una determinada fórmula de la lógica de primer orden es (lógica­
mente) válida o no, o si una determinada fila de signos del alfabeto de 
nuestra lengua constituye una oración castellana gramaticalmente correcta 
o no, etc. 

Problemas de generación son aquéllos en los que se nos pide que escri­
bamos o generemos sucesivamente todas las expresiones de un determi­
nado conjunto. Así, por ejemplo, el problema de generar sucesivamente 
todas las fórmulas válidas de la lógica de primer orden (al que responde 
la creación de los cálculos deductivos) es un problema de generación. La 
gramática generativa de una lengua natural trata -como su nombre 
indica- de resolver un problema de generación: el de generar sucesiva­
mente todas y solas las filas de signos que constituyen oraciones grama­
ticalmente correctas de esa lengua. 

[J. CONCEPTOS RECURSIVOS 

Supongamos en lo sucesivo que hablamos siempre de las expresiones (o 
filas de signos) formables con los signos de un determinado alfabeto finito. 
En especial, cuando hablemos de números naturales nos referiremos a 
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las expresiones sobre el alfabeto {I l: 1, U, III, UU, UIII, etc. Cuando diga­
mos «conjunto» queremos decir «conjunto de expresiones», etc. 

Una función es recursivamente computable si y sólo si hay un algo­
ritmo que para cada uno de sus argumentos x (o cada n de sus argumen­
tos X¡, ... ,X." si es n-ádica) nos permite obtener en un número finito de 
pasos su correspondiente valor f(x) (o, si es n-ádica, f(x¡, ... ,X.,)). 

Un conjunto A es recursivamente decidible si y sólo si hay un algo­
ritmo que para cada expresión x nos permite averiguar en un número 
finito de pasos si xEA o xéA. (Una relación n-ádica R es recursivamente 
decidible si y sólo si hay un algoritmo que para cada n expresiones 
x ¡, ... ,x., nos permite decidir en un número finito de pasos si 
(x¡ ... x.,)ER o no). 

Dado un conjunto cualquiera A, llamamos función característica de 
A al función lA tal que: 

lA(X) = O si xEA 
1 A(X) = 1 si xéA. 

Igualmente llamamos función característica de una relación R a la 
función 1 R tal que: 

h(x¡, ... ,x.,) = O si (x¡, ... ,x.,)ER 
h(x¡, ... ,x") = 1 si (x¡, ... ,x.,)éR. 

Ahora bien, está claro que el conjunto A (o la relación R) es decidi­
ble si y sólo si su correspondiente función característica lA (o 1 R ) es com­
putable. Supongamos que A es decidible. Entonces lA será computable. 
En efecto, dado un argumento cualquiera x, el valor de lA para x será 
O ó 1 según que xEA o no, lo que hemos supuesto que es decidible. Supon­
gamos a la inversa que lA es computable. Entonces A será decidible. En 
efecto, dado un x cualquiera bastará computar (J A(X) y ver si el resul­
tado es O (en cuyo caso sabremos que xEA) o 1 (y entonces xéA). Así, 
pues, vemos que la decibilidad de conjuntos (o relaciones) es reducible 
a la computabilidad de funciones. 

Un conjunto A es (recursivamente) generable si y sólo si hay un algo­
ritmo para producir sucesivamente todas y solas las expresiones de A. 
Este concepto de generabilidad recursiva de un conjunto es también redu­
cible al de computabilidad de una función. Como fácilmente se ve, un 
conjunto A es (recursivamente) generable si y sólo si hay una función 
computable cuyo dominio es el conjunto Cü de los números naturales y 
cuyo contra dominio es A. Por eso en vez de hablar de conjuntos genera­
bles se habla a veces de conjuntos recursivamente numerables. 

Vemos, pues, que los conceptos de conjunto o relación decidible y 
de conjunto generable son reducibles al de función computable. Y ya 
hemos dicho que una función es computable si hay un algoritmo para 
computar el valor de cada uno de sus argumentos. Pero ¿qué es un algo­
ritmo? Un conjunto de instrucciones completamente unívocas cuyo segui­
miento y aplicación no requiere iniciativa alguna. A primera vista, podría 
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pensarse que el concepto de algoritmo está claro y no requiere mayores 
precisiones. Podría pensarse que es fácil decidir en cada caso si un con­
junto dado de instrucciones, si un texto determinado que se nos presenta 
como algoritmo, es efectivamente un algoritmo o no. Pues bien, no es 
ése el caso. La propiedad de ser un algoritmo (o, si se prefiere, el con­
junto de los algoritmos respecto al de los textos) es indecible. Incluso 
el concepto -más simple- de algoritmo de computación es indecidible, 
como a continuación mostramos. 

III. INDECIDIBILIDAD DEL CONCEPTO DE ALGORITMO 

Supongamos que los algoritmos -series finitas de instrucciones- estén 
formulados en castellano. Un algoritmo tendrá siempre una longitud 
determinada (y finita). Supongamos que hemos ordenado los algoritmos 
de computación por su longitud, es decir, por el número de letras (inclu­
yendo entre éstas los espacios en blanco, las cifras y los signos de pun­
tuación) que contengan (primero los más cortos, luego, los que tienen 
un signo más, etc.) y, dentro de la misma longitud, lexicográficamente 
(es decir, primero los que empiezan por «a», luego los que empiezan por 
«b», etc., como en un diccionario en el que un algoritmo entero se consi­
derase como una sola palabra). Sea A" Az, A3, A4 ... la sucesión así 
ordenada de todos los algoritmos de computación. 

Una función es computable si y sólo si hay un algoritmo para compu­
tarla (es decir, para computar su valor para cada uno de sus argumentos). 
A la función computable mediante el algoritmo An la llamaremos f". 

Está claro que una función cualquiera f es computable si y sólo si 
hay algún número natural n tal que An computa f, es decir, tal que 
f = f". Toda función computable es una f". 

Ahora definimos la función h para todos los números naturales n de 
la siguiente manera: 

h(n) = f,,(n) + 1. 

Si h fuera una función computable, coincidiría con alguna de las f; 
para algún número natural i. Pero, para cualquier i, h discrepa de f; en 
el valor que aplica a i. En efecto, 

h tC, pues h(l) = f,(l) + 1 tC(1) 
h tfz, pues h(2) = fz(2) + 1 tfz(2) 
h tf3, pues h(3) = U3) + 1 tU3) 

h ;éÍ¡, pues h(i) = f,(i) + 1 tf;(i). 

Por tanto, h no es una función computable. 
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Ahora bien, si el conjunto de los algoritmos de computación fuese 
efectivamente generable, h sería computable. En efecto, para cada número 
natural n, para computar h(n) bastaría con generar A" A2, A3, • • •  hasta 
An, computar Un) con ayuda de An y añadir 1 al resultado. Así obten­
dríamos h(n). Pero ya hemos visto que h no es computable. Por tanto, 
e! conjunto de los algoritmos de computación no es generable. 

Si la propiedad de ser un algoritmo (o, si se prefiere, si el conjunto 
de los algoritmos) fuese decidible respecto al conjunto de los textos, 
podríamos generar el conjunto de los algoritmos del siguiente modo: 
Empezaríamos por generar todos los posibles textos castellanos (con sen­
tido o sin él). Esto lo conseguiríamos generando sucesivamente todas las 
combinaciones con repetición posibles de n signos de! alfabeto castellano 
extendido (que abarca letras, cifras, espacios de separación y signos de 
puntuación); primero, las de un signo, luego, las de dos, las de tres, etc. 
Según fuéramos generando los textos, iríamos decidiendo para cada uno 
de ellos si se trata de un algoritmo de computación o no, e iríamos apun­
tando en lista aparte todos los textos que efectivamente fuesen algorit­
mos de computación. Así habríamos obtenido un procedimiento para 
generar todos los algoritmos de computación. Pero esto es imposible, pues 
ya hemos visto que e! conjunto de los algoritmos de computación no es 
generable. Por tanto, la propiedad de ser un algoritmo (de computación) 
no es decidible respecto al conjunto de los textos. Es decir, no hay (no 
puede haber) un algoritmo con cuya ayuda podamos decidir de cada pre­
sunto algoritmo si es realmente un algoritmo o no. Con lo que queda 
suficientemente probada la no-trivialidad y la necesidad de dilucidación 
de! concepto de algoritmo (de computación). 

IV. LA PRECISIÓN DE TURING 

Se llaman funciones recursivas (o recursivamente computables) aquellas 
funciones para cuya computación hay un algoritmo. Se han propuesto 
diversas dilucidaciones o precisiones de este concepto, pero todas han 
resultado equivalentes. El primero que propuso identificar e! concepto 
intuitivo de algoritmo con un concepto precisado fue A. Church, en 1936 

(<<An unsolvable problem of e!ementary number theory»). De entre las 
diversas precisiones equivalentes de! concepto de algoritmo elegimos aquí 
la de A. M. Turing, también de 1936 «<On computable numbers with 
an application to the Entscheidungsproblem»). 

Turing introdujo e! concepto de máquina de Turing. No se trata, claro 
está, de ninguna máquina física, real, sino de un esquema abstracto para 
representar conjuntos de instrucciones unívocas; algo así como e! pro­
grama de un computador. La precisión de Turing consiste en proponer 
que consideremos que una función es computable si y sólo si hay una 
máquina de Turing para computarla, que un conjunto o relación es deci­
dible si y sólo si hay una máquina de Turing para decidirla, y que un 
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conjunto es generable si y sólo si hay una máquina de Turing para gene­
rarlo. Puesto que ya vimos que los conceptos de decidibilidad y genera­
bilidad son reducibles al de computabilidad, nos limitaremos aquí a este 
último. y puesto que Gódel mostró cómo los problemas de computa­
ción de funciones sobre expresiones de alfabetos finitos pueden tradu­
cirse a problemas de computación de funciones numéricas, nos limitare­
mos también a estas últimas. 

Los números naturales son aquí identificados con las filas de palo­
tes: 1, II, III, etc., es decir, con las expresiones sobre el alfabeto {1 l. Una 
función numérica f aplica a cada número natural n (que aquí representa­
remos mediante n + 1 palotes, a fin de que el palote sólo represente al 
O) otro número natural f(n) (que aquí representaremos mediante f(n) + 1 
palotes). Un algoritmo de computación para esa función nos indicará 
cómo hemos de manipular la expresión de partida (el argumento) para 
llegar, en un número finito de pasos y siguiendo al pie de la letra las ins­
trucciones, hasta la expresión de llegada (el valor). Las instrucciones son 
tan precisas que hasta una máquina podría seguirlas. Pues bien, imagi­
némonos una máquina que trabaja una cinta compuesta de cuadros. En 
cada cuadro sólo puede haber o un palote, 1, o nada, ,: .. En un momento 
dado la máquina ve un solo cuadro de la cinta (cuadro de trabajo) y se 
encuentra en un estado determinado. El estado de la máquina y la ins­
cripción del cuadro de trabajo determinan unívocamente el siguiente paso 
de la máquina, que consiste necesariamente en una de estas cinco cosas: 
marcar un palote en el cuadro de trabajo (1), marcar el signo vacío (es 
decir, borrar) en el cuadro de trabajo ( X- ) , pasar al cuadro de la derecha 
(r), pasar al cuadro de la izquierda (1) o pararse (5). El programa de esa 
máquina consistirá en la indicación de qué es lo que hará la máquina 
en cada uno de sus estados, tanto si ve 1 como si ve ':- en el cuadro de 
trabajo, y a qué estado pasará a continuación. Y, como hemos dicho 
antes, la máquina de Turing no es nada físico, sino que se identifica con 
su propio programa. 

He aquí la definición precisa: 
Una máquina de Turing M (sobre el alfabeto {1 l) es una tabla o matriz 

de 4 columnas y 2m filas de la siguiente forma: 

1 x- Pll Cll 
1 1 Pl2 Cl2 
2 ::. P21 C21 
2 1 P22 C22 

m ;:. Pm1 Cm] 
m 1 Pm2 Cm2 
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donde para cada i, j(l�i�m, j=l o j=2):P¡jE{"",I,r,1,S] 
donde para cada i, j(l�i�m, j=l o j=2):C¡jE{1, 2, ... , m] 

Fijémonos en una fila cualquiera de la tabla. El primer signo indica 
un estado en que se puede encontrar la máquina. El segundo, una ins­
cripción posible del cuadro de trabajo. El tercero, el paso que deberá 
dar la máquina cuando, encontrándose en dicho estado, vea tal inscrip­
ción en el cuadro de trabajo. El cuarto, el estado en el que se encontrará 
la máquina después de haber dado ese paso. Los números, 1, 2, ... hasta 
m corresponden a los distintos estados "internos» de la máquina (recuér­
dese que todo esto es una metáfora). El 1, al estado inicial. 

A continuación presentamos una serie de máquinas de Turing que 
realizan determinadas tareas. En primer lugar, las máquinas elementa­
les: 1 (que escribe un palote y se para), ':. (que borra y se para), r (que 
da un paso a la derecha -es decir, el cuadro inmediato a la derecha se 
convierte en nuevo cuadro de trabajo- y se para) y 1 (que da un paso 
a la izquierda y se para). He aquí sus tablas: 

1 ):- r 1 

1 ::. 1 2 1 ::. ):. 2 1 ::. r 2 1 ,. 1 2 
1 1 1 2 1 1 ::. 2 1 1 r 2 1 1 1 2 
2 ::. S 2 2 ):. S 2 2 ):. S 2 2 �. S 2 
2 1 S 2 2 1 S 2 2 1 S 2 2 1 S 2 

Veamos ahora la máquina R (que va hasta el primer cuadro vacío 
a la derecha de una expresión o fila de palotes dada, y allí se para) y 
la máquina L (que hace lo propio, pero hacia la izquierda). Represen­
tando por W una expresión (fila de palotes) cualquiera, por ':. un cuadro 
vacío y por - un cuadro cualquiera, poniendo encima de la raya la situa­
ción de partida de la cinta y debajo, la de llegada, y señalando mediante 
una flechita inferior el cuadro de trabajo, podemos describir la acción 
de R y L así: 

... TW<· .. . 
R :  

... -Wt .. . 

L :  
... <·WT .. . 

... tW-.. . 

Una máquina de Turing puede representarse mediante su tabla o 
mediante su diagrama (que indica cómo puede componerse a partir de 
máquinas más sencillas). He aquí, por ejemplo, tanto la tabla como el 
diagrama de R y L: 
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1 
�:. r 2 

[J R 1 r 2 o 
2 ):. S 2 
2 r 2 

1 ):. 2 

L 1 2 o 
2 ::. S 2 
2 2 

En lo sucesivo, y siguiendo a Hermes, describiremos las máquinas 
de Turing sólo mediante diagramas, que resultan mucho más claros e 
intuitivos que las tablas cuando se trata de máquinas complicadas. Las 
máquinas que vamos a presentar son K (máquina de copiar la expresión 
anterior), lR (máquina de ir a la derecha de una sucesión de palabras; 
se para en el primer cuadro vacío del primer par de cuadros vacíos segui­
dos a la derecha del cuadro inicial), Kn (máquina de copiar la n-ava 
expresión, por la izquierda; por tanto K 1 = K), T (máquina de trasladar 
una expresión un cuadro a la izquierda), e (máquina de correr una pala­
bra hasta el lugar que ahora ocupa otra palabra a su izquierda) y A 
(máquina de acabar, borrando los resultados intermedios). He aquí las 
descripciones esquemáticas de su acción y sus diagramas correspondien­
tes (obsérvese que algunos signos de máquina llevan un exponente; éste 
indica el número de veces seguidas que ha de funcionar la máquina): 

K ... "·Wt .. . 
... "·W"·Wt .. . 

ffi: ... TW 1 "·W 2 ', .
• • • "·Wn ". " • 

... - W 1 "·W z" .... "·Wn t " . 
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... ,:·W",:·W,,_¡,:· ... ':·W¡t ... 
... ':'W "':'W,,_¡ ': .... ':'W¡ "W"t 

T':'W':' 
-Wt':' 

':·W/·W¡t .. . 

,:·W¡t':· ... .. . 

-':":'W¡ ':'Wz':' . • .  ':'W"':'W,, + ¡ t 
-W,,+¡t ,: ........... . .......... . 

1 1 
L" r -----. ':. Rn+IILIl+l 

� R" 

LL I -L ':'T J 
L. T 

Con esto tenemos aquí bastante. Designemos la fila de n + 1 palotes 
que representa el número natural n mediante «n». Ahora nos encontra­
mos en posición de dar la definición precisada de computabilidad recursiva 
en el sentido de Turing (o Turing-computabilidad) de una función numérica: 

La función numérica f es T uring-computable si y sólo si hay una 
máquina de T uring M que cumple la siguiente condición: para cualquier 
número natural n, si escribimos n en la cinta de tal manera que todos 
los cuadros a su derecha estén vacíos y elegimos como primer cuadro 
de trabajo el primer cuadro vacío a la derecha de n, M se pone a funcio­
nar y, tras un número finito de pasos (en los que nunca va más hacia 
la izquierda que el primer cuadro vacío a la izquierda de n), se para en 
el primer cuadro vacío a la derecha de f(n), estando f(n) separada de n 
por un cuadro vacío y encontrándose el resto derecho de la cinta vacío. 
(Lo mismo, mutatis mutandis, en el caso de varios argumentos). Es decir: 

···I':·nt ..... . M : ----'----

I ,'. ,'. fTn'¡ ': . ... 'n' l \ n l ; ...... 
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La mayoría de las funciones numéricas familiares (adición, multipli­
cación, exponenciación, factorial, máximo, mínimo, etc.) pertenecen a 
una clase especialmente simple y rica a la vez de funciones computables: 
la clase de las funciones recursivas primitivas. 

Las funciones recursivas primitivas son las funciones numéricas obte­
nibles a partir de las funciones recursivas primitivas iniciales (la función 
constante O-ádica cg=O, la función del siguiente, S(x)=x'=x+1, y 
para cada dos números naturales n(n � 1) e i (1 ::::; i::::; n), las funciones n­
ádicas de identificación del i-avo miembro, I� (x¡ , ... ,xn) = x,) mediante 
un número finito de aplicaciones de los procesos de definición por subs­
titución y de definición por inducción. 

Sea g una función r-ádica (r � 1) y sean h , ... h, funciones n-ádicas 
(n�O). Decimos que la función n-ádica f está definida por substitución 
con ayuda de g, h¡, ... ,h, si y sólo si para cualesquiera números natura­
les X" "" Xn ocurre que: 

f(x¡ , ... ,x") = g(h ¡ (Xl) ... ,xn), ... ,h,(x, , ... ,xn)). 

Sea g una función n-ádica (n � O) Y sea h una función (n + 2)-ádica. 
Decimos que la función (n + 1 )-ádica f está definida por inducción con 
ayuda de g y h si y sólo si para cualesquiera números naturales X¡, ... ,X", 

y ocurre que: 

f(x¡, ... ,xn,O) = g(x" ... ,x") 
f(x" ... ,x",y') = h(x¡, ... ,xn,y,f(x¡, ... ,x",y)). 

Hemos dicho que todas las funciones recursivas primitivas son com­
putables (aunque no a la inversa). Si la precisión de Turing es adecuada, 
tendremos que poder mostrar que efectivamente todas esas funciones son 
Turing-computables. Es lo que hacemos a continuación, procediendo heu­
rísticamente, para facilitar la comprensión. El siguiente apartado está, 
pues, dedicado a probar el teorema de que todas las funciones recursivas 
primitivas son Turing-computables. 

Turing-computabilidad de las funciones recursivas primitivas 

Las funciones recursivas primitivas son las funciones numéricas obteni­
bles a partir de las funciones recursivas primitivas iniciales mediante un 
número finito de aplicaciones de los procesos de definición por substitu­
ción y de definición por inducción. Por tanto, para probar que todas las 
funciones recursivas primitivas son Turing-computables hemos de pro­
bar que: 1. Las funciones recursivas primitivas iniciales son Turing-com­
puta bies. 2. El proceso de definición por substitución lleva de funciones 
Turing-computables a funciones Turing-computables. 3. El proceso de 
definición por inducción conduce de funciones Turing-computables a fun­
ciones Turing-computables. 
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Lema 1: Las funciones recursivas primitivas iniciales 
son Turing-computables 

Las funciones recursivas primitivas iniciales son la función constante 
cg=ü, la función del siguiente, S(x)=x', y para cada dos números natu­
rales n(n;:d )  e i (1::;; i::;; n), la función de identificación del i-avo miem­
bro de la sucesión, I� (x¡ " "  ,X.,) = X;. Estas funciones son Turing­
computables por las siguientes máquinas: 

Función 
cg 
S(x) = x' 
1:1 (Xj 'o .. ,xn) = Xi 

máquina para computarla 
r 1 r 
K 1 r 

Lema 2: El proceso de definición por substitución lleva 
de funciones Turing-computables a funciones 
Turing-computables 

Empecemos por considerar un ejemplo. Sea g una función 3-ádica y sean 
h¡, hz Y h) funciones 2-ádicas. Las funciones g, h¡, hz Y h) sean Turing­
calculables por las máquinas Mg, Mh¡, Mhz Y Mh), respectivamente. La 
función 2-ádica f esté definida por substitución con ayuda de g, h¡, hz 
y h) del siguiente modo: 

f(x¡,xz) = g(h¡(x¡,xz), hz(x¡,xz), h )(xl >xz)) 

Diseñemos una máquina de Turing para computar esta función f. Al 
comenzar, la situación de la cinta será 

1) ':'x¡':'xzt ,:.,:.,:.,: .... 

es decir, al principio están los dos argumentos y el resto de la cinta está 
vacío. Primeramente construiremos un «puente» con un palote y copia­
remos los argumentos 

2) �·x¡ ':·xz �·I �·x¡ ':·xzt ':. , : . . .. 

A continuación borraremos el palote intermedio (creando así un inter­
valo de tres cuadros vacíos que señalará a la máquina de acabar, A, dónde 
habrá de pararse, cuando hayamos obtenido el resultado final), volviendo 
detrás de los argumentos copiados 

3) �.- ,:.- �. �:. �.- :,:-- : :. X¡ Xz X¡ Xzi ... 

Ahora computamos el valor de h¡ para X¡ y xz, h¡(x¡,xz): 
4) ':·x¡ ':·xz':· ':·':·x¡ ':·xz':·h¡(x¡, xzJt ... 

Volvemos a copiar los argumentos y computamos hz(x¡,xz) :  

5) ':·x¡':·xz'·'·�·x¡':·XZ'·hl(X¡, xzrx1':·xz'·hz(x¡, xzJt ... 
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De nuevo copiamos los argumentos y computamos h3(Xl,X2): 

6) ':
·x, 

':

'x2 ':
. ':. 

':

'xl ':

'x2 

':

'h l(Xl, X2r:

'Xl ':

'xz"'h2(Xl, xz! 

': 'xl ': 'x2': 'h3(Xl, x2lf. 

Ahora reunimos los valores hl(x¡, x2), h2(Xl, x2) Y h3(x" Xz), a fin 
de poder computar el valor de la función g para ellos, tomados como 
argumentos: 

7) ':
·x, 

':

'xz'" 
':

. ':

'xl 

':

'xz"'h 

1 (Xl' xz! ':

'xl 

':

'xz"'hZ(Xl, Xz) 
': 'xl ': 'xz"'h3(Xl, xZr: 'hl(Xl, XZ)",hZ(Xl, xzr: ·rh-3(T": x-=- ,- ,--=xC:- z' lf ,: . ... 

Con esto estamos en posición de computar g(h,(x" Xz), h2(Xl, X2), 
h3(x" x2)), es decir, de f(x" x2): 

8) ': 'xl 
': 'xz'" ': . ': 'xl 

': 'xz"'hl(Xl, XZr: 'xl ': 'xz"'hZ(Xl, XZr: 'xl ': 'xz'" 
h}(xl, xzr: 'h,(xl, xz!': 'hZ(xl, xz!': 'h}(xl, xz!': 'f(xl, xz)t ,: . ... 

Ahora sólo nos queda acabar, borrando los resultados intermedios 
y llevando el resultado final, f(xl, xz), detrás de los argumentos. 

9) ': 'x¡': 'xz"'f(xl,xz)t ,: .,: . ... 

¿Cómo diseñar una máquina para pasar de 1) a 7)? Claramente se 
ve que 

el paso de 1) a 2) lo realiza 
el paso de 2) a 3) lo realiza 
el paso de 3) a 4) lo realiza 
el paso de 4) a 5) lo realiza 
el paso de 5) a 6) lo realiza 
el paso de 6) a 7) lo realiza 
el paso de 7) a 8) lo realiza 
el paso de 8) a 9) lo realiza 

rlr K� 
L z I':'(R 
Mh, 
K� MhZ 
Ki Mh3 
K7 Ks K3 
Mg 
A 

Uniendo estas máquinas parciales obtenemos una máquina Mr para 
computar la función f: 

rlr Ki L 2 1 ':. (RMh, Ki MhZ Ki Mh3 K7 Ks K) Mg A. 

Ahora bien, el lema 2 no se limita al caso considerado en nuestro 
ejemplo en que f era una función 2-ádica definida por substitución con 
ayuda de 3 funciones 2-ádicas, sino que abarca todos los casos de defini­
ción por substitución. 

Sea g una función r-ádica (r � 1) y sean h 1, ... ,h, funciones n-ádi­
cas (n�O). Las funciones g, hl, ... ,h, sean Turing-computables por 
las máquinas Mg, Mhl, ... ,Mh, respectivamente. La función n-ádica f 
esté definida por substitución con ayuda de g, hl, ... ,h, del siguiente 
modo: 

f(x" ... ,xn) = g(hl(Xl"",Xn), ... ,h,(Xl,,,,,Xn)) 
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Hemos de probar ahora que f es Turing-computable. Y, en efecto, 
la siguiente máquina MI sirve para computar f: 

rlr KI�l+1 L n 1 �:. ffi...Mh¡ K "11 + I Mh2 KI�+l • • •  Mhr Kr+(r-l)n Kr+(r-2)n 
... K, Mg A 

como fácilmente se comprueba por consideraciones parecidas a las ante­
riormente expuestas. Obsérvese que, para r = 3 Y n = 2, la máquina aquÍ 
indicada es idéntica a la obtenida en el ejemplo antes considerado. 

Lema 3: El proceso de definición por inducción conduce 
de funciones Turing-computables a funciones 
Turing-computables 

Empecemos también aquÍ por considerar un ejemplo. Sea g una función 
l-ádica y sea h una función 3-ádica. Las funciones g y h sean Turing­
computables por las máquinas Mg y Mh, respectivamente. La función 
2-ádica f esté definida por inducción con ayuda de g y h del siguiente 
modo: 

f(x, O) = g(x) 
f(x,y') = h(x,y,f(x,y)) 

Diseñemos una máquina de Turing para computar esta función f. 
Como siempre, al comenzar, los dos argumentos estárán al principio de 
la cinta; el resto estará vacío: 

1) "·x"·yt ". ', .... 

Empecemos por construir un «puente» con un palote y copiemos los 
argumentos en orden inverso: 

2) "·x"·y""I'y'·xt ... 

Borremos ahora el palote intermedio (creando así un intervalo de tres 
cuadros vacíos que señalará a la máquina de acabar, A, dónde habrá de 
pararse, cuando hayamos obtenido el resultado final) y volvamos detrás 
de los argumentos copiados: 

3) "·x"y· ". "y·xt . .. 

¿Cómo proceder? Iremos computando sucesivamente f(x,O), f(x,l), 
f(x,2), f(x,3), etc. hasta llegar a f(x,y), que será nuestro resultado final. 
Comencemos con f(x,O), que, como sabemos, es igual a g(x). Bastará, 
pues, con computar g(x): 

4) "·x"·y"·"·"·y"·x"·�t ... 

Si y = 0, ya hemos obtenido el resultado final. Si y tO, deberemos pro­
seguir. ¿Cómo saber si y = ° o no? Copiando y y quitándole un palote. 
Si no queda ninguno, es que y era ° (representado por un solo palote). 
Si aún quedan palotes, es que y era distinto de O. 
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Supongamos que y tO. Ahora debemos computar f(x,l) = h(x,O,f(x,O)). 
Para ello copiaremos x, escribiremos ° y copiaremos f(x,O), computando 
a continuación el valor de la función h, aplicada a x, ° y f(x,O), con lo 
que tendremos f(x,l): 

5) o:· X o:. y o:· o:' o:, y o:'x o:, � o:'y=T °:'x �, u o:, � o:'f(X;l)t ... 

Si y = 1, ya hemos obtenido el resultado final. Si y> 1, deberemos 
proseguir. ¿Cómo saber si y = 1 o no? Copiando y=T (que es la quinta 
palabra, contando de derecha a izquierda) y quitándole un palote. 

Si no queda ninguno, es que y - 1 era ° (representado por un solo 
palote) y, por tanto, que y era 1. Si aún quedan palotes, es que y era 
mayor que 1. 

Supongamos que y t 1. Ahora debemos computar f(x,2) = 
h(x,l,f(x,l)). Para ello copiaremos X, escribiremos 1 (para lo que bas­
tará copiar U, que en ese momento será la quinta palabra, contando de 
derecha a izquierda, y añadirle un palote) y copiaremos f(X;I}, compu­
tando a continuación el valor de la función h, aplicada a x, 1 y f(x,l), 
con lo que tendremos f(x,2): 

6) o:· x·'y·'·' o:'y o:'x o:, � o:'y=T ':'x o:'U ,:, � o:'f(X;l)·'y=L °:'x o:'I·' 

f(X;l) .' f(x,L} t o:' �, 
• • •  

Si y = 2, ya hemos obtenido el resultado final. Si y> 2, deberemos 
proseguir. ¿Cómo saber si y =2 o no? Copiando y=L (que es la quinta 
palabra, contando de derecha a izquierda) y quitándole un palote. Si no 
queda ninguno, es que y - 2 era ° (representado por un solo palote) y, 
por tanto, que y era 2. Si aún quedan palotes, es que y era mayor que 2. 

Supongamos que y t2. Ahora debemos computar f(x,3)= h(x,2,f(x,2)). 
Para ello copiaremos X, escribiremos 2 (para lo que bastara copiar 
1, que en ese momento será la quinta palabra, contando de derecha a 
izquierda, y añadirle un palote) y copiaremos f(x,2}, computando a con­
tinuación el valor de la función h, aplicada a x, 2 y f(x,2), con lo que 
tendremos f(x,3): 

7) o:'x·'y ':'·' o:'y·'x o:, � o:'y=T °:'x o:, u o:, � o:'f(X;l) ':'y=L �'x o:'I o:, 

f(X;l) o:' f(x,L} o:'y=-J ':'x ':'2 ':' f(x,L} o:'nx,-3) t ... 

Si y = 3, ya hemos obtenido el resultado final. Si y> 3, deberemos 
proseguir. Está claro que seguiremos el mismo proceso para computar 
f(x,4), f(x,5), ... hasta llegar a f(x,y). Entonces acabaremos, borrando 
las anotaciones y resultados intermedios y llevando el resultado final hasta 
el intervalo de tres cuadros vacíos construidos al principio, de modo que 
finalmente obtengamos 

(fin) ':'x �'y·'f( x, y)t ':' 0:' • • •  

¿Cómo diseñar una máquina de Turing para pasar de (1) a (fin)? Cla­
ramente se ve que 
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el paso de (1) a (2) lo realiza 
el paso de (2) a (3) lo realiza 
el paso de (3) a (4) lo realiza 
el paso de (4) a (5) (o a (fin)) 
lo realiza 

el paso de 5) a 6) (o a (fin)) 
lo realiza 

el paso de 6) a 7) (o a (fin)) 
lo realiza 

el paso de (n) a (n+ 1) (o a 
(fin)) lo realiza 

rlr K2K4 
L 2 1 ':-(R 

Mg 

K31 ':-1 � r K3 rlr K4 Mh 
� A 

. : _ ___ A 

Ks1 ':-1 Ll... r Kilr K4 Mh 

_: _ ___ A 

KsP1'�r Kilr K4 Mh 

,:, �A 
K 1':'1/ 1. K21 K M s ___ r sr 4 h 

Vemos que, a partir del paso de 5) a 6), la misma máquina parcial 
realiza todos los pasos a dar. Por tanto, uniendo las primeras máquinas 
parciales y empalmando la cuarta con la quinta (que es la que se repite 
hasta el final), obtenemos una máquina Mf para computar la función f: 

':' RM K P1�rK r g 3 3 

�
A 

1 
K 1"'1/1 K21 K M s " -----. r s r 4 h 

De todos modos, el Lema 3 no se limita al caso considerado en nues­
tro ejemplo en que f era una función 2-ádica definida por inducción con 
ayuda de una función l-ádica y otra 3-ádica, sino que abarca todos los 
casos de definición por inducción. 

Sea g una función n-ádica (n � O) Y sea h una función (n + 2)-ádica. 
Las funciones g y h sean Turing-computables por las máquinas Mg y 
Mh, respectivamente. La función (n + 1 )-ádica f está definida por induc­
ción con ayuda de g y h del siguiente modo: 

f(x¡, ... ,xn, O) = g(x¡, ... ,xn) 
f(x¡, ... ,xn, y') = h(x¡, ... ,xn, y, f(x¡, ... ,xn, y)) 
Hemos de probar ahora que f es Turing-computable. Y, en efecto, 

la siguiente máquina Mf sirve para computar f: 

n n+1 �:. �. 1 n rlr K2 K.a3 L 1 R Mg Kn+2 1 l-;¡:--+ r Kn+2 r 

�A 
1 

r Kn+4 1 ':' l ---+ r K.7:� I r Kn+3 Mq 
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como fácilmente se comprueba por consideraciones parecidas a las ante­
riormente expuestas. Obsérvese que, para n = 1, la máquina aquí indi­
cada es idéntica a la obtenida en el ejemplo que acabamos de considerar. 

De los Lemas 1, 2 Y 3 Y de la definición de función recursiva primi­
tiva claramente se sigue lo que queríamos probar, a saber: 

Teorema: Todas las funciones primitivas recursivas son Turing­
computables. 

V. FUNCIONES RECURSIVAS 

Aunque todas las funciones recursivas primitivas son computables, no 
todas las funciones computables son recursivas primitivas. Por ejemplo, 
la siguiente función f, definida por Ackermann en 1928, es computable 
en sentido intuitivo (y Turing-computable), pero no recursiva primitiva 
(recuérdese que s es la función del sucesor): 

f(O, y) = s(y) 
f(s(x), O) = f(x, 1) 
f(s(x), s(y)) = f(x, f(s(x), y)) 
Una noción más amplia es la de función recursiva, cuya definición 

requiere la previa introducción del operador min (el mínimo ... tal que). 
Hablando de números naturales, min x ip(x) es el mínimo número x que 
satisface la condición 1". Si hay algún número que satisface 1", y para cada 
número natural x es decidible si ip(x) o no, entonces min x ip(x) es com­
putable. Decimos que una función n-aria h es definible por minimaliza­
ción a partir de una función n + 1-aria f en caso normal si y sólo si para 
cada Xj, ... ,X" existe al menos un w tal que f(x" ... ,xn, w)=O, y ocurre 
que para cada X" ... ,Xn: 

h(x" ... ,xn)=min w[f(xj, ... ,x", w)=Oj 
Una función recursiva es una función definible a partir de las funcio­

nes recursivas primitivas iniciales por un número finito de definiciones 
por sustitución, por inducción y por minimalización en caso normal. 

La función de Ackermann es recursiva. De hecho toda función com­
putable conocida es recursiva. Y se puede probar el siguiente teorema: 
Una función es recursiva si y sólo si es Turing-computable. 

El hecho de que las nociones de recursividad y computabilidad de 
Turing coincidan (aun partiendo de ideas iniciales bien distintas), de que 
todas las otras precisiones de la noción de computabilidad propuestas 
por otros autores (como Post, Markov y Church) hayan resultado tam­
bién equivalentes, y de que toda función conocida y computable en sen­
tido intuitivo sea también Turing-computable, ha llevado a la conclu­
sión (conocida como tesis de Church) de que el concepto intuitivo de 
computabilidad queda perfectamente precisado por la noción de com­
putabilidad de Turing (o de recursividad). 
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VI. ALGUNOS RESULTADOS SOBRE LA LÓGICA 

La teoría de la computabilidad sirve para establecer resultados sobre deci­
dibilidad y generabilidad (o numerabilidad recursiva) de diversas partes 
de la lógica. Aquí nos limitaremos a mencionar algunos, sin prueba ni 
comentario: 

La lógica conectiva o proposicional es decidible (es decir, e! conjunto 
de sus fórmulas válidas es decidible respecto al conjunto de todas sus fór­
mulas). 

El fragmento de la lógica de primer orden que sólo usa predicados 
monarios (y que incluye la silogística) es decidible. 

La lógica de primer orden es indecidible. 
La lógica de segundo orden es indecidible. 
Cualquier lógica decidible (como la conectiva o la de predicados 

monarios de primer orden) es recursivamente numerable. 
La lógica de primer orden (aunque no decidible) es recursivamente 

numerable. Por eso hay cálculos deductivos que generan todas sus fór­
mulas válidas. 

La lógica de segundo orden no es recursivamente numerable. Por eso 
no puede haber cálculos deductivos adecuados para ella. 

Un conjunto de fórmulas de la lógica de primer orden constituye una 
clase de reducción si y sólo si la decidibilidad de ese conjunto implicaría 
la de la lógica de primer orden. Por tanto, todas las clases de reducción 
son indecidibles. Por ejemplo, Kalmar probó en 1936 que e! conjunto 
de todas las fórmulas válidas con un solo predicado binario es una clase 
de reducción y, por tanto, indecidible. Desde entonces e! problema de 
la decisión de la lógica de primer orden ha sido exhaustivamente anali­
zado a base de tipificar los subconjuntos de fórmulas, clasificados por 
su prefijo en forma normal, y descubrir cuáles son decidibles y cuáles 
son clases de reducción, indecidibles. 

VII. ALGUNOS RESULTADOS SOBRE TEORÍAS 

Una teoría es un conjunto de fórmulas clausurado respecto a la relación 
de consecuencia lógica, es decir, un conjunto de fórmulas que incluye 
todas sus consecuencias. 

Una teoría se llama axiomatizable si y sólo si es recursivamente nume­
rable. 

Una teoría se llama completa si y sólo si da respuesta a todas las pre­
guntas que se pueden formular en su lenguaje, es decir, si para cada fór­
mula <p de su lenguaje, <pET o ---, <pET. 

Una teoría se llama consistente si y sólo si no incluye todas las fór­
mulas de su lenguaje. 

Claramente, la axiomatizabilidad, la completud y la consistencia son 
propiedades deseables de una teoría. En 1931 probó Góde! su famoso 
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teorema de incompletud, que (en una versión generalizada) puede for­
mularse así: 

Una teoría matemática interesante (es decir, una en la que al menos 
sean definibles las funciones recursivas primitivas) no puede ser a la vez 
axiomatizable, completa y consistente. Puede ser completa y consistente, 
pero no axiomatizable (como la aritmética intuitiva); puede ser axioma­
tizable y completa, pero no consistente (como cualquier aritmética con­
tradictoria); y, finalmente, puede ser axiomatizable y consistente, pero 
no completa (como la aritmética de Peano de primer orden). Este teo­
rema nos dice que ciertos ideales son inalcanzables conjuntamente. 

También se han obtenido numerosos resultados de decidibilidad e 
indecidibilidad acerca de teorías (respecto a sus lenguajes). He aquÍ algu­
nos ejemplos, relativos a diversas teorías de primer orden: 

La teoría pura de la igualdad es decidible. 
La teoría de las álgebras de Boole es decidible. 
La teoría de grupos abelianos es decidible. 
La teoría de grupos abelianos ordenados es decidible. 
La geometría hiperbólica es decidible. 
La teoría de grupos es indecidible. 
La teoría de retículos es indecidible. 
La teoría de retículos distributivos es indecidible. 
La teoría de cuerpos ordenados es indecidible. 
La teoría de conjuntos (de Zermelo-Fraenkel) es indecidible. 
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LÓGICA MODAL 

Raúl Orayen 

En las últimas décadas la investigación sobre lógica modal ha aumen­
tado y se ha diversificado de tal manera, que se ha vuelto difícil dar un 
panorama de esta disciplina (para tener una idea de cómo cambió la situa­
ción en sólo dieciséis años, compárense los prefacios de Hughes y Cress­
well, 1968 y Hughes y Cresswell, 1984; véase también Bull y Segerberg, 
1984, 2). En este artículo evitaré dos políticas extremas, la de dar un 
panorama de todo sin detalles, y la de estudiar unos pocos temas de 
manera minuciosa. Intentaré dar una visión general histórico-sistemática 
de los aspectos más importantes de la lógica modal, pero agregaré a la 
descripción panorámica un análisis algo más detallado de algunos siste­
mas y resultados formales de especial interés, o representativos de alguna 
línea de investigación mencionada en el texto. El objetivo del trabajo es 
doble: por un lado, dar un perfil de la lógica modal; por otro, suminis­
trar una introducción a este campo a quienes deseen adquirir un conoci­
miento más profundo del mismo. Sólo presupondré conocimientos de la 
lógica elemental como los que proporciona Quesada (1991). 

El plan del capítulo es el siguiente. La sección I se ocupa de prelimi­
nares conceptuales y en la 11 se hace un bosquejo del desarrollo histórico 
de la lógica modal. Siguen tres secciones sobre lógica modal proposicio­
nal (aunque de carácter sistemático, corresponden a tres etapas históri­
cas mencionadas antes). En un apéndice se mencionan líneas de investi­
gación que no son tratadas en el cuerpo principal del artículo. La 
bibliografía ha sido cuidadosamente seleccionada para facilitar investi­
gaciones o estudios ulteriores. Se citan especialmente dos tipos de obras: 
trabajos clásicos en los cuales se expusieron por primera vez ideas o resul­
tados importantes conectados con la lógica modal, y literatura exposi­
tiva valiosa por la presentación clara y sistemática de desarrollos que están 
dispersos en artículos técnicos. Todas las obras de la bibliografía se han 
mencionado en el texto y los comentarios que hago sobre ellas ayudarán 
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al lector interesado en alguno de los temas tratados a elaborar su propio 
plan de lecturas adicionales. 

1. PRELIMINARES CONCEPTUALES 

En la lógica medieval se pensaba que había diferentes modos en que una 
proposición podía ser verdadera o falsa. Considérense las proposiciones 
expresadas por las oraciones 'Sócrates conversaba mucho de filosofía' y 
'Sócrates se interesaba por la filosofía o no es cierto que Sócrates se inte­
resaba por la filosofía'. Ambas proposiciones son verdaderas, pero se pen­
saba que la primera lo es de un modo contingente y la segunda de un 
modo necesario. Similarmente, una proposición falsa puede serlo de diver­
sos modos. La proposición expresada por 'Sócrates murió por ingerir 
estricnina' es falsa pero posible, en tanto que la expresada por '2 + 2 = 5' 
es falsa y además imposible (si los signos tienen sus significados usuales). 
En la terminología lógica actual (que en este punto conserva reminiscen­
cias medievales) se dice que la necesidad, la posibilidad, la contingencia 
y la imposibilidad son modalidades. La rama de la lógica que se ocupa 
de ellas es la lógica modal. En el simbolismo lógico, las modalidades suelen 
representarse mediante operadores proposicionales. Veremos ahora los 
operadores más usados en lógica modal. 

Introduciremos cuatro operadores proposicionales monádicos O, O, 
C, 1, que corresponden a las modalidades antes mencionadas, se llaman 
por eso 'operadores modales', y pueden combinarse con las variables pro­
posicionales p, q, r, eventualmente usadas con subíndices 1. Tales com­
binaciones se leerán así: 

Op:p es necesaria, 
Op:p es posible, 
Cp:p es contingente, 
Ip:p es imposible. 
En esta interpretación intuitiva del simbolismo introducido, los valores 

de la variable p son proposiciones y Op es verdadero si y sólo si p es 
una proposición necesaria (similarmente para los otros operadores). Antes 
de comenzar con temas más formales, haremos algunas reflexiones sobre 
el significado de los operadores introducidos y mencionaremos algunas 
discusiones filosóficas a que han dado lugar. 

Si se entiende el operador O de acuerdo con la explicación del párrafo 
anterior, su significado será claro sólo si resulta clara la noción de pro­
posición necesaria. Durante este siglo, los filósofos analíticos trataron de 
aclarar esa noción (yen general, las nociones modales básicas). Surgie­
ron entonces dos complicaciones en la filosofía de la lógica modal. En 
primer lugar, resultó difícil explicar el significado de 'proposición nece-

1. Los signos y expresiones lógicas serán usados a menudo como nombres de sí mismos, aunque 
cuando parezca conveniente usaré también comillas simples del modo usual en lógica. 
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saria' y algunos autores adoptaron una suerte de escepticismo intensional­
modal que niega la existencia de proposiciones y la significatividad de 
la noción de necesidad. En segundo lugar, los lógicos y filósofos que sí 
aceptaron la noción de necesidad no dieron una sola explicación de ella: 
durante este siglo ha habido al menos dos posiciones muy diferentes acerca 
de cómo debía interpretarse ese concepto en el contexto teórico de la lógica 
modal (las dos interpretaciones corresponden aproximadamente a la dis­
tinción tradicional entre modalidades de dicto y de re). Antes de ver estas 
dos cuestiones filosóficas, será conveniente hacer notar algunas relacio­
nes entre los operadores modales que simplifican un poco los problemas 
conceptuales conectados con ellos. 

Hemos dicho que no ha resultado fácil aclarar el significado de las 
nociones modales. Pero un hecho muy importante es que resultan mucho 
más claras las relaciones entre ellas. Tomando como primitiva una cual­
quiera de las modalidades antes mencionadas, se pueden definir todas 
las demás en términos de la escogida. Con respecto a los operadores moda­
les antes introducidos puede decirse entonces lo siguiente: si se toma uno 
cualquiera de los cuatro, los restantes se pueden definir en términos del 
operador elegido y los conectivos veritativo-funcionales de la lógica pro­
posicional. Es habitual tomar como base el operador de necesidad. En 
ese caso, los otros operadores pueden definirse así: 

(DI) Op = der - O -P 
(D2) IP=dcrD-p 
(D3) CP=der-Dpl\-D-p 
(Puede resultar un ejercicio divertido para el lector ir eligiendo como 

básico cada uno de los otros operadores y en cada caso definir los res­
tantes en términos del elegido. Es interesante la definición de O usando 
C). 

Los operadores que hemos introducido hasta ahora son monádicos; 
hay también operadores modales binarios, de los que nos ocuparemos 
en futuras secciones. El hecho de que los operadores modales introduci­
dos sean interdefinibles (y de que haya mucho consenso sobre la adecua­
ción de las definiciones antes formuladas) simplifica enormemente la dis­
cusión de las dos «complicaciones» filosóficas mencionadas unos párrafos 
más atrás (además del interés intrínseco de tal interdefinibilidad). No hay 
que discutir con el escéptico <<intensional-modal» operador por opera­
dor: si se logra convencerlo de que uno de los operadores monádicos tiene 
una significatividad clara, aceptará que también los demás la tienen, por­
que se pueden introducir mediante definiciones sencillas a partir del ope­
rador aceptado. Similarmente, si se discute cuál de dos concepciones de 
la necesidad es adecuada para interpretar cierta teoría modal, ya no será 
necesario discutir lo mismo respecto de las otras modalidades monádi­
cas: debido a las íntimas relaciones que se dan entre ellas, diferentes con­
cepciones de la necesidad serán paralelas a distintas concepciones de la 
contingencia, etc., y la elección de una concepción de una de las modali­
dades llevará naturalmente a elegir la concepción afín de otra de ellas. 
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Debido a estas razones, al sintetizar en lo que sigue algunas discusiones 
filosóficas, nos ocuparemos de una sola modalidad monádica (o de un 
solo operador monádico). Tomaremos como básico el concepto de nece­
sidad -o el operador D. Como hemos dicho, hay filósofos que han recha­
zado esta noción y otros han dado explicaciones divergentes de ella. 
Ampliaremos esta información. 

En la interpretación de la lógica modal, ha habido dos concepciones 
influyentes de la necesidad. La primera de ellas fue desarrollada por Car­
nap (1947) y refinada en Carnap (1956a). El núcleo de este enfoque es 
la idea de que una proposición es necesaria si cualquier oración que la 
exprese es analítica, y una oración es analítica si las reglas semánticas 
bastan para establecer su verdad. Si el operador de necesidad ('N', en 
la notación de Carnap) se prefija a una oración, e! resultado es verda­
dero si y sólo si la oración es analítica. Esta explicación encapsula una 
concepción de la necesidad que tuvo enorme influencia. Al formularla, 
Carnap (1956a, 174) utiliza la expresión 'L-verdadera' en lugar de 'ana­
lítica'; pero en su libro, 'L-verdadera' se toma en un sentido amplio: se 
aplica a lo que hoy llamamos 'lógicamente verdadero', pero también a 
oraciones como 'ningún soltero es casado'. En otras palabras, 'L­
verdadera' se usa como 'analítica' (incluyendo lo lógicamente verdadero 
como un caso particular). De acuerdo con este enfoque, 'N(ningún sol­
tero es casado)' es verdadera, ya que 'ningún soltero es casado' es analí­
tica, y esto último se cumple porque bastan las reglas semánticas para 
establecer la verdad de esa oración. Llamaremos 'concepción semántica 
de la necesidad' a la propuesta por Carnap, en vista de que se explica 
en términos de propiedades semánticas de las oraciones. Es muy impor­
tante advertir que los lógicos actuales usan una noción de necesidad que 
es esencialmente idéntica a la de Carnap: es la llamada 'necesidad lógica'. 
Se dice en los textos lógicos que un razonamiento R es válido cuando 
cumple con esta condición: si las premisas de R son verdaderas, enton­
ces necesariamente la conclusión de R es verdadera. 'Necesariamente' se 
usa aquí en el sentido de la necesidad lógica. Otra definición usual dice 
que un razonamiento es válido cuando no es posible que sus premisas 
sean verdaderas y su conclusión falsa. También esta noción de posibili­
dad se usa en e! sentido lógico y se la define en términos de la necesidad 
lógica mediante (DI) (definiendo así la posibilidad logica, las dos defini­
ciones de validez ofrecidas son equivalentes en los contextos lógicos usua­
les; véase Orayen, 1989, sección 4.1). 

La concepción de la necesidad propuesta por Carnap fue objeto de 
numerosas críticas a lo largo de los años. Quine, adalid de! escepticismo 
intensional-modal mencionado antes, le hizo dos objeciones clásicas. Una 
de ellas, de carácter muy general, se basa en el conocido rechazo qui­
neano de la distinción analítico-sintético, formulado en e! célebre Quine 
(1951), y una de cuyas consecuencias es el rechazo de todo concepto defi­
nido sobre la base de la noción de analiticidad (como la necesidad carna­
piana). Como mencionamos antes, Carnap (1956a) es una versión mejo-
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rada de Carnap (1947), y uno de los agregados que contiene es Carnap 
(1956b), que constituye un intento de responder al último artículo men­
cionado de Quine. Quine no se dejó convencer y profundizó sus críticas 
contra el concepto de analiticidad (y nociones «intensionales» 2 relacio­
nadas) mediante el llamado «argumento de la indeterminación de la tra­
duccióll», expuesto en Quine (1960, C.2) y numerosos trabajos poste­
riores. No hay consenso acerca del peso que se les deba dar a estas 
objeciones anti-intensionalistas. En Orayen (1989) puede hallarse un aná­
lisis crítico detenido de los argumentos de Quine contra los llamados «con­
ceptos intensionales» (véanse los capítulos 2 y 3, y el Apéndice 1, que 
es una respuesta de Quine a una versión previa del capítulo 2). 

Otra célebre objeción de Quine a la noción de necesidad carnapiana 
no depende en absoluto de la comentada en el párrafo anterior -de hecho, 
fue formulada cuando Quine no había roto aún con la noción de analiti­
cidad. En efecto, en su trabajo (1943), Quine había señalado que si en 
la lógica modal se combinaba una cuantificación objetal (la usual en la 
lógica clásica de primer orden) con una noción de necesidad basada en 
la de analiticidad (como la carnapiana), se obtenían confusiones inextri­
cables. Por ejemplo, si se interpreta de manera objetal el cuantificador de 

(:tIx )O(x> 7), 
la fórmula resultará verdadera si algún objeto del dominio de variabili­
dad (supongamos que es el conjunto de los números naturales) satisface 
el alcance O(x> 7). Pero si O se entiende de la manera carnapiana, no 
puede decirse que un objeto (el número 9, por ejemplo) satisface O(x> 7), 
porque eso parece depender de la expresión lingüística con la que nos 
refiramos al objeto. En efecto, '0(9) 7)' parece «carnapianamente» ver­
dadero porque '(9 > 7)' puede considerarse analítico, pero 'O (el número 
de planetas> 7)' debe considerarse carnapianamente falso, porque la ver­
dad de '(el número de planetas> 7)' no depende sólo del significado de 
las palabras. Sin embargo, '9' y 'el número de planetas' denotan el mismo 
objeto (el número 9). ¿Ese objeto satisface o no O(x> 7)? Parece que 
la respuesta es afirmativa si nos referimos al objeto mediante '9' y falsa 
si nos referimos a ese mismo objeto mediante 'el número de planetas'. 
Pero si la respuesta depende de la manera en que nos refiramos al objeto, 
parece que el objeto mismo no satisface ni deja de satisfacer 0(x>7). 
Si el objeto mismo (el número 9) satisficiera O(x> 7), se podría obtener 
una verdad de esa fórmula reemplazando la 'x' que figura en ella por cual­
quier término singular que denotara el número 9. Pero si un objeto del 
dominio de variabilidad se comporta en esa forma indecisa respecto de 
oraciones abiertas o funciones proposicionales del lenguaje modal car­
napiano, hay confusiones semánticas serias en el tratamiento «carna­
piano» de la lógica modal con cuantificadores. 

2. Se trata de nociones estrechamente relacionadas con el significado (denominado 'intensión' 
en la terminología de Carnap y otros autores; el término se escribe con 's' para diferenciarlo del término 
psicológico similar). 
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Antes de ver otra concepción de la necesidad, será conveniente hacer 
algunas precisiones sobre las dos críticas de Quine que hemos conside­
rado. Su primera objeción no está dirigida específicamente contra una 
noción modal usada por Carnap: es muy general y pone en tela de juicio 
cualquier noción basada en la de analiticidad (la necesidad carnapiana 
es objetada como un caso particular). Esta crítica de Quine tiene tanta 
fuerza como sus argumentos anti-intensionalistas, respecto de los cuales 
difieren las opiniones. La segunda objeción es mucho más específica y 
contundente: afecta a un tipo de lógica modal en que se mezcla la cuanti­
ficación objetal con una noción de necesidad basada en la analiticidad, 
y Quine señala correctamente que se comete entonces una seria confu­
sión. Pero esto no es fatal para el desarrollo de la lógica modal. Hay 
muchas formas en que una teoría modal puede eludir este problema: dos 
caminos posibles son usar otro tipo de cuantificación u otro tipo de 
necesidadJ• Quine no estaba interesado en sugerir el segundo camino: 
sus críticas propiciaban el abandono de la necesidad, más bien que el desa­
rrollo de una concepción alternativa de esa noción. Pero en 1972 se 
publicó un trabajo de Kripke (ahora disponible como Kripke, 1980) que 
cambió totalmente el panorama teórico en la filosofía de la lógica modal, 
porque en él se critica la vinculación entre necesidad y analiticidad que 
se había hecho hasta ese momento, pero se propone también otra con­
cepción de la necesidad. 

La idea básica presentada en Kripke (1980) es que hay un tipo de 
necesidad metafísica que no se reduce de ningún modo a una necesidad 
semántica: un estado de cosas puede ser necesario aunque una oración 
que lo exprese no sea analítica. Es una verdad necesaria que Héspero 
es idéntico a Fósforo, pero éste es un hecho acerca de objetos: 'Héspero 

= Fósforo' no es analítica (los dos nombres propios allí usados no son 
sinónimos). Kripke apoya sus ideas en un minucioso análisis de ejem­
plos que resultaría difícil resumir. El meollo de uno de sus argumentos 
puede presentarse de la manera siguiente. Kripke trata de hacer ver al 
lector que tiene un sentido intuitivo preguntarse si un determinado objeto 
x podría no haber tenido una propiedad P que de hecho tiene; aduce ade­
más que una pregunta de este tipo no se ocupa de palabras ni de signifi­
cados. Pero si la pregunta tiene sentido y no es de tipo semántico, parece 
que una respuesta negativa también será significativa y tampoco tendrá 
un carácter semántico. En ese caso tiene un sentido intuitivo una noción 
de necesidad ontológica, porque responder que un objeto no podría haber 
carecido de cierta propiedad es atribuírsela necesariamente. Kripke 
defiende la idea de que un objeto puede tener necesariamente algunas de 

3. Durante un tiempo, Quine consideró correcta una tercera línea de solución, propuesta por 

Church (1943) y Carnap (1947), y basada en una limitación de los dominios de variabilidad a valores 
intensionales. Sin embargo, en la segunda edición de su Prom a Logical Poin! of View (1961a) señaló 
nuevas dificultades de estas propuestas. Quine (1961b) sintetiza estupendamente esta discusión trian­
gular (en Quine, 1980, se atenúa la crítica a Church de manera no decisiva). 
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sus propiedades y afirma que éste no es un hecho lingüístico. Defiende 
entonces la significatividad de las oraciones en las que se afirma lo que 
en terminología tradicional se llamaba 'necesidad de re'. Esta posición 
se conoce ahora con el nombre de 'esencialismo' y contrasta fuertemente 
con la filosofía modal prevaleciente desde el positivismo lógico hasta 
Kripke. Tal filosofía modal trataba de reducir toda necesidad a la de dicto: 
la noción de necesidad se aplicaba a proposiciones, o mejor aun, a ora­
ciones que las expresaran. El trabajo de Kripke antes mencionado tuvo 
una influencia notable, y a partir de su difusión la filosofía analítica se 
mostró más suspicaz acerca de la asimilación de toda necesidad a la de 
dicto. Como consecuencia de la mayor aceptación de la necesidad de re, 
resurgió en las dos últimas décadas el interés por los problemas metafísi­
cos vinculados con las modalidades. Una obra interesante para ver estos 
problemas es Forbes (1985), donde el autor desarrolla una teoría propia 
acerca de la necesidad de re, pero proporcionando al lector la informa­
ción básica que se requiere para poder seguir las discusiones filosóficas 
recientes sobre esa temática. 

El lector puede preguntarse cuál fue la actitud de Quine ante el esen­
cialismo. La situación es algo paradójica, porque Quine también rechazó 
esta concepción de la necesidad (aunque con argumentos menos contun­
dentes: véase Sainsbury 1991,242-243) pero aparentemente contribuyó 
a su desarrollo: como señala Kaplan en un penetrante trabajo sobre el 
tratamiento quineano de la cuantificación en contextos opacos, Quine 
sugirió claramente que para dar sentido a fórmulas modales como la que 
antes analizamos, había que interpretarlas de manera esencialista (véase 
Kaplan, 1968). La necesidad de tal interpretación era para Quine una 
prueba de que tales fórmulas eran defectuosas, pero curiosamente otros 
autores pudieron extraer de la crítica quineana una sugerencia positiva. 

Las dos concepciones de la necesidad que he explicado aquí (la nece­
sidad semántica o lógica y la necesidad metafísica) no son las únicas que 
se han propuesto (ni los autores mencionados son los únicos que las han 
defendido), pero son las que han tenido más repercusión en la historia 
reciente de la lógica modal y las especulaciones filosóficas sobre esa dis­
ciplina. 

11. ESBOZO HISTÓRICO DE LA LÓGICA MODAL 

Dividiré la historia de la lógica modal en cuatro períodos: la prehistoria, 
la etapa sintáctica, la etapa semántica y la época de la metalógica modal 
generalizada. La prehistoria abarca desde el tiempo de Aristóteles 
(384-322 a. C.) hasta 1912, año en que C. 1. Lewis inauguró la historia 
moderna de la disciplina. La etapa sintáctica, caracterizada por el surgi­
miento de sistemas axiomáticos modales que, en general, eran presenta­
dos sin una semántica sistemática, se extiende desde 1912 hasta 1959. 
Ese año Kripke comienza a publicar trabajos sobre la semántica de mun-
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dos posibles y comienza la etapa semántica, durante la cual se investiga 
la aplicación de los métodos de Kripke a varios sistemas particulares que 
se habían estudiado de manera sintáctica en el período anterior. La etapa 
en la que pienso al hablar de «la época de la metalógica modal generali­
zada» no tiene un comienzo muy nítido en el tiempo, pero lo podemos 
situar hacia fines de la década del sesenta. El rasgo que enfatizo con el 
rótulo elegido es la generalidad. En esta época, hasta la actualidad, el 
interés por sistemas particulares es reemplazado en gran parte por el 
intento de estudiar las propiedades de clases muy amplias de sistemas 
modales. Daré alguna breve información de lo que ocurrió en las distin­
tas etapas mencionadas. 

1. La prehistoria de la lógica modal 

La palabra 'prehistoria' del subtítulo se usa sin intenciones peyorativas. 
Simplemente intento enfatizar con ella el hecho de que en este largo 
período la reflexión sobre las modalidades no arrojó como resultado nin­
gún sistema axiomático descripto con claridad, y con una interpretación 
intuitiva de tipo modal. En la actualidad, estos rasgos son las condicio­
nes mínimas que una teoría formal debería reunir para ser considerada 
un sistema de lógica modal (obsérvese la modestia de la exigencia semán­
tica). Es natural, entonces, que desde nuestro punto de vista contempo­
ráneo, consideremos que, estrictamente hablando, la historia de la lógica 
modal en un sentido moderno no había comenzado aún en un período 
sin logros del tipo mencionado dos oraciones atrás. Esto no excluye que 
hubiera trabajos e ideas lógicas interesantes sobre las modalidades, y en 
efecto las podemos encontrar, principalmente en Aristóteles, los megári­
cos, los estoicos y los filósofos medievales. 

Aristóteles escribió mucho sobre modalidades. No dedicó al tema un 
libro o un trabajo largo, pero lo trató en muchos pasajes de su obra. Por 
ejemplo, en Sobre la interpretación, reflexionó sobre las relaciones entre 
las modalidades, en Analíticos Primeros, construyó una teoría sobre el 
«silogismo modal» y en Tópicos usó las nociones modales en su teoría 
de la predicación, donde distingue, por ejemplo, entre rasgos que un hom­
bre tiene necesariamente y otros que puede o no tener; en el caso de que 
efectivamente tenga rasgos del último tipo, son sólo «propiedades acci­
dentales» del hombre en cuestión. Veamos más de cerca ideas suyas conec­
tadas con preocupaciones actuales. 

En Sobre la interpretación y Analíticos Primeros, Aristóteles no intenta 
dar un análisis ni de la necesidad ni de la posibilidad pero observa que 
cada una de ellas es definible en términos de la otra y la negación [véase 
(D1), de la sección anterior l. También señala que lo contingente es lo 
posible que no es necesario. Es consciente, pues, de la interdefinibilidad 
de las nociones modales que ya hemos hecho notar. En Analíticos Prime­
ros hay una teoría sobre el silogismo modal. Suelen llamarse ahora 'aser­
tóricas' las oraciones que no contienen expresiones con un contenido 
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modal (expresiones modales, a partir de ahora). Aristóteles analiza las 
oraciones que se obtienen insertando expresiones modales en oraciones 
asertóricas. Un silogismo modal se obtiene de un silogismo asertórico 
insertando expresiones modales en las premisas (en una o en las dos) y I o 
en la conclusión. Dificulta el análisis de un texto clásico sobre estas cues­
tiones el hecho de que la inserción de expresiones modales no produce 
oraciones inambiguas; por ejemplo, a veces es difícil determinar si se 
intentó usar modalidades de dicto o de re. Como la distinción es rele­
vante para evaluar algunas tesis aristotélicas, daré un ejemplo en que se 
construyen dos oraciones modales, una de dicto y otra de re, partiendo 
de una misma oración asertórica, que será de un tipo que aparece con 
frecuencia en la silogística clásica: una oración universal afirmativa. No 
daré un significado preciso a las expresiones modales que use, porque 
el objetivo del ejemplo es mostrar de modo intuitivo la diferencia de 
dicto/de re, y esto puede lograrse aun usando las expresiones-clave de 
un modo bastante vago (además, usar significados más precisos podría 
prejuiciar la lectura de Aristóteles). 

La oración 'Todos los estudiantes que llegaron tarde a la clase llega­
ron temprano a la misma' es absurda, si hacemos el supuesto de que las 
palabras se usan de las maneras habituales y 'la misma' se refiere a la 
clase mencionada primero. Prefijando a la oración la expresión 'Posible­
mente', con la intención de hacer una afirmación modal de dicto, obte­
nemos algo como: 'Posiblemente, todos los estudiantes que llegaron tarde 
a la clase llegaron temprano a la misma'. Para que la frase total sea ver­
dadera, la oración que sigue al 'Posiblemente', debe ser posible, debe exis­
tir la posibilidad de que sea verdadera. Pero no existe tal posibilidad, 
bajo el supuesto hecho acerca del uso de las palabras en la oración (para 
simplificar, supongo que las proposiciones universales afirmativas se usan 
de un modo que escapa a la crítica moderna al cuadrado clásico de opo­
sición). La frase total que construimos es, pues, falsa. Tomemos ahora 
la oración (universal afirmativa) 'Todos los estudiantes que llegaron tarde 
a la clase hubieran podido llegar temprano a la misma'. La expresión 
subrayada se comporta como una expresión modal usada de re: no se 
afirma ahora que cierta oración p es posible; se afirma algo de ciertas 
personas, no de ciertas palabras. Se dice que ciertos estudiantes hubie­
ran tenido la posibilidad de comportarse de otra manera distinta de como 
se comportaron: llegaron tarde pero podrían haber llegado temprano. 
Esta afirmación es más plausible que la afirmación modal de dicto que 
analizamos antes. Prosigamos ahora con las ideas aristotélicas sobre las 
modalidades. 

Desgraciadamente, la teoría aristotélica del silogismo modal es muy 
confusa, y los autores que la han estudiado en detalle suelen afirmar que 
contiene errores importantes. Al analizar el silogismo modal que responde 
a la forma del Barbara de primera figura, solo que con las premisas y 
la conclusión afectadas por expresiones modales conectadas con la idea 
de posibilidad, Aristóteles lo considera válido (si se me permite seguir 
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usando terminología posterior). Kneale y Kneale (1962, 83) interpretan 
que las expresiones modales se usan de dicto en Sobre la interpretación 
y Analíticos Primeros 4. Si esto es así, es fácil encontrar contraejemplos 
a la validez del silogismo modal mencionado unas líneas atrás: uno de 
ellos se construye afectando con palabras que expresan posibilidad de 
dicto las premisas 'Todo triángulo es azul' y 'Toda cosa roja es un trián­
gulo', así como la conclusión que se sigue de ellas según la forma del Bar­
bara ya mencionado (adapto un ejemplo de Kneale y Kneale, 1962, 88, 
donde pueden encontrarse otras ilustraciones; la afirmación aristotélica 
sobre la validez del caso de silogismo modal analizado puede encontrarse 
en Aristóteles, 1984,53 o Aristóteles, 1988, v.2, 140-141)5. Llama la 
atención el contraste entre el estudio del silogismo modal y la teoría del 
silogismo común, primera teoría lógica que vio el mundo y que Aristóte­
les desarrolló con gran virtuosismo (los errores son en este caso de poca 
monta comparados con los hallazgos). Se han dado diversas explicacio­
nes de este hecho extraño, entre ellas la hipótesis de que la teoría del silo­
gismo modal es un agregado tardío y apresurado que hizo Aristóteles a 
una versión ya acabada de los Analíticos Primeros. Para terminar con los 
ejemplos de ideas aristotélicas acerca de las modalidades, observemos que 
su teoría de la predicación (que mencionamos antes) es claramente un 
ejemplo de lo que hoy se entiende por 'esencialismo' (véase sección 1). 
Las modalidades usadas en esta teoría son, pues, de re. 

Varios autores que han tratado de formular una teoría aristotélica 
coherente sobre las modalidades (reuniendo sus textos acerca del tema, 
extrayendo sus consecuencias, etc.), han llegado a la conclusión de que 
es una misión imposible (van Rijen, 1989, es un libro más optimista al 
respecto). 

Entre los megáricos contemporáneos de Aristóteles se negaba la dife­
rencia entre acto y potencia, y aparentemente esa posición conducía a 
un rechazo de las distinciones modales. Una generación después, sin 
embargo, la discusión de las modalidades atrajo a los megáricos y Dio­
doro Cronos propuso una interesante definición de ellas. No se dispone 
de sus textos, pero de acuerdo con el testimonio de Boecio, Diodoro defi­
nía lo posible como lo que es o va a ser, lo imposible como lo que, siendo 
falso, no será verdadero, lo necesario como lo que, siendo verdadero, 
no será falso y lo no-necesario como lo que o bien ya es falso, o lo será 
(posiblemente Boecio no recogió una referencia a la verdad que figuraba 
en la definición de lo posible; un texto de Cicerón y el hecho de que los 
valores de verdad son mencionados en las otras definiciones sugieren esto). 

4. Los autores mencionados hacen análisis de expresiones griegas (aunque en general usan la 
traducción clásica de Ross); lidiando sólo con traducciones, yo no he podido formarme una opinión 

firme acerca de la interpretación que menciono en el texto. 
S. Es un ejercicio instructivo analizar el ejemplo propuesto aplicando primero a las premisas y 

la conclusión palabras modales que expresan posibilidad de dicto y hacer luego lo mismo con palabras 
que expresan posibilidad de re. 
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Entre otras cosas, llama la atención que Diodoro mezcle las nociones 
modales con distinciones temporales, como se hace hoy en día en ciertas 
lógicas; también es curioso que, como en la lógica temporal actual, se 
conciba que los valores de verdad 6 pueden cambiar con el tiempo. Dio­
doro sostenía su definición de lo posible con un argumento de cierta com­
plejidad (véase Kneale y Kneale, 1962, 119). Filón de Megara se opuso 
a Diodoro y, al parecer, defendió una noción de posibilidad equivalente 
a la auto�consistencia (más similar, entonces, a la posibilidad carnapiana). 
Se conocen menos las ideas de los estoicos, pero al parecer eran más simi­
lares a las de Filón que a las de Diodoro, aunque hacían algunas críticas 
al primero (véase Kneale y Kneale, 1962, 123). 

El pensamiento medieval fue muy rico en discusiones filosóficas sobre 
las modalidades. En el siglo XII, el influyente lógico Abelardo distinguió 
entre proposiciones que atribuyen madi (i.e., modos: necesidad, posibi­
lidad o imposibilidad) a dicta (i.e., proposiciones) y proposiciones en las 
que se atribuyen modalmente ciertas características a sujetos que no son 
dicta. Esto sugiere inmediatamente la distinción entre modalidades de 
dicto y de re; pero Abelardo cree que las proposiciones modales genui­
nas son las últimas mencionadas, en las cuales una palabra modal cali­
fica el vínculo entre un sujeto y cierta característica que se le atribuye. 
'Es posible que Sócrates esté corriendo' no expresa una genuina proposi­
ción modal, como sí lo hace 'Sócrates posiblemente está corriendo'. Las 
opiniones de Abelardo sobre las modalidades influyeron mucho sobre 
Guillermo de Shyreswood y fueron tomadas en cuenta por Tomás de 
Aquino. Pero a diferencia de aquellos autores, Tomás de Aquino otorga 
un status modal genuino a las dos proposiciones sobre Sócrates que nos 
sirvieron antes de ejemplos. Para este filósofo cristiano, las proposicio­
nes modales genuinas pueden ser de dicto o de re. En su Summa contra 
gentiles, Tomás de Aquino, como muchos otros filósofos durante el siglo 
siguiente, vinculó esta distinción con el problema de la batalla naval de 
Aristóteles y algunas objeciones al conocimiento divino de "futuros con­
tingentes». Dada la influencia de Tomás de Aquino en la filosofía poste­
rior, la distinción entre las modalidades de dicto y de re fue adoptada 
después por muchos autores. 

Los filósofos modernos se han ocupado de las modalidades, pero más 
en conexión con cuestiones teológicas y metafísicas que en relación con 
la lógica. Knuuttila (comp., 1988) es una antología útil para tener alguna 
información de las ideas sobre las modalidades en la filosofía moderna 
(incluye un artículo sobre el positivismo lógico). 

Los temas de la «prehistoria modal» no serán retomados en el resto 
del trabajo, de modo que será oportuno dar aquí alguna orientación 
bibliográfica sobre el período. El clásico Kneale y Kneale (1962) es una 
obra de consulta ideal para comenzar: tiene mucha información histó-

6. ¿De qué entidades? Los documentos no permiten decir con certeza a qué entidades atribuía 
Diodoro valores de verdad. 
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rica sobre la lógica modal tomada de las fuentes más directas asequibles 
y también comentarios interesantes desde un punto de vista lógico 
moderno (para ubicar las partes relevantes, véanse en el índice temático 
de la obra las entradas que comienzan con modal o modality). Natural­
mente, por su fecha de publicación no menciona ediciones de autores clá­
sicos posteriores a 1962 ni literatura secundaria que haya aparecido des­
pués de esa fecha; pero ahora daré información complementaria. 
Aristóteles (1984) y Aristóteles (1988) son ediciones recientes de obras 
aristotélicas (la primera en inglés, la segunda en español) que contienen 
los tratados lógicos de ese autor a los que nos hemos referido (y en el 
segundo caso, abundante información sobre ediciones anteriores). Hay 
una traducción española reciente (y fiable, según me dicen) de la obra 
de Tomás de Aquino que mencioné en el texto: Tomás de Aquino (1991). 
El primer intento de formalizar la lógica modal aristotélica se encuentra 
en el libro de McCall (1963). Dos libros recientes interesantes son van 
Rijen (1989), sobre la lógica modal de Aristóteles, y Knuuttila (1993), 
acerca de las modalidades en la filosofía medieval, pero con un capítulo 
inicial sobre Aristóteles. La profusa bibliografía de esta última obra es 
muy adecuada para actualizar la información sobre fuentes secundarias 
posteriores a Kneale y Kneale (1962). 

2. La etapa sintáctica 

La figura más importante de este período fue C. 1. Lewis. Su trabajo en 
lógica modal marcó el comienzo, no sólo de la etapa sintáctica, sino de 
la historia de esta disciplina en su forma moderna. La publicación del 
primer volumen de Principia Mathematica, de Whitehead y Russell, en 
1910, influyó mucho sobre su obra. En la lógica proposicional de los 
Principia se usa el condicional material, también llamado por los autores 
'implicación material'. Son derivables en esa lógica, entonces, las llama­
das 'paradojas de la implicación material', de las cuales las más conoci­
das son: 

(1) q � (p � q) 
(2) -p � (p � q) 
Puede decirse que (1) expresa la idea de que una proposición verda­

dera es implicada (materialmente) por cualquier proposición y que (2) 
afirma que una proposición falsa implica (materialmente) cualquier pro­
posición. Otra paradoja interesante es: 

(3) (p � q) V (q � p), 
según la cual, dadas dos proposiciones cualesquiera, siempre están «conec­
tadas» por la implicación material: o bien la primera implica (material­
mente) la segunda, o la segunda tiene esa relación con la primera. 

Lewis no discrepaba con (1 )-(3); pensaba que eran auténticas leyes 
lógicas, dado el significado con que se usaba � en Principia. Pero el punto 
de partida de sus investigaciones en lógica modal (en Lewis, 1912), fue 
la observación de que hay una implicación distinta de la material, más 
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fuerte que ella, y con diferentes leyes formales (por ejemplo, no tiene las 
propiedades formales que (1 )-( 3) asignan a :» .  Lewis la llamó 'implica­
ción estricta' y le asignó un símbolo que nosotros reemplazaremos con 
'--->'. Puede leerse 'p--->q' de varias maneras alternativas: p implica estricta, 
o necesariamente, q, o también: q se sigue de p. La última lectura sugiere 
que la implicación estricta de Lewis es la implicación lógica, y en efecto, 
p--->q puede definirse como - O(p/\ - q), si O se entiende con e! sentido 
de la posibilidad lógica (de modo que para definir '--->' -en el sentido 
de Lewis- con los operadores modales monádicos, éstos últimos deben 
usarse como Carnap más bien que como Kripke; esto se debe a que la 
implicación lógica se define en términos de posibilidad lógica, no metafí­
sica: p implica lógicamente q si y sólo si no es lógicamente posible que 
p sea verdadero y q falso, de acuerdo con las definiciones usuales). Como 
'--->' puede definirse usando un operador modal, lo consideraremos tam­
bién un operador modal (binario); como se aplica a enunciados enteros 
y no a sus partes, expresa una modalidad de dicto: la implicación lógica 
es una relación entre proposiciones, desde e! punto de vista usual entre 
los lógicos. 

La implicación estricta permite introducir la equivalencia estricta. Sim­
bolizando ésta última mediante '-' (apartándonos otra vez de la nota­
ción de Lewis), podemos definirla así: 

(D4) (p - q) = der.(p ---> q )/\( q ---> p) 
Es obvio que si en las fórmulas (1 )-(3) se reemplaza :> por --->, no 

se obtienen leyes lógicas aceptables (por ejemplo, no es cierto que dadas 
dos proposiciones p y q cualesquiera, se cumpla que p implique estricta­
mente a q o viceversa). Pero entonces se requeriría un sistema formal dis­
tinto de! usual para expresar las leyes lógicas de la implicación estricta. 
Lewis emprendió la tarea y después de una serie de artículos (e! primero 
de los cuales fue Lewis, 1912), publicó un sistema axiomático para la 
implicación estricta en su libro A Survey of Symbolic Logic (Lewis, 1918; 
la teoría axiomática mencionada se conoce en la literatura como 'el sis­
tema del Survey'). Otros autores habían observado ya que había una impli­
cación más fuerte que la material -de! tipo de la implicación estricta 
de Lewis- e incluso habían expresado algunas propiedades de ella 
mediante un lenguaje simbólico; pero no habían usado el método axio­
mático para estudiarla y es por eso que no se les reconoce la paternidad 
de la lógica modal moderna (pienso en Hugh MacColl; no he podido 
consultar MacColl, 1880, pero por lo que dicen lógicos que conocen este 
trabajo, su autor estuvo muy cerca de formular por primera vez un sis­
tema de lógica modal). Lewis quiso llenar una laguna de Principia; pero 
lo hizo empleando e! método axiomático de esa obra y por eso logró e! 
lugar que tiene en la disciplina que nos ocupa. 

Dos sistemas axiomáticos que comparten e! mismo lenguaje formal 
pueden diferir en los conjuntos de axiomas y reglas de inferencia de los 
cuales parten y tener sin embargo exactamente e! mismo conjunto de teo­
remas. Facilitará mucho mi exposición llamar a veces con e! mismo nom-
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bre a sistemas así relacionados. Similarmente, dos sistemas pueden dife­
rir porque adoptan distintos símbolos primitivos (en cuyo caso puede con­
siderarse que no comparten el mismo lenguaje formal, si se adopta la 
idea de que las definiciones introducen abreviaturas en el metalenguaje) 
y sin embargo puede ocurrir que haciendo caso omiso de cuál es la nota­
ción primitiva y cuál la definida no haya diferencia en el conjunto de teo­
remas. También en casos como éste disimularé a veces las diferencias y 
emplearé un mismo nombre para sistemas así relacionados 7. En lo que 
sigue daré alguna información histórica acerca de los sistemas axiomáti­
cos más conocidos en lógica modal proposicional (en la sección III estu­
diaremos algunos de ellos en forma sistemática). 

En Lewis (1918) se analiza un solo sistema de lógica modal, el ya 
mencionado sistema del Survey. Pero Lewis advirtió en seguida que había 
cuestiones sobre las cuáles el sistema del Survey no tomaba partido: por 
ejemplo, en el sistema no se establece si D p y D Dp son equivalentes 
o no (algunos autores parecen creer que el sistema mencionado se pro­
nuncia negativamente sobre la equivalencia aludida, pero eso no es exacto: 
si así fuera, S4 no podría ser una extensión consistente del sistema del 
Survey; en este último sistema no es teorema que las fórmulas menciona­
das sean equivalentes perq tampoco es teorema la negación de esa afir­
mación). Lewis advirtió también que nuestras intuiciones sobre las nocio­
nes modales no se pronuncian claramente sobre cuestiones como la 
mencionada, y otras similares. En otras palabras, comprendió que había 
más de un sistema modal plausible. En Lewis y Langford (1932) se ana­
lizan cinco sistemas modales y se les da el nombre por el cual se los conoce 
desde entonces: SI, S2, S3, S4 y S5. SI y S2 se desarrollan en detalle 
en el libro; en un apéndice se analizan más brevemente los tres restantes. 
S3 coincide con el sistema del Survey (haciendo caso omiso de diferen­
cias como las mencionadas en el párrafo anterior). Daré alguna infor­
mación sobre características importantes de los cinco sistemas. 

Los cinco sistemas carecen de una semántica sistemática; sus primiti­
vos se aclaran informalmente, más o menos de la manera en que lo hemos 
hecho aquí. Los cinco sistemas son extensiones de la lógica proposicio­
nal veritativo-funcional clásica (LPC, en lo que sigue); pero en la formu­
lación de Lewis ninguno es una extensión de LPC de manera explícita, 
i. e., ninguno es el resultado de agregar axiomas a un sistema formal que 
expresa de manera completa LPC. Después del primero, cada sistema es 
una extensión propia del sistema anterior (propia en el sentido de que 
hay un auténtico agregado de nuevos teoremas). Si llamamos 'leyes reduc­
tivas' a teoremas que muestran la equivalencia de concatenaciones de ope­
radores modales de distinta longitud (por ejemplo, D y D D; en la sec­
ción III veremos con más detalle qué es una ley reductiva), SI y S2 carecen 

7. En los textos de lógica modal es bastante habitual que los autores se comporten como si siguie­
ran esta convención (por ejemplo, llamando '54' a más de un sistema, todos ellos difiriendo en las for­
mas descriptas en el texto), pero sin hacerla explícita. 
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de leyes reductivas, S3 las tiene (como se probó en Parry, 1939) y tam­
bién S4 y S5. De hecho, S4 y S5 se obtienen agregando axiomas sugeri­
dos por Becker (1930) y que tienen leyes reductivas como consecuencias 
inmediatas. 

S4 y S5 son dos de los tres sistemas modales más estudiados. El ter­
cero es T, cuya historia resumimos a continuación. G6del (1933) fue el 
primer trabajo en que un sistema modal se obtuvo mediante una exten­
sión explícita de LPC. Quitando un axioma de la formulación g6deliana 
de ese sistema, Feys (1937) obtuvo el sistema que ahora llamamos 'r. 
SI y S2 son más débiles que T, que a su vez es más débil que S4 y S5. 
T y 53 son incomparables (ninguno de los dos sistemas es una extensión 
del otro). 

La segunda figura más importante en la etapa sintáctica de la lógica 
modal es van Wright. Van Wright (1951) introdujo los sistemas moda­
les M, M' y M". Sobocinski (1953) mostró que estos sistemas son res­
pectivamente equivalentes a T, S4 y S5 (sistemas que analizaremos en 
la sección III). 

3. La etapa semántica 

La presente sub-sección y la siguiente serán muy breves porque los temas 
se prestan más a un tratamiento sistemático que histórico, y serán objeto 
de las secciones IV y V. Sólo indicaré algunos datos que permitan ubicar 
los desarrollos y los protagonistas en el tiempo. 

Hemos fijado el comienzo de la etapa semántica en 1959. Sin 
embargo, ya en Carnap (1947) se había construido una semántica para 
la lógica modal, inspirada en la idea de Leibniz según la cual algo es nece­
sariamente verdadero cuando es verdadero en todo mundo posible. Car­
nap introducía ciertos conjuntos de fórmulas que llamaba 'descripciones 
de estado' y que cumplían el papel de los mundos posibles en su semán­
tica (véase Carnap, 1947,9). También definía la noción de 'valer (hold) 
ep una descripción de estado dada', que era en la teoría el análogo de 
'ser verdadero en un mundo posible' (Carnap, 1947,9). Con estos ele­
mentos, Carnap pudo definir las condiciones de verdad de fórmulas de 
la estructura Dp, traduciendo a su lenguaje de descripciones de estado 
la idea de Leibniz (para eso deben combinarse las definiciones 2-2 de Car­
nap, 1947, 10 Y 39-1 de Carnap, 1947, 174). En términos modernos, 
esto significa que Carnap disponía de una definición de verdad para el 
lenguaje de LPC enriquecido con D. Contando con tal definición, se 
puede definir también la noción de fórmula válida para tal lenguaje, cuan­
tificando sobre descripciones de estado (véase Bull y Segerberg, 1984, 
13, para ver con más detalle cómo se puede introducir de esta manera 
la noción de validez). Las fórmulas que resultan válidas de acuerdo con 
la definición son exactamente los teoremas de 55. En otras palabras, y 
empleando nuevamente terminología actual: Carnap construyó una 
semántica adecuada para S5. ¿Por qué no pensar entonces que la etapa 
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semántica comenzó en 1947? La respuesta está vinculada con rasgos de 
la semántica modal posterior. A partir de Kripke (y otros autores que 
mencionaremos), se pudo disponer de métodos con los cuales pueden 
construirse semánticas adecuadas para una gran diversidad de sistemas 
modales (por ejemplo, para T, S4 y SS). La semántica de Carnap no tenía 
esa flexibilidad. Desde la óptica contemporánea, se piensa que propor­
cionó una semántica para un sistema modal aislado, y no para la lógica 
modal. 

Alrededor de doce años más tarde, tres lógicos descubrieron (al pare­
cer de manera independiente) los métodos semánticos mencionados hacia 
e! final del párrafo anterior. Los históricos trabajos en que expusieron 
sus resultados son Kanger (1957), Kripke (1959), Kripke (1963a), Kripke 
(1963b), Hintikka (1961) y Hintikka (1963). Con estos trabajos nació 
la moderna semántica de los mundos posibles. Los métodos de los tres 
autores tienen una semejanza muy profunda, aunque los detalles de pre­
sentación difieran. Los trabajos de Kripke fueron los que alcanzaron 
mayor difusión y por eso adoptamos e! año 1959 (cuando publicó su pri­
mer artículo sobre estos temas) como señal del comienzo de la etapa 
semántica. Un rasgo de las investigaciones que tuvieron lugar en esta etapa 
fue e! interés por estudiar propiedades metalógicas (particularmente la 
completitud) de sistemas que se habían desarrollado antes de manera sin­
táctica. En la sección IV veremos cómo se aplican los métodos semánti­
cos de Kripke a los sistemas T, S4 y SS. 

4. La época de la metalógica modal generalizada 

Si uno compara superficialmente un manual como Hughes y Cresswell 
(1968) con Hughes y Cresswell (1984), o ]ansana (1990), la primera 
diferencia que salta a la vista es que e! interés teórico se ha desplazado 
de! análisis de sistemas modales particulares al estudio de grandes fami­
lias de tales sistemas. Es difícil asignar una fecha al comienzo de este 
período, porque e! interés por problemas y resultados más generales 
fue creciendo gradualmente (hasta que el perfil de las investigaciones 
cambió por completo). Como en e! caso de los dos períodos anterio­
res, adoptaremos un trabajo importante como señal de! comienzo de 
una etapa: Lemmon y Scott (1977). Pero esta publicación tuvo lugar 
una década después de la muerte de Lemmon, y en realidad la obra 
había tenido influencia desde ocho o nueve años antes de ser impresa 
(los lógicos modales usaban copias de las notas de Lemmon en que se 
basó e! libro). Consideraremos pues, que hacia fines de la década de 
los años 60 comenzó nuestro período. Lemmon y Scott (1977) mues­
tra un claro interés por alcanzar resultados generales sobre sistemas 
modales, particularmente acerca de completitud. Otros trabajos muy 
importantes de este período son Segerberg (1971), Goldblatt (1976) y 
Van Benthem (1982). Daré más información sobre estas investigacio­
nes en la sección V. 
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III. T, 54 Y SS: ESTUDIO SINTÁCTICO 

T, S4 y SS son los sistemas modales proposicionales más conocidos. Los 
analizaremos después de introducir ciertas nociones generales. 

l. El lenguaje modal L. Modalidades normales y leyes reductivas 

En nuestra formulación, T, S4 y SS compartirán un mismo lenguaje, que 
llamaré 'L'. El vocabulario primitivo de L está formado por los parénte­
sis (, ), las variables proposicionales p, q, r, eventualmente usadas con 
subíndices, los operadores monádicos -, O y el operador binario J; 
los operadores <>, /\, V, ==, -+, <--+ (monádico el primero, binarios los 
restantes) se definirán en términos del vocabulario primitivo. Las reglas 
de formación son las usuales en lógica proposicional veritativo-funcional, 
sólo que ahora enriquecidas por la presencia de los operadores modales. 
Letras mayúsculas como A, B, etc., serán usadas como variables metaló­
gicas de fórmulas. Los conectivos /\, V, == se introducen con cualquiera 
de las definiciones usuales. En nuestra formulación de T, S4 y SS, <>, 
-+ y <--+ se definen así: 

(DLl) <> A = deL - O -A 
(DL2) (A-+B) = deL D(AJB) 
(DU) (A<--+B)=deL((A-+B)/\(B-+A)) 
Cualquier sistema axiomático cuyo lenguaje sea L será considerado 

un sistema modal. Llamaré modalidad a cualquier secuencia finita 01, 
O2, ... , On, de operadores monádicos de L, donde cada O; es, enton­
ces, o -, o O o <>; n es la longitud de la modalidad. Por cuestiones 
de simetría, también se llamará modalidad a la secuencia nula, que es 
una serie de operadores monádicos que tiene longitud O. Llamaremos 
modalidad normal a una modalidad que no contiene ningún - o bien 
contiene uno solo y al comienzo de la secuencia. Una modalidad normal 
se dice iterada si no es nula y más de un lugar de la secuencia es ocupado 
por un operador distinto de -. Por ejemplo, 0-, - O Y - O <> son 
modalidades, pero la primera no es normal, como sí lo son la segunda 
y la tercera; sólo la última es iterada. Una ley reductiva de un sistema 
modal S es un teorema de S que tiene la forma (Mp==Np), donde M y 
N son modalidades normales de distinta longitud; si S posee tal teorema, 
se dirá que M y N son modalidades equivalentes en S (y diremos también 
que la de mayor longitud se reduce a la otra). Si M es una modalidad 
normal y en S no hay ninguna modalidad equivalente a M y de longitud 
menor, diremos que M es una modalidad irreducible de S. 

2. El sistema T 

Seguiré de cerca la presentación de Hughes y Cresswell (1968), aunque 
con algunos cambios. Uno de ellos es el reemplazo del subsistema PM, 
con el que ellos expresan la lógica proposicional veritativo-funcional, por 
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el sistema axiomático con que Mendelson (1987) formaliza esa parte de 
la lógica (aunque usaré una regla de substitución en lugar de los axiomas­
esquema de Mendelson). 

Ya vimos el lenguaje y las definiciones que se usan en T. Los axio-
mas son los siguientes: 

(Al) (q-:J(P-:Jq)) 
(A2) [(p-:J(q-:Jr))-:J((p-:Jq)-:J(p-:Jr))] 
(A3) [( - q -:J - p) -:J (( - q -:J p) -:J q) ] 
(A4) Dp-:Jp 
(AS) D(p-:Jq)-:J(Dp-:J Dq) 
Los tres primeros axiomas son tautologías de la lógica proposicional 

veritativo-funcional clásica (LPC). El cuarto axioma expresa la idea de 
que si una proposición es necesaria, es verdadera. Obsérvese que de 
acuerdo con (DL2), la implicación estricta se puede definir con el ante­
cedente de (AS). En ese caso, se podría traducir la idea formalizada por 
(AS) así: si una proposición P implica una proposición q, se cumple que 
si P es necesaria, q también lo es. (AS) transmitiría entonces la vieja idea 
de que las proposiciones necesarias sólo implican lógicamente proposi-

. . 

ClOnes necesanas. 
T tiene tres reglas de inferencia: 
(RS) Regla de substitución uniforme: Si en un teorema 8 se substituye 

una variable proposicional por una fórmula bien formada, de manera 
uniforme (i.e., todas las ocurrencias de la variable se reemplazan siem­
pre por la misma fórmula), el resultado también es un teorema. 

(MP) Modus ponens: De un condicional material y su antecedente, 
se puede derivar su consecuente. 

(RN) Regla de necesidad: Si una fórmula es teorema, el resultado de 
prefijarle el operador de necesidad también es un teorema. Si f-A signi­
fica que A es teorema (del sistema del cual se esté hablando; en caso de 
ambigüedad, se aclarará cuál es el sistema al que se desea hacer referen­
cia), y f-A => f-B se usa para indicar que si A es teorema, puede derivarse 
sintácticamente que B también lo es, (RN) puede formularse así: 

f-A=>f-DA 
Los tres primeros axiomas, junto con las dos primeras reglas, for­

man el sistema que Mendelson llama 'L3', si se quitan del lenguaje los 
operadores modales. Puede mostrarse fácilmente que L3 tiene los mis­
mos teoremas que el sistema que Mendelson llama 'L' (Mendelson, 1987, 
39, ejercicio 1.55), para el cual se ha demostrado que su conjunto de 
teoremas coincide con el de las tautologías (Mendelson, 1987, 33-35). 
En ese caso, T contiene como teoremas todas las tautologías y los ejem­
plos de ellas en que las variables proposicionales son reemplazadas (uni­
formemente) por fórmulas de nuestro lenguaje L. 

Es fácil establecer que la siguiente es una regla derivada: 
(R4) f-A-:JB=> f-DA-:J DB 

8. Usamos la palabra 'teorema' en el sentido en que abarca también a los axiomas. 
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Formularemos algunos teoremas importantes para ver qué contiene T. 
Para que se advierta el estilo en que pueden demostrarse teoremas en nues­
tra formulación del sistema, haremos algunas demostraciones explícitas; 
luego las abreviaremos o suprimiremos, pero un lector con alguna prác­
tica en LPC podrá completarlas, si comprendió los primeros ejemplos. 
Una enunciación del teorema precederá a su demostración (cuando se 
acompañe una demostración). La notación pi A indicará que la variable 

p se debe substituir por la fórmula A (de manera uniforme) 9. 

T1:p� Op 
(1) O -p�-p 
(2) --p�-O-p 

(3)p�Op 

T2: O(p!\q)==(Op!\Oq) 
(1) (p!\q)�p 
(2) (p!\q)�q 

(3) O(p!\q)� Op 
(4) O(p!\q)� Oq 
(5) O(p!\q) � (Op!\ Oq) 

(RS en A4, pi -p) 
((1), Transposición) 
(Doble Negación, (2), Silo­
gismo Hipotético y DLl) 

(Tautología) 
(Tautología) 

((1), R4) 
((2), R4) 

(5) se sigue de (3) y (4) aplicando la tautología (p�q)� [(p� r)� 
(p�(q!\r))l. 

Obsérvese que (5) es la «mitad» de T2. Probemos la otra mitad. 
(6) p�(q�(p!\q)) (Tautología) 

(7) Op� O(q�(p!\q)) ((6), R4) 
(8) O(q�(p!\q))�(Oq� O(p!\q)) (RS en A5) 
(9) Op�(Oq� O(p!\q)) (7 Y 8, por Silogismo Hipo­

tético) 
(10) (Op!\Oq)� O(p!\q) ((9), Exportación y MP) 

Obsérvese que ésta es la mitad que nos faltaba del T2. Poniendo en 
conjunción (5) y (10) y aplicando la definición usual de == se obtiene: 

(11) O(p!\q)==(Op!\Oq) 

Para LPC vale el meta teorema de la equivalencia: si B se obtiene de 
A reemplazando una o más ocurrencias de C por D y resulta que 1- C== D, 
entonces B es un teorema, si A lo era. 

Es fácil demostrar que 
I-(A == B) => 1-( DA == OB) 

es una regla derivada de T. También es fácil probar entonces que el meta­
teorema de la equivalencia puede extenderse a T. Usaremos este resul-

9. Presupongo el conocimiento de varias tautologías y reglas de LPC. así como de sus nombres 
habituales. Si se desea explicitar completamente una prueba, debe evitarse el reemplazo de equivalentes 
(salvo que lo sean por definición) antes del T J (por ejemplo, en el paso 3 de la prueba de TI debe usarse 
(P::l- -p) y no la equivalencia correspondiente y un reemplazo permitido por ella). 
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tado en las próximas demostraciones, indicando el uso del metateorema 
mediante 'MRE' (metateorema del reemplazo de equivalentes). 

T3: Dp= - O-p 
(1)- O -p= - O-p 
(2) --D--p=-O-p 
(3) Dp=-O-p 
Son obvios corolarios de T3: 
T4: -Dp=O-p 
T5: -Op=D-p 

(ejemplo de tautología) 
(DLl) 
(Doble Negación, MRE) 

Usando MRE Y los últimos corolarios puede demostrarse que en T 
toda modalidad puede «normalizarse»: dada una modalidad M cual­
quiera, existe una modalidad normal M', de igual o menor longitud que 
M, y tal que es teorema de T la fórmula (Mp = M'p). Este resultado es 
obvio para la modalidad nula y las de longitud 1. Por inducción mate­
mática se generaliza fácilmente para modalidades de longitud n + 1, para 
cualquier n positivo (dada una modalidad de longitud n + 1, separe su 
primer componente y aplique la hipótesis inductiva a la cadena de los 
n restantes; luego divida en cuatro casos las combinaciones posibles que 
se pueden dar entre el componente que había quedado aislado y el pri­
mer componente de la modalidad ya normalizada: negación/negación, 
operador modal/negación, etc.). 

Otro teorema importante de T (fácilmente demostrable usando MRE 
y los resultados ya establecidos), es: 

T6: O(pVq)= (OpVOq) 

El teorema 2 y el 6 muestran, respectivamente, que la necesidad es 
distributiva respecto de la conjunción y la posibilidad respecto de la dis­
yunción. En cambio, la necesidad no es distributiva respecto de la dis­
yunción ni la posibilidad respecto de la conjunción. En los dos últimos 
casos, sólo es teorema una «mitad» de lo que sería la ley distributiva. 
Son los teoremas: 

T7: (DpVDq)=:> D(pVq) 

T8: O(p/\q)=:>(Op/\Oq) 

Un rasgo interesante de T es que en el sistema se pueden demostrar 
unas «paradojas de la implicación estricta». No se puede demostrar que 
una verdad es implicada por cualquier proposición, ni que una falsedad 
implique lógicamente cualquier proposición, pero si cambiamos verdad 
por verdad necesaria y falsedad por imposibilidad obtenemos leyes váli­
das de la implicación estricta. Formalmente, tenemos: 

T9: Dq =:> (p--->q) 

T10: -Op=:>(p--->q) 
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Hay algunos rasgos metalógicos de T que es importante destacar. 
T es consistente. T es una extensión propia y conservativa de LPC 

(i.e., agrega teoremas a los de LPC, pero no hay teoremas nuevos for­
mulados únicamente con símbolos de LPC). 

T no contiene leyes reductivas. Dada una modalidad iterada cual­
quiera, no es posible encontrar otra más corta y equivalente a la primera 
en el sistema T (recuérdese que las modalidades iteradas son una sub­
clase de las normales). Hay en T infinitas modalidades normales no equi­
valentes entre sÍ. (Estos hechos acerca de T no se pueden demostrar de 
manera muy sencilla.) 

Para terminar con las observaciones acerca de T, podemos hacer notar 
que se trata de un sistema bastante intuitivo. En general, los puntos de 
partida de T no violentan nuestras intuiciones y entre los autores que 
no tienen objeciones de principio en contra de la empresa misma de cons­
truir una lógica modal, no suele haber resistencia ante los axiomas, reglas 
y definiciones de T. Una excepción es la lógica relevante. Muchos lógi­
cos relevantes piensan que si � representa la implicación lógica, la defi­
nición que dimos de este operador binario es incorrecta: el definiens sólo 
proporciona condiciones necesarias, pero no suficientes, para una carac­
terización del definiendum (véase Anderson y Belnap, 1975). 

3. El sistema 54 

Una manera sencilla de obtener S4 a partir de nuestra formulación de 
T es agregar el siguiente axioma: 

(A6) Op�OOp 

Salta a la vista que (A6) permite derivar infinitas leyes reductivas. 
En efecto, como el condicional inverso del axioma introducido es un ejem­
plo de substitución de (A4), se deriva rápidamente: 

TI: Op==OOp, 

que es una ley reductiva de la cual pueden obtenerse infinitas leyes reduc­
tivas adicionales. Por ejemplo, (TI) permite obtener por substitución todas 
las equivalencias de la forma Mp == M'p, donde M y M' son secuencias 
finitas de O y M' tiene la longitud de M más l. Como es obvio, en S4 
sigue valiendo (MRE) que, combinado reiteradamente con ejemplos de 
substitución de (TI), permite reemplazar en una fórmula cualquiera una 
secuencia de n + 1 O por un solo O. 

También se infiere rápidamente que la reiteración de O se comporta 
como la repetición de O. En efecto, negando ambos lados del == del (TI) 
y substituyendo p por su negación obtenemos una fórmula que por apli­
cación de teoremas y definiciones de T arroja otra ley reductiva importante: 

T2: Op==OOp 
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Un poco menos previsibles son los teoremas: 

T3: OOp=OOOOp 

T4: O Op= O O O Op, 

aunque su demostración no es mucho más complicada que la de los pre­
cedentes. Obsérvese que T3 y T4 muestran que la repetición de cualquiera 
de los bloques O O y O O se comporta como la reiteración de O o O. 
También puede observarse que estos cuatro teoremas de 54 hacen inne­
cesario usar secuencias de operadores monádicos diferentes de - y de 
longitud mayor que 3 (el lector puede tomar una secuencia de tres ope­
radores distintos de - y observar si es irreductible el resultado de ante­
ponerle O o O). Estas observaciones muestran que toda modalidad nor­
mal es reducible en 54, o bien a una de las modalidades de la lista 

modalidad nula, 0,0,00,00, 000,000, 

o bien a la negación de una de tales modalidades. Las catorce modalida­
des mencionadas (las de la lista más sus negaciones) son irreducibles en 
el sistema que estamos analizando (aunque mostrar esto es más traba­
joso que probar que toda otra modalidad normal es equivalente a una 
de ellas en 54). 

54 es consistente y es una extensión propia y conservativa de LPC. 
Es también una extensión de T, propia pero no conservativa, ya que en 
54 se agregan teoremas que no estaban en T pero son formula bies en 
su lenguaje. 

El agregado que se hace en 54 a T no es trivial, en el sentido de que 
no es intuitivamente obvia la verdad del axioma 6. 5i abandonamos el 
plano intuitivo y construimos una semántica sistemática para los opera­
dores modales, el axioma 6 puede resultar válido o inválido, según la 
semántica elegida. 

4. El sistema SS 

55 es una extensión de 54, pero no lo formularemos como una extensión 
explícita de ese sistema, sino como una extensión de T obtenida por el 
agregado del axioma: 

(A7) Op -::J O Op 

Este agregado es menos intuitivo aún que el axioma (6) de 54: lo que 
afirma es que si una proposición es posible, es necesario que sea posible. 
Analizaremos las consecuencias de esta adición a T. En las pruebas que 
siguen usaremos teoremas ya demostrados de T, pero no teoremas de 
54, porque aún no se ha mostrado que el presente sistema sea una exten­
sión de aquél. 

TI: Op= O Op 

310 



LÓGICA MODAL 

(Este teorema es obvio porque el condicional de izquierda a derecha 
es (A7) y el condicional de derecha a izquierda es un ejemplo de substitu­
ción del axioma 4 de T). 

T2: O OP::J Op 

(I)O-p::JOO-p 

(2)-OP::J -O Op 

(RS en (A7), pi -p) 

(Se obtiene del paso anterior por MRE, aplicando dos veces T4 y 
una vez T 5, del sistema T) 

(3) OOP::JOp 

T3: Op= OOp 

(Uso de Transposición en (2)) 

Este teorema se demuestra mediante dos condicionales: el primero 
es un ejemplo de substitución de TI del sistema T (reemplácense las dos 
ocurrencias de p por O p) y el segundo es el teorema 2 de S5 que demos­
tramos antes. 

T4: OP::JOOp 

(l) OP::JOOp 

(2) OP::JOOOp 

(ejemplo del TI de T) 

(Se obtiene de (1) reemplazando el O del lado derecho por una com­
binación equivalente según TI). 

(3) OP::JOOp 

(Se obtiene de (2) reemplazando el O O del lado derecho por O, como 
permiten MRE y T3). 

De acuerdo con este teorema, el agregado que hicimos a T para obte­
ner S5 implica el axioma 6 de S4. Se sigue, pues, que S5 contiene todos 
los teoremas de S4 (recuérdese cómo se obtuvo S4 a partir de T). En par­
ticular contiene 

T5: Op=OOp 

T6: Op= OOp 

Los teoremas 1, 3, 5 Y 6 son leyes reductivas que en conjunto son 
mucho más poderosas que las de S4. Obsérvese que, dada una secuencia 
cualquiera de dos operadores monádicos distintos de -, las leyes demos­
tradas permiten suprimir el primero de ellos. Este resultado implica que 
en S5 todas las modalidades normales pueden reducirse a seis: la nula, 
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D, O y las negaciones de ellas (y las seis son irreductibles, aunque no 
lo probaremos aquí). Es un poco sorprendente que todas estas reduccio­
nes son consecuencias del agregado de un solo axioma, el 7 de SS. Se 
puede demostrar un resultado aún más fuerte acerca de SS: en este sis­
tema toda fórmula es equivalente a alguna fórmula en la cual no hay ope­
radores modales aplicados a fórmulas que ya tengan operadores modales. 

SS es consistente. Es una extensión propia y conservativa de LPC y 
también es una extensión (propia pero no conservativa) de T y S4. 

(Si se desea profundizar en los aspectos sintácticos de T, S4 y SS, se 
pueden consultar las fuentes originales mencionadas en la sección II [la 
parte sobre <<la etapa sintáctica» 1 o el manual de Hughes y Cresswell, 
1968). 

IV. T, S4 y SS: ESTUDIO SEMÁNTICO 

En esta sección explicaremos cómo se aplican los métodos de Kripke a 
los sistemas T, S4 y SS. Pero antes presentaremos una semántica más 
sencilla, cuyo análisis nos permitirá advertir las motivaciones que tuvo 
Kripke (o los otros dos pioneros mencionados antes) para introducir algu­
nos elementos que no se habían utilizado hasta entonces en la semántica 
de sistemas lógicos. 

1. Necesidad leibniziana 

Se atribuye a Leibniz una concepción de la necesidad que fue un punto 
de partida muy fructífero para la semántica modal de nuestros días. Leib­
niz suponía que había una infinidad de mundos posibles (entre los cuales 
había elegido Dios el mundo real). Hay proposiciones que son verdade­
ras en algunos mundos posibles y falsas en otros, pero también hay pro­
posiciones que son verdaderas en todos los mundos posibles: son las pro­
posiciones necesarias. Por ejemplo, hay mundos posibles (entre ellos el 
real) en que existen gatos, y mundos posibles en que no existen tales ani­
males; pero en todo mundo posible es verdad que existen gatos o no existen 
gatos, y esa proposición es, entonces, necesaria. 

La concepción leibniziana de la necesidad se puede elaborar mate­
máticamente para definir una noción de validez aplicable a las fórmulas 
de la lógica modal. Cuando se construye una semántica para un cálculo 
lógico es usual definir las fórmulas válidas como aquellas que son verda­
deras en todas las estructuras de cierta familia (véase en Quesada, 1991, 
cuáles son las estructuras relevantes para la lógica proposicional y cuan­
tificacional de primer orden). Se empieza por definir cuáles son las estruc­
turas de la semántica para ese cálculo (son, esencialmente, ciertas asig­
naciones de entidades a símbolos del cálculo). Se define luego la noción 
de verdad respecto de una estructura (una especificación -usualmente 
recursiva- del conjunto de fórmulas que resultan verdaderas dadas las 
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asignaciones hechas en la estructura). Finalmente, se define fónnula válida 
como aquella que es verdadera en toda estructura. Podemos construir una 
semántica de este tipo sobre la base de la concepción leibniziana. Una 
complicación que se presenta es que la noción de verdad deja de ser una 
relación binaria que conecta fórmulas con estructuras. La razón es que 
según la idea de Leibniz una proposición puede ser verdadera en un mundo 
posible y falsa en otro. Cuando tratamos de expresar esta idea en una 
semántica inspirada en Leibniz, debemos contemplar la posibilidad de 
que, aun dentro de la misma estructura, una fórmula pueda ser verda­
dera en un mundo posible y falsa en otro. Construiremos una semántica 
de este tipo a continuación. Un objetivo de nuestras construcciones será 
elaborar semánticas adecuadas para distintos sistemas lógicos. Conside­
raremos que una semántica es adecuada para un sistema cuando las fór­
mulas que resultan válidas de acuerdo con esa semántica coinciden con 
los teoremas del sistema en cuestión. 

Simplificará la exposición trabajar con un conjunto fijo de mundos 
posibles. Supondremos que hay una cantidad infinita denumerable de 
mundos posibles (i.e., tantos mundos como enteros positivos), que lla­
maremos mj, m2, m3, • • •  etc. Nuestro lenguaje L consta de infinitas 
variables proposicionales (p, q, r, y las mismas letras con cualquier subín­
dice entero positivo). Serán estructuras de nuestra semántica aquellas asig­
naciones que den un valor de verdad unívoco (la verdad o la falsedad) 
a cada par ordenado de una variable proposicional y un mundo posible 
(i.e., una estructura se comporta como una función binariaf que a cada 
par de una variable proposicional v y un mundo posible m le da un único 
valor de verdad). 

Definiremos recursivamente la noción de verdad en un mundo en una 
estructura. La afirmación de que la fórmula A es verdadera en el mundo 
m y la estructura E se abreviará con la expresión 'E (A, m) = V' (lo cual 
sugiere -como realmente ocurre- que la definición de verdad da lugar 
a una extensión de la función binaria en que consiste una estructura). 

(i) Si ves una variable proposicional, m un mundo posible y E una 
estructura, E(v,m) = V si y sólo si (syss, en adelante) E le asigna la ver­
dad a ven m. 

Si m es un mundo posible y A, B son fórmulas, 
(ii) E(-A,m)=V syss E(A,m)f.V 
(iii) E(A�B,m)=V syss E(A,m)f.V o E(B, m)=V 
(A partir de (i)-(iii) y las definiciones de los otros conectivos veritativo­

funcionales se deducen las cláusulas de la definición de verdad para ellos). 
(iv) E(DA,m) = V syss para todo mundo n, E(A,n) = V 
La última cláusula recoge la idea central de la semántica leibniziana. 

De ella y las definiciones de los otros operadores modales se deducen las 
cláusulas para ellos. En particular, se infiere que 

(v) E( <> A,m) = V syss para algún mundo n, E(A,n) = V 
Como es usual, decir que A es falsa (en m, en E) es afirmar que no 

es verdadera (en m, en E). 
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Por último, A es válida syss es verdadera en todo mundo de toda 
estructura. 

Veamos cómo se comportan distintas fórmulas respecto de esta última 
definición. Consideremos 

(1) p-:J Op 
(2) 0P-:JP 
(3) O(P-:Jq)-:J(OP-:J Oq) 
(4) OP-:J O Op 
(5) OP-:J O Op 
(1) es intuitivamente no-válida. También lo es de acuerdo con nues­

tra semántica: basta considerar una estructura E que asigne la verdad 
a p en un mundo m y la falsedad en un mundo n; E le asigna la verdad 
al antecedente de (1) en m y la falsedad al consecuente de (1) en ese mismo 
mundo (aplíquense las cláusulas (i), (iv) y (iii)). 

(2) es intuitivamente válida y también lo es de acuerdo con nuestra 
semántica, lo cual se puede probar por el absurdo. Suponer que (2) no 
es válida implica que hay un mundo m y una estructura E en que (2) 
es falsa. En tal caso, su antecedente es verdadero y su consecuente falso 
en tal mundo. Pero si el antecedente es verdadero en m, de acuerdo con 
(iv), p debe ser verdadero en todo mundo, incluido m, lo cual contradice 
la conclusión a la que se había llegado acerca del consecuente. De manera 
muy similar, se puede probar que (3) es válida. 

Es más interesante el caso de (4) porque se trata de una fórmula que 
no es teorema de T pero sí de S4 y SS. ¿ Por qué sistema( s) se decidirá 
nuestra semántica? Por los dos últimos. Supongamos que el antecedente 
de (4) es verdadero y su consecuente falso en algún mundo m y estruc­
tura E. Si el antecedente es verdadero en m, p es verdadero en todo mundo 
en E. Pero en ese caso, Op no solamente es verdadero en m sino en todo 
mundo (en E). Si ése es el caso, O Op también será verdadero en todo 
mundo en E y en particular en m, contradiciendo lo supuesto acerca del 
consecuente. También (5) es válida y la demostración de este hecho es 
completamente similar a la del anterior. 

Nuestra semántica se ha inclinado hacia SS: ha declarado válidas cinco 
fórmulas que son teoremas de este sistema y entre ellas hay fórmulas que 
no son teoremas de uno, o dos, de los sistemas anteriores. Se puede pro­
bar un meta teorema que muestra la adecuación de nuestra semántica al 
sistema SS: una fórmula es teorema de ese sistema syss es válida de acuerdo 
con nuestra semántica. Pero entonces nuestra semántica no es adecuada 
para los sistemas más débiles T y S4. ¿Cómo podría diseñarse una semán­
tica que sólo validara los teoremas de T, o sólo los de S4? Kripke y otros 
autores ya mencionados introdujeron ideas que permitieron llevar a cabo 
la empresa y que explicaremos a continuación. 

Supongamos que la idea de mundo posible es relativa a mundos: un 
mundo puede ser posible para algunos mundos y no para otros. Emplea­
remos la siguiente terminología técnica: diremos que el mundo n es acce­
sible al mundo m cuando n es posible para m. Abreviaremos mediante 
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«mRn» la afirmación de que n es accesible a m. Supongamos que la ver­
dad de DA en m no requiere la verdad de A en todo mundo posible, 
sino sólo en aquellos mundos posibles accesibles a m. (iv) y (v) queda­
rían entonces reformuladas de la siguiente manera: 

(iv') E( DA,m) = V syss para cualquier n tal que mRn, E(A,n) = V 
(v') E <) (A,m) = V syss para algún n tal que mRn, E(A,n) = V. 
Hemos introducido una relación entre mundos posibles y hemos rede-

finido las condiciones de verdad de DA y <) A usando esa relación. Pero 
sólo sabemos de R que es una relación entre mundos. Si no añadimos 
algo más, no obtendremos una semántica útil. Podríamos agregar pos­
tulados acerca de esa relación: que R es reflexiva, que es una relación 
de equivalencia, etc. Lo que descubrió Kripke es que si trabajamos con 
(iv') y (v') y agregamos postulados respecto de R, podremos obtener 
semánticas adecuadas para distintos sistemas si elegimos postulados apro­
piados para cada uno. Mostraremos cómo se hace esto para T, S4 y S5. 

2. Una semántica para T 

Para dar forma matemática a las ideas de Kripke debemos reparar en 
algo importante: en nuestras consideraciones acerca de la semántica leib­
niziana nunca usamos ningún supuesto acerca de la estructura interna 
de los mundos posibles; sólo los usamos como «soportes» de distintos 
valores de verdad para la misma variable. Entonces podemos usar como 
«mundos» objetos cualesquiera. Lo importante es introducir todas las 
funciones f que se comporten de esta manera: f, aplicada a una variable 
proposicional y uno de los objetos elegidos, da como resultado un valor 
de verdad unívoco. Para asegurarnos de que se den todas las combina­
ciones entre mundos y valores de verdad de las infinitas letras proposi­
cionales, debemos trabajar con un conjunto infinito fijo de «mundos» 
o con infinitos conjuntos diferentes de objetos. Eligiendo la última vía, 
podemos introducir la importante noción de modelo de Kripke. Un 
modelo de Kripke es una terna ordenada tal que su primer componente 
es un conjunto no vacío M, su segundo componente es una relación R 
entre miembros de M (i.e., un subconjunto de M x M) y su tercer com­
ponente una función V que a cada par ordenado de una variable propo­
sicional y un miembro de M le asigna un valor de verdad unívoco. Repre­
sentaremos un modelo de Kripke arbitrario mediante la notación < M, 
R, V> . El par ordenado de los dos primeros componentes de un modelo 
de Kripke es un marco de Kripke. En las semánticas que estudiaremos 
a continuación, los modelos de Kripke cumplirán el rol de estructuras. 
Por razones similares a las que se adujeron en el caso de la semántica 
leibniziana, no se puede definir verdad para un modelo sino verdad para 
un mundo en un modelo. Las cláusulas recursivas de esta definición son 
como las de la semántica leibniziana, solo que reemplazando (iv) y (v) 
por (iv') y (v') y la idea de estructura por la de modelo de Kripke. Tene­
mos entonces: 
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(i) Si v es una variable proposicional, <M, R, V> un modelo de 
Kripke y m un miembro de M, ves verdadera en m en ese modelo syss 
V(v,m) = la verdad. 

(ii) - A es verdadera en un mundo m en un modelo de Kripke K syss 
A no es verdadera en m en K. 

(iii) (A ::JB) es verdadera en un mundo m en un modelo de Kripke 
K syss A no es verdadera en m en K o B es verdadera en m en K. 

(iv) DA es verdadera en m en un modelo de Kripke <M, R, V> 
syss para todo mundo n de ese modelo, tal que mRn, A es verdadera 
en n en ese modelo. 

(v) O A es verdadera en un mundo m en un modelo de Kripke < M, 
R, V> syss para algún mundo n de ese modelo tal que mRn, A es verda­
dera en n en ese modelo. 

A es falsa en un mundo m en un modelo de Kripke K syss A no es 
verdadera en m en K. 

A es válida en un modelo de Kripke K syss es verdadera en todo mundo 
m en K. Finalmente, llegamos a la definición de validez de una fórmula 
en una clase de modelos de Kripke (esta noción es importante porque cum­
plirá la misma función que en otras semánticas tiene la noción de verdad 
para una familia de estructuras). A es válida en una clase de modelos de 
Kripke syss es válida en todo modelo de la clase (i.e., es verdadera para 
todo mundo en todo modelo de la clase). 

Se puede construir una semántica adecuada para T de la siguiente 
manera. Las estructuras de nuestra semántica serán modelos de Kripke. 
Pero para que la semántica sea adecuada para T, deberemos escoger una 
familia determinada de tales modelos. Elegiremos la clase de modelos 
de Kripke cuya relación R (el segundo componente del modelo) es refle­
xiva, en el sentido de que todo mundo del modelo (todo elemento de 
M) tiene la relación R consigo mismo. Llamaremos modelo de Kripke 
reflexivo a los modelos de Kripke que satisfagan esta condición. 

Puede observarse en ejemplos algo que se puede demostrar en gene­
ral: los teoremas de T son válidos en la clase de todos los modelos refle­
xivos. Consideremos otra vez la fórmula (2) de la última serie de cinco 
antes analizada. Sabemos que es un teorema de T. Es obvio también que 
es válida en todo modelo de Kripke reflexivo: si el antecedente de (2) 
es verdadero en un mundo m de un modelo reflexivo K, p será verdadera 
en todo mundo accesible a m; pero m mismo es uno de esos mundos y 
se desprende entonces que p es verdadera en m. Como dijimos, y el lec­
tor puede comprobar como ejercicio en algunos ejemplos, lo mismo ocurre 
para todo teorema de T. Pero lo interesante es que la clase de modelos 
de Kripke elegida no es omni-acogedora. Si se toman teoremas de S4 o 
SS que no son teoremas de T, resulta que no son válidos en la clase de 
modelos escogida. Considérese (4). Tómese un modelo de Kripke refle­
xivo donde hay tres mundos mi, m2 Y m3, tales que m,Rm2 y m2Rm3 
pero mi no tiene la relación con m3 (por supuesto, cada mundo tiene 
la relación consigo mismo; no se dan más conexiones que las enumera-
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das). Supongamos que p es verdadero en los dos primeros mundos pero 
no en el tercero. Dp es verdadero en mI, porque P es verdadero en 
todos los mundos accesibles a mi (él mismo y m 2); pero O O P no es ver­
dadero en el primer mundo, porque Dp no es verdadero en el segundo 
(ya que en un mundo accesible a él, m3, no es verdadera p). Se des­
prende que el antecedente de (4) es verdadero pero su consecuente falso 
en mI. (4) no es válida para la clase de modelos de Kripke reflexivos. 

En general, puede probarse que A es teorema de T syss es válida en 
la clase de modelos de Kripke reflexivos. Esta clase permite entonces defi­
nir una semántica adecuada para T. 

3. Semánticas para S4 y S5 

Se puede construir una semántica adecuada para S4 si se toma una clase 
de modelos de Kripke cuya relación R satisface otras condiciones: es refle­
xiva, pero también transitiva. Llamemos modelos de Kripke reflexivo­
transitivos a los que cumplen con esta doble condición. Estos modelos 
determinan un conjunto de fórmulas: las que son válidas respecto de esta 
clase. Puede observarse que el modelo que usamos antes para mostrar 
la no-validez de (4) ya no servirá para probar la no-validez de esa fór­
mula en la nueva semántica: en aquel ejemplo R no era transitiva. De 
hecho, (4) es válida en la semántica que acabamos de construir (el lector 
puede intentar probar por el absurdo esta afirmación). La nueva clase 
de modelos se comporta respecto de S4 como la clase de modelos reflexi­
vos respecto de T: A es teorema de S4 syss es válida en la clase de los 
modelos de Kripke reflexivo-transitivos. 

La semántica leibniziana que describimos antes era adecuada para 
SS, pero se crearía una discontinuidad inelegante si usáramos esa semán­
tica para SS y otras basadas en modelos de Kripke para T y S4. Los méto­
dos de Kripke también son aplicables a SS. Esto es trivialmente verda­
dero si se piensa que la clase de modelos de Kripke cuya relación es 
universal (i.e., que cualquier par ordenado de mundos del modelo perte­
nece a la relación) se comporta exactamente como las estructuras de nues­
tra semántica leibniziana. Otra manera de construir una clase de mode­
los de Kripke que proporciona una semántica adecuada para SS es exigir 
que la relación del modelo sea una relación de equivalencia (reflexiva, 
simétrica y transitiva). Llamemos modelos de Kripke R-equivalentes a 
los que cumplen esta condición. Puede probarse respecto de ellos que A 
es válida en esa clase de modelos syss es teorema de SS. 

En la literatura sobre lógica modal se dice que un sistema modal S 
es correcto respecto de una clase e de modelos de Kripke syss todo teo­
rema de S es válido en la clase C. Se dice también que S es completo res­
pecto de e syss toda fórmula de S que sea válida en e es teorema de S. 
Si un sistema modal S es correcto y completo respecto de una clase e 
de modelos de Kripke, se dice también que la clase e caracteriza el sis­
tema S. En esta sección hemos introducido varias semánticas basadas en 
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clases de modelos de Kripke. Afirmar que una de ellas es adecuada para 
un sistema modal equivale a decir que la clase de modelos en que está 
basada caracteriza el sistema en cuestión. Para probar esto último se deben 
demostrar dos teoremas, uno de corrección y otro de completitud. Debido 
al bagaje de conocimientos que hemos presupuesto en el lector y el espa­
cio disponible, no podemos probar aquí la adecuación de las semánticas 
que hemos introducido para T, S4 y SS. Los trabajos de Kripke que hemos 
mencionado en la sección II (en la parte sobre «la etapa semántica») pro­
porcionan todos los elementos para construir las pruebas correspondien­
tes. Una presentación didáctica de los teoremas relevantes y sus demos­
traciones puede encontrarse en Hughes y Cresswell (1968) y Hughes y 
Cresswell (1984). Un libro muy útil para profundizar en la semántica 
de la lógica modal es Chellas (1980). 

V. INVESTIGACIONES ACTUALES SOBRE META LÓGICA MODAL 

En las investigaciones recientes sobre lógica modal ha predominado una 
tendencia a estudiar las propiedades de sistemas modales de diferentes 
clases o las relaciones del lenguaje modal con ciertas estructuras. En líneas 
generales puede decirse que el interés teórico se ha desplazado hacia lo 
que describí hacia el final de la sección II como <<1a metalógica modal 
generalizada». Muchos de los trabajos caen en dos áreas que se denomi­
nan «teoría de la completitud» y «teoría de la correspondencia». 

En la teoría de la completitud se clasifican los conjuntos de fórmulas 
modales (de un lenguaje modal especificado). En la presentación de Jan­
sana (1990), se llama lógica a todo conjunto de fórmulas modales que 
contenga todas las tautologías y esté cerrado para las reglas de modus 
ponens y substitución (i.e., si ciertas fórmulas pertenecen al conjunto, 
también pertenecen a él las fórmulas que pueden inferirse de las prime­
ras mediante las reglas mencionadas -que son las reglas MP y RS de 
mi formulación de T). Hay varios grupos importantes de lógicas. El grupo 
más estudiado es el de las lógicas normales. Una lógica es normal si con­
tiene todos los ejemplos de substitución del axioma 5 de T, en la formu­
lación de la sección III, y está cerrado para la regla de necesidad que apa­
rece en esa misma formulación. Las fórmulas que pertenecen a una lógica 
normal se dicen teoremas de esa lógica. 

Recordemos que un marco de Kripke es el par ordenado de los dos 
primeros componentes de un modelo de Kripke. Un modelo de Kripke 
< M, R, V> es un modelo del marco < M, R>. Una fórmula es válida 
respecto de un marco de Kripke cuando es válida respecto de todos los 
modelos de ese marco. La validez, corrección y completitud respecto de 
clases de marcos de Kripke se define de manera análoga a las nociones 
de validez, corrección y completitud respecto de clases de modelos de 
Kripke. Una clase de marcos de Kripke C caracteriza una lógica syss tal 
lógica es correcta y completa respecto de C. Algunas preguntas típicas 
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de la teoría de la completitud son: ¿Existe para cada lógica normal una 
clase de modelos que la caracterice? ¿Existe para cada lógica normal una 
clase de marcos que la caracterice? ¿Plantean el mismo problema las dos 
preguntas anteriores? ¿Existe alguna lógica normal caracterizada por la 
clase de los marcos irreflexivos (aquéllos en que la relación R es irrefle­
xiva)? Estas y otras preguntas más técnicas han originado una buena can­
tidad de resultados interesantes de la teoría de la completitud. 

La teoría de la correspondencia surgió a partir de la observación de 
ciertas conexiones entre sistemas modales y propiedades de la relación 
R de la clase de marcos que los caracterizaban. Por ejemplo, 54 es carac­
terizada por la clase de los marcos cuya relación R es reflexiva y transi­
tiva. También fórmulas aisladas están conectadas con propiedades de la 
relación R de determinadas clases de marcos. Por ejemplo, el axioma 4 
de nuestra formulación de T es válido en un marco de Kripke syss la rela­
ción R de tal marco es reflexiva. El axioma 6 de 54 (en nuestra presenta­
ción) es válido en un marco syss la relación de tal marco es transitiva. 
En las tres conexiones citadas, hay correspondencias entre sistemas o fór­
mulas modales y clases de marcos cada una de las cuales tiene como carac­
terística distintiva tener una relación R que cumple cierta condición expre­
sable mediante una fórmula de primer orden (reflexividad y transitividad, 
reflexividad, o transitividad, en nuestros ejemplos). Estas corresponden­
cias suscitan algunos interrogantes: ¿Toda fórmula modal está conectada 
con una propiedad de R expresable en la lógica de primer orden? En caso 
de que no sea así, ¿qué tipo de fórmulas modales determinan condicio­
nes de primer orden? Estas y otras preguntas más técnicas originaron 
muchos hallazgos de la teoría de la correspondencia. Dos resultados par­
ciales pueden ser de interés para el lector. Toda fórmula modal A en la 
que no hay operadores modales aplicados a fórmulas que ya tienen ope­
radores modales, está conectada con una clase de marcos de Kripke deter­
minada por una condición acerca de R expresable en la lógica de orden 
uno (la conexión es, naturalmente, que la fórmula es válida en un marco 
syss pertenece a la clase de marcos en cuestión). Hay fórmulas modales 
que no están conectadas con ninguna clase de marcos caracterizada por 
una propiedad de su relación R expresable en la lógica de orden uno. 
Un ejemplo es el llamado axioma de Lüb: 

D(Dp---->p)---->Dp 
5e considera que la obra fundamental en la teoría de la completitud 

es 5egerberg (1971). Goldblatt (1976) y Van Benthem (1982) contienen 
lo esencial de la teoría de la correspondencia. Van Benthem (1984) sin­
tetiza muchos resultados. ]ansana (1990) es una excelente introducción 
a la teoría de la completitud y la teoría de la correspondencia (en la que 
se tratan también otros temas de lo que he llamado «metalógica modal 
generalizada»; la obra no presupone ningún conocimiento de lógica 
modal, aunque quizás algún conocimiento de sistemas modales particu­
lares pueda requerirse para que un lector se interese por los resultados 
más abstractos y generales de este libro). 
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APÉNDICE 

Las limitaciones de espacio han hecho que me restringiera en este tra­
bajo a lógica modal proposicional. La parte II de Hughes y Cresswell 
(1968) contiene una introducción básica a la lógica modal cuantificacio­
nal. Garson (1984) da información sobre investigaciones y resultados más 
recientes en este campo. 

También se han omitido en este artículo enfoques algebraicos de la 
lógica modal, dado que en este volumen no se suministran elementos bási­
cos de enfoques de tal tipo. Jansana (1990) también proporciona infor­
mación sobre investigaciones en este terreno. Por último, han sido exclui­
das aquÍ las teorías que son lógicas modales sólo en un sentido amplio 
de la expresión (por ejemplo, lógicas deónticas, temporales, condiciona­
les, etc.). Se puede encontrar información sobre ellas en otros artículos 
de este volumen y en Gabbay y Guenthner (1984). 
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LÓGICAS MULTIVALEN TES 

Lorenzo Peña 

I INTRODUCCIÓN HISTÓRICA 

La idea central subyacente a la construcción de lógicas multivalentes es la de 
que hay un cierto campo fronterizo entre la verdad total y la completa fal­
sedad. Esa idea no es ningún invento de algunos lógicos contemporáneos, 
sino que tiene hondas y remotas raíces en el pensamiento humano, y cabe ale­
gar a su favor muchas consideraciones de muy diversa índole, desde las pura­
mente filosóficas hasta las referidas a dificultades surgidas en no pocas disci­
plinas científicas por la pretensión de encasillar cada situación en uno de los 
dos polos, o «valores de verdad,., de la lógica clásica. 

Sin remontarnos a pensadores a quienes, como a Heráclito y a Platón, 
cabe fundadamente atribuir la propuesta de situaciones intermedias entre esos 
dos polos o extremos -en el caso de Platón con su tesis de grados de verdad 
o de realidad-, hay algún indicio a cuyo tenor no pareciera descaminado ver 
en Raimundo Lulio y en Nicolás de Cusa,. entre otros, esbozos, todo lo rudi­
mentarios que se quiera, de algo así como lógicas multivalentes. Sin embar­
go, fue uno de los fundadores de la lógica contemporánea, Charles S. Peirce, 
quien, junto con muchos otros logros, esbozó claramente, por vez primera, 
un sistema de lógica trivalente y además elaboró argumentos filosóficos con­
vincentes a su favor. Sus apuntes al respecto recorren un largo lapso, mas en 
cualquier caso se sabe que en 1909 desarrolló esas ideas y alcanzó resultados 
rigurosos. Su plan de una matemática triádica o tricotómica concebía la inclu­
sión del dominio limítrofe entre la afirmación y la negación «positivas,. como 
un ensanchamiento más que como un debilitamiento de la lógica clásica (el 
principio de tercio excluso no había de venir omitido, pero sí reinterpretado 
de tal forma que no fuera enteramente verdadero). Peirce no publicó esos es­
bozos, desgraciaodIllente, y su obra no influyó en el ulterior [re]nacimiento 
de las lógicas multbalentes. (Sobre el aporte de Peirce, vid. Rescher, 1969, 
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4-5; ese mismo libro es la mejor fuente bibliográfica y de referencia para 

buena parte de las someras indicaciones de esta sección. ) 

El primer sistema estricto de lógica multivalente en ser dado a conocer 

en público fue el sistema trivalente del lógico polaco Jan Lukasiewicz en 

1920 (ver Lukasiewicz, 1967). Durante los años 20 el propio Lukasiewicz y 

otros lógicos polacos desarrollaron ese sistema y fueron inventando otros con 

más de tres valores de verdad. Uno de esos lógicos, M. Wajsberg, brindó en 

1932 una axiomatización completa para la lógica trivalente de Lukasiewicz: 

éste, por su parte, ya en 1930 expresó su preferencia filosófica por la lógica 

infinivalente. Siguieron en años sucesivos numerosos trabajos de estudio sin­

táctico y semántico de esos y otros sistemas multivalentes por diversos lógi­

cos polacos, como 1. Slupecki, Boleslaw Sobocióski, St. JaSkowski, etc. 

Independientemente, el lógico norteamericano E. Post inventó en 1921 

otro sistema diferente de lógica trivalente. Luego generalizó su tratamiento 

a m valores (para m finito). Desde el punto de vista lógico, suscita una 

dificultad el tratamiento de Post, y es que lo que él propuso fue una lógica, 

no de enunciados, sino de conjuntos de enunciados, por lo cual no resulta 

fácil entender sus sistemas como cálculos sentenciales. Pero dieron lugar a 

estudios algebraicos que luego se han revelado fructíferos. En ese orden del 

estudio algebraico han abundado cada vez más las contribuciones destacadas, 

entre las que cabe citar las de Gregor Moisil ya antes de la 11 guerra mundial 

(en Moisil, 1972), y luego Balbes & Dwinger (1974), Varlet (1975), Rasiowa 

(1974), el matemático portugués Antonio Monteiro y su colaborador y discí­

pulo argentino -radicado durante un tiempo en el Brasil- R. Cignoli (1980). 

Otro aporte muy original fue el de s.e. Kleene, cuyo sistema lógico 

trivalente, de 1938, presentaba rasgos que lo separaban, interesantemente, de 

los de Lukasiewicz. Igualmente original era el sistema trivalente del lógico 

ruso Bochvar (propuesto en 1939), que postulaba 3 valores, V, F e 1, y que 

atribuía I a cada fórmula no atómica que tuviera entre sus componentes una 

fórmula con valor 1. Ese sistema no tiene tautologías, pero recientemente 

Urquhart (1986) ha probado su interés desde el punto de vista de la teoría de 

pruebas. 

Urquhart aborda ese estudio y el de otros cálculos multivalentes -inclui­
do uno que él propone y que ha sido desarrollado en Méndez (199?)- uti­

lizando un nuevo y más fecundo enfoque, que es el matricial, un cruce entre 

teoría de pruebas y lógica algebraica, y que consiste en dilucidar qué 

relaciones de consecuencia vienen determinadas por la asignación de ciertas 

álgebras como modelos para los cálculos lógicos que se trate de estudiar. Ese 

tratamiento matricial -dentro del cual se ubica el presente estudio también­

ha sido desarrollado, entre otros, por Malinowski (1979), Rautenberg (1979) 
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y sobre todo el ya citado Urquhart. 
No sin conexión con los desarrollos ya mencionados, tuvieron lugar otros 

que no pueden dejar de considerarse dentro del ámbito de las lógicas mul­
tivalentes: la axiomatización de la lógica intuicionista por Heyting en 1930 
(desde el punto de vista algebraico ese cálculo se caracteriza por álgebras 
pseudocomplementadas, en el sentido indicado en el §2 de este trabajo) y más 
aún los cálculos propuestos por Kurt GOdel en 1932 (cuya contraparte al­
gebraica son álgebras de Stone; ver §2, infra); sobre esos aportes, ver Res­
cher (1969). Otra exploración de las lógicas multivalentes se efectuó con vis­
tas al tratamiento de anomalías en la física cuántica; fue iniciada en 1937 por 
P. Détouches-Février y desarrollada por Reichenbach en 1944 (ver Haack, 
1974, 148 ss, 172-4). 

Una auténtica explosión de estudios y de aplicaciones de lógicas multiva­
lentes ha tenido lugar desde que en 1965 el trabajo pionero del ingeniero 
electrónico californiano Lofti Zadeh (ver Zadeh y ot. (1975» inauguró el tra­
tamiento de las lógicas de lo difuso, y de las teorías de conjuntos difusos. La 
idea central (QPe ya antes había sido propuesta, entre otros por Rescher) es 
tomar como función característica de un conjunto una que tome sus valores 
o imágenes en un conjunto de más de dos valores de verdad -preferiblemen­
te en un dominio de infinitos valores. Aunque enfoques de ese género no han 
suscitado ni mucho menos unanimidad y siguen siendo ásperamente contro­
vertidos, numerosísimos científicos de las más variadas disciplinas han abra­
zado con ardor ese tipo de tratamientos, habiéndoles encontrado, o creído en­
contrar, múltiples aplicaciones en sus respectivos campos. Más que nada des­
cuella en esa porfía la informática, donde, curiosamente, el binarismo que pa­
recía subyacente de manera definitiva se ha visto así contrarrestado o acaso 
completado por los tratamientos multivalentes. El hecho es que quienes más 
han contribuido a propagar el uso y cultivo de las viejas y nuevas lógicas 
multivalentes han sido los ingenieros electrónicos. Desde esa perspectiva han 
surgido un sinfín de nuevos tratamientos algebraicos, p.ej. (destaca aquí el 
grupo barcelonés de Enrique Trillas, L. Valverde y otros; ver, a título de 
ejemplo no más, Trillas & Valverde (1982». No sin parentesco con esa línea 
de estudios están los nuevos tratamientos de inteligencia artificial y temas 
conexos utilizando lógicas paraconsistentes multivalentes, como las lógicas 

anotadas (en las que una fórmula "dice,. de algún modo qué valor o grado de 
verdad posee: ver da Costa, Subrahmanian & Vago (1989); ello guarda afini­
dad con lo esbozado en el §2, hacia el final). Entre las lógicas multivalentes 
que son a la vez paraconsistentes cabe asimismo mencionar una lógica tri va­
lente que ha sido separada e independientemente descubierta e investigada por 
varios autores; entre ellos el autor de estas páginas, por un lado, y por otro 
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da Costa e Ítala d'Ottaviano, conjuntamente; ésta última la ha estudiado a 
fondo en su tesis d'Ottaviano (1982). 

Otra área donde ha prosperado la lógica multivalente es la del tratamiento 
semántico de las lógicas relevantes, desarrolladas desde los años 70; ver 
Anderson & Belnap (1975). La relación entre lógicas multivalentes y lógicas 
de la relevancia ha sido investigada, p.ej., por U rquhart , en su trabajo ya 
citado, y por Sylvan & Urbas (1989). Alguna de las lógicas estudiadas en 
este último trabajo guardan estrechísimo parentesco con las que más centrarán 
nuestra atención en la segunda mitad o así del §2. (Sobre ese parentesco, vol­
veré justamente al final del §2.) 

Hasta que se empezó a trabajar en teorías de conjuntos difusos prevalecía 
en el estudio de lógicas multivalentes la preferencia por lógicas con un nú­
mero finito de valores. Pero para su aplicación a la teoría de conjuntos, se 
han visto las ventajas de la infinivalencia. Desgraciadamente, sin embargo, 
resultaba muy difícil dar un tratamiento axiomático adecuado a cálculos cuan­
tificacionales infinivalentes (la extensibilidad cuantificacional de las lógicas 
multivalentes en general se venía investigando desde hacía tiempo, sobresa­
liendo el aporte de Rosser & Turquette (1952), c. V, 62 ss; mas la prueba 
de la inaxiomatizabilidad del sistema LIIQ de lógica cuantificacional basado 
en el cálculo infinivalente de Lukasiewicz fue proporcionada por B. Scarpelli­
ni en 1962; ver la referencia en Urquhart, 1986, 99). Ello ha alejado a una 
parte de los estudiosos y cultivadores de esas teorías de conjuntos del trata­
miento axiomático. Recientemente se ha puesto en pie una nueva familia de 
lógicas infinivalentes (y paraconsistentes) en la cual se obtiene la extendibili­
dad axiomática al cálculo cuantificacional, y además se prueba que uno al 
menos de los sistemas de esa familia, A, es, para cada lógica L caracterizada 
por m valores de verdad, una extensión cuasi-conservativa de la misma, en 
el sentido de que hay en el sistema algún functor de afirmación generalizada, 
Ú, tal que, para cualquier fórmula ,p." 'ÚP" es un teorema de A sys (si, 
Y sólo si) 'p" es un teorema deL (ver Peña, 1991, 139 ss); como casos par­
ticulares se tiene una extensión del mismo resultado para la lógica Gil (el sis­
tema infinivalente de GOdel) y otro incluso más fuerte, y es que A es una ex­
tensión conservativa de la lógica bivalente clásica (naturalmente, sólo para 
cierta traducción de la negación clásica). 

Si la investigación de lógicas multivalentes ha suscitado entusiasmo, no 
han faltado sus detractores, quienes han tendido a ver en esos cálculos inven­
ciones artificiales y sin base "intuitiva», o incluso exentos de interés mate­
mático. Como qué tautologías se den en un sistema multivalente y también 
qué relación de consecuencia haya en él dependen de qué valores sean 
tomados como designados (o verdaderos), unos cuantos autores han concluido 

326 



LÓGICAS MULTlVALENTES 

que se trata de algo meramente arbitrario, y por ende que todo el tratamiento 
ofrecido por tales lógicas es un juego. Cae naturalmente fuera del ámbito del 
presente trabajo discutir las motivaciones filosóficas, pero el hecho es que 

éstas existen, y a favor de ellas abonan muchos argumentos propuestos por 
diversos autores. Sobre ese y otros puntos que han de quedar fuera del pre­
sente estudio, ver Peña (1994). 

Hoy se suele estar de acuerdo -más allá de tantísimas discrepancias en 
tantas cosas- al menos en esto: que el tratamiento de lógicas llamadas mul­
tivalentes forma parte del estudio algebraico de la lógica. En verdad hay una 
prueba trivial (generalización de un resultado célebre de Lindenbaum) a cuyo 
tenor cualquier sistema tiene una matriz característica multivalente: basta con 
tomar como álgebra una cuyo portador sea el conjunto de las fórmulas, y 

cuyos elementos designados sean los teoremas. En ese sentido no hay lógica 
que no sea multivalente. Ese resultado no banaliza el estudio de las lógicas 
multivalentes porque, precisamente, el tratamiento algebraico permite ver qué 
reducibilidades ulteriores se dan (por vía de congruencias, noción que será 
explicada en el §2). 

11 LAS LÓGICAS MULTIVALENTES COMO LÓGICAS ALGEBRAICAS 

Las convenciones notacionales usadas aquí son, esencialmente, las de Church: 
un punto indica un paréntesis de abrir cuyo correspondiente paréntesis de 
cerrar estaría tan a la derecha como quepa; las restantes ambigüedades se 
disipan asociando hacia la izquierda 

Por álgebra universal cabe entender un conjunto dotado de ciertas opera­
ciones, siendo una operación una función n-aria, para n �O (n puede ser 
infinito, pero aquí excluiremos tal posibilidad). E.d., una operación n-aria, 
t definida sobre un conjunto A, es algo tal que, para cualesquiera n 
miembros de A, al, a2, ... , an, '(al ... an) E A: lo cual significa que para 
al, ... ,an E A hay un solo miembro de A que es '(al, ... ,an). Cuando se trate 
de una operación binaria, en vez de r'(al,a2). escribimos ral'a2 • •  General­
mente un álgebra se representa como una secuencia < A, r > ,  donde r es 
una secuencia de operaciones, o bien, alternativamente, como una secuencia 
<A, ' I, . . .  " j > , donde ' I, .. . " j  son operaciones ordenadas por su ariedad, 
o sea por el número de sus argumentos. El conjunto A será el portador de 
dicha álgebra. A veces, por comodidad, se llama al álgebra igual que a su 
portador. 

Una matriz es un un trío < A, D, .:l > ,  donde < A, .:l >  es un álgebra 
-siendo A, .:l, según se acaba de indicar-, al paso que D es un subconjunto 
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de A, subconjunto que viene llamado el conjunto de elementos designados. 

El procedimiento general para establecer la correspondencia entre un 
cálculo lógico y una matriz es éste. Dos álgebras se llaman similares [entre 
sí], o de de similaridad igual, si son, respectivamente, < A, r> y < B, � > , 
y r = <'YI' 'Y2' ... , 'Yn> mientras que � = <ól, ó2' ... , ón> y, para cada 
índice, i (1 :5;i:5;n) 'Y¡ es una operación de la misma ariedad que ó¡, o sea son 
operaciones con el mismo número de argumentos. Un morfismo de un álgebra 
< A, � > en otra a ella similar < B, r> es una función f tal que, para cada 
índice i, si ó¡ es una operación m-aria, entonces para cualesquiera m elemen­
tos de A, lij, ... , 3m, f (ó¡(al, ... ,3m)) = ó¡(fa\ , ... ,f3m). Si el morfismo m es 
una inyección (mx=mz sólo si x=z), será llamado un monomorfismo; si es 
una sobreyección (para cada bEB hay un aEA tal que ma=b), será un epi­

morfismo; si es ambas cosas a la vez, un isomorfismo. Un morfismo de un 
álgebra en sí misma es un endomorfismo; un endomorfismo isomórfico es un 
automorfismo. 

Un cálculo lógico [sentencial] viene definido como sigue. Un lenguaje 
sentencial es un álgebra de índole particular, a saber: una en la que el 
portador es un conjunto de fórmulas y las operaciones son simplemente las 
operaciones n-arias (para n;?:O) que envían a n fórmulas, tomadas como argu­
mentos, sobre la fórmula resultante de unir a las dadas mediante un functor 
n-ádico determinado; pueden ser, p.ej., las de negación, disyunción y 
conyunción. Si <A, r> es un lenguaje sentencial, <A, r, �> es un cál­

culo [sentencial] sys � es una operación de consecuencia en A, donde una 
operación de consecuencia viene definida como una función 1> que toma 
como argumentos subconjuntos de A y que cumple estas condiciones: 1 a) 
1>1>X = 1>X ;2 X; 2a) 1>Z !t 1>X sólo si Z !t X; 3a) ningún endomorfismo 
m es tal que m1>X !t 1>mX. Llamamos regla de inferencia de un cálculo cuyo 
portador (conjunto de fórmulas) sea A a una relación R entre dos subcon­
juntos de A que cumpla estas tres condiciones: 1 a) R se mantiene para cual­
quier endomorfismo -o sea: si X guarda R con Z, y m es un endomorfismo, 
siendo m(X) = {q: 3rEX(mr=q)}, entonces m(X) guarda R con m(Z); 2a) 
si � es la operación de consecuencia definitoria del cálculo e, entonces X 
guarda R con {z} sólo si z E �X; 3a) un conjunto X guarda con otro Z la 
relación R sólo si para cierto z Z = {z}; a efectos prácticos podemos repre­
sentar el que X guarde la relación R con { rq' } como el que se dé esa re­
lación R entre X y la fórmula rq'. Que rq' E �X lo escribimos: X r<I. 
Si X = {rpl. , ... , rpn.}, podemos expresar lo mismo así: pl, ... ,pn f-- q. 
Decimos que una operación a es la extensión ancestral de una familia de re­
laciones {R¡}¡EI sys aX es el menor superconjunto de X cerrado con respecto 
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a cada relación Rí. Una operación de consecuencia \R será llamada regular 
sys hay un número finito de reglas de inferencia, R I , ... ,�, tales que \R es 
la extensión ancestral de {R» . . .  ,Rm}. En tal caso diremos que \R es la ope­
ración de consecuencia engendrada por RI , ... Rn• Sólo nos interesaremos aquí 
por operaciones de consecuencia regulares, lo cual nos permitirá, de hecho, 
pensar, más que en la operación en sí, en las reglas de inferencia que la en­
gendran. 

Aquellos elementos del portador de un cálculo con los cuales el sub­
conjunto vacío de fórmulas, 0, guarde alguna regla de inferencia de ese 
cálculo son sus axiomas. Los teoremas de ese cálculo son los miembros del 
menor superconjunto del conjunto de sus axiomas cerrado para la operación 
de consecuencia \R. A un cálculo sentencial lo llamaremos también una ló­
gica. (Nótese que está lejos de ser baladí la estipulación de este párrafo 
-aparentemente sólo definicional-: de hecho el concebir así a los axiomas 
equivale a adoptar automáticamente la concepción clásica de la operación de 
consecuencia, a tenor de la cual, para cualquier conjunto de fórmulas X y 
cualquier teorema del cálculo sentencial considerado, rp", se tendrá que 
rp" E \RX -donde \R es la operación de consecuencia definitoria de ese cál-
culo sentencial). 

Llamaremos valuaciones a los morfismos de un cálculo en una matriz, 
y sustituciones a los endomorfismos de un cálculo. Para que haya una 
valuación de un cálculo dado, e, en una matriz dada, M, a cada functor n­
ádico, ji, de e le habrá de corresponder una operación n-aria, �, en M tal 
que, para cualquier valuación v del lenguaje en el que se formule e en M y 
cualesquiera fórmulas rpl." ... , rpn., del lenguaje de dicho cálculo, se 
tendrá: v(rjl(pl, ... ,pn).,) = �(v(rpl"), ... ,v(rpn.,». Por comodidad -yno 
prestándose ello a ningún equívoco- cabe escribir igual el signo 'ji' de e y 
el que nombra a la operación � de M. 

Diremos que una matriz A = < A,D, {ÓI , ... ,óm} > es un modelo de un 
cálculo e = <C,{-y¡, ... ,'Ym},\R> sys cada valuación de C enA, v, es tal que 
-definiendo v(X) como {z: 3U(VU = z)}, para un X � c- rp" E T [sien­
do T el conjunto de teoremas de C] sólo si v( rp") E D. Llamaremos a un 
modelo recio si cumple esta condición adicional: cada valuación v y cada 
fórmula rp" son tales que v( rp") E D si v(X) � D Y rp" E \RX. Para 
que una matriz sea un modelo de un cálculo basta con que las valuaciones les 
den a los teoremas, como imágenes suyas, elementos designados; para que 
sea recio es, además, menester que la operación de consecuencia del cálculo 
sea volcada por cada valuación en una relación, dentro de la matriz dada 
como modelo, que preserve el estatuto de designación. En adelante tan sólo 
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nos interesarán los modelos recios, por lo cual omitiremos el adjetivo. (Un 
modelo puede no ser característico -esta noción se va a definir unas pocas 
líneas más abajo-; y lo propio le sucede a una clase entera de modelos. Mas 
cuando se define un cálculo con relación a un modelo o clase de modelos, 
éste o éstos son entonces, por definición, característicos.) 

En general un cálculo e del lenguaje ;f, puede venir [semánticamente] 
caracterizado (definido) con relación a una clase M de matrices así: la 
operación [regular] de consecuencia ¡n vendrá definida así: VAEM, dado un 
conjunto de fórmulas cualquiera, X�;f" ¡nX = {xE;f,: vhEVal(;f"A): 
hxED o h(X)!tD}, donde Val(;f"A) es el conjunto de valuaciones de ;f, en 
A. (Como caso particular, los teoremas de e serán las fórmulas rp' de su 
lenguaj e, ;f" que sean válidas respecto a M, o sea tales que vA E M 
vvEVal(;f"A) ocurra que v( rp' )ED, siendo D el conjunto de elementos de­
signados de A.) Para una ¡n definida semánticamente con respecto a la clase 
M de matrices, el que rp' E ¡nX viene expresado así: X F.tP. 

Cuando se cumplen las condiciones recién indicadas, decimos que esa 
clase M de matrices es característica del cálculo en cuestión. Pero también 
es característica de un cálculo una clase de matrices, aunque el cálculo no 
venga definido así, siempre que pueda serlo (o sea siempre que otra defini­
ción tenga la misma extensión). Cuando una cierta clase unitaria de matrices 
sea característica de un cálculo sentencial dado, se dirá que la única matriz 
perteneciente a esa clase unitaria es característica de dicho cálculo. Si el 
portador de la matriz tiene exactamente n miembros se llama n-valente a 
dicho cálculo. (Dicho de otro modo: la matriz M es característica del cálculo 
e sys se cumple en general esta condición: X hMlP sys rp' E ¡nX, donde 
¡n sea la operación de consecuencia definitoria de C.) 

De hecho no cualquier álgebra ofrece interés como modelo para los pro­
pósitos recién indicados. Prácticamente se consideran pertinentes aquellas 
álgebras que son retículos, o sea álgebras < A, +, e > donde para cua­
lesquiera x, z, u E A se tienen estas ecuaciones: 
idempotencia: x+x = x = xex;conmutatividad: x+z = z+x; xez =zex 
asociatividad: x +z+u = x +(z+u); xezeu = xe(zeu); 
absorción: x+zex = x = xez+x 

Es más, para nuestros propósitos, sólo se aceptan como modelos retículos 
distributivos, o sea que cumplan la condición de distributividad, a saber: 
x+(uez) = (x+u)e(x+z) así como xe(u+z) = (xeu)+(x+z). La 
operación + es llamada lajunción y corresponderá a la disyunción, mientras 
que e viene llamado el cruce y corresponde a la conyunción. En un retículo 
el que x=xez se expresa así también: x�z. 
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Si la correspondencia entre esos signos lógicos y esas operaciones alge­

braicas suele sustraerse a la controversia, no sucede lo propio con respecto 

a la negación. Es bastante común, sin embargo, el postular que ésta cores­

ponda a una operación algebraica unaria, -, tal que se cumplan tres ecua­

ciones adicionales: De Morgan (o sea -(x.z) = -x+ -z, así como 

-(x+z) = -x. -z) e involutividad: -( -x) = x. No obstante, para algu­

nos cálculos, como veremos, se atenúan estas dos condiciones o se reem­

plazan por otras menos estrictas. 

Un álgebra con las operaciones ., + y - que cumplan esas condiciones 

será llamada un álgebra de De Morgan. Supongamos ahora un álgebra de De 

Morgan que reúna esta condición adicional: hay en ella dos elementos, 1 y 

O, tales que, en general, x.1 = x mientras que x.O = O, -O = 1; un 

álgebra tal será un álgebra cuasibooleana. De entre las álgebras cua­

sibooleanas se llaman álgebras de Kleene a las que cumplen en general esta 

condición: z+ -z � x. -x. 

Un retículo distributivo con O y 1 se llama pseudocomplementado si en 

él se da una operación unaria, ..." tal que para cada x se tiene que ""x es el 

mayor elemento disjunto de x (o sea uno tal que para cualquier z z.x = O 

sys ""x �z). Un retículo pseudocomplementado es un álgebra de Stone sys 

cumple esta condición: para todo x, ...,x +...,...,x = 1. (En un retículo pseudo­

complementado -omítense aquí las pruebas- valen estas ecuaciones: x • ...,x 

= ...,x • ...,...,x; """"x�x; x.z>O sys """"x.z>O; ""x>""z sólo si z>x; 

""(x+z) = ...,x • ...,z; ...,...,x • ...,...,z = """"(x.z); ...,...,(...,...,x+...,...,z) = 

..., ""(x+z); ...,(...,x+x) = O.) 

Un álgebra de Kleene es un álgebra booleana si cumple esta condición: 

x. -x = O Y x + -x = 1. También cabe definir a las álgebras booleanas 

como retículos pseudocomplementados en los que para cada x: x +""x = 1; 

Y como álgebras de Stone en las cuales x=""""x 

Para nuestro propósito requeriremos que D -el conjunto de elementos 

designados- sea un filtro propio, o sea un subconjunto propio del portador 

del álgebra tal que, en general, se cumplan estas dos condiciones: 1 a) si x.z 

= x, siendo x E D, entonces z E D; Y 2a) si x, z E D, x.z E D. 
Sea B la clase de todas las matrices booleanas. Demuéstrase este 

resultado: sea e un cálculo semánticamente definido como uno que tenga por 

axiomas a las fórmulas de cierto lenguaje (con conyunción, disyunción y 

negación) válidas en cualquier matriz de B y cuya operación de consecuencia 

semánticamente definida (del modo más arriba indicado) sea k.; ese cálculo 

es idéntico a otro definido igual pero en el cual, en vez de M, se tome el 

álgebra con sólo dos elementos, O y 1, siendo D = {l}. El cálculo caracteri-
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zado por las álgebras booleanas es LC (la lógica clásica). Por ello pre­

cisamente se da en llamar a LC la lógica bivalente. 
Una lógica multivalente será un cálculo sentencial semánticamente 

definido cuyos modelos sean ciertas matrices no booleanas (aunque esto ha 

de entenderse, en general, como que no todas las matrices de la clase en 

cuestión serán booleanas). Un ejemplo será K 11' a saber: el cálculo sentencial 

en el que son teoremáticas sólo todas las fórmulas válidas respecto a 

cualquier matriz de Kleene, donde una matriz de Kleene viene definida como 

un álgebra de Kleene con un conjunto cualquiera de elementos designados que 

sea un filtro propio y cuyas reglas de inferencia sean las preservadoras de la 

designación en esa clase de álgebras. 

Pasemos ahora de K 11 a otras lógicas construibles como extensiones de 

K It" En primer lugar, puede extenderse el cúmulo de reglas de inferencia del 

siguiente modo. Formamos el sistema K w' a saber la lógica semánticamente 

definida como teniendo sus modelos en una clase unitaria de matrices, {K}, 
donde K = < R, {1}, .d > siendo R = [0,1] (o sea el intervalo de los 

números reales r tales que 1 �r�O), y siendo .d = {+, ., - }, donde x.z = 

min(x,z), mientras que x +z = max (x,z) (el signo' +' no hace aquí las veces 

de la adición); la operación unaria - viene definida así: -1=0; -0=1; 

para 1 > x > O el logaritmo en base 2 de -x es igual al logaritmo en base x 

de 2. Como signos del cálculo lógico usemos 'N' en vez de' - ', 'v' en vez 

de '+', y , " ' en vez de '.'. Son teoremas de K w los mismos que de K 11' 

pero en K 11 no están ciertas reglas de inferencia que sí están en cambio en 

K w' como ésta (la regla de Cornubia, [mal]llamada de Escoto): p, Np F q. 

Tomemos ahora, en vez de K, A, definida como < R, D, .d >, con .d igual 

y D = ]0,1], o sea el conjunto de reales r tales que 1 � r > O. Al cálculo sen­

tencial semánticamente definido como tomando sus modelos en {A} lo lla­

mamos lógica Aw. Hay una serie de esquemas que son teoremáticos en Aw sin 

serlo en K 11' como éstos: rN(p" Np)", rp V Np" -respectivamente no 

contradicción y tercio excluso. Por otra parte, la regla de Cornubia no está 

en el nuevo sistema; éste es, pues, una lógica paraconsistente. 
¿Qué pasa si, en vez de [0,1], tomamos {0, V2, l}, siendo D = {l/2,1}? 

Es obvio, por la definición dada, que N 1/2 = 1/2. Llamemos A3 a la lógica se­

mánticamente caracterizada con respecto a la clase unitaria cuyo único miem­

bro es esta matriz de tres elementos. Salta a la vista que A3 = Aw. Es más, 
cabe demostrar que se trata de la lógica semánticamente definible con res­

pecto a la clase de matrices que son álgebras de Kleene en las cuales para 

todo x x + -x E D. 

Un problema que surge con las lógicas multivalentes hasta aquí con-
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sideradas es que no tenemos en ellas ningún functor que exprese una relación 
condicional o de implicación. Ese problema no surge en Le, porque en ella 
podemos definir rp:::> q" como r - p V q" , y similarmente con las operacio­
nes booleanas correspondientes, obteniéndose los dos rasgos apetecibles para 
un condicional, a saber: (rOlO) el functor ':::>' así definido preserva la 
designación, e.d. posee la condición del modus ponens (para cualquier valua­
ción v, si v( rp:::>q") y v( rp" ) son designados, también lo es v( rq"); y 
(r02°) tiene la propiedad de la deducción: si pI, ... , pn, r F q, entonces 
pl, ... ,pn F r:::>q. 

Hay dos procedimientos comunes para introducir functores condicionales 
en lógicas multivalentes. Uno consiste en introducirlos como primitivos. El 
otro estriba en introducir primero una negación fuerte, y luego definir, por 
medio de ella, el condicional, igual que se hace en Le. Voy a centrarme aquí 
en este segundo procedimiento. 

Si <A,A> es un álgebra de Stone, <A, D, A> será una matriz de 
Cragg, donde D es el conjunto de miembros densos de A, o sea de aquellos 
elementos x tales que ""x=O. Una operación que nos sirve entonces para 
definir el condicional es la que define x:::> z como ..., x V z. 

Llamemos lógica pétrea al cálculo sentencial cuyo vocabulario abarca 
signos sentenciales y las constantes de conyunción (' !I. '), disyunción (' V'), 
Y negación fuerte (' ""), cuyos teoremas son las fórmulas válidas en cualquier 
matriz de Cragg y cuya única regla de inferencia es el modus ponens 
(p V ""q, q f- p). Definiendo en una lógica pétrea el condicional del modo 
clásico (rp:::>q" abrevia a r""pvq"), ese functor posee los dos deseados 
rasgos ya enumerados, (rOlO) y (r02°). Es más: la lógica pétrea es idéntica 
a Le, a pesar de la diversa definición semántica de ambas. Un ejemplo de 
matriz de Cragg es Q:, a saber: la que tiene como portador el intervalo [0,1], 
siendo e y + como vinieron definidos para K w' Y siendo ..., x = O si x > O, 
...,0= 1. Aunque esta álgebra no es booleana, es también un modelo de Le: 
una fórmula es un teorema del cálculo sentencial clásico sys es válida con 
respecto a la matriz Q:. Como se ve, faltan a Q: para ser booleana dos 
condiciones: en general no se tiene """"x = x; ni x +...,x = 1. 

El vínculo entre Q: y un álgebra de Boole puede hacerse más claro como 
sigue. Llamamos congruencia en un álgebra a una relación [diádica] S que 
tenga, para toda operación n-aria, " la propiedad de sustitución, a saber: si 
XISZI, ... , xnSzn, entonces '(xl, ... xn) S '(zl, ... ,zn). Una congruencia es 
una relación de equivalencia. Si S es una congruencia de un álgebra A cuyo 
portador es J, podemos obtener el álgebra cociente de A por S, a saber una 
cuyo portador es el conjunto de las clases de equivalencia [x]e (o [x] a secas, 
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si el contexto desambigúa), siendo x un elemento cualquiera de J y teniéndose 
que en general z E [x] sys x8z. En el álgebra � hay una congruencia 8 tal 
que x8z si x>O<z o x=O=z. El álgebra cociente de � por 8 es un álgebra 
booleana: es el álgebra cuyo portador es {O, 1 }. La idea principal en el paso 
de � a esa álgebra booleana es que en ésta se toman como si fueran indiscri­
minables o indiscernibles todos los infinitos elementos densos (designados). 

Sea M = <M,D,á> una matriz de Cragg, y para los mismos M y D 
sea < M,D, <I> > una matriz de Kleene. Sea E = á U <I>. Entonces 
<M,D,E> será una �-matriz. Las �-matrices son los modelos que 
caracterizan a la lógica A(. O sea, A( es aquel cálculo sentencial cuyos 
teoremas son las fórmulas, de un lenguaje sentencial dado, que vienen envia­
das por cualquier valuación sobre elementos designados de una �-matriz, y 
cuyas reglas de inferencia son las que preservan la designación. (Por ser M 
una matriz de Cragg, D será el conjunto de todos los elementos densos.) Nó­
tese que en una �-matriz ya no puede establecerse una congruencia como la 
considerada en el párrafo anterior. Sea E la �-matriz cuyo portador es [0,1]. 
Aunque en esta �-matriz 181/z, no sucede empero que NI 8 NI/Z, puesto que 
NI = O, N I/Z = I/Z, y sin embargo no ocurre que 081/z (hay infinidad de ele­
mentos z congruentes con 1 y tales que Nz no es congruente con NI; el caso 
del elemento I/Z se aduce sólo por ser un caso «extremo»). La lógica A( es 
una lógica paraconsistente (con respecto a la negación simple 'N') y también 
multivalente; no es paraconsistente con respecto a la negación fuerte, '. En 
la lógica A( se tiene la regla de inferencia: p, ,p F q; pero no: p, Np F q. 
Sin embargo, los principios de no contradicción y de tercio excluso son 
válidos para ambas negaciones: son teoremáticos todos los esquemas: 
rpVNp', rpV ,p', rN(p/\Np)', r,(p/\ 'p)'. Definiendo rp==q' 

como rp => q /\ .q => p' , se tendrá rp == , -'p' , versión atenuada de la involu­
tividad. (También se tiene, claro rp==NNp'.) Asimismo valen en la lógica 
A( los cuatro principios condicionales de abducción, a saber: rp => Np => Np' , 
rp=> 'p=> 'P', rNp=>p=>p', r,p=>p=>p'. Aun siendo paraconsistente, 

A( es una lógica de talante muy conservador: su negación simple posee la 
mayor parte de los rasgos de la negación clásica, al paso que, gracias a su 
negación fuerte, A( es una extensión conservativa recia de LC, en el sentido 
técnico usual (una fórmula de A( que sólo contenga vocabulario clásico es 
teoremática en A€ sys también lo es en LC; y cada regla de inferencia clásica 
vale también en A€). 

Demostrablemente la lógica A€ se caracteriza por la clase unitaria que 
sólo abarca a una matriz con tres elementos, dos de ellos designados. 

Ésa es una razón para no estar satisfechos con A(. El fondo del problema 
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estriba en que no podemos con el limitadísimo vocabulario de A( expresar 
ninguna relación más estrecha entre dos enunciados consistente en que uno 
de ellos sea más verdadero que el otro. Vamos ahora a partir de una �-matriz 
y vamos a añadir una operación binaria. l. como sigue. En primer lugar sólo 
tomamos �-matrices que tengan un elemento Ih tal que 1/2 =NV2. La 
operación I será tal que: xlz = 1/2 sys x=z; en caso contrario. xIz = O. A 

una matriz así la llamaremos una �I-matriz. (Podríamos generalizar ese trata­
miento. exigiendo. en vez de igualdad. una congruencia plenamente inva­
riante. o sea una que venga preservada por todos los endomorfismos.) El 
rasgo importante que añaden las �I-álgebras y matrices es poder expresar la 
mismidad de grado de verdad. La lógica semánticamente definida como 
aquella cuyos modelos son �I-matrices será la lógica A(I. A diferencia de la 
lógica A(. A(I no es ni trivalente ni siquiera finivalente. Con respecto a una 
�I-álgebra de n valores (n finito) se tendrá un esquema teoremático que no 
lo sea en A(I; p.ej. en una lógica definida respecto a la clase unitaria de �I­
matrices cuyo portador es {O,1/2.1} se tendrá (definiendo rp-+q" como 
rp 1\ qlp"): rp-+(q 1\ Nq) V 'q V ,Nq V ,Np" ; Y en general. para n valores 

se tendrá que. dadas n letras sentenciales. rpl.,. . . .• rpn.,. y definiendo 
rp\q" como rp-+q 1\ ,( q .... p)., • será teoremática la fórmula: 
rpl\p21\ (p2\p3) 1\ ... (pn·l\pn)::J. ,Npn 1\ 'pI., . (Dicho en plata: para cual­

quier cadena de n enunciados cada uno de los cuales sea más verdadero que 
los que lo precedan. el primero será totalmente falso y el último totalmente 
verdadero; ello excluye la utilización de lógicas finivalentes para el tra­
tamiento lógico de los comparativos. según vino propuesto en Peña. 1987.) 
Igualmente. cada lógica finivalente contendrá como esquema teoremático una 
de las llamadas 'fórmulas de Dugundji': para n variables sentenciales. pI. p2 

• 

. . .• pn. la fórmula de Dugundji correspondiente es: rpllp2V .plIp3v .... v. 
plIpn V .... V .pn-IIpn., . La fórmula de Dugundji en n variables sentenciales 
dice que hay un máximo de n-l valores veritativos o grados de verdad. (La 
Le viene caracterizada por la fórmula de Dugundji en 3 variables: 
rpIq V .pIr V .qIr".) Ningún esquema así es teoremático en la lógica 

infinivalente A(I. 
La razón por la cual hemos tomado uniformemente xIz = 1/2 cuando x = z 

es la de poder así tener como teoremáticos todos los esquemas siguientes: 
rpIq ..... pl\rl.ql\r.,; rp-+q 1\ p-+q" ; rpIq ..... rIql.rIp.,; rplq ..... pvrl.qvr.,; 
rpIp ..... qIq., ; rp .... (p .... q) ..... p .... q., ; rp .... Np .... Np., ; rNp .... p .... p., ; 
rp-+q ..... Nq .... Np., ; rp-+q .... N(p 1\ Nq)" ; rp-+q ..... p-+Nq .... Np., ; rp-+(q 1\ Nq) .... 

Np"; rp-+q ..... p-+r ..... p-+.q 1\ r"; rp-+(q .... r) ..... p .... q ...... p ..... r.,; rp ..... q ...... r ..... p ...... 
r ..... q.,; rp-+q ...... q .... r ...... p-+r., ; rN(p-+p) ...... p-+p.,; rN(p-+p-+N(p-+p» ...... p-+p.,; 
rp-+q ..... r ..... (p-+q) ..... p-+q.,; rp-+q ..... r ...... q .... p-+r ..... r.,; rp ..... q ..... (q ..... p) ..... q ..... p.,; 
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rp-q V .q-p"'; evitando, en cambio, la teorematicidad de los esquemas: 

rp-+.q_p'" rp /\ Nq-r-.p /\ Nr-q'" ; rp-+(q-r)-.q-.p-+r'" ; rp-+. 

p-q-q"'; rp-+(q-.p-+r)-.q-r"'; rp-+.p-+p"'; rp-q_.p-+.p-q"'; rp-q_. 

q-.p-q"'; rp /\ q-r-.p-+.q-r'" ; ninguno de los cuales es compatible con la 

idea de que rplq'" sea una fórmula verdadera sys es tan verdadero que p 

como lo sea que q. (Es más: cada uno de esos esquemas no teoremáticos es 

tal que, escribiendo, para hacer las veces de su respectiva prótasis implica­

cional, rp"', y, para hacer las veces de su apódosis, rq"', no se cumple la 

condición: p pq.) Los functores '1' y '-' son interdefinibles: si '-' es pri­

mitivo, rplq'" es definible como rp-q /\ .q-p'" . De paso pruébanse otros 

esquemas característicos de otros sistemas lógicos, como el conexivismo: el 

llamado principio de Boecio (rp-q-N(p-+Nq)"') y el de Aristóteles 

( rN(p-+Np)"'). Y finalmente estos dos: rp-+Npl.p-+N(plp)'" y el principio 

de Heráclito: rN(plp)"'. 

La lógica A�I no es sólo paraconsistente sino contradictorial, ya que hay 

un cierto esquema tal que contiene como teoremas ese esquema y su negación 

simple: rplp'" y rN(plp)"'. También tenemos: rplpIN(plp)"'. 
Hay una razón importante para no estar todavía satisfechos con el resul­

tado, y es que, si bien la lógica que hemos obtenido es genuinamente 

infinivalente (no es caracterizable por ninguna clase unitaria de matrices con 
un número finito de elementos), su vocabulario lógico es tan pobre que no 
podemos en ella expresar más que tres matices veritativos: o decir que 

r--,p"', o que r--,Np'" o que rp/\Np"'. De rp/\Np'" y r--,Nq'" podemos 

deducir rp\q'" , pero nunca rp\Np'" ni rNp\p'" ni rpINp'" . En general esta 

lógica no nos sirve como lógica de lo difuso porque no podemos establecer 

ninguna relación inferencial entre los matices de los asertos y la mayor o 

menor verdad de unos u otros. La lógica en cuestión no contiene ningún 

vocablo que exprese algo así como 'más bien', 'bastante', 'un tanto', 'muy', 

etc., ni, por lo tanto, teorema alguno que diga que, en la medida [al menos] 

en que algo sea muy verdadero, es verdadero [a secas]. (Eso de ren la 

medida [al menos] en que p, q'" será nuestra lectura de rp-q"'.) 

No es ése el único motivo, como vamos a ver, para dar un paso más, 

introduciendo un nuevo functor primitivo. Otra razón es que hay ocurrencias 
de la conyunción 'y', o quizá más bien de otras conyunciones copulativas que 
no son semánticamente reducibles a ella, que no vienen adecuadamente cap­

turadas por' /\ '. P.ej. hay un 'y' de insistencia -quizá mejor representado 
por la partícula discontinua 'no sólo ... sino [que] también' - en la cual 
parece que los conyuntos interactúan en el sentido de que el grado de fal­
sedad resultante podrá ser mayor que los grados de falsedad de sendos con­
yuntos. Así, supongamos que una cierta oración, rp"', es verdadera en un 
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33 % aproximadamente, mientras que rt1 lo es en un 66 %: según el trata­
miento hasta aquí propuesto rp y tl será tan verdadera como rp"', ni más 
ni menos; y lo propio sucederá para cualquier conyunción copulativa en vez 
de 'y'. Sin embargo cabe sospechar que al decirse rp y r'" (o rno sólo p, 
sino que además r'" ), se está diciendo algo menos verdadero que al decirse 
simplemente rp'" : porque rr'" dista de ser del todo verdad, el aserto copula­
tivo en cuestión ha de añadir algo más de falsedad al grado de falsedad que 
ya tenía rp"'. Representemos esa conyunción copulativa más fuerte como 
'.': aseverando rpl.p2.p3 •...• pn.." donde para cada i�n rpi.., tiene un 
valor de verdad infinitamente inferior al máximo, se estará haciendo un aser­
to cuyo grado de falsedad será, cteteris paribus, tanto mayor cuantos más 
conyuntos haya (y no sólo cuanto menos verdaderos sean). La introducción 
de esa superconyunción nos va a permitir obtener, como definidos, muchos 
functores de matiz alético. 

Otra razón más por la cual es conveniente añadir una conectiva que nos 
permita definir infinitos functores monádicos de matiz alético es ésta. El 
functor condicional ':)' cumple los dos requisitos enumerados más arriba 
(rO 1 0) Y (r02°) para los condicionales, de suerte que podemos justificar la 
presencia de ese functor definido por su conexión con la deducción. En cam­
bio nada similar justifica la presencia del functor implicativo '-': entendiendo 
la operación de consecuencia del modo clásico -que es el que ha venido 
adoptado en este trabajo (recuérdese la observación parentética del final del 
párrafo sexto de este mismo §2)-, no hay ningún nexo de inferencia entre 
{p 1 , • • •  ,pn } y { r} suficiente para que sea teoremática la fórmula 
rpl /\ ... /\ pn_r"'. Dicho con otras palabras: el menor superconjunto de 

{pl, ... ,pn} cerrado con respecto a todas las reglas de inferencia de las lógicas 
que estamos examinando puede abarcar a rr'" sin que por ello abarque a 
rpl /\ ... /\ pn_r'" . (El fundamento de ese desempate entre la inferibilidad y 

el functor implicativo '-' estriba en que el sentido de rp-+q'" es que rq'" 
sea a lo sumo tan falso como lo sea rp"', al paso que rq'" se infiere de 
{p 1 , • • •  ,pn} sys o bien uno [al menos] de entre rp 1.., , • • •  , rpn.., es del todo fal­
so, o bien rq'" es [en uno u otro grado] verdadero.) Esa falla puede corre­
girse con ayuda de la superconyunción y de los functores de matiz veritativo 
que mediante ella nos será dado introducir. 

En el intervalo [0,1] podemos tomar x. z como el producto multiplicativo 
x Xz. Esta operación tiene los rasgos siguientes: conmutatividad, asocia­
tividad, elemento neutro (el elemento máximo del álgebra en cuestión); 
además, • es distributiva con respecto a las operaciones V y /\: x. (z /\ u) 

= x.z /\ (x.u); x.(z vu) = x.z V (x.u). (Eso significa que . es una opera­
ción isótona, o sea que, si x�z, entonces x.u � z.u.) Con respecto a N, 
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• tiene una característica especialmente importante, definiendo en general 
rKy' como rN(Ny.Ny)': si x = z.z, Kx = z; más en general: si x.x 

= z, u.u = v, entonces K(z.v) = x.u. Otra característica de • es el 
principio de cancelación: x.z < x.u sys u>z. 

Aunque hemos tomado como ejemplo un caso muy particular (esa matriz 
cuyo portador sea [0,1] Y cuyo cúmulo de valores designados sea el filtro de 
elementos densos ]0,1]), cabe señalar que hay muchas que son isomórficas 
con ésa. Pueden tomarse como ejemplos: primero el álgebra que llamaremos 
Aoo, a saber: una cuyo portador sea R = [-00, + 00] donde /\ sea la 
operación max, V sea min, N sea -, ...,x= 00 si x+oo, y ..., 00 =-00; y • 

será así: oo.x=oo=x.oo; -oo.x=x=x.-oo; si-oo<x�z<oo, x.z = 
z.x = logi2x+2Z) (+ aquí sí es la adición). Otra igual es un álgebra cuyo 
portador sea [0,00], Nx sea l/x, x.z sea x+z (+ también aquí es la adi­
ción), V sea min y /\ sea max: en estas álgebras 00 es el elemento nulo o 
cero algebraico, y el orden algebraico es inverso al orden numérico usual. En 
la última álgebra considerada el 1/2 algebraico es el 1 numérico: en la ante­
rior, el O numérico. 

Como todas esas álgebras son isomórficas entre sí, tienen una serie de 
rasgos además de los que nos interesan. Veámoslo con un simple ejemplo: 
tomemos el intervalo de los números racionales [0,00] con las operaciones 
definidas igual que sobre el intervalo de los reales con los mismos extremos. 
Se ve en seguida que no son isomórficas ambas álgebras. 

Mientras que hay muchas lógicas que tienen matrices características fini­
tas, hay pocas que tengan matrices características infinitas. Generalmente, 
cuando se transciende la finitud hay que caracterizar a un cálculo lógico por 
una clase entera de matrices -con múltiples, en verdad infinitos, miembros­
y ya no por una matriz en particular (salvo las matrices de Lindenbaum, que 
son matrices cuyos respectivos portadores son clases de fórmulas). 

Hay un importantísimo rasgo de la clase de aquellas �I-matrices a las que 
se haya enriquecido con la operación .: ninguna de tales matrices tiene un 
número finito de elementos; y ello por el postulado de cancelación. 

Hay todavía una razón para pensar que está incompleta nuestra busca de 

operaciones: llamemos matrices n a las que están algebraicamente caracte­

rizadas por las operaciones (V, /\, . , 1, N Y ...,) Y por los postulados que 

acabamos de proponer, siendo en cada caso D el filtro de los elementos 

densos, o sea de los elementos x tales que ...,x = O. Salta a la vista que en 

muchas de estas matrices O es el ínfimo de D (el elemento ínfimo de un sub­

conjunto X de un conjunto Z -notado como Ax- es la mayor cota inferior 
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de X, donde x es cota inferior de X sys cada zEX es tal que z�x; 

dual mente, el elemento supremo de X, VX, es su menor cota superior, donde 

x es cota superior de X sys no hay zE X tal que z�x). Eso es muy grave, 

porque para extender un cálculo sentencial a uno cuantificacional habrá que 

dar al cuantificador un tratamiento más o menos así: una valuación, v, 

enviará a la fórmula rvxp' sobre una imagen suya, u, sys u es el ínfimo del 

conjunto de elementos z tales que z = v
'( rp' ) para alguna x-variante v

' de 

v, donde una valuación es una x-variante de otra sys a cualquier argumento 

que no contenga la variable 'x' le hacen corresponder la misma imagen (el 

mismo valor). Entonces puede suceder que para cierta fórmula rp' se tenga 

que sea válida cada fórmula rp[x/a]' (cada resultado de reemplazar unifor­

memente en rp' las ocurrencias libres de 'x' por sendas ocurrencias de un 

término 'a'), pero en cambio rvxp' sería inválida. Basta para ello con tomar 

como rp' el principio fuerte de tercio excluso, rrV ""r' , siendo rr' una 

fórmula con alguna ocurrencia libre de la variable 'x', pero por lo demás in­

determinada por los postulados que hemos sentado. Es obvio que para cada 

valuación v que envíe a rr' sobre un elemento denso, u, habrá otra que lo 

envíe sobre otro z < u. Entonces, si bien será una fórmula válida rrV ""r' , 

no lo será rvx(r v ""r)' . (Es más: j r""'v'x(r V ""r)' será válida!) La regla 

de generalización universal (p f- 'v'xp) no será preservadora de la validez, ni 

siquiera del estatuto de designación (no se tendría, pues, p f='v'xp). 

Un remedio contra ese mal sería redefinir nuestras matrices de suerte que 

el filtro de los elementos designados no abarcara a todos los elementos 

densos, siendo el ínfimo de dicho filtro miembro del filtro. Pero entonces 

perderíamos el principio fuerte de tercio excluso y la definibilidad cláska del 

condicional, '::::>', rp::::> s' como abreviación de r...,p V s' . (Eso se debería 

a que habríamos perdido también la regla del silogismo disyuntivo para la 

negación fuerte, a saber: p V ""q, q f= p.) También perderíamos el principio 

fuerte de no-contradicción, a saber: rN(Lp ¡\ Np)' , donde rLp' abrevia a 

rN...,p' . Al tener que abandonar el condicional'::::>' definible del modo indi­

cado, perderíamos muchas propiedades del condicional clásico, que es lo que 

les pasa a todas las lógicas multivalentes en las que se toma como filtro de 

los elementos designados a un subconjunto propio del cúmulo de los ele-
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mentas densos de un álgebra de Stone. Perderíamos asimismo lo que cabe 

llamar regla de apencamiento, a saber: Lp !=p. En suma, caeríamos en una 

lógica más pobre, en vez de tener una que sea más rica que LC. (Lo que sí 

es cierto es que las primeras construcciones, históricamente, de lógicas multi­

valentes, reseñadas más arriba -en el §1- siguieron ese camino; ninguna 

de aquellas lógicas era, pues, una extensión conservativa de LC.) Por otra 

parte, aun estando dispuestos a irnos al extremo de la parsimonia o austeridad 

y a na tomar como elemento designado más que al 1 algebraico o elemento 

máximo (que es lo que efectivamente hicieron las primeras lógicas multi­

valentes), no se habrían acabado las dificultades de esta índole: de hecho 

-según vino ya indicado en el § 1- el cálculo cuantificacional infinivalente 

de Lukasiewicz es inaxiomatizable. 

En lugar de seguir ese camino trillado de achicamiento del conjunto de 

elementos designados, vamos a explorar otro, consistente en transformar a 

las álgebras que nos interesan en retículos fuertemente algebraicos, definidos 

como sigue. Un retículo es completo sys en él cada subconjunto de su 

portador (jaun uno vacío!) tiene un ínfimo y un supremo. Obviamente para 

poder extender el cálculo sentencial a un cálculo cuantificacional hace falta 

que los modelos algebraicos que consideremos sean retículos completos. Pero 

no basta, ya lo hemos visto. (Si tomamos un álgebra cuyo portador sea un in­

tervalo de números racionales, sería incompleta, pero si es de números reales 

será completa.) Hace falta que el filtro de los valores de verdad designados 

sea un filtro completo, o sea uno F tal que, si G � F, AG E F. Vamos a 

ver que una condición que asegura eso es que se trate de un retículo fuer­

temente algebraico. 

Dícese que en un retículo z cubre a x, x-cz o p-x, sys z > x y no hay 

ningún elemento u tal que z > u > x. Un retículo será llamado atómico sys 

para cada par de intervalos contiguos [a,b] y ]b,c] (o sea cada par de 

subconjuntos {v: a::;;v::;;b} y {v: b<v::;;c}) hay un elemento v =+ b tal que 

v-cb o b-cv; o sea: o v es el ínfimo del segundo intervalo, o es el supremo 

del intervalo [a,b[. Un elemento x es compacto sys todo subconjunto S de su 

portador es tal que: si As ::;; x, entonces x � As', siendo s' un subconjunto 

finito de S. Un retículo es fuertemente algebraico (o, con otra palabra, engen-
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drado de modo fuertemente compacto) sys es completo y cada par de interva­

los cuasicontiguos [a,b[ y ]b,c] es tal que o bien el ínfimo del segundo es 

compacto, o bien lo es el supremo del primero. 

Aunque esas nociones pueden parecer abstrusas, su utilidad estriba en 

este importantísimo Teorema: todo retículo fuertemente algebraico es 

atómico. Prueba: sean en el retículo fuertemente algebraico L tres elementos, 

a < e < b, sin que se tenga ni a-ce ni e-cb (de tenerse eso, tendríamos de 

entrada lo que buscamos). Tomemos los dos intervalos cuasicontiguos [a,e[ 

y ]e,b]. Supongamos que es compacto el supremo del primer intervalo, d. 

Tenemos que d � f\]d,b]. Supongamos que no sólo es � sino que es tam­

bién �, o sea que d = !\]d,b], lo cual implica que d=e. Por ser compacto, 

habrá un subconjunto finito G de ]d,b] tal que d � !\G, cosa imposible (G 
es finito, luego su ínfimo ha de ser miembro de G). Por el lema de Zorn se 

concluye que ]d,b] tiene un elemento minimal. (El lema de Zorn reza: si cada 

cadena de un conjunto [parcialmente] ordenado no vacío, E, tiene una cota 

inferior, entonces E posee un elemento x minimal, e.d. uno z E E tal que 

para todo x E E HZ.) Si ese elemento minimal es e, la hipótesis era falsa: 

d =1= !\]d,b], o sea d-ce, pues evidentemente no puede haber ningún elemento 

entre d y e. Mas, si ese elemento minimal no es e, entonces tenemos lo que 

buscábamos: e-c!\]eb]. Supongamos entonces la otra alternativa, o sea que 

!\]e,b] = h es compacto. Pruébase exactamente igual entonces que h < 

!\]h,b], o sea que existe un elemento k que es !\]h,b] y tal que h-ck. Si h=e, 

ya tenemos lo que andábamos buscando. Mas si no también, porque si h =1= 

e, e-ch. Q.E.D. 

Otro teorema dice que todo retículo fuertemente algebraico es algebraico, 

siendo un retículo algebraico uno en el que cada miembro es el ínfimo de un 

determinado conjunto de elementos compactos. He aquí la prueba: sea en un 

retículo fuertemente algebraico R un elemento e que no cumpla la condición. 

e estará en una línea divisoria entre intervalos cuasicontiguos [a,e[ y ]e,b], 

para ciertos a y b. Tomemos el intervalo ]e,b]; cada miembro de ese inter­

valo tendrá "al lado,. (por arriba o por abajo) un elemento compacto; sea G 
el conjunto de esos infinitos elementos compactos pertenecientes al intervalo 

]e,b]. La hipótesis que tratamos de reducir al absurdo nos fuerza a afirmar 
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que AG > e. Mas eso no es posible, porque entonces habrá sólo un número 

finito de elementos entre e y AG, y entonces el propio e sería compacto (y 

por ende sería A{el). Q.E.D. 

Suele llamarse noetherio a un retículo que no contenga ninguna serie in­

finita de elementos, al, ... , an, an+l, ... , tales que ... > an > an-I > ... > 

a2 > al. (Por el axioma de elección se prueba que tal condición equivale a 

que todo subconjunto no vacío del portador del retículo tenga un elemento 

minimal.) Pruébase con facilidad que todo retículo noetherio es algebraico. 

De ahí que se hayan buscado como modelos para la mayor parte de las lógi­

cas multivalentes retículos noetherios, y por lo tanto que sean o finitos o 

productos de retículos finitos. Y es que, para su aplicación a los cuantificado­

res, la característica de que sea algebraico el retículo de los valores de verdad 

parece más que un mero desideratum. Además de la razón ya considerada (y 

decisiva), referida a la regla de generalización universal, existe otra, y es que 

hay un teorema del álgebra universal que reza así: todo retículo algebraico 

es continuo, entendiendo por tal uno con esta condición: para cada elemento 

b y cada cadena e, b v Ac = A{b v z: Z E C}. Para el tratamiento de los 

cuantificadores esa condición de continuidad significa la aplicabilidad de 10 

que se llama ley de paso: si rp'" no contiene ninguna ocurrencia libre de la 

variable 'x', rp V 'v'xqI'v'x(p V q)'" es teoremático; esa condición y la dual res­

pectiva permiten aplicar procedimientos de prenexación, desprenexación, con­

versión a forma normal, etc. 

Ya hemos visto empero los inconvenientes de la finitud. Es arbitrario 
postular que se tengan que dar exactamente n grados de verdad en vez de 
n + 1. No hay números finitos lógicamente privilegiados. A fortunadamente 
hay cómo obtener que un retículo sea fuertemente algebraico (y por lo tanto 
atómico y continuo, en sendos sentidos más arriba apuntados) sin incurrir en 
la finitud. Es lo que voy a exponer a continuación. 

Partimos del álgebra Aoo, según vino definida más arriba (usando aquí los 
signos' ::;' y , <' para referirnos al orden numérico, inverso del algebraico), 
pero ensanchando su portador a un conjunto S = RU {<r,a>: rE R & 

r>-oo}U{<r,b>: rER & r<oo}, donde a, b son entes cualesquiera. 
Postulamos: <r,a> < r < <r,b>. Y definimos (dejando correr a las 
variables 'r', 'rl', 'r2' sobre miembros de R [incluidos 00 y -00 ] ) : 

<rl,a> e <r2,b> = <rler2,b> si rl=f:; CIIID;, a > ex = < oo,a> si x=Foo; 
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<r1,a> er2 = <r1,a> e <r2,a> = <r1er2,a> si r2::f=oo; ooex= 00; 

<r1,b>er2 = <r1,b>e <r2,b> = <r1er2,b> si r2::f=oo; -ooex=x; 
y siempre xez = zex (lo cual termina de definir recursivamente la opera­

ción). Las definiciones de las operaciones v, /\, -, son las mismas que en 
A",,; la operación N viene extendida así: N<r,a> = <Nr,b> y N<r,b> 

= <Nr,a>. A esta álgebra la llamaremos Awa; al elemento <-oo,b> 10 
llamaremos w; a < oo,a> llamarémoslo a. 

En esta álgebra, el filtro de los elementos designados es {x: x � a}, 
donde '�' es el orden algebraico (inverso al numérico). Podemos también 

introducir el ideal de los elementos antidesignados (un ideal es un conjunto 

e tal que, si x � z, z E e entraña x E e, y x V z � e sólo si o bien x � e o 
bien z � C); será tal ideal {x: x � w}. Todos esos signos encuentran lecturas 

naturales en la lengua vernácula: '-,' : 'No ... en absoluto'; 'N': 'no'; 'v': 

'o'; '/\': 'y'; 'e': 'no sólo ... sino que también'; '::J': 'sólo si'; '-+': 'sólo 

en la medida en que' o 'sólo en tanto en cuanto'; '1': 'en la misma medida 
en que'; - 00 es 10 totalmente verdadero; 00 la falsedad completa; a la 
verdad infinitesimal; w el grado infinitesimal de falsedad (que es un grado 
infinito, aunque no total, de verdad). 

Tomemos un lenguaje cuyas valuaciones tomarán sus valores en Awa' 
Definiendo rnp'" como rpew'" y rmp'" como rNnNp"', la primera 
fórmula cabe leer como "Es supercierto que P", o algo así, y la segunda 
como "viene a ser cierto que p". Definiendo rpp'" como r-, -'(Np-+p) /\ p'" 
(que cabe leer como "Es más bien cierto que p": 'P' por 'potius'), serán 
válidos los esquemas rpp V PNp"', rp-+q-+.pp-+Pq"'. Valdrán las inferencias 
p� Fa-+P, Np� FP-+w, -'p� FP-+·q /\ -'q Y -'p� FP\a. Definiendo 
ryp'" como rpla /\ p'" , cabe leerlo como "Es infinitesimal mente verdad que 

P", y se tiene: yp� FP /\ -'(a\p). 
En Awa no vale ya el principio de cancelación que valía en A"", salvo con 

una modificación, a saber: si xez:::::uez, entonces o bien Z:::::OO (el cero al­
gebraico), o bien x::::: u, donde' ::::: ' expresa una diferencia a lo sumo infinite­
simal de grado (o sea: <r,b> ::::: r ::::: <r,a>, pero en ningún otro caso x 
::::: z). ::::: no es una congruencia. Pero cabe generalizar la noción de congru­
encia así: para el conjunto de operaciones {-bi} (iEI) se tendrá que una re­
lación de equivalencia, 8, es una {-b;l(iEI)-congruencia sys tiene la propiedad 
de sustitución para cada -b i (i El). Pues bien, ::::: es una { /\ , V ,N, e ,m }-con­
gruencia. (No tiene la propiedad de sustitución ni para I ni para -'.) 

En la semántica aquí esbozada p� Fq no será una congruencia en el 
cálculo semánticamente definido (de p� Fq no se sigue Np� FNq, ni 
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YP=9 I=Y q ni Pp=j I=Pq, etc.). Mas sí será una {", v, "",e}-congruencia. 
En verdad se trata de la relación de equivalencia entre rp" y rq" sys 1= 
..., ""pI..., ""q, la cual «corresponde,. a su vez a la congruencia de Glivenko 
para un álgebra de Stone, a saber: x8Gz sys ..., ...,X=..., ""z. El fragmento de 
este cálculo que tiene como constantes lógicaS ' " " 'v' Y '..., ' es exacta­
mente Le. (El cálculo, como se indicó en el § 1, es además una extensión 
cuasiconservativa de cada lógica finivalente.) 

Podemos añadir a las operaciones de esta álgebra un conjunto infinito de 
operaciones unarias Ds

' 
sES-{ oo}, donde se tendrá: DsX=X si s=x; y, si no, 

DsX = oo. Entonces tendremos en el cálculo semánticamente definido con 
relación a esta álgebra sendos functores Ds; rDsP" dice que es verdad que p 
en grado s. Resultado: sys DsP=9 FDsq para todo s, I=PIq. Y, más en general, 
sys para todo s X FDsP sys X FDsq, X 1= pIq. Trátase, naturalmente, de 
secuentes infinitarios. 

Ya hablamos más arriba de la relación entre las lógicas multivalentes y 
las relevantes. Precisamente una lógica que admite una bonita definición 
semántica como lógica infinivalente es el sistema (de la familia relevante) 
RM . (Cuando se trata de sistemas relevantes, es a menudo difícil saber quién 
es el originador de uno de ellos en particular; mas lo que es seguro es que 
quien más se ha destacado en el estudio de RM es Robert K. Meyer; v. su 
sección sobre ese sistema, §29. 3, de Anderson y Belnap, 1975, 393 ss.) He 
aquí la matriz característica de dicho sistema: < 1, O, N, ", v, -+ > , donde 
1 es el conjunto de los enteros; O es el conjunto de los enteros no positivos; 
i "j = max(i,j); iv j = min(i,j); Ni = -i; Y j-+i =: Nj V i si j �i, Y Nj" i 
si j < i. Este sistema tiene una axiomatización finita muy elegante que resulta 
de añadir al sistema «relevante,. R el célebre axioma «Mingle,.: rp-+.p-+p". 
Sin embargo, RM , aunque de esa familia, ya no es un sistema que cumpla 
los constreñimientos relevantes. 

Pues bien, recientemente se ha estudiado una serie de sistemas inter­
medios entre las lógicas de la familia A -la que se ha venido exponiendo 
someramente en párrafos precedentes de este §- y el sistema relevante E, 

que resulta de R al suprimir el axioma de permutación: rp-+(q-+r)-+. 
q-+.p-+r" . He aquí cómo es uno de ellos, P5. Puede axiomatizarse con estos 
10 esquemas axiomáticos: 
p-+q-+r" (q-+p-+r)-+r p-+q" (q-+r)-+.p-+r 
p" q" r-+.r" p" q 
p-+q-+r-+s" (. (p-+p)-+(p-+q)-+s)-+s 
p-+q-+.p-+.p" q 
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p-+Nq-'.q-'Np NNp-+p 

Los functores primitivos son ' 1\ " '-.', 'N'. '.' es definido así: r. p'" 

abr. rN(p-+Np)"'; rp V q'" abr. rN(Np 1\ Nq)"'. Una sola regla de 

inferencia: para n�l: rpl-.qv .p2-.qv .... V .pn-.q"', rpl.." ... , rpn.., r 
q. (Cuando n = 1, trátase del modus ponens normal y corriente.) Este sistema 

tiene como característica una clase de matrices infinitas, parecidas a la de 

RM (y de hecho varias similitudes con RM): el portador será fU {-oo, oo}; 

las mismas asignaciones para los functores excepto para '-.': j-.i =: 00 si 

j < i; O si j � i; el conjunto de elementos designados, O, variará de una matriz 

a otra, si bien siempre [- 00 ,O] C;; D. Esa clase de matrices se llamará P, 

siendo lj aquella matriz de la clase P cuyo conjunto de elementos designados 

sea {x: x �j}; y P <j aquella en que sean designados todos los elementos < 

j. Las discrepancias entre RM y P5 son tan significativas como las 

convergencias. P.ej. en RM, mas no en P5 vale este teorema: rp 1\ Np 1\ 

q 1\ Nq-'.pIq'" (donde, claro, rpIq'" abr. rp-+q 1\ .q-'p"'). P5 y RM son 

paraconsistentes, mas sólo el primero es contradictorial. 

¿Tiene P5 una matriz característica? No puede ser P <00' porque en ella 

para cualesquiera fórmulas, rp"', rq"', se tendrá la validez (con relación a 

P < 00' tomada como característica) de la fórmula rp-+q V p'" , que no es teore­

mática en P5. Por otro lado, hay una diferencia entre P5 y una lógica de­

finida como caracterizada por la matriz Po: en esa lógica la operación de 

consecuencia Fp será tal que {p, Np, q, Nq} Fp pIq (igual que en en RM). 

y esa regla de inferencia no es derivable en P5. Sin embargo, los teoremas 

de una lógica así definida sí son exactamente los de P5. 

El más fuerte de los sistemas de esa cadena es P10, un sistema que el 
lector va a reconocer inmediatamente como de la familia A, que hemos 

venido examinando; P10 añade a P5 dos nuevos functores, 'H' monádico 

('Es totalmente cierto que') y 'a', O-ádico, O sea una constante sentencial, 
que denota la conyunción de todas las verdades (lo infinitesimalmente 
verdadero). Los esquemas axiomáticos adicionales son cuatro: 

p-+q-'.NHNHp-+Hq Hp-+q V .Np-+r �p V .p-+q a 

P10 sí tiene una matriz característica, que es como una para P5 sólo que 
el portador ha sido aumentado con dos elementos, a (siendo cualquier entero 
e < a < 00) y Na, tal que cualquier entero e > Na > -oo. Todos los 

elementos son designados salvo oo. Cualquier valuación, v será tal que v(Hp) 

= -00 si v(p) = -00, y, si no, v(p) = oo. v(a)=a (para cualquier v). 

Todo eso es como el lector ya lo esperaba, a estas alturas. 
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Quedan todavía por resolver muchísimos problemas con respecto al gé­

nero de lógicas infinivalentes cuyo estudio viene posibilitado por las álgebras 

del tipo recién considerado. P. ej.: ¿cuál es la axiomática más simple y 

elegante para el álgebra Awa Y las a ella isomórficas? Una vez dados ciertos 

postulados que recojan las propiedades lógicamente interesantes de esas 

álgebras (y se han propuesto varios conjuntos de tales postulados, recogidos 

en las obras ya citadas, que figuran en la bibliografía), ¿cuál es la menor 

álgebra -que no sea simplemente un álgebra de Lindenbaum o de Tarski­

que los satisfaga todos (y que, por lo tanto, sea un retracto de Awa, donde un 

álgebra A es un retracto de otra B sys hay un automorfismo idéntico de A 

[uno, m, tal que mx=x siempre] que es la composición o producto relativo 

de un monomorfismo de A en B con un epimorfismo de B en A)? 

III CONCLUSIONES 

Están aún por investigar las cuestiones con que ha finalizado el § precedente 

-así como muchas otras-, pero lo que ya parece probado es que ese género 

de tratamiento abre perspectivas que incrementan la aplicabilidad y el grado 

de motivación filosófica de las lógicas multivalentes. De hecho, ese manido 

aserto de que las lógicas multivalentes son meros juegos matemáticos ha sido 

siempre desacertado (ya Lukasiewicz puso en pie su sistema movido por una 

idea filosófica, equivocada o no, que es el rechazo del determinismo), pero 

nunca ha sido tan falso como con relación a las lógicas algebraicas infiniva­

lentes que acabamos de esbozar. 

La idea de que hay sólo dos valores de verdad es tan respetable como 

cualquier otra tesis metafísica, añeja o no, pero frente a ella abonan razones 

de peso que no cabe dejar de escuchar atentamente; algunas de esas razones 

llevaron a una parte de la tradición filosófica -aunque minoritaria- a la 

afirmación de grados de realidad y de verdad; otras de tales razones tienen 

que ver con problemas epistemológicos debatidos actualmente; y muchas de 

ellas guardan conexión con aplicaciones de la lógica a diversos campos del 

saber y de la investigación. 

Teniendo en cuenta que generalmente el mundo se nos acaba presentando 

como más complicado de 10 que nos 10 solíamos imaginar, cabe conjeturar 

que es infinitamente complicado, y que una parte de esa complejidad viene 

dada por la infinivalencia veritativa, por los infinitos grados de verdad y de 

falsedad. También habría que tener en cuenta otra faceta, que multiplica al 
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infinito la infinitud misma: en este trabajo sólo hemos considerado lógicas 

escalares, salvo una breve alusión a las álgebras producto. Hay razones -en 

las que ya no cabe entrar aquí- para pensar que la realidad es más complica­

da, y que incurren en simplificación burda las lógicas escalares (aquellas en 

las que, para cualesquiera dos valores, x, z, x � z o z < x): sería, en tal caso, 

más correcto representar a los valores de verdad como tensores o matrices 

infinitas (en el sentido del cálculo matricial). Entre otras cosas, así se podría 

dar un tratamiento más adecuado a problemas como algunos de la física cuán­

tica o los del realismo modal de David Lewis y temas afines. 

Una repercusión de la adopción de una lógica así sería que habría teorías 

aceptables no primas, o sea tales que rp V q" podría ser afirmable con 

verdad sin que lo fueran ni rp" ni rq". Naturalmente eso acarrea ciertas 

complicaciones para el tratamiento semántico de la disyunción. 

Lo que parece más allá de la controversia es que las lógicas multivalentes 

no son ni matemática ni filosóficamente anodinas. 
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