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CONCEPCIONES DE LA LOGICA'

Carlos E. Alchourrén

I. INTRODUCCION

So long as the sciences are imperfect, the definitions must partake of their
imperfection; and if the former are progressive, the latter ought to be so too
(John Stuart Mill).

Los textos tradicionales de logica usualmente comenzaban con una carac-
terizacion de la logica, seguida de una detallada comparacion de su con-
tenido y enfoque con los de otras disciplinas estrechamente vinculadas
a ella. Esta costumbre en gran medida se ha perdido. En los textos con-
temporaneos es frecuente encontrar sélo unas breves consideraciones refe-
ridas a la definicion de la l6gica y muy pocas comparaciones, en muchos
casos totalmente ausentes, con la tematica de otras disciplinas afines. Esta
evolucion en cuanto a la disminucion de la extension dedicada a la defi-
nicion de la disciplina y su comparacion con otras es un rasgo que acom-
pana al enriquecimiento intrinseco de toda ciencia. Cuanto mds abun-
dante es el material a exponer en una ciencia menos es el espacio que
se reserva a la definicion de su area tematica y al deslinde con otras cien-
cias. Estos ultimos objetivos pasan a integrar, entonces, los temas de
la filosofia de la ciencia en cuestion. La relativa autonomia que en cada
ciencia se produce respecto de su correspondiente filosofia como conse-
cuencia de su propio desarrollo puede interpretarse como un sintoma de
madurez, en la medida que por un lado permite al cientifico con-
tinuar con su tarea sin verse embarcado en complicadas cuestiones

1. Para una presentacion diferente de la idea central de este ensayo ver C.E. Alchourron y A.
A. Martino, «Logica sin verdad»: Theoria, 3 (1987/88) 459-464, San Sebastian.

Quiero agradecer las importantes sugerencias y comentarios de David Makinson y Thomas Moro
Simpson que permitieron mejorar considerablemente el contenido y la estructura de este escrito.
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CARLOS ALCHOURRON

filosoficas, y por otro, permite al filésofo profundizar sus problemas espe-
cificos apoyandose en los resultados de la ciencia. Sin embargo, no son
pocos los momentos en que el desarrollo mismo de una ciencia depende
de una adecuada reflexidn filoséfica sobre el drea tematica de la disci-
plina. Tal es el caso de la légica en su ultimo siglo de vida. Caracteriza-
ciones aceptadas durante siglos fueron desplazadas por otras como resul-
tado del desarrollo mismo de la l6gica. Sin embargo, este cambio ocurrié
sin abandonar el nucleo central que define el drea tematica de la disciplina.

El propésito de este ensayo, ubicado al comienzo del volumen sobre
logica en una enciclopedia general de filosofia, es tomar en cuenta, aun-
que sea brevemente, alguno de los topicos filosoficos vinculados al des-
linde de la logica.

No es tarea facil la de dar una definicién del drea tematica de una
disciplina, cualquiera que ella sea. Esto corrientemente se debe a que por
un lado el origen histérico de las distintas disciplinas es fijado, mds o
menos arbitrariamente por los historiadores, destacando los trabajos de
alguno o algunos autores representativos como las obras iniciales de la
disciplina, pero con clara consciencia de que ellos fueron precedidos por
observaciones y descubrimientos en el 4rea cuyos autores se desconocen
o tienen menos importancia. Ademas, es frecuente que el desarrollo his-
térico del cuerpo tedrico de cada disciplina haya sido gradual y acumu-
lativo, tal como ha ocurrido, por ejemplo, con el contenido tedrico de
ciencias como la astronomia, la fisica o la matematica que son el resul-
tado de adiciones y rectificaciones acumuladas a lo largo de siglos por
un sinnumero de autores, de importancia diversa, y que ha llevado, en
muchos casos, a ampliaciones y cambios mas o menos significativos de
la tematica histéricamente inicial.

La historia de la ldgica es, en la direccion apuntada, radicalmente
distinta. Su origen histdrico tiene fecha cierta. La ldgica es una teoria
que se inicia en los libros del Organon de Aristoteles. La teoria del Silo-
gismo Categorico, contenida sustancialmente en los Primeros Analiticos,
es y sigue siendo el paradigma para identificar la temdtica de la logica,
aunque no, por cierto, su contenido tedrico, que se ha incrementado enor-
memente y se ha modificado en rasgos importantes. Ademas, la historia
de la logica esta signada por discontinuidades tan marcadas que se hace
dificil hallar paralelos en la historia de otras ciencias. Esta curiosidad
en la historia de la ldgica estd enfatizada, aunque errénea y exagerada-
mente, por Kant en el prélogo a la segunda edicion de su Critica de la
Razén Pura cuando presenta a la légica como una ciencia que nacio per-
fecta y completa en manos de su creador: Arist6teles. Aunque Kant se
equivocd en esta apreciacidn historica, ya que desde Aristoteles hasta los
dias de Kant la teoria logica fue objeto de multiples, y en algunos casos,
sustanciales modificaciones, hay mucho de cierto en la imagen kantiana
de la historia de la ldgica, ya que, sin exagerar demasiado, puede afir-
marse que el cuerpo central de la teoria légica contemporanea surgi6 en
las postrimerias del siglo diecinueve en las obras de Frege, sin que pueda
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INTRODUCCION: CONCEPCIONES DE LA LOGICA

sefialarse en ellas influencia alguna ni continuidad con el enfoque teé-
rico aristotélico, y en cierto sentido, oponiéndose a éste. Sin embargo,
es dable senalar un tema central que, fijado en la obra de Aristoteles,
permanece idéntico hasta nuestros dias de modo que hace factible una
definicion general del drea tematica de la logica.

II. EL ENFOQUE PSICOLOGICO

En una primera aproximacidn la légica deductiva (ya que ése es nuestro
tema) puede describirse como la teoria de los razonamientos (deducti-
vos). Esta caracterizacion, ademas de excesivamente imprecisa, tiene un
inadecuado cariz psicoldgico que ha tenido, y que en ciertos enfoques
de la logica (el que recibe contempordneamente en muchos trabajos de
inteligencia artificial) contintia teniendo una persistente influencia que
entorpece la identificacion de la logica.

Una definicién muy corriente en las obras escritas antes de nuestro
siglo identificaba la ldgica con la ciencia y/o el arte del pensamiento.
Tal es el caso de la muy influyente obra de Antoine Arnauld y Pierre
Nicole (1662) La Logique ou I‘Art de penser conocida como La Légica
de Port Royal. En este sentido es también significativo el titulo An Inves-
tigation of the Laws of Thought on which are founded the Mathematical
Theories of Logic and Probabilities (Laws of Thought) con que George
Boole designd, en 1854, a uno de los libros mas influyentes en la ldgica
contemporanea.

De este modo, la vinculacion de la légica con la psicologia fue, desde
la perspectiva de muchos y muy representativos autores, tan estrecha que
identificaban a la logica como describiendo, y a veces prescribiendo, cier-
tos procesos psicoldgicos (razonamientos, argumentaciones) en que esta-
ban involucrados estados psicoldgicos de los individuos (juicios, creen-
cias, conocimientos).

Es realmente asombroso que una caracterizacion, en cierto modo,
tan errada como la que ofrece la definicién psicologista de la logica tuviera
un consenso tan amplio y duradero, que fuera necesario para descartarla
la enorme tarea y dedicacién que a fines del siglo pasado y principios
del actual pusieron Frege y Husserl en la lucha antipsicologista en cuanto
a la definicion de la l6gica. En el caso de Frege sus argumentos antipsi-
cologistas estuvieron en gran medida focalizados en la definicion psico-
logista de la matemadtica, y mds en particular de la aritmética, pero no
hay que olvidar que para Frege la matematica no es mas que el capitulo
mds avanzado de la légica.

Seria realmente insensato intentarjustificar las leyes de cualquier teoria
logica apoyandose en las propiedades que pudieran descubrirse obser-
vando los procesos psicologicos efectivos de argumentacion que los hom-
bres realizan a diario. El resultado de tal investigacién, de naturaleza cla-
ramente empirica y contingente, que seguramente exhibiria caracteristicas
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muy distintas frente a individuos de grupos humanos heterogéneos, seria
impotente para dar cuenta del caracter necesario y a priori de las leyes
logicas, quizds solo seriamente cuestionado por John Stuart Mill. Sin
embargo, la larga tradicion psicologista en la definicion de la logica ha
tenido una enorme influencia, si no en el desarrollo de la teoria logica,
en el vocabulario usado en la formulacion de las teorias logicas. En efecto,
verbos como inferir, argumentar, deducir, etc., designan indudablemente
procesos psicoldgicos que los hombres realizan con frecuencia. A su vez,
los sustantivos correspondientes: inferencia, argumento, deduccion, etc.,
y a pesar de su clara ambigliedad proceso-producto, conservan en su desig-
nacion la connotacién psicoldgica de los verbos asociados. Es mas, si
bien en logica se ha acufiado la expresion «premisa(s)» para indicar los
puntos de partida de una inferencia, se sigue usando la expresién «con-
clusién», con su clara connotacion de punto final de un proceso (en este
caso p51colog1co) para referirse a lo que se pretende estar justificado por
las premisas en un esquema inferencial.

Si bien, en principio, carece de justificacién la definicion de la l6gica
como ciencia tedrico-descriptiva del pensamiento, es en cambio m4s plau-
sible aquella definicién (vinculada a la idea de «arte del pensar») que carac-
teriza a la légica como una disciplina normativa destinada a prescribir
coémo se debe pensar (argumentar, inferir) para hacerlo correctamente.
Desde esta perspectiva el objeto de la logica seria, no ya describir como
los hombres efectivamente argumentan, sino efectuar una suerte de con-
trol de calidad con relacién al producto de la actividad argumentativa,
codificando los esquemas argumentativos que logran, distinguiéndolos
de los que no logran, la finalidad implicita en la actividad argumenta-
tiva. Este enfoque presupone que se explicite la o las finalidades que la
logica toma en cuenta en su control de calidad de los procesos argumen-
tativos, ya que, como toda actividad, los procesos de argumentar pue-
den llevarse a cabo guiados por las finalidades mds diversas. Asi, una
argumentacion realizada con el propdsito de persuadir a alguien, sera
buena o mala si de hecho se logra con ella convencer a la persona a la
que estd dirigida. Esta finalidad persuasiva que puede ser importante para
juzgar sobre el valor retérico de una argumentacién no es por cierto la
finalidad contemplada en la logica. En el enfoque que estamos conside-
rando se asume que la finalidad (por lo menos la finalidad que la l6gica
tomarad en cuenta) de una argumentacion serd preservar en la conclusion
la verdad de las premisas. El objetivo de la ldgica seria entonces encon-
trar criterios que aseguren la verdad de la conclusién para el caso en que
las premisas sean verdaderas.

III. EL ENFOQUE SEMANTICO

Siguiendo el camino anterior, que transita por las huellas de la tradicion
del «arte de pensar», puede llegarse a una de las caracterizaciones mds
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INTRODUCCION: CONCEPCIONES DE LA LOGICA

representativas de la visidn actual frente a la cuestion de la identificacion
temdtica de la logica: el enfoque semantico de la nocidn de consecuen-
cia. Por una inferencia se entenderd desde ahora un conjunto de enun-
ciados, de un lenguaje previamente especificado, en el que la verdad de
uno de ellos (la conclusion de la inferencia) se pretende justificar en la
verdad de los otros (las premisas de la inferencia). La inferencia serd buena
(valida) cuando la conclusion sea consecuencia necesaria de las premi-
sas, o lo que es lo mismo, cuando las premisas impliquen l6gicamente
la conclusién. Esta idea puede resumirse en cualquiera de las siguientes
dos definiciones intuitivas que serviran como punto de partida para lograr
otras técnicamente mas precisas.

(Def. 1.0) Un enunciado C es consecuencia del conjunto de premisas
P,...P, siy solo si es imposible que las premisas P,...P, sean todas ver-
daderas y la conclusion C no lo sea, o equivalentemente:

(Def. 1.1) Un enunciado C es consecuencia del conjunto de premisas
P,...P, siy sélo si es necesario que si todas las premisas son verdaderas
la conclusién también lo sea.

Es claro que cuando se cumple la condicion expuesta, la verdad de
las premisas justifica la verdad de la conclusion, es decir, se cumple con
la finalidad, considerada por la légica en todo proceso (psicoldgico) argu-
mentativo, de preservar en la conclusién la verdad de las premisas.

En la nocién de consecuencia que estamos comentando hay dos tipos
de expresiones que requieren especiales aclaraciones: por un lado estdn
las nociones modales de necesidad e imposibilidad, y por otro las de ver-
dad y falsedad. En este momento nuestro proposito es presentar esque-
maticamente el enfoque de la logica que deriva de los trabajos de A. Tarski
sobre el concepto de verdad (Tarski, 1935) y el concepto de consecuen-
cia légica (Tarski, 1936).

Comencemos con las nociones de verdad y falsedad. En el enfoque
tarskiano verdad y falsedad son calificaciones hechas en el metalenguaje
que versa acerca de las expresiones de un lenguaje (objeto) I a los enun-
ciados IL.. En este enfoque los «portadores de la verdad» son expresiones
lingtiisticas (los enunciados del lenguaje objeto IL). No son estados psi-
cologicos ni el significado (proposiciones) de tales expresiones lingiiisti-
cas. Sin embargo, para que pueda atribuirse un valor de verdad (verdad
o falsedad) a un enunciado éste tiene que ser un enunciado significativo
y esto supone que el lenguaje tiene que estar interpretado a través de
alguna correlacion (explicitada en la parte semdntica del metalenguaje)
de algunas de sus expresiones con las entidades de la realidad acerca de
las cuales versa el lenguaje objeto L.

Por razones que por ahora no vamos a analizar, Tarski considera que
por sus peculiares caracteristicas ninguno de los lenguajes naturales (espa-
fiol, inglés, portugués, alemdn, etc.) admite una nocion de interpreta-
ciéon con el grado de precision que se requiere para dar una explicacién
coherente y satisfactoria de la nocién de verdad (y de falsedad). Por esta
razén, su construccion estd referida siempre a un lenguaje artificialmente

15



CARLOS ALCHOURRON

creado, en donde no existen las imprecisiones sinticticas y semdnticas
de los lenguajes naturales. En ésto la obra de Tarski estd signada por
uno de los rasgos distintivos de la tarea légica en la dltima centuria: crear
y estudiar lenguajes artificiales con el prop6sito de reconstruir en ellos
algunas propiedades (no todas) de las expresiones de los lenguajes natu-
rales. Ademds, en ésto la ldgica no hace mdas que seguir el camino de las
ciencias mas avanzadas, en efecto, cuando ellas tienen que dar cuenta
de una realidad compleja comienzan por construir un modelo simplifi-
cado en el que sélo se representan los aspectos que interesan, dejando
fuera todo lo demas.

Supongamos un lenguaje artificial I, con la siguiente super simple
estructura sintactica. El vocabulario de L, esta integrado por los signos
de las siguientes cuatro categorias sintacticas:

Nombres: a,...a,...

Predicados (monadicos): P,...P,

Signos légicos:

—  (Negacién)

A (Conjuncioén)

v (Disyuncién incluyente)
D  (Condicional material)

Signos de puntuacion: «(»y«)» (paréntesis izquierdo y derecho).

Los enunciados de I, seran las secuencias de signos de I (expresiones
de I) que satisfacen alguna de las siguientes clausulas (reglas de forma-
cién [de enunciados] de LL):

1. Enunciados atomicos: si P es un predicado de I y @ es un nombre
de I, entonces Pa (P seguido de a) es un enunciado (atémico) de L.

2. Enunciados moleculares: si A y B son enunciados de L, entonces
— A, (AAB),(AvB)y (A D B) son enunciados (moleculares de IL).

Las reglas anteriores 1 y 2, que pertenecen al metalenguaje sintactico
de IL,, especifican cuales de las expresiones de I son sus enunciados, pero
nada dicen acerca del significado (en el sentido de referencia a la reali-
dad) de ninguna de las expresiones de nuestro lenguaje objeto. Para este
ultimo propdsito supongamos que contamos en nuestro metalenguaje con
funciones del tipo F |,* (funciones de interpretaciéon) cada una de las
cuales correlaciona cada uno de los nombres del lenguaje con un objeto
y s6lo uno de la realidad y cada uno de los predicados de I, con una clase
de objetos de la realidad y sélo una. Si a es un nombre, | a |; es el objeto
nombrado por 4 en la interpretaciéon | |;; si P es un predicado, | P |,

2. Lo indicado en el texto es instrumental suficiente para la semantica de una ldgica proposicio-
nal. Cuando se trata de una ldgica (como la de la cuantificacion) en la que figuran los cuantificadores
estandar es necesario asociar a cada funcién de interpretacion | |, un conjunto no vacio de objetos
D; (llamado dominio de la interpretacién | |;) que fija el 4mbito de las entidades tomadas en cuenta
por los cuantificadores.
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INTRODUCCION: CONCEPCIONES DE LA LOGICA

es el conjunto de los objetos denotados por el predicado (la extension
de P) en la interpretacién | |,. Con estos elementos estamos en condi-
ciones de especificar las condiciones en que son verdaderos los enuncia-
dos atémicos en cada una de las interpretaciones de L (con relacién a
cada una de las funciones interpretativas | |, del metalenguaje de L).
La clausula que cumple con tal tarea es:

(i) Un enunciado atémico Pa es verdadero en la interpretacién
| |;siysélosi|ale€|P ] (el objeto asignado al nombre «a» en la inter-
pretacién | |, es uno de los elementos de la clase asignada al predicado
«P» por esa misma interpretacion).

Si ademas suponemos que cada una de las funciones de interpreta-
cién cumple las siguientes cldusulas definitorias de las condiciones de ver-
dad (definicién contextual del significado de los signos logicos de IL.) de
los enunciados moleculares, entonces habremos especificado las condi-
ciones en que son verdaderos o falsos todos y cada uno de los enuncia-
dos de I, en cada una de sus interpretaciones.

(i) — A es verdad en | |, si y s6lo si A no es verdad en | |..

(iii) (A A B) es verdad en | |[; siy sélo si tanto A como B son ver-
dad en | |.

(iv) (Av B)esverdaden| | siy sélosi A, B o ambas son verdad
en | |.

(v) (A D B)esverdad en | | siy sélosi A noesverdaden| |,

oBesverdaden | |.

Lo anterior serd todo lo que diremos por el momento en cuanto a
la nocién de verdad requerida para explicar la caracterizacion anterior
de consecuencia légica en la tradicion semdntica tarskiana. Sin embargo,
quedan por aclarar las nociones modales que figuran en las anteriores
definiciones. Tanto la nocion de necesidad como la de imposibilidad
son reconstruidas, en este enfoque, como generalizciones a partir de
las funciones de interpretacién | |, admisibles para L, es decir, las
que cumplen las condiciones estipuladas en las cldusulas anteriores de
(i) hasta (v).

De este modo se dira:

(Def. 2.0) Un enunciado A de L es consecuencia (semdntica) del con-
junto de enunciados « de I (premisas), que abreviaremos: a = A, siy
s6lo si no hay una interpretacién | |, admisible de L. (imposibilidad)
en la que todos los enunciados de « son verdaderos y en la que A no lo es.

O, lo que es equivalente:

(Def. 2.1) Un enunciado A de IL es consecuencia (semantica) del con-
junto de enunciados o de I, (premisas), a = A, siy sélo si A es verdadera
en toda interpretacién admisible | |, de I (necesidad) en la que son ver-
daderos todos los enunciados de «.
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En resumen, la transicion de las definiciones (Def. 1.0) y (Def. 1.1)
a las definiciones (Def. 2.0) y (Def. 2.1) estd signada por varias caracte-
risticas destinadas a obtener resultados mds precisos:

(A) En las ultimas definiciones la nocion de consecuencia esta refe-
rida a un lenguaje artificial I, (en el que se aspira a reflejar importantes
rasgos de los lenguajes corrientes), que cuenta con una estructura sintac-
tica mucho mas perfilada y simple que la de los lenguajes naturales.

(B) La nocién de interpretacion (las funciones | |, referidas a IL)
de las expresiones de IL carece de las ambigliedades y vaguedades que
adolecen las expresiones correlativas de los lenguajes corrientes (con este
alcance suele decirse que las definiciones (Def. 2.0) y (Def. 2.1) son
«reconstrucciones racionales» de (Def. 1.0) y (Def. 1.1)).

(C) Lanocién de verdad (y falsedad) usada en las ultimas definicio-
nes depende: 1) de las funciones de interpretacién | |, (en el sentido
en que un mismo enunciado A de I, puede ser verdadero en una interpre-
tacion | |,y falsoen otra | [;)y 2) de las clausulas que la gobiernan
(en nuestro ejemplo, las clausulas que van de (i) a (v)).

(D) Ademas,lanocién de verdad de Tarski pretende reconstruir, fun-
damentalmente a través de la satisfaccidon de la condition (i), la nocién
filosofica de origen aristotélico, de «verdad como correspondencia».

(E) Las nociones modales intuitivas de necesidad e imposibilidad
légica son reconstruidas por medio de cuantificaciones universales sobre
la totalidad de funciones de interpretacién | |, admisibles para el len-
guaje IL. La referencia a la imposibilidad (logica) de (Def. 1.0) es reem-
plazada en (Def. 2.0) por «no hay interpretacién | |, admisible» y la
referencia a la necesidad (logica) de (Def. 1.1) es reemplazada en (Def.
2.1) por «para toda interpretacion | admisible».

La presente relaciéon = de consecuencia semantica cumple con las

siguientes propiedades (de facil verificacion a partir de las definiciones
anteriores):

(=1) Reflexividad generalizada: o = A si A€a.
(E2) Corte: si « = By oUB] = A entonces a = A.
(=3) Monotonia: si « = A entonces U8 = A.

Ninguna de estas propiedades depende de las especificas clausulas que
van de (i) a (v) a que se encuentra sujeta en el ejemplo anterior la nocién
de verdad. Cada una de esas propiedades puede probarse recurriendo sélo
a (Def. 2.0) o a su equivalente (Def. 2.1).

La nocién de «verdad logica» queda como el caso limite de la rela-
ciéon de consecuencia semdntica en el que el conjunto de premisas es vacio.
Un enunciado A expresa una verdad légica: = A (abreviatura de 0 =
A) siy sélo si A es verdadero en todas las interpretaciones | |, admi-
sibles de [, A su vez, si el lenguaje cuenta con el signo D de implicacion
material que satisface la clausula (v), la nocién de consecuencia seman-
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tica es caracterizable a partir de la nocion de verdad ldgica. En efecto,
es facil verificar el siguiente enunciado metalingtiistico de correlacion entre
las nociones de consecuencia semdntica y de verdad légica, para el caso
en que el conjunto de premisas « no sea vacio (que es el caso diferencial
entre ambas nociones) y la relaciéon & sea compacta®:

(P-5) a = A siy solo si hay en « un conjunto finito de enunciados
A A, tal que = ((A, D (A, D...(A, D A)...).

Con estos elementos se constituye el, actualmente mas dominante,
enfoque en cuanto a la identificacién temdtica de la l6gica. Esta propuesta
podria llamarse el paradigma Tarski-Carnap, ya que si bien se debe a
Tarski tanto la definicién semantica de verdad, como la caracterizacién
de la nocién semantica de consecuencia e, indirectamente, la nocion de
verdad légica, fue Carnap quien enfatizé la identificacion de la l6gica
como la teorizacién de esa nocion de consecuencia semdntica y de ver-
dad logica. De hecho Carnap, siguiendo ideas fundamentalmente origi-
nadas en el formalismo de Hilbert, habia sostenido, hasta el momento
de la publicacién de trabajos de Tarski, en su obra Sintaxis Légica del
Lenguaje (Carnap, 1937) la identificacion de la logica como la teoriza-
cién de una nocién puramente sintactica de consecuencia.

Es mas, generalizando esta tesis acerca de la naturaleza sintdctica de
la l6gica, Carnap (1937) sostuvo que la filosofia no es mds que la sinta-
xis légica del lenguaje de la ciencia. Luego de las publicaciones de Tarski
cambid su paradigma adoptando, en primer término, la triparticion de
la metateoria de todo lenguaje en: sintaxis (parte de la metateoria que
considera solamente las propiedades y relaciones de los signos de un len-
guaje [, con independencia de toda interpretacion del lenguaje), seman-
tica (parte de la metateoria en la que se consideran las propiedades y rela-
ciones entre los signos de un lenguaje I, que dependen de las correlaciones
entre las expresiones del lenguaje y la realidad establecidas por las fun-
ciones de interpretacién | |,) y pragmatica (parte de la metateoria en
la que se consideran las reglas de uso de los signos lingiiisticos adopta-
dos por un hablante o una comunidad de hablantes del lenguaje). Semié-
tica (teoria general de los signos) es el nombre genérico que cubre a la
sintaxis, la semantica y la pragmatica.

Desde la perspectiva anterior Carnap (1942) reformulé sus tesis de la si-
guiente manera: la filosofia no es mas que la semidtica del lenguaje de la cien-
cia y la logica es, como en la caracterizacion tarskiana, la teoria de la re-
lacion de consecuencia semantica y de la nocién seméntica de verdad logica.

La influencia de las obras de Tarski fue enorme, y si bien ahora nos
estamos refiriendo principalmente a la incidencia que tuvieron en la meta-

3. Una relacion de consecuencia & se dice que es compacta si y sdlo si cuando un enunciado
A es consecuencia de un conjunto « (e = A) entonces A es consecuencia de un subconjunto finito 8

de a (B E A).
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teoria de la ldgica, su repercusion se hizo sentir en muchas otras 4reas
centrales de la filosofia. Asi, por ejemplo, Popper tras haberse resis-
tido a toda mencién de la nocién de verdad, por considerarla incon-
trolable y metafisica, luego de los trabajos de Tarski efectué un giro
semejante al realizado por Carnap, dando a la nocién semdntica de ver-
dad un lugar central en su filosofia de la ciencia. El gran impacto de
la semantica de Tarski se debe en gran medida a que en ella se muestra
una esclarecedora vinculacion entre los signos ldgicos (conectivos y cuan-
tificadores) y la nocion de verdad. En efecto, Tarski mostré6 cémo las
mismas reglas que ldgicos anteriores (como Post, Wittgenstein, Skolem
y Godel), presuponiendo la nocion de verdad, habian usado para expli-
car el significado de los signos l6gicos, podian también ser usadas para
clarificar la nocién de verdad (con una precomprension de los signos
logicos).

IV. EL ENFOQUE SINTACTICO

Para comprender mejor el sentido de esta evolucion carnapiana conviene
presentar con cierto detalle su enfoque anterior de la nocién sintictica
de consecuencia y las razones que lo llevaron a abandonarla como nocién
a tomar en cuenta para definir el drea temdtica de la logica.

La siguiente es posiblemente la definicion mds simple de la nocién
sintactica (metalingtiistica) de consecuencia (que Carnap llamo relacidn
de derivabilidad).

(Def. 3) Un enunciado A del lenguaje I es una consecuencia sintéc-
tica del conjunto o de enunciados de L, que abreviaremos por a — A,
si y sblo si hay en I una secuencia finita A,...A, de enunciados de L,
tal que A, =A y cada uno de los A, de la secuencia es o bien un axioma
de I 0 es un elemento de « o bien se sigue de enunciados que le prece-
den en la secuencia en funcion de las reglas primitivas de inferencia de
IL (de la secuencia A,...A, se dice que es una derivacion de la conclu-
sién A).

En la definicién anterior se entiende por axioma a todo enunciado
del lenguaje L, que por expresar lo que intuitivamente seria una verdad
logica (como lo es en la logica clasica el enunciado (condicional) de 1L
que expresa la ley del modus ponens: «(((A D B) A A) D B))», que puede
introducirse en cualquiera de las secuencias que constituyen una deriva-
cidén. Por regla (primitiva) de inferencia se entiende a toda cldusula con-
dicional del metalenguaje de I, que permite introducir en una deriva-
cién el enunciado de I que es la conclusion de la regla si en la parte
precedente de la derivacion se encuentran el o los enunciados (de I,) que
figuran como premisas de la regla. Asi, por ejemplo, la regla del modus
ponens: «De (A D B) y A se sigue B», que 7o es, como la anterior ley
del modus ponens, un enunciado (condicional) del lenguaje Il sino un
enunciado condicional de metalenguaje de I, que permite introducir la
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conclusion B en toda derivacion en la que figuren previamente tanto el
enunciado (A D B) como el enunciado A*.

A partir de la definicion anterior puede ficilmente probarse que la
relacion sintactica de consecuencia — cumple las siguientes tres propie-
dades, analogas a las indicadas en (= 1), (=2) y (= 3) para la relacién
semdntica de consecuencia E:

(1) Reflexividad generalizada: o — A si A€a.
(F2) Corte: sia — By aU{B] — A entonces a — A.
(+3) Monotonia: si « — A entonces aUB + A.

Conviene destacar que todas estas propiedades las cumple toda nocién
de consecuencia sintictica cualquiera sea el conjunto de axiomas y el con-
junto de reglas primitivas de inferencia seleccionados para identificarla
(y aunque tales conjuntos sean vacios).

Asi como el caso limite en que el conjunto « de premisas es vacio
da lugar a la nocién de verdad légica con referencia a la relacion seman-
tica de consecuencia, el mismo caso limite para la nocién sintactica de
consecuencia, da lugar a la nocién de tesis (teorema) de un sistema logico
axiomatico. Un enunciado A es un teorema — A (abreviatura de 0 +
A) si y sélo si hay una secuencia como la anterior cuyos elementos son
solo axiomas o enunciados que se siguen de los precedentes en la secuen-
cia en funcién de las reglas primitivas de inferencia.

Asi como la nocién de consecuencia semantica y la de verdad logica
dependen (en su caracterizaciéon) de las nociones de interpretacién y de
verdad (en particular de la satisfacciéon de condiciones como (i)...(v) que
especifiquen las condiciones de verdad de los distintos tipos de enuncia-
dos del lenguaje), la nocién sintactica de consecuencia depende de las
nociones de axioma y regla primitiva de inferencia, ya que la verdad de
una afirmacion sintdctica de consecuencia o — A depende de cudles sean
los enunciados elegidos como axiomas y cudles sean las reglas primitivas
de inferencia seleccionadas al caracterizar el sistema axiomdtico.

En muchos casos (cuando el lenguaje incluye un signo de condicio-
nal, como ‘D’, que satisface el llamado metateorema de la deduccidn:

(MD) Si (e U {A]) + B entonces @ + (A D B)),

y su conversa (que depende de la presencia de la regla del modus ponens)
puede darse una definicion alternativa de la l6gica (que aqui es tanto como
a relacion sintactica de consecuencia en cuestidn, identificandola con
la relacién sintdctica de cons - stién, identificandola co

4. Si bien no estd excluida la posibilidad de que en una regla primitiva de inferencia figure un
numero infinito de premisas (todas las cuales tendrian que figurar en una derivacién para poder intro-
ducir en ella la conclusion de la regla), la presencia de tales reglas es vacua, ya que por el carécter finito
que (Def. 3) impone a cada derivacién, nunca se dara la condicién para usarlas. Por el contrario, debe
considerarse que a los efectos de (Def. 3) estdn excluidas las reglas con condiciones negativas (del tipo
«Si en la derivacion figura A pero no B, puede introducirse C en la derivacion»), caracteristicas de las
logicas (no deductivas) no mondtonas, cuya presencia impediria probar la monotonia de la relaciéon
de consecuencia sintdctica (+.3).
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el conjunto de los teoremas (el conjunto de los enunciados A para los
que se cumple: — A), ya que en las condiciones indicadas la relacion sin-
tactica de consecuencia es definible a partir de la nocién de teorema.

V. LA CUESTION DE LA PRIMACIA: SEMANTICA VERSUS SINTAXIS

Asi como la definicién semantica (Def. 2.0) (al igual que su equivalente
(Def. 2.1)) pretende ser una reconstruccion precisa de la nocidn intuitiva
de consecuencia (definitoria de la logica) contenida en (Def. 1.0) (o su
equivalente intuitivo (Def. 1.1)), lo mismo sucedi6 con la definicion (Def.
3). En efecto, la definicién de consecuencia sintdctica fue presentada por
Carnap en sus primeros trabajos como la reconstrucciéon racional pre-
cisa de la nocién intuitiva de consecuencia. Sin embargo, la existencia
de dos nociones precisas (la sintdctica y la semdntica), en principio com-
pletamente diferentes, ya que en cada una de ellas figuran esencialmente
pares de conceptos muy distintos (funciones de interpretacion y verdad
en la definicién semdntica, y axiomas y reglas de inferencia primitivas
en la definicion sintdctica) de una misma relacidn intuitiva plantea varios
interrogantes técnicos y filosoficos: ¢a través de cudl de las relaciones,
la semantica o la sintactica, debe llevarse adelante la tarea especifica de
la l6gica en su empefio en reconstruir con precision la nocion intuitiva
de consecuencia?, ¢debe hacerlo buscando identificar axiomas y reglas
de inferencia primitivas o por el contrario debe hacerlo especificando
nociones de interpretacion y de verdad?

En la tarea l6gica actual los dos enfoques son, en cierto modo, objeto
de igual interés tedrico. Si bien en la presentacion original de muchas
logicas se sigue el enfoque semantico y en otras el enfoque sintactico,
hay una suerte de acuerdo tacito que considera que la tarea del logico
no se encuentra concluida hasta que para una misma légica no se ha con-
seguido una presentacion coincidente desde ambos enfoques. Esto signi-
fica lo siguiente. Supongamos que una especifica relacion de consecuen-
cia sintdctica + es caracterizada a partir de la enumeracion de un conjunto
Ax de axiomas y de un conjunto R de reglas de inferencia primitivas y
que una especifica relacion de consecuencia semdntica = es caracteri-
zada a partir de un conjunto I de funciones de interpretacién y un con-
junto V' de cldusulas para la nocién de verdad de los enunciados, enton-
ces ambos enfoques son coincidentes (caracterizan de manera diferente
una misma légica) cuando puede probarse en el metalenguaje el siguiente
enunciado de correlacidon:

(Corr. 1) Para todo conjunto « de enunciados de I y para todo enun-
ciado A de l: @ — A siy sélosia E A,

que para el caso particular en que se tienen en mira las nociones de teo-
rema y verdad légica mas que las relaciones de consecuencia el enunciado
anterior se convierte en:
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(Corr. 2) Para todo enunciado A de I.: — A siy sélo si = A.

Ambas afirmaciones significan (si bien (Corr. 1) es mds general que
(Corr. 2)) que los dos enfoques producen el mismo resultado: un enun-
ciado es una conclusion axiomadtica-sintactica exactamente cuando es una
consecuencia semantica, lo que implica que los enunciados sintacticamente
demostrables (teoremas) son exactamente las verdades légicas. La afir-
macion de correlacidon (Corr.) es frecuentemente identificada como un
«metateorema de representacién» ya que cuando el punto de partida es
una presentacidn sintdctica este ultimo suministra la representacion
semdntica adecuada; y a la inversa, cuando el origen es una presentacién
semantica, indica una representacion sintactica equivalente.

Sin embargo, el nombre mds corriente para el enunciado de correla-
cién es el de «metateorema» de completitud ( — consistencia) semantica».
Este nombre enfatiza la idea de que la calidad conceptual de un sistema
sintactico-axiomatico se juzga desde la perspectiva semdntica, ya que tal
denominacion indica que lo que se ha estado buscando es la representa-
cidn sintactico-axiomatica de un sistema de logica semanticamente iden-
tificado. Giros terminolégicos como el indicado, muestran como, cons-
ciente o inconscientemente, los l6gicos contemporaneos han internalizado
una posicion filoséfica (en cuanto a la naturaleza de la légica) que, en
cierto modo, es la posicion caracteristica de Carnap en su periodo seman-
tico (el posterior a los escritos semanticos de Tarski). Podemos llamar
a esta posicion la de la «Primacia de la Semantica sobre la Sintaxis» (en
la caracterizacion de lalogica). Segun ella son las nociones de consecuencia
semantica y de verdad légica las que identifican a cada légica. En este
sentido identificar una logica IL; es tanto como especificar la relacién de
consecuencia semdntica correspondiente: =;. Si ademas se cuenta con
una relacién sintdctica correspondiente ., esto es, para la que se cum-
ple la condicion de correlacion (Corr. 1), entonces se esta en posesion
de una presentacién axiomatica (sintactica) de la logica IL; en cuestién.

Desde la perspectiva de la primacia de la semantica la identificacién
de cada légica L; es la que se logra semdnticamente. La presentacion
axiomatica es sélo una representacion sintdctica de ella, obtenida pres-
cindiendo de la significatividad del lenguaje en que la logica es formu-
lada, pero no la identificacion de la misma. La tarea del ldgico es esen-
cialmente semantica.

Por cierto, la tesis de la primacia de la semdntica no pretende restar
importancia a la axiomatizacion de una logica, ya que el enfoque sintéc-
tico tiene virtudes independientes que lo justifican ampliamente. Recor-
demos que una afirmacién de consecuencia sintactica o — A es una aser-
cion (metalingiiistica) existencial comprometida con la existencia de una
secuencia finita de enunciados del lenguaje entre cuyos puntos de par-
tida estan los enunciados de « y cuyo dltimo enunciado es precisamente
A. Como la forma mas natural de representar un proceso es por medio
de una secuencia (en la que se ubican, siguiendo el orden temporal, los
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distintos estados momentaneos que constituyen el proceso), la caracteri-
zacion sintactica es asi una fiel representacion de un posible proceso psi-
coldgico de inferencia que comienza con las premisas a y que se va desa-
rrollando segun las reglas de inferencia de la logica en cuestion hasta
alcanzar como punto final la conclusion buscada. Esto es, la nocion sin-
tactica de consecuencia conserva los rasgos estructurales de la nocion psi-
colégica de inferencia.

Muy por el contrario, las afirmaciones de consecuencia seméntica o
= A, que suponen una asercion (metalingiiistica) universal (y no exis-
tencial como la sintactica)®, sdlo establecen una vinculaciéon entre las
premisas y la conclusion sin ninguna referencia a secuencia alguna que
pueda reproducir algun tipo de proceso (psicoldgico) inferencial. Tales
aserciones son vistas, desde la perspectiva de la primacia de la seman-
tica, como el control de calidad que la l6gica realiza al comparar el ori-
gen (premisas) y el punto final de la secuencia en que se constituye la
derivacién sintactica, que en definitiva es la reconstruccion lingiiistica
de un posible proceso psicoldgico inferencial.

Ademais, la inteligibilidad que se logra a través de una presentacion
sintactico-axiomdtica de una ldgica amplia y complementa a la suminis-
trada mediante el enfoque semantico. En este sentido, el lograr una pre-
sentacién axiomdtica significa un adelanto en la comprensiéon psico-
logica del contenido conceptual de una légica. Lo mismo sucede habi-
tualmente con las distintas presentaciones sintacticas de una misma ldgica.
Por cierto, otro tanto ocurre a la inversa. Una presentacion semdntica
aumenta y complementa usualmente el nivel de inteligibilidad que se con-
sigue a través de las presentaciones sintdcticas.

Sin embargo, y a pesar de las virtudes sefialadas del enfoque sintac-
tico, que son pacificamente aceptadas, hay algunas razones muy convin-
centes que apoyan la tesis de la primacia de la semantica.

Un argumento en esa direccion es el siguiente. En el enfoque sintéc-
tico se prescinde completamente del significado (en el sentido de correla-
cidén entre el lenguaje y la realidad) de las expresiones del lenguaje I, al
que esta referido. Los signos y expresiones del lenguaje son, desde la pers-
pectiva sintactica, entidades asignificativas y sus enunciados carecen de
valor de verdad (porque carecen de significado). Por este motivo la elec-
cion de los principios (axiomas y reglas de inferencia primitivas) de una
logica no tiene limitacién alguna. En el enfoque sintactico somos total-
mente libres de erigir en axiomas logicos a cualquier conjunto de enun-
ciados del lenguaje, y lo mismo sucede con la eleccion de las reglas de

5. El caracter existencial de la nocién sintéctica de consecuencia facilita la prueba de que un
enunciado es consecuencia de un cierto conjunto de premisas, ya que basta con mostrar la existencia
de una derivacidn para lograr lo buscado. A la inversa, el caricter universal de la nocidén semantica
de consecuencia facilita la prueba de que un enunciado #0 es consecuencia de un conjunto de premisas,
ya que para ello basta con mostrar la existencia de una interpretacion admisible en la que las premisas
son verdaderas y la conclusién no lo es.
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inferencia: cualquier relacién sintactica-formal entre enunciados es sus-
ceptible de ser elegida para identificar las reglas primitivas de una logica.
Resulta asi que una légica se presenta como el resultado puramente con-
vencional de elecciones arbitrarias adoptadas sin limitacion alguna. Desde
este angulo la creacion e identificacién de una logica se muestra como
una empresa tan libre, arbitraria y convencional como el de la creacion
e identificacion de un juego. Un cambio de las reglas que identifican a
un juego solo produce la identificacion de otro juego tan legitimo (en
tanto que juego) como el anterior.

Sin embargo, asi como tenemos criterios para elegir en cada oportu-
nidad entre los distintos juegos posibles cudl o cudles son los mds aptos
para alcanzar una finalidad determinada, que puede ser muy distinta en
cada contexto y circunstancia diferente (no son las mismas las finalida-
des que han prestigiado juegos tan distintos como la loteria, el ajedrez,
el bridge, el polo, etc.). Lo mismo sucede frente a los distintos calculos
posibles que resultan de selecciones de principios diferentes. La finali-
dad que guia la eleccién entre los diversos cédlculos sintdctico-axiomadticos
para identificar una légica es una finalidad muy especifica y bien delimi-
tada: se trata de que los axiomas y teoremas del sistema sean verdades
logicas y de que las reglas de inferencia (primitivas y derivadas) transmi-
tan a la conclusiéon la verdad de sus premisas. Un sistema sintactico-
axiomatico que no cumpla con esta condicién no identifica un sistema
logico, y cualquier otra virtud que pueda tener es ajena a la ldgica.
Mirando las cosas de esta sensata manera, y considerando que la condi-
cién impuesta (en funcion de la finalidad por antonomasia de la logica)
es la que caracteriza al enfoque semantico, es como se configura uno de
los caminos por los que se justifica la tesis de la primacia de la semantica.

Hay otras razones que conducen al mismo resultado. Cuando se
indaga por la razén por la que ciertos enunciados expresan verdades 16gi-
cas y por la que las reglas de inferencia que preservan la verdad de su
conclusion cuando sus premisas son verdaderas son identificadas como
reglas légicas de inferencia (que es tanto como indagar por la diferencia
entre la logica y otras disciplinas cientificas), una respuesta muy antigua
y sensata sefiala que un enunciado expresa una verdad légica cuando su
verdad puede determinarse recurriendo exclusivamente al significado de
los signos logicos que figuran en el enunciado en cuestion (o en los enun-
ciados que figuran en la regla de inferencia, seguin sea el caso). Se entiende
aqui que los signos ldgicos, que los medievales llamaban «sincategore-
maticos», son aquellos que no denotan entidad alguna de la realidad
(aquellos que estan fuera del ambito de las funciones de interpretacion

|, antes mencionadas). Esta indicacién, puramente negativa, no nos
dice, sin embargo, cémo se logra la especificacidn del significado de los
signos légicos.

La respuesta positiva deriva de una de las tesis centrales de la filoso-
fia de la logica de Frege, aquélla segun la cual la especificacion del signi-
ficado de un enunciado se obtiene mediante la explicitacidn de las condi-
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ciones en que el enunciado es verdadero (el significado de un enunciado
son sus condiciones de verdad). Desde este enfoque el significado de un
signo ldgico se identifica cuando se explicita cémo este ultimo contri-
buye al significado de los enunciados de los que forma parte. Indicando
las condiciones de verdad de los enunciados en los que interviene un signo
légico y como incide su presencia en las condiciones de verdad de los
enunciados en los que figura se identifica (indirectamente) su significado.
La definicién de un signo légico es siempre una definicién de las que B.
Russell llam¢é «definiciones en uso» (aquéllas en las que el significado de
un signo se logra indicando su uso en el contexto de un enunciado). Notese
que las anteriores cldusulas (ii) hasta (v) de la caracterizacion de la nocién
de verdad para nuestro lenguaje L, tienen como funcién precisamente
exponer, en la forma indicada (como definicidn en uso), el significado
de los signos logicos de negacion «— », de conjuncién «A», de disyun-
cién «v» y de condicional (material) « D » del lenguaje modelo L. Estas
cldusulas suelen presentarse en los textos de ldgica, para los conectivos
proposicionales, en la forma tabular de las llamadas «tablas de verdad».

Resumiendo la argumentacion anterior resulta que: a) la delimita-
cion de las leyes (verdades) y reglas de inferencia de la légica se hace en
base al significado de los signos 1égicos, b) el significado de los signos
logicos se especifica en las clausulas que definen la nocién de verdad de
un lenguaje. Pero como tanto la nocién de verdad como las clausulas
que la caracterizan son los rasgos esenciales del enfoque semantico, se
concluye naturalmente la primacia del enfoque semantico sobre el enfo-
que sintactico en la identificacién del drea especifica de la ldgica.

VI. LOS ENFOQUES SINTACTICOS Y SEMANTICOS EN LA HISTORIA

Sin perjuicio de la validez de lo anterior, es dable reconocer que el enfo-
que sintactico fue la forma histéricamente primera usada en la presenta-
cién de los sistemas de logica. Ella fue la unica vigente hasta bastante
entrado el presente siglo. Indudablemente, sus creadores hicieron usual-
mente comentarios de naturaleza semdntica, pero la presentacion oficial
siguié siempre los carriles del enfoque sintactico.

El enfoque sintdctico fue el usado por Aristoteles en la presentacion
de sus sistemas logicos (la l6gica del Silogismo Categorico y la 1dgica del
Silogismo Modal). Asi, es correcto interpretar la tarea llevada a cabo por
Aristoteles al presentar la l6gica del silogismo categorico como la especi-
ficacion de un conjunto de reglas primitivas de inferencia. Las reglas para
la l6gica del silogismo categérico requieren, en primer término, reglas
con una unica premisa, conocidas en la légica escolastica como «Infe-
rencias Inmediatas», y luego reglas con dos premisas llamadas «Inferen-
cias Mediatas» que comprenden los distintos esquemas inferenciales tipi-
cos de la silogistica (los silogismos indicados en los versos medievales:
Barbara, Celarent, Darii, Ferio, etc.). Aristételes mostré como podian
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reducirse las reglas primitivas de inferencia tomando sélo como reglas
mediatas los silogismos de la primera figura. Naturalmente Aristdteles
admitié que una inferencia puede partir de un conjunto de premisas con
mas de dos enunciados, son sélo sus reglas primitivas las que no tienen
nunca mas de dos premisas. De este modo sus reglas de inferencia identi-
fican una nocidn sintdctica de consecuencia + . (donde el subindice «s»
figura para recordar que se trata de la nocion de consecuencia que iden-
tifica la légica del silogismo categdrico)®.

La presentacion de la légica del silogismo categérico por medio de
una relacion sintictica de consecuencia + , definida segun la definicion
(Def. 3) a partir de un conjunto de reglas primitivas de inferencia, en
pleno acuerdo con la forma usada en la escoldstica, muestra algunos ras-
gos que importa senalar. En ella no hay axiomas (el conjunto de los axio-
mas con que se define , es vacio), ademds no hay en ella reglas que,
como el metateorema de la deduccién (MD), permitan disminuir el
namero de las premisas de una inferencia hasta alcanzar el conjunto vacio
de premisas. Por estas dos razones no hay teoremas en la légica del silo-
gismo categorico (el conjunto de los A para los que se cumple +—, A es
vacio). Este fendmeno es el reflejo sintactico de la observaciéon de von
Wright de que la nocién de verdad l6gica fue desconocida para Aristételes:

It seems to me [...] that the notion of logical truth is unknown to Aristotle. This
is not necessarily to blame Aristotle of ignorance. It is an interesting question, to
what extent logic can be developed independently of the ideal of logical truth (von
Wright, 1957, 21).

Lo anterior no significa que Aristdteles no identificé ningin enun-
ciado como légicamente verdadero, ya que es ampliamente conocida su
discusién y defensa, en la Metafisica, de los principios 1égicos de no con-
tradiccion y del tercero excluido. Es mas, su famosa definicion de la
nocién de verdad como correspondencia con la realidad figura precisa-
mente en las pdginas en las que discute los principios indicados. Con este
alcance debiera decirse que Aristételes llegd a su nocién de verdad por
haber detectado dos verdades légicas. Creo que la importancia de la obser-
vacion de von Wright deriva de la independencia tedrica y conceptual
entre la l6gica de Aristételes y las dos verdades ldgicas por él detectadas
y discutidas. Por un lado esta su logica, caracterizada sintacticamente,
y por otro, sin conexion intrasistematica, dos verdades légicas aisladas.
Si Aristdteles hubiera tenido una nocién general de la nocion de verdad
logica habria seguramente detectado que ellas no son sélo dos y se habria

6. En la presentacion del texto se sigue la presentacidn tradicional, no obstante la diferente opi-
nion de Lukasiewicz, para quien cada silogismo no es una regla de inferencia con tres enunciados (dos
premisas y la conclusion) sino un tinico enunciado condicional en el que el antecedente es la conjuncion
de las premisas y el consecuente es la conclusion del silogismo. Se adopta el enfoque clésico por estar
convencido de la legitimidad de las criticas de C. H. von Wright al enfoque de Lukasiewicz (ver von
Wright, 1957, 20).
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percatado que aun con las unicas cuatro formas de enunciados temati-
zadas en la teoria del silogismo categorico (los enunciados de la forma
A [universales afirmativos] del tipo «Todo A es B», E [universales
negativos] del tipo «Ningun A es B», I [particulares afirmativos] del
tipo «Algun A es B» y O [particulares negativos] del tipo «Algin A no
es B») hay enunciados que expresan verdades ldgicas, como es el caso
de los enunciados de la forma: Todo A es A. Una consecuencia de este
hecho es que si se intenta una presentacion semdntica de la logica del
silogismo categérico por medio de una relacidn de consecuencia seman-
tica =, seguramente se muestra que la relacion sintdctica +, es dema-
siado estrecha ya que no se podra probar la tesis de correlacién (Corr.
1), por cuanto tendremos =, Todo A es A, pero no +, Todo A es A.

También Frege usé el enfoque sintactico en la presentacién de su
logica (la hoy llamada légica de la cuantificacion de nivel superior). Frege
expuso su logica indicando un conjunto (no vacio) de axiomas y un con-
junto (también no vacio) de reglas primitivas de inferencia. Si bien en
la obra de Frege se encuentran las ideas semanticas mds importantes con
las que en el futuro se construiria la nocidén semantica de consecuencia
correspondiente a la nocién sintdctica usada por Frege, el instrumental
técnico que supone la identificaciéon semdntica no existia atun en los tiem-
pos de Frege. Recién K. Godel en 1930 probd el teorema de correlaciéon
entre la relacion sintictica de consecuencia + o para la porcién de la
l6gica de Frege conocida actualmente como légica de la cuantificacién
(calculo funcional de primer orden) y la relacién semantica de conse-
cuencia Eq que fue caracterizada por Godel con elementos que deri-
van basicamente de Post y Wittgenstein (como coinventores independien-
tes de las tablas de verdad) y de T. Skolem en obras suyas de los afnios
1919 y 1920.

Posiblemente las primeras ldgicas presentadas originariamente desde
la perspectiva semantica sean las 1dgicas polivalentes, iniciadas a princi-
pio de la década del treinta, ya que en ellas el significado de los signos
l6gicos es identificado por un método de matrices tabulares analogas
a las tablas de verdad y su nocion de consecuencia es caracterizada por
una definicidon generalizada del tipo de (Def. 2.0). Por esta razén una
de las tareas mds absorbentes, con relacion a las logicas polivalentes,
fue la de encontrar presentaciones sintactico-axiomadticas con las que se
satisfagan las condiciones de correlaciéon (Corr. 1) y Corr. 2).

Tanto la logica intuicionista de Heyting (1930) como las logicas
modales de C.I. Lewis, con las que se inicia el periodo moderno de la
légica modal, fueron concebidas usando el enfoque axiomdtico-sintictico.
Aun cuando las pioneras y fundamentales indagaciones en légica modal
de G.H. von Wright fueron realizadas desde una perspectiva semantica,
lo cierto es que la semdntica estandar de la légica modal debié esperar
hasta los trabajos de S. Kripke, S. Kanger y J. Hintikka que en la década
del sesenta consolidan el aparato tedrico para la presentacion semdntica
de estas ldgicas. Las logicas modales de Lewis y los modelos semantico
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modales de Kripke tienen una gran incidencia en el tema que nos ocupa:
la caracterizacion del area tematica de la légica. Por este motivo dedica-
remos a ellas los préximos parrafos.

VII. REFINAMIENTO DEL ENFOQUE SEMANTICO

Lewis consideraba que la tarea fundamental de la légica era la de recons-
truir con precision la nocién intuitiva de consecuencia logica (Def. 1.0)
y entendid que esto debia hacerse incorporando al lenguaje objeto un signo
que representara la nocion de consecuencia (cosa que no sucede en el len-
guaje de Frege ni en el de ninguno de los que continuaron con su estilo).
Es asi como Lewis enriquece el lenguaje objeto, que ahora llamaremos
Lm (lenguaje modal), con el signo para lo que llamé «implicacion estricta»
(para el que aqui usaremos «=») de manera tal que una expresion del
tipo «(A=B)», leido «A implica estrictamente a B», sea verdad cuando
B es una consecuencia légica de A’.

Al llevar al lenguaje objeto, mediante la implicacion estricta, la repre-
sentacién de la nocion de consecuencia, que en este escrito (siguiendo
el hébito actual) fue hasta ahora una nocién metalingiiistica (tanto en
el caso de — como en el de &), suceden varias transformaciones que
sutilmente introducen rasgos importantes en el andlisis de la nocién de
consecuencia logica.

En primer lugar, la nocion de consecuencia sufre una limitacion. En
efecto, tanto en el caso de la relacién sintactica = como en el de la rela-
cién semantica = de consecuencia lo que figura a la izquierda es la refe-
rencia a (el nombre de) un conjunto « de premisas. Ese conjunto puede
ser tan grande como se quiera: puede ser un conjunto infinito de enun-
ciados. Muy por el contrario en una implicacién estricta lo que figura
alaizquierda de = es un unico enunciado, de modo que lo que las impli-
caciones estrictas pueden reconstruir no es la idea de cuando un enun-
ciado es consecuencia légica de un conjunto de enunciados (premisas),
sino s6lo cudndo un enunciado es consecuencia logica de otro (o mejor,
cudndo la proposicion expresada por un enunciado es consecuencia légica
de la proposicién expresada por otro enunciado). Naturalmente cuando
el conjunto « de premisas es finito entonces habra un enunciado del len-
guaje que pueda ocupar su lugar, sin pérdida de alcance conceptual, como
antecedente en una implicacidn estricta, pero cuando « no es de ese tipo
la implicacidn estricta es inhabil para dar cuenta de la nocién de conse-
cuencia. Por esta razdn el recurso de Lewis supone una restriccion fini-
tista de la nocién de consecuencia de la que la nocién de consecuencia

7. En rigor de verdad = no fue el signo primitivo con que Lewis enriqueci6 el lenguaje L, para
alcanzar el lenguaje modal lLim. Su lenguaje modal estaba caracterizado por la introduccién de un rombo
para representar la nocién modal de posibilidad, y definir luego la implicacion estricta (A = B ) (al
estilo de (Def. 1.1)) cuando se da el caso que no es posible A en conjuncién con la negacién de B.
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semdntica = carece. La nocion de consecuencia sintactica es también fini-
tista, si como lo hemos hecho en (Def. 3), siguiendo la tradicién mas
estable, una afirmacion del tipo o +— A requiere la existencia de una
secuencia finita de enunciados (lo anterior significa que la nocién de con-
secuencia sintactica introducida en (Def. 3) es compacta). Sin embargo,
la finitud de la nocién de consecuencia sintactica — es de muy distinta
naturaleza que la finitud que la implicacién estricta = conlleva, ya que
ella no impide indagar por las consecuencias de un conjunto infinito (ni
para la significatividad de o — A ni para su verdad se requiere que «
sea un conjunto finito).

En segundo lugar, dado que una implicacion estricta (A = B) es un
enunciado del lenguaje a la par de los que figuran como su antecedente
Ay su consecuente B, resulta que en el enfoque de Lewis son expresables
implicaciones estrictas anidadas, esto es, implicaciones estrictas del tipo
((A = B) = C)odel tipo (C = (A = B)) en donde una implicacién estricta
figura en el 4mbito (como parte del antecedente o del consecuente) de
otra implicacion estricta. Este rasgo de la implicacion estricta es el reflejo
de uno de los problemas filos6ficos e intuitivos mas oscuros de la logica
modal: la cuestion de las modalidades reiteradas. En las nociones meta-
lingtiisticas de consecuencia (sintactica y semantica) este rasgo perturba-
dor de la implicacién estricta no existe. En los enunciados del tipo ««
— A», o del tipo «a E A», «a» es el nombre de un conjunto de enuncia-
dos del lenguaje objeto y «A» el nombre de un enunciado del lenguaje
objeto, pero como tanto «a — A» como «x = A» no son enunciados
del lenguaje objeto sino de su metalenguaje ni tampoco son nombres de
nada, su funcién no es nombrar cosa alguna, sino afirmar la relacion
de consecuencia entre el conjunto de enunciados nombrado por «a» y
el enunciado nombrado por «A». Por esta razén carecen de sentido las
expresiones en donde a la izquierda o a la derecha de alguno de los sig-
nos de consecuencia «» 0 «=» aparezca una expresion que contenga
alguno de tales signos. De este modo las oscuras cuestiones a que ha dado
lugar el anidamiento de los condicionales estrictos carecen de sentido y
no pueden plantearse para las nociones metalingtiisticas de consecuencia.

Hasta ahora hemos sefialado dos rasgos en que la implicacion estricta
esta en desventaja en la comparacion con las nociones metalingiiisticas
comentadas como reconstruccion de la nocion intuitiva de consecuen-
cia. Sin embargo, hay un aspecto en el que el balance puede serle favora-
ble: en el enfoque de Lewis se tematiza directamente la nocién de necesi-
dad involucrada en el concepto intuitivo de consecuencia légica. Las
consecuencias y la relevancia filosofica de esta caracteristica se ponen mas
claramente de manifiesto dirigiendo nuestra atencion a los instrumentos
semanticos que Kripke usd para dar cuenta semantica de las logicas
modales.

El instrumental usado hasta ahora para dar explicaciéon semantica
de la nocién intuitiva de consecuencia estaba integrado por elementos
de dos tipos: un conjunto de funciones de interpretacion T |, que fijan
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la referencia (significado extensional) a los nombres (términos singula-
res) y a los predicados del lenguaje objeto, y un conjunto de clausulas
en las que se indican las condiciones para la verdad de los distintos tipos
de enunciados. La forma de estas ultimas cldusulas: «un enunciado X
es verdadero en | |, si y s6lo si ...» (en las que la verdad de un enun-
ciado es relativa a la interpretacion que se esté considerando), explican
la razén por la que un enunciado puede cambiar su valor de verdad (pasar
de ser verdadero a ser falso o a la inversa) al cambiar la interpretacion
a través de la cual se juzga el valor de verdad del enunciado. También
sefalamos que con la nocién semantica de verdad Tarski pretendié recons-
truir para un lenguaje artificial (como IL) la nocién aristotélica de verdad
como correspondencia con la realidad (para obtener este resultado son
esenciales las clausulas del tipo de (i), esto es, las cldusulas para los enun-
ciados atémicos, ya que por medio de ellos se inicia la «

con larealidad»). Esta altima aspiracidn de correspondencia significa que
si la realidad considerada se transforma (cambia en alguno de sus aspec-
tos), entonces el valor de verdad de un enunciado que a ella se refiere
puede cambiar reflejando los cambios ocurridos en el mundo. En otras
palabras, de una nocioén de verdad por correspondencia referida a enti-
dades lingiiisticas (enunciados) esperamos que el valor de verdad de un
enunciado pueda cambiar por dos razones distintas e independientes: a)
por un cambio en la interpretacion con que son entendidas las expresio-
nes que figuran en el enunciado, o b) por un cambio en la realidad consi-
derada. En las cldusulas al estilo de Tarski (las consideradas hasta ahora)
la relatividad de la verdad con relacién a la interpretacion del lenguaje
es explicita pero, muy por el contrario, en ellas no se prevé la relatividad
a la realidad considerada, cuyos cambios también pueden incidir en el
valor de verdad®.

Al elaborar el instrumental para dar cuenta de la semantica de las
l6gicas modales Kripke colmd el vacio indicado, dejado por Tarski, en
las cldusulas de su definicion semdntica de verdad. En efecto, las clausu-
las usadas por Kripke responden a la siguiente forma estructural: «Un
enunciado X (del lenguaje 1) es verdadero en la interpretacién | , |,
frente a la realidad (mundo) M, si y sélo si ...».

La realidad extralingiistica a la que esta referida un lenguaje I, que
en Kripke se llama «Estructura de Modelo», es una estructura G inte-
grada por dos elementos: 1) un conjunto M de mundos posibles (en un
ejemplo intuitivo dindmico-temporal como el anterior referido a cam-
bios temporales de la realidad, los elementos de M pueden ser interpreta-
dos como los distintos estados totales de la realidad en los diferentes
momentos temporales; naturalmente esa interpretacion intuitiva es ina-
decuada cuando se pretende representar la posibilidad légica) y 2) un ele-

8. Quizds una posible conjetura histdrica para explicar esta omision de Tarski sea que en los
ejemplos que elabor6 con detalle sélo figuran teorias matemdticas y logicas, y es claramente insensato
pensar en el cambio de una realidad del tipo de la que tratan esas disciplinas.
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mento destacado G de M destinado a representar el mundo (la realidad)
actual frente a los mundos meramente posibles (los restantes elementos
de M)°. La referencia al lenguaje IL aparece en lo que Kripke llama un
modeloMe (para una estructura de modelo G) que se consigue acoplando
a la estructura de modelo G una funcién de interpretacién [S,M,|; de dos
argumentos que adjudica: 1) a cada nombre S (cuando S es un nombre
de L) frente a cada mundo M, de M un tnico objeto (de M;), y 2) a cada
predicado S (cuando S es un predicado monadico de I.) un dnico con-
junto de objetos (de M,). Con estos elementos las cldusulas que definen
la nocién de verdad para todo modelo WMe son ahora (en lugar de las
anteriores):

() Un enunciado atémico Pa es verdadero en la interpretacion
|, |; frente al mundo M; si y sélo si |a,M,|.€|P,M |, (el objeto asignado
al nombre «a» por la interpretacién | , |, para el mundo M, es uno de
los elementos de la clase asignada al predicado «P» por esa misma inter-
pretacion y para ese mismo mundo).

(i) — A es verdad en | , |, frente a M; si y s6lo si A no es verdad
en | , |, frente a M,.

(ii’) (A A B)esverdad en |, |, frente a M; si y sélo si tanto A como
B son verdad en | , |, frente a M.

(iv)) (AvB)esverdaden |, |, frente a M; siy s6lo si A, B o ambas
son verdad en | , |, frente a M,.

(v’) (A D B)esverdaden |, |, frente a ¥ si y sélo si A no es ver-
dad en | , |, frente a M, o B es verdad en | , |, frente a M,.

(vi) (A = B)esverdad en |, |, frente a M. si y sélo si B es verdad
en | , |, frente a M, para todo M, de M en el que A es verdad en | , [;
frente a M.

(vii) [JA esverdaden |, |, frente a M, si y sdlo si A es verdad en
| , |, frente a M, para todo M, de M.

En la cldusula (vii) hemos usado «[JA» para el enunciado que repre-
senta la afirmacion de la necesidad l6gica de A. Esa cldusula reproduce
la idea leibniziana segun la cual son l6gicamente necesarios aquellos enun-
ciados que son verdaderos en todo mundo posible. Las condiciones que
(vi) fija para la verdad de una implicacién estricta (A = B) (que en la
interpretacion de Lewis afirma que B es consecuencia logica de A) son
las mismas que por (vii) y (v’) resultan para [J(A D B) (la necesidad logica
de la implicacién material).

9. Una estructura de modelo como la indicada en el texto con sélo dos elementos es instrumen-
tal suficiente para dar cuenta de la semantica del sistema modal S5 (que fue el objetivo de Kripke cuando
escribio su primer articulo sobre el tema). Para dar cuenta de otros sistemas modales Kripke creé las
«estructuras de modelos relacionales» en las que aparece como tercer elemento una relacion R (relacion
de accesibilidad) que vincula elementos de M. Sin embargo, la estructura mas simple del texto es sufi-
ciente para nuestros fines.
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En las cldusulas anteriores la nocién de verdad es relativa (como se
espera en una teoria de verdad por correspondencia) a la interpretacién
considerada de las expresiones lingtiisticas y a la realidad (mundo) a que
se refiere el enunciado. Para explicar el alcance de la nocién de verdad
cuando la usamos (como es frecuente en la vida diaria) sin relativizacién
alguna, Kripke introduce lo que llama la verdad de A en un modelo Me,
que se da cuando A es verdadero en el mundo destacado (actual) G del
modelo Me. Se recoge asi la idea intuitiva que refiere al mundo actual
a los enunciados para los que no explicitamos una referencia distinta.

Con estos elementos podemos dar los siguientes refinamientos de las
definiciones (Def. 2.0) y (Def. 2.1) de la relacién de consecuencia seman-
tica .

(Def. 2.2) Un enunciado A de [ es consecuencia (semantica) del con-
junto de enunciados « de I (premisas), o = A, siy s6lo si no hay ningun
modelo Me de Ik en el que todos los enunciados de « son verdaderos
y en el que A no lo es.

(Def. 2.3) Un enunciado A de L es consecuencia (semantica) del con-
junto de enunciados o de I, (premisas), a« = A, siy sélo si A es verdadera
en todo modelo Me de L en el que son verdaderos todos los enunciados
de a.

El refinamiento introducido en la nocién de consecuencia semantica
= en las ultimas definiciones deriva bdsicamente de que en ellas se ha
tomado explicitamente en cuenta, ademas de la relativizacién de la nocién
de verdad a la interpretacion adoptada de las expresiones linguisticas,
la relativizacion con relacién a la realidad considerada, dando asi expre-
sion mas acabada al requerimiento de correspondencia incluido en la
nocion intuitiva de verdad. También ha cambiado la explicacion de las
nociones modales (de necesidad e imposibilidad), asociadas a las nocio-
nes intuitivas de consecuencia y verdad légica. En (Def. 2.0) y (Def. 2.1)
la explicacion reposaba en una cuantificacién universal sobre las funcio-
nes de interpretacion admisibles. Por el contrario, en las nuevas defini-
ciones, tales nociones, dependen de un enfoque mas leibniziano que
requiere una cuantificaciéon sobre mundos posibles.

Finalmente, lo anterior significa una transformacion sustancial que
afecta a las nociones mismas de consecuencia semdntica y verdad ldgica.
Esto es asi por cuanto, en las dltimas definiciones, para que un enun-
ciado A sea consecuencia semantica de un conjunto « de premisas, o &=
A (al igual que para que A sea una verdad ldgica: = A), se requiere una
doble cuantificacion metalingtiistica: una sobre todas las interpretacio-
nes admisibles y otra sobre todos los mundos posibles (esta doble cuan-
tificacién estd involucrada en la explicita cuantificacién contenida en las
ultimas definiciones sobre todos los modelos). Un efecto, senalado con
poca frecuencia, de esta doble cuantificacion es que ella evita la posibili-
dad (que en principio dejan abiertas las definiciones (Def. 2.0) y (Def. 2.1))
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de la existencia de verdades légicas no logicamente necesarias y de ver-
dades légicamente necesarias que no son identificadas como verdades logi-
cas. La necesidad de tomar en cuenta esta doble cuantificacién en la expli-
cacién de las nociones centrales de la légica, con frecuencia no es
advertida, porque en muchas oportunidades hay una correspondencia biu-
nivoca entre lo que es un mundo posible y lo que es una interpretacion
admisible. Asi por ejemplo, las cuatro alternativas de una tabla de ver-
dad estdndar para dos enunciados:

A

< <
mm<<|w

admite una doble lectura: 1) como las cuatro interpretaciones distintas
que dos enunciados pueden recibir, 0 2) como los cuatro tipos de mun-
dos posibles que pueden fijar el valor de verdad de un par de enuncia-
dos. Si bien el tema de la correlacion entre mundos posibles y valuacio-
nes admisibles es de gran importancia técnica y filoséfica, no diremos
nada mas sobre él, por cuanto es mds propio de un ensayo sobre logica
modal que de uno sobre la l6gica en general.

VII. UNA DIFICULTAD A LA PRIMACIA DE LA SEMANTICA

Con las nuevas interpretaciones (Def. 2.2) y (Def. 2.3) de la relacién
semantica de consecuencia = podemos retornar al analisis de la tesis de
la prioridad de la semdntica. La circunstancia de que el enfoque sintac-
tico sea el que mas se aproxima a la nocion psicoldgica intuitiva de infe-
rencia, y de que ese enfoque reconstruya con gran precision lo que se
ha hecho durante siglos de trabajo en el drea de la légica no invalida la
pretension de la tesis de la primacia de la semdntica. En efecto, lo que
tal tesis pretende es suministrar una explicacion precisa de los criterios
utilizados para evaluar el trabajo de los ldgicos: es en la preservacion
de la nocion semdntica de verdad en el paso de las premisas de una regla
sint4ctica de inferencia a su conclusion como se aprecia la calidad de la
regla. Por esta razon y no por consideraciones histdricas es que se justi-
fica erigir la nocién semantica de consecuencia en el criterio definitorio
de la légica. Sin embargo, la siguiente es una argumentacion que inva-
lida la tesis de la primacia de la semantica en la definicién general de
la logica.

Hay enunciados respecto de los cuales es lugar corriente reconocer
que carecen completamente de valores de verdad. Paradigma de ellos son
los enunciados usados por el legislador para prescribir normativamente
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la conducta de los sibditos de un pais, como, por ejemplo, los enuncia-
dos que usa un legislador para exigir a los subditos el pago de un impuesto
o para autorizar la importacién de cierto tipo de mercancias. Sus enun-
ciados no estdn destinados a describir algo que ocurre en el mundo, su
funcion es prescribir una forma de comportamiento como debida (o inde-
bida) o autorizar (permitir) ciertos modos de actuar. De los dichos del
legislador puede afirmarse que son justos o injustos, convenientes o incon-
venientes, etc., pero carece de sentido predicarles verdad o falsedad. Sélo
de los enunciados descriptivos tiene sentido la predicacién de valores de
verdad, ya que afirmar que un enunciado es verdadero significa que en
el mundo acaece lo que el enunciado describe, y afirmar que es falso
supone que en el mundo no sucede lo que el enunciado describe; de modo
que en ambos casos (para tener un valor de verdad) el enunciado tiene
que ser descriptivo, tiene que describir el acontecer de un hecho (que puede
o no darse). Nada de esto sucede con las normas del derecho positivo
(el derecho creado por los hombres) pues ellas prescriben comportamien-
tos sin describir el acontecer de ningun hecho.

El hecho de la existencia de enunciados significativos carentes de valo-
res de verdad plantea una de las dificultades filosoficas mas serias de la
logica dedntica (interpretada como ldgica de normas). Esta dificultad se
la conoce como el dilema de Jorgensen cuyo alcance conceptual es el
siguiente: si las nociones de la légica sélo pueden definirse en funcion
de valores de verdad entonces no es posible una légica de normas, y a
la inversa: si tal l6gica es posible las nociones de la légica no dependen
de los valores de verdad de los enunciados, luego o no es posible una
légica de normas, o las nociones de la ldgica son independientes de los
valores semanticos de verdad y falsedad.

La importancia de esta dificultad deriva de las siguientes dos obser-
vaciones:

1. Del hecho que los signos légicos (conjuncién, disyuncion, nega-
cidn, etc.) se usan significativamente en los enunciados que expresan nor-
mas sin diferencia detectable con relacion al modo en que se los usa en
los enunciados descriptivos, se sigue que el significado semdntico (el que
deriva de las condiciones de verdad de los enunciados en los que los sig-
nos légicos figuran) no es el unico relevante para la significatividad de
los signos logicos y hace posible la hipétesis de que sea otro tipo de sig-
nificatividad la que unifica el significado de los signos l6gicos en los enun-
ciados descriptivos y en los prescriptivos.

2. La forma en que a diario entendemos las expresiones normativas
indica que confiamos que entre ellas hay relaciones logicas. Nuestra inte-
leccién del lenguaje normativo indica que algunas normas son consecuen-
cia deductiva de otras. En efecto, si de un enunciado normativo cuantifi-
cado universalmente (como lo son las leyes generales promulgadas por
el legislador) no se pudiera concluir deductivamente la totalidad de los
enunciados normativos que refieren el contenido normativo de la ley gene-
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ral a cada uno de los subditos (es decir si la regla de ejemplificacién uni-
versal no fuera aplicable a las normas), entonces ningtin subdito tendria
su conducta regulada por las leyes generales y éstas se convertirian en
meros juguetes vistosos sin la significatividad normativa con que incues-
tionablemente son entendidas en la vida social.

La dificultad indicada de la légica dedntica expuesta en el dilema de
Jorgensen cuyo primer cuerno (no es posible una logica dedntica de nor-
mas) se muestra como incuestionablemente falso por las razones expues-
tas es un desafio sélo para la tesis de la primacia de la semantica. A la
inversa constituye una virtud de los otros enfoques (el sintactico y el abs-
tracto, que presentaremos a continuacion) la circunstancia de que en ellos
los enunciados descriptivos y los prescriptivos admiten sin dificultad un
tratamiento en paridad de condiciones.

IX. EL ENFOQUE GENERAL ABSTRACTO

El hecho de que tanto las nociones sintacticas como las nociones seman-
ticas de consecuencia sean importantes candidatos para la reconstruc-
cién de la nocidn intuitiva y de que ambas son en definitiva nociones
de consecuencia deductiva, a pesar de las enormes diferencias que las sepa-
ran, hace pensar en la existencia de rasgos comunes que ambos tipos de
nociones comparten, y que, quizas, ellos suministren la pista para la carac-
terizacidn de una nocion general de consecuencia de la cual tanto el enfo-
que sintdctico como el semantico no sean mas que especificaciones dife-
rentes. A responder a este interrogante y lograr asi una nocién general
abstracta de consecuencia estdn destinados algunos trabajos de Tarski
de la década del treinta, los primeros de los cuales (Tarski, 1930ay 1930b)
preceden al articulo en donde Tarski presenta su definicion seméntica
(Tarski, 1936). Un rasgo fundamental del enfoque abstracto es que en
él no se intenta, como en los otros enfoques (el sintactico y el semdn-
tico), caracterizar la nocién de consecuencia por medio de esquemas de
definicion (como los expuestos anteriormente), sino sefialando las pro-
piedades generales que identifican a toda nocién de consecuencia (deduc-
tiva). Esto significa que la nocién de consecuencia se toma como un tér-
mino primitivo (no definido) sujeto a varios axiomas que identifican sus
propiedades esenciales.

Para axiomatizar la nocién de consecuencia Tarski usé una funcién
de consecuencia «Cn» que pertenece al metalenguaje de un lenguaje L,
esto es, una funcion que aplicada a un conjunto de enunciados & de un
lengua]e LL identifica otro conjunto de enunciados Cn(a) de I, como el
conjunto de la totalidad de las consecuencias de . El que no se repre-
sente la nocidén de consecuencia como una relacién (como se hizo en el
enfoque sintictico y en el semantico) es s6lo una diferencia técnica sin
importancia conceptual, ya que el siguiente esquema permite pasar tanto
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de una funcién de consecuencia a la correspondiente relacién de conse-
cuencia como a la inversa:

AeCn(a) siy sélo sia - A (0o a E A en su caso).

Los siguientes cuatro axiomas exponen las propiedades esenciales
(comunes) a toda nocion de consecuencia desde la perspectiva de los pri-
meros trabajos de Tarski:

(Cn.1) a € Cn(«a) (Inclusién)
(Cn.2) Cn(a) = Cn(Cn(a)) (Idempotencia)
(Cn.3) Si @ € B entonces Cn(a) S Cn(B3) (Monotonia)
(Cn.4) Si AeCn(a) entonces hay un 8 S « finito

tal que AeCn(pB) (Compacidad)

Los dos primeros axiomas exponen propiedades muy intuitivas: que
todo enunciado de un conjunto estd entre las consecuencias de ese con-
junto (Inclusién) y que las consecuencias de las consecuencias de un con-
junto de enunciados son consecuencias del conjunto de partida (Idempo-
tencia). El tercero de los axiomas (Monotonia) indica que si algin
enunciado es consecuencia de un conjunto de premisas «, él seguird siendo
consecuencia de cualquier ampliacion 3 del conjunto de premisas; en otras
palabras, que al agregar enunciados a un conjunto de premisas no se
pierde ninguna de sus consecuencias. Este axioma responde a la idea de
que las premisas de una inferencia deductiva son condicién de garantia
suficiente de sus consecuencias, de modo que cuando ellas estan presen-
tes, aunque estén acompafiadas por otros enunciados, sus consecuencias
no se pierden por la presencia de tales premisas adicionales. Esta es una
propiedad esencial de toda nocién de consecuencia deductiva (que es la
que estamos tematizando en este ensayo), es decir, que la monotonia es
esencial para la idea de deduccién mds que para la de consecuencia en
general. Si estuviéramos indagando una nocién de consecuencia proba-
ble seguramente no esperariamos que ella sea monétona. Uno de los focos
de investigacién actual en el drea de la llamada Inteligencia Artificial estd
centrada en la indagacién de nociones de consecuencia no monoétonas,
y por lo tanto, no deductivas. Pero como nuestro interés en este ensayo
estd circunscripto a la légica deductiva, el postulado de monotonia ten-
dra que ser satisfecho por toda nocidn de consecuencia cuya caracteriza-
cién perseguimos.

El cuarto axioma (Compacidad) impone a la nocién de consecuencia
una restriccion finitista que, como sefnalamos anteriormente, tiene su ori-
gen en una solida tradicién vinculada a la nocién sintédctica de conse-
cuencia, pero que es ajena al enfoque semdntico. En este sentido él no
expresa una propiedad que pueda atribuirse a toda nocién de consecuencia
deductiva por mas deseable y atractiva que resulte su exigencia. Quizas
por esta razén, y a pesar de su postulacion por Tarski, ella no figura
entre las condiciones actualmente exigidas en la caracterizacion general
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abstracta de la nocién de consecuencia deductiva. Por ello los axiomas
con que se caracteriza tal nocién son solo los tres primeros.

Una de las investigaciones mds importantes y representativas de la
logica de este siglo, la memoria de G. Gentzen (Gentzen 1934) sobre la
deduccidn logica, estd estructurada desde la perspectiva del enfoque abs-
tracto. Es mds, el reconocimiento actual de la importancia de este enfo-
que deriva en mucha mayor medida de la repercusion de la obra de Gent-
zen que de la de Tarski sobre el tema.

Gentzen, como Tarski, adopté como primitiva la nocién de conse-
cuencia deductiva y la caracterizé por el método axiomdtico (axiomas
y reglas primitivas de inferencia). No obstante, su formulacion difiere
de la de Tarski en algunos aspectos que conviene sefialar, no sin advertir
que el contenido conceptual de la obra de ambos autores es sustancial-
mente el mismo.

Gentzen caracterizd una relaciéon de consecuencia logica, y no como
Tarski una funcién de consecuencia. Esta, como ya indicamos, es una
diferencia totalmente accidental (para representarla usé la flecha «—»).
La segunda diferencia es sustancial; Gentzen generaliza la estructura de
las relaciones de consecuencia sintdctica + y semantica = permitiendo
la presencia de conjuntos de enunciados tanto a la izquierda como a la
derecha de la flecha, de modo que los enunciados basicos (que llama
secuentes) son del tipo «a = B» (llamando «prosecuente» al que esta a
la izquierda de la flecha y > al de la derecha)'. En reali-
dad esta diferencia hace que lo que la flecha representa no sea la relacion
de consecuencia sino una relacion mas general que Carnap (1943) llamo
«légical involution» . Intuitivamente se espera tener & — (3 si por lo
menos uno de los elementos de 3 es verdadero cuando todos los elemen-
tos de a lo son. La relacion de consecuencia logica esta representada por
el caso especial de los secuentes en que el postsecuente es un conjunto
unitario (donde figura un y sélo un enunciado).

Otra diferencia es que la flecha «—» no es un signo del metalenguaje
(del lenguaje donde figuran los signos légicos) como lo es el signo de fun-
cion de consecuencia «Cn» de Tarski, sino un signo incorporado al mismo
lenguaje objeto en el que se encuentran los signos légicos. Sin embargo,
los unicos enunciados que son axiomatizados en su cdlculo de secuentes
son los secuentes y s6lo indirectamente los enunciados corrientes de una
logica estandar. Es decir, los unicos enunciados axiomatizados son los

10.  Encel texto los elementos a y 8 que integran un secuente o = 3 son conjuntos de enunciados.
En la obra de Gentzen son secuencias (conjuntos ordenados) de enunciados. Esta diferencia, que pro-
bablemente sea un resabio de las secuencias que intervienen en la caracterizacion de la nocion sintéactica
de consecuencia, la hemos cancelado por cuanto en su presentacion Gentzen introduce las postulacio-
nes que hacen irrelevante el orden de los elementos de las secuencias, las que en definitiva se comportan
como simples conjuntos.

11. Aparentemente Carnap descubrio, independientemente de Gentzen, las propiedades y la
importancia de la generalizacion que representa la relacion de «logical involutions con respecto a la
de consecuencia ldgica.
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enunciados del tipo «a = B» donde los elementos tanto de @ como de
8 son enunciados de un lenguaje logico estandar (en el caso de Gentzen
son los enunciados del lenguaje de cuantificacién). Nunca la flecha «—»
figura en el prosecuente « ni en el postsecuente (3.

En este aspecto Gentzen sigue el camino de Lewis, ya que sus secuentes
son, como las implicaciones estrictas de Lewis, enunciados del lenguaje
objeto (destinados en ambos casos a dar cuenta de la relacién de conse-
cuencia deductiva). Sin embargo, hay por lo menos tres muy importan-
tes diferencias con el encuadre de Lewis: 1) Los secuentes no forman
parte, como las implicaciones estrictas, de un lenguaje modal, 2) Los
secuentes permiten dar cuenta de la situacién en que hay una pluralidad
de premisas ya que lo que figura a la izquierda de la flecha es un con-
junto de enunciados y no un tnico enunciado como requiere la implica-
cién estricta de Lewis, y 3) la diferencia mas sustancial con Lewis es
que no se plantea el problema de las implicaciones estrictas anidadas ya
que lo que tiene que figurar tanto como prosecuente como postsecuente
son conjuntos de enunciados de un lenguaje de logica estandar pero los
secuentes mismos no son enunciados de ese tipo.

No vamos a entrar en los detalles de la exposicion de Gentzen; no
obstante conviene serialar que su axiomatizacién de los secuentes es
sustancialmente '* coincidente con la de Tarski para su funcién de con-
secuencia. Los axiomas de Gentzen para la relacion de consecuencia (no
para la relacién de «logical involution») son los tres: (Reflexividad Gene-
ralizada), (Corte) y (Monotonia) que se indicaron anteriormente para las
relaciones sintacticas + y semanticas = de consecuencia. Esto es, ellos
son:

(—.1) a = [A] si Aga (Reflexividad Generalizada)
(=.2) Si @ = (B} y aU[B] — [A]

entonces a — {A} (Corte)
(—.3) Si o = [A] entonces B — [A] (Monotonia)

De este modo tanto en el caso de Tarski como en el de Gentzen la
logica (cada ldgica) esta caracterizada por cada funcion (relacion) abs-
tracta de conjuntos de enunciados de un lenguaje IL a conjuntos de enun-
ciados del mismo lenguaje que satisfaga las condiciones incluidas en las
axiomatizaciones indicadas.

Para conseguir cada ldgica en particular sélo hay que agregar a los
axiomas generales de la nocién de consecuencia: (Inclusion), (Idempo-
tencia) y (Monotonia), otros que indiquen el comportamiento de los sig-
nos légicos en el contexto de una funcién (relacién) de consecuencia.

12.  En el texto se habla de una «sustancial» equivalencia entre los tres primeros axiomas de Tarski
y las tres postulaciones de Gentzen. Sin embargo, para interderivar mutuamente los postulados de Tarski
con los de Gentzen es necesario, como lo ha observado David Makinson, generalizar la regla de corte
(—.2) de la siguiente manera: si « = {B] para todos los Be y aUB — {A] entonces « = {A]} (en donde
lo que se «corta» no es un enunciado B sino un conjunto § de enunciados).
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Asi, para conseguir, por ejemplo, la 16gica proposicional cldsica (para
los signos logicos usados en los ejemplos anteriores), basta con agregar
(en una presentacion que no sigue la forma de la logica de secuentes de
Gentzen, sino que representa mds bien una versiéon que reproduce los
esquemas de «deduccion natural» creados también por el propio Gent-
zen en el trabajo comentado) los siguientes axiomas (a continuacién un
conjunto {A,,...,A,}] se escribird simplemente A,,...,A,; se usara, ade-
mas la constante de falsedad (l6gica) « L » con el axioma que se indica):

(A.L) L = A
De Introduccién De Eliminacién
(I.A) A,B = (AAB) (E.A.1) (AAB) = A
(E.A.2) (AAB) > B

(Lv.1) A> (AVB) (E.v) aU(AvB)— Csi
(Lv.2) B = (AvB) @UA - CyaUB - C
(I.D) @ = (ADB) si (E.D>.) A,(ADB) - B

aUA - B
(I.m)a > —mAsi (E./™)a = Asi

aUA — 1 oU—/mA - 1L

Claramente cada uno de estos postulados puede reformularse con fun-
ciones de consecuencia al estilo de Tarski.

Igual procedimiento puede seguirse para las distintas logicas: las 16gi-
cas modales, las de los llamados condicionales contraficticos, las de los
condicionales derrotables (defeasible), los condicionales relevantes, las
conjunciones asimétricas (temporales), la 14gica intuicionista, etc., ya que
se trata de un procedimiento general no circunscripto a ningun signo
logico ni sistema logico en particular.

En la presentacion de los axiomas anteriores se ha seguido una impor-
tante idea de Gentzen: la de dividir los principios que caracterizan cada
signo légico en dos categorias: los de Introduccion y los de Eliminacion.
Los primeros regulan la figuracion del signo en la conclusion de una infe-
rencia (indican cémo introducir el signo en la conclusion en una deriva-
cién deductiva). Las segundas regulan la figuracion del signo entre las
premisas (indican como eliminar el signo al pasar de una premisa en que
figura el signo a una conclusion).

Esta idea de Gentzen responde a una concepcidn acerca del signifi-
cado de los signos lingiisticos caracteristica del segundo periodo de la
filosofia de Wittgenstein, segun la cual el significado de un signo esta
determinado por las reglas que fijan su uso en cada contexto. La rela-
cién de consecuencia configura el contexto en el que la logica se desarro-
lla, luego, el significado de un signo légico se determina indicando cémo
usarlo en las premisas y en la conclusién de la relacion de consecuencia
(los dos unicos lugares de esa relacion). Esto es lo que se consigue al espe-
cificar las reglas de introduccién y de eliminacion.

40



INTRODUCCION: CONCEPCIONES DE LA LOGICA

El significado que el procedimiento anterior determina para un signo
légico, no es, por cierto, el significado semdntico (del enfoque seman-
tico), ya que él no depende de las correlaciones referenciales entre len-
guaje y realidad efectuadas, en un enfoque semdntico, por las funciones
de interpretacion, ni de la nocién semantica de verdad. Tal significado
se configura por medio de reglas sintacticas de inferencia, ya que esto
es lo que en definitiva representan los axiomas anteriores de introduc-
cién y eliminacidon. De modo que es apropiado decir que en un enfoque
abstracto los axiomas referidos a los signos légicos determinan su signi-
ficado sintactico®’.

Asi, en lo que hace a la especificacion del significado de los signos
légicos e indirectamente a la identificacion de cada ldgica en particular,
el enfoque abstracto comparte rasgos tipicos del enfoque sintactico.

Con frecuencia se piensa que para un enfoque sintactico los signos
del lenguaje objeto carecen por completo de significacién. En rigor esto
no es asi, ya que los signos logicos tienen un significado (sintactico) que
reciben de las reglas que fijan su uso en los contextos de consecuencia,
si bien es cierto que los demads signos (los que no son légicos) carecen
totalmente de (o por lo menos no se considera, en un enfoque sintictico
o abstracto, su) significacion. Por el contrario en un enfoque semantico
todos los signos del lenguaje tienen (en cada modelo) significacion. Los
signos légicos reciben su significacién (semantica) a través de las cldusu-
las que determinan las condiciones de verdad de los enunciados en que
ellos figuran (clausulas que son comunes a todos los modelos de cada
l6gica). En este sentido, la pretensién (vinculada a veces a la tesis de la
primacia de la semantica) de que sélo en un enfoque semantico los sig-
nos logicos tienen signifido es un exceso equivocado.

Desde esta nueva perspectiva sdlo el enfoque abstracto logra dar una
caracterizacion general de la logica, ya que sélo desde ese angulo es posible
explicar la razén por la cual lo que se define, tanto desde el enfoque
semdntico como desde el enfoque sintactico, son efectivamente relacio-
nes de consecuencia. La nocidn central de la logica es, en este sentido,
conceptualmente independiente de las caracteristicas del método axio-
matico al que estd anclado el enfoque sintactico. La circunstancia de que
lalégica sea un instrumento indispensable en la organizacion conceptual
interna de cualquier disciplina a través de su organizacion deductiva (que
justifica la peripatética concepcion de la légica como organon de todo
conocimiento) y de que la légica misma sea susceptible de una estructu-
racion axiomatica no significa que solo a través de ese método ella tenga
que ser identificada.

Lo anterior también implica que la logica es de igual modo concep-
tualmente independiente de las nociones semanticas, y en particular de
la nocién de verdad. Nada de esto, por cierto, desmerece el valor de la

13. Para una defensa del enfoque abstracto como el expuesto en el texto, ver Belnap (1962) escrito
en respuesta a la tesis de la primacia de la semantica sostenida por Prior (1960).
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utilizacion del método axiomatico en la l6gica ni la importancia de las
nociones semanticas en la apreciacion de las calidades de cada légica en
particular.

Con frecuencia a lo largo de este articulo, siguiendo la forma mds
corriente de referirse al tema, hemos hablado de la l6gica como si fuera
una disciplina unica. Sin embargo, para ser fieles al desarrollo histé-
rico y a la situacién actual, debe decirse que la expresion «Ldgica» es
un término genérico que se aplica a una pluralidad de disciplinas con
caracteristicas y aspiraciones diversas. Puede haber, y de hecho hay,
muchas logicas diferentes'®. Cada légica (cada uno de los ejemplos de
la expresién genérica Logica) es identificada extensionalmente (como
también lo hemos hecho en este articulo) con una unica relaciéon de con-
secuencia. También hemos visto que cada logica (cada relacion de con-
secuencia) puede ser intensionalmente identificada basicamente a tra-
vés de dos procedimientos diferentes que requieren la satisfaccion de
propiedades distintas de cada relacién de consecuencia. Asi, en un enfo-
que sintictico en el que, por ejemplo, se use el esquema de definicién
(Def 3) tienen que satisfacerse las propiedades sinticticas que esta defi-
nicion requiere respecto de un conjunto de enunciados de I identifica-
dos como axiomas y respecto de un conjunto precisamente identificado
como reglas de inferencia primitivas. Por el contrario, en un enfoque
semdntico en el que, por ejemplo, se use el esquema de definicién (Def.
2.2), no son las anteriores las propiedades que la relacion de consecuen-
cia tiene que satisfacer sino que debe satisfacer las que (Def. 2.2) exige
respecto de los modelos semanticos correspondientes. Sin embargo, lo
que siempre tiene que satisfacer cada relacion para ser una relacion de
consecuencia légica deductiva son las tres propiedades postuladas en
el enfoque abstracto. En este sentido el enfoque abstracto y solo él, per-
mite una definicién del término genérico Légica, ya que en él se con-
templan las propiedades que cada uno de los individuos del género (cada
una de las relaciones de consecuencia deductiva) tiene que poseer para
pertenecer al género Logica. Una relacion de consecuencia es una logica
deductiva si y sélo si es reflexiva, mondtona y valida el principio de
«corte».

El permitir una definicién general de la l6gica es la virtud principal
del enfoque abstracto. Sin embargo, no debemos olvidar que, comple-
tado con el sentido sintdctico de los signos légicos anteriormente men-
cionado, el enfoque abstracto da respuesta al dilema de Jorgensen al
explicar como son posibles ldgicas referidas a enunciados que carecen
de valor de verdad, superando asi la dificultad indicada en vii a la tesis
de la primacia de la semdntica.

14. Sobre el importante tema de si las diferentes 1dgicas son rivales entre si o si son comple-
mentarias y pueden ser integradas en unica l6gica omnicomprensiva, sdlo se haran algunos breves
comentarios en el apartado x.
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X. LA JUSTIFICACION INTUITIVA

En ciertos casos las reglas que determinan el significado sintactico de los
signos logicos tienen, desde el punto de vista intuitivo, exactamente el
mismo contenido conceptual que las cldusulas para la nocidén semdntica
de verdad que fijan el significado semdntico de tales signos. Tal es clara-
mente el caso cuando se comparan las reglas contenidas en los axiomas
de introduccion y de eliminacion para la forma de conjuncién conside-
rada «a» con la clausula (iii) por la que se determina el significado seman-
tico de dicha conjuncién. En efecto, tanto unas como otras intuitivamente
indican la identidad conceptual de una conjuncién con el par de sus con-
yuntos.

Lo anterior no sucede (ni se pretende que suceda) con todas las mane-
ras usadas para fijar el significado sintactico y semantico de los diferen-
tes signos légicos que interese tematizar. Es un lugar comun a todos los
enfoques de la légica que la apreciacién intuitiva requiere considerar la
totalidad de los principios que cada légica convalida para cada uno de
los signos logicos en ella incluidos.

Asi, por ejemplo, las llamadas «paradojas de la implicaciéon material»:

(P.5.1) A= (BDA)
(P.D.2) —A — (ADB)

(que la implicacion material comparte con la implicacién intuicionista)
muestran un desacuerdo conceptual entre, por un lado, los significados
semanticos y sintacticos de las nociones de implicacion de la logica cla-
sica y de la intuicionista, y por otro, los significados paradigmaticos de
las construcciones condicionales de los lenguajes corrientes en uso.

La no satisfaccién de la segunda (P.D.2) es la motivacién principal
que ha llevado a la construccion de las ldgicas de los condicionales con-
trafacticos. Un condicional contrafictico es aquél cuyo antecedente es
de hecho falso. Aceptar (P.D.2) para los condicionales contrafacticos
implica comprometerse a aceptar que todo condicional contrafictico es
siempre verdadero. Podemos creer que si Aristoteles hubiera conocido
lal6gica cldsica contemporanea la habria aceptado, o podemos creer que
si Aristoteles hubiera conocido tal l6gica no la habria aceptado, lo que
si resulta completamente desquiciado es creer que hay alguna razén con-
ceptual (vinculada a la nocién corriente de condicionalidad) para tener
que aceptar los dos condicionales anteriores por el s6lo hecho de que Aris-
toteles, dada la época en que le toco vivir, nunca conocié la légica con-
temporanea.

Dar la satisfaccidon a estos desacuerdos intuitivos entre las ldgicas
conocidas y nuestra manera corriente de conceptualizar la realidad a través
de los lenguajes que a diario usamos es la motivacién explicita que sub-
yace a la creacion de las distintas ldgicas para los condicionales contra-
facticos. Ademads, es el tipo de motivacién que justifica la creacion de
una gran mayoria del enorme espectro de légicas que pueblan la logica
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contemporanea. Sin embargo, es dable reconocer que muchas l6gicas han
surgido motivadas sélo por consideraciones formales, como las de inda-
gar qué sucede si se generaliza, se restringe o de alguna forma se modi-
fica alguno o algunos principios de una ldgica ya conocida.

A esta altura se plantean varios interrogantes filoséficamente rele-
vantes:

1) ¢Por qué no hay una tunica légica, por lo menos para cada uno
de los términos sincategorematicos del lenguaje?

2) Las fallas denunciadas como paradojas intuitivas ¢no son un sin-
toma de que se ha deslizado algo falso en las logicas que las padecen?

3) La buscada correlacién entre las logicas desarrolladas con rela-
cién a lenguajes artificiales y el alcance conceptual de sus pretendidos
correlatos de los lenguajes corrientes en uso, que por cierto es el instru-
mento con que pensamos a diario ¢no muestran lo justificado de la pre-
tension descriptiva de la antigua concepcién de la 1égica como la ciencia
de nuestro modo de pensar (de las leyes del pensamiento)?

Es innegable que los lenguajes artificiales con relacion a los cuales
se identifican cada una de las distintas ldgicas surgieron con el propdsito
de suministrar reconstrucciones racionales de conceptos que encuentran
su expresion natural en los lenguajes corrientemente usados. También
es verdad que no hay légica que no esté afectada por alguna disonancia
intuitiva. Tales discrepancias pueden detectarse tanto en sus presenta-
ciones sinticticas como en sus presentaciones semanticas. Este aspecto
es importante, porque muestra que tanto el significado sintdctico como
el significado semantico de los signos de un lenguaje artificial son perfec-
tamente inteligibles en si mismos, ya que en caso contrario no podrian
compararse con la significacion del lenguaje natural y no existirian las
paradojas intuitivas.

Lo anterior, sin embargo, no implica que la existencia de discrepan-
cias intuitivas signifique que se haya deslizado alguna falsedad en la l6gica
en que ellas se producen. Asi la conjuncién clésica «A», considerada usual-
mente como el signo l6gico de maxima semejanza con sus correlatos del
lenguaje corriente, tiene discrepancias intuitivas, ya que, tanto por su sig-
nificado sintictico como por el semantico, resulta que es una operacién
conmutativa, en el sentido de que el orden de los conyuntos es irrele-
vante: (A A B) significa lo mismo que (B A A). No obstante hay tipicas
construcciones conjuntivas del lenguaje corriente que carecen de esta pro-
piedad: no es equivalente «se casaron y tuvieron un hijo» a «tuvieron
un hijo y se casaron».

De ello no debe inferirse que haya algl'm error en las leyes y reglas
de la conjuncion clasica, ya que ellas estdn plenamente justificadas por
el 81gmf1cado (sintactico y semadntico) atribuido a esa forma de con)un-
cién. Lo que la discrepancia intuitiva muestra es que la conjuncién cla-
sica no reconstruye todas las construcciones conjuntivas corrientes. La
discrepancia sélo muestra la necesidad de restringir el dmbito de aplica-
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bilidad (con relacién a las construcciones corrientes) de esa forma de con-
juncién. El propdsito reconstructivo se veria frustrado sélo cuando tal
ambito fuera vacio. Pero aun en ese caso no significa la inclusién de fal-
sedad alguna en la l6gica clasica de la conjuncién, ya que es sélo su valor
practico de utilidad el que se encontraria cuestionado, valor que podria
reivindicarse con razones diferentes.

Desde la anterior perspectiva la coexistencia de una pluralidad de logi-
cas, cada una de ellas plenamente justificadas en si mismas, no debe ser
motivo de extrafieza. Es mds, los principios de cada logica pueden ser
vistos como analiticos en el sentido en que ellos se justifican apoyandose
unicamente en el significado (sintdctico o semdntico segun cudl sea la natu-
raleza del enfoque con que se identifica la significatividad de los signos
logicos) de sus expresiones constituyentes. La tesis expuesta corresponde
sustancialmente a la de Quine (Quine, 1970) frente a la cuestion de las
logicas alternativas y rivales que €l sintetiza en el dictum: cambio de légica
implica cambio de tema. No hay ni puede haber rivalidad entre dos 16gi-
cas diferentes porque un cambio en los principios supone un cambio en
el significado de los signos logicos que en ellos figuran.

Asi, por ejemplo, la logica de la implicacién intuicionista estd carac-
terizada por la adopcién de los dos axiomas (I. D) y (E. D) como criterio
para el significado (sintactico) del signo de implicacién. La implicacion
material se constituye cuando ademds de los anteriores se postula el
siguiente axioma de eliminacién'*:

(E.D.1) ((A D B) D A) = A (Principio de Peirce)

Naturalmente una caracterizacién semdntica de la implicacién intui-
cionista requiere una estructura semdntica'® distinta de la ofrecida ante-
riormente para el condicional clasico y condiciones de verdad distintas
a las incluidas en la cldusula (v).

Las dos légicas son diferentes porque sus principios no son los mismos
(en la intuicionista el principio de Peirce no vale), pero esto implica que el
signo de implicacién tiene en cada una de ellas un significado diferente.

Con este alcance dos ldgicas diferentes no pueden ser rivales. Natu-
ralmente, esto no excluye una necesaria rivalidad en el 4ambito de su apli-
cacion. Pero con ello nos vamos del 4rea de la significatividad sintactica
y semantica para entrar en el de la justificacion intuitiva en la compara-
cién con las construcciones correspondientes del lenguaje corriente. Es
sensato pensar que es precisamente en este area donde hay que buscar
una de las fuentes, no por cierto la tnica, de justificacion de toda légica.

La justificaciéon pragmatica de una légica por el ambito del lenguaje
corriente que logra reconstruir es quizds el grano de verdad contenido

15. La circunstancia de que en la presentacion precedente de la ldgica cldsica no se incluyé al
principio de Peirce es porque en presenciade (I. ™)y (E. — ), (E. D. 1)se derivade (I. D)y (E. D).

16. La semantica estandar para la l6gica intuicionista, al igual que la semantica de las logicas
modales, recurre a la nocién de «mundo posible».

45



CARLOS ALCHOURRON

en la concepcion tradicional de la logica como versando acerca de las
«leyes del pensamiento».

Lo anterior no descalifica la pretension de buscar reemplazar la plu-
ralidad de logicas por una unica logica general. La idea seria la siguiente:
incorporar en un unico sistema de logica todos los signos logicos que ten-
gan un ambito de aplicacién no vacio, precisando ademds cual es el ambito
de aplicacion de cada uno de los signos logicos con significado (semdn-
tico y sintactico) diferente.

Si tal proyecto es o no, en definitiva, realizable, no podemos respon-
der. El hecho es que hasta ahora no es mucho lo que se ha hecho en esa
direccion. No obstante, hay que tomar en cuenta la siguiente adverten-
cia limitativa.

No es sensato esperar entre la logica reconstruida en un lenguaje
artificial y la «ldgica del lenguaje natural» una suerte de correlacion como
la requerida en (Corr. 1) entre los enfoques sintactico y semdnticos, por-
que en un sentido importante no hay una logica coherente en el len-
guaje natural. El lenguaje corriente no sélo estd plagado de ambigtie-
dades, vaguedades y toda suerte de imprecisiones significativas que
justifican apartarse de €l en los procesos de reconstruccidn racional, sino
que acumula en su seno intuiciones incompatibles que no pueden supe-
rarse mds que reformandolo, abandonando intuiciones que pueden ser
muy solidas.

La siguiente situacion es un ejemplo de la dificultad anterior.

Pocas cosas son mds intuitivas que la necesidad de rechazar el princi-
pio de la logica clasica (compartido con casi todas las ldgicas salvo las
logicas relevantes y las paraconsistentes) de que de dos enunciados con-
tradictorios (y de todo conjunto inconsistente) todo enunciado es conse-
cuencia deductiva. Lo que se rechaza es el principio de Duns Escoto:

(DE) A,—A — B

Igualmente es muy dificil no admitir la enorme intuitividad de la regla
de Introduccion de la Disyuncion (I.v.1), el principio de monotonia (—.3),
el principio del Silogismo Disyuntivo:

(SD) — A,(AVB) —» B

y de la suerte de transitividad de la nocién de consecuencia representada
por la regla de Corte (—.2).

Lamentablemente todas estas fortisimas intuiciones no pueden con-
vivir coherentemente ya que la aceptacidn de los cuatro ultimos princi-
pios compromete a la aceptacién del principio de Duns Escoto. La
siguiente es una derivacién de (DE) a partir de los otros cuatro princi-
pios indicados:

(1) A,/ A — (AvB) (De (Lv.1) por (—.3))
(2) A,/ A, (AvB) — B (De (SD) por (—.3))
(3) A,—mA—B (De (1) y (2) por (=.2))
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[.a mas leve aspiracion de coherencia nos competen a rechazar alguna
de estas sélidas intuiciones, pero por otro lado no hay base intuitiva para
el sacrificio de ninguna.

La conclusiéon de esta paradoja intuitiva es que cualquiera que sea
la l6gica que terminemos privilegiando, ella tendra que apartarse de las
intuiciones bdsicas incorporadas al esquema de conceptos de los lengua-
jes corrientes. Esto implica abandonar una idea reconstructivista con pre-
tensiones de resultados univocos.

Mantener a toda costa el rechazo del principio de Duns Escoto es
la motivaciéon subyacente a la construccion de las llamadas Légicas Rele-
vantes, y es también una de las motivaciones mds importantes de las Logi-
cas Paraconsistentes. En verdad en ellas se reconstruyen intuiciones fun-
damentales, pero queda abierta la pregunta pragmatica de si no es mds
conveniente dejar tales intuiciones a un lado ya que, en definitiva, no
se puede dar satisfaccidon a todas las intuiciones corrientes.

Estas ultimas reflexiones quizas recojan el grano de verdad contenido
en la vieja concepcion normativa de la légica como disciplina acerca de
corho se debe pensar.
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José A. Robles Garcia

En las siguientes paginas se presenta un sucinto panorama histérico de
la l6gica dividido en las siguientes secciones: 1. Logica griega; II. Logica
medieval; III. La légica antes de Frege; [V. La logica de Frege; V. Des-
pués de Frege.

Ciertamente muchas cosas quedardn fuera de este panoramay el deta-
lle de algunos de los diferentes temas que aqui presentaré o a los que s6lo
aludiré, lo encontrara el lector en los diversos articulos de esta enciclo-
pedia dedicados precisamente a esa tarea.

El tema de la l6gica medieval, aun cuando per se es de gran impor-
tancia por la variedad y riqueza de tratamiento de diversos tipos de infe-
rencias, me veo precisado a bosquejarlo tan solo, tomando tres temas
centrales, pocos ejemplos y menos autores y matices.

I. LOGICA GRIEGA
1. Aristoteles

Con el trabajo de Aristoteles (384-322 a.C.) surge la 16gica en el mundo.
El desarrolla la teoria del silogismo, a la que se alude cuando se habla
de la logica aristotélica como un antecedente remoto de la logica con-
temporanea.

En el despliegue de la parte central de su teoria, Aristoteles s6lo con-
sidera cuatro tipos diferentes de enunciados o proposiciones a partir de
los cuales formula sus propuestas de argumentacion vélida. Los cuatro
enunciados (0, mejor, formas enunciativas, esto es, expresiones en las que
figuran variables y que se convierten en enunciados una vez que estas
variables se sustituyen por las expresiones adecuadas correspondientes)
en cuestidon son el universal afirmativo, ‘Todo S es P’ (A), el universal
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negativo, ‘Ningun S es P’ (E), el particular afirmativo, ‘Algin S es P’ (I)
y el particular negativo ‘Algun S no es P’ (O). En donde las letras ‘S’ y
‘P’ son variables predicativas que toman como valores sustantivos gene-
rales, de tal manera que una forma enunciativa del tipo (I), ‘Algun S es
P, se convierte en el enunciado ‘Algun hombre es mortal’ al sustituir ‘S’
y ‘P’ por ‘hombre’ y por ‘mortal’, respectivamente. Finalmente es preciso
sefialar que Aristételes también consideré otra clase de enunciados, los
individuales, como ‘Sécrates es mortal’, que comentaristas posteriores asi-
milaron a los enunciados universales afirmativos, creando bastante con-
fusion, pues la predicacion tiene caracteristicas diferentes en ambos casos.

La manera gréfica, postaristotélica, de representar las relaciones 16gi-
cas entre los enunciados (formas enunciativas) categoricos aristotélicas
(A, E, I, O), se conoce con el nombre de cuadrado de oposicion y es el
siguiente:

contrarias

A

» LD ROt —=n TS »
(a5
(¢}

»w LD R0 —D O »

I . (@)
subcontrarias

Las relaciones ldgicas que se dan entre estos enunciados son: los con-
trarios (A, E; esto es, los enunciados universales), pueden ser ambos fal-
sos, pero no ambos verdaderos; los subcontrarios (1, Oj; esto es, los enun-
ciados particulares), en cambio, pueden ser ambos verdaderos, pero no
ambos falsos; por otra parte, con respecto a la subalternacion, de la ver-
dad de cualquiera de los contrarios (A, E), se sigue la verdad del subcon-
trario correspondiente (I, O) y de la falsedad de cualquiera de los subal-
ternos (I, O), se sigue la falsedad del contrario correspondiente (A, E).
Finalmente, los enunciados contradictorios tienen siempre valores verita-
tivos opuestos: st uno de ellos es verdadero, el otro es falso y a la inversa.

La silogistica aristotélica forma parte de la que hoy se considera la
teoria general de la inferencia deductiva. Conforme a ésta, se define lo
que es un argumento deductivo vdlido (y aqui tendremos que apelar a
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las formas enunciativas, sin entrar en demasiados detalles) como un con-
junto de enunciados, ey, €,,..., €., tales que éstos provienen de formas
enunciativas tales que es imposible que haya una sustitucion (de las varia-
bles por predicados) en la que los enunciados resultantes, e; (1 <j<n),
sean todos verdaderos y e, sea falso. A los enunciados e; se les denomina
premisas del argumento y al enunciado e, se le llama conclusién. En la
silogistica aristotélica se estudian argumentos formados por solo dos pre-
misas y conclusion, donde estos tres enunciados (formas enunciativas)
serdn, todos, solo de alguna de las formas A, E, I, O arriba mencionadas.

Aristételes desarrolla la teoria del silogismo considerando fodas las
formas viélidas posibles de inferencia dentro de este esquematismo légico.
Conforme a él, son validas las inferencias que, de un enunciado univer-
sal como premisa van a un enunciado particular como conclusion, es decir,
los siguientes esquemas (formas de argumento) muestran formas validas
de inferencia:

Todo Ses P Ningun S es P
o Algin S es P ~ Algun S no es P

Estos esquemas (que corresponden a la relacion de subalternacion;
¢f. supra, p. 50), aun cuando tienen una apariencia intuitiva correcta,
fueron puestos en cuestion, como veremos (cf. infra, pp. 63 ss.), por los
légicos contemporaneos.

Los silogismos aristotélicos, segin lo senalé, son esquemas de argu-
mentacion compuestos de dos premisas y una conclusion. En los silogis-
mos, para ser tales, deben de figurar, entre premisas y conclusion, exac-
tamente tres términos, es decir, solo tres expresiones diferentes de las que
forman los sujetos y los predicados de los tres enunciados. Un ejemplo
de silogismo esquema es el siguiente:

premisa menor Todo B es C
premisa mayor Todo C es D
conclusion = Todo B es D

En donde los tres términos diferentes estan representados por las tres
letras ‘B’, ‘C’ y ‘D’. A partir de esta composicion los términos reciben
los siguientes nombres: ‘D’, el predicado de la conclusién, se denomina
término mayor; ‘B, el sujeto de la conclusién, se denomina término menor
y, finalmente, ‘C’, el término que figura sélo en las dos premisas, se deno-
mina término medio. A partir de estas denominaciones, las premisas reci-
ben los nombres de, premisa mayor, aquella en la que figura el término
mayor y premisa menor, aquella en la que figura el término menor, sin
importar el orden en el que tales premisas se encuentren colocadas.

Tras las observaciones anteriores, podemos entender la agrupacion
que hace Aristoteles de los silogismos en tres figuras bajo las que caen
diversos modos. Las figuras dependen de la colocacion de los términos
en las premisas y los modos dependen del tipo de enunciados que for-
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men el silogismo. De acuerdo con esto, las figuras del silogismo aristoté-
lico son:

12 figura 22 figura 32 figura
C-D D-C C-D mayor
B-C - B-C ~CB menor
B-D B-D B-D conclusion
Y los modos en cada una de las figuras anteriores, son:
12 figura 22 figura 32 figura
A, A/A E, A/E A, A/l
E, A/E A, E/E A, 1/1
A, /1 E, I/0 E, A/O
E, /O A, 0/0 E.1/0
I, A/I
0, A/0

Lo que muestra el esquema anterior es el tipo de premisas y de conclu-
sién que pueden figurar en esquemas vélidos (cf. supra, p. 51) de silogismo
en cadaunade las tresfiguras. Asi, el caso A, A/A de la primera figura sefiala
que en esa figura es valido un silogismo cuyas dos premisas y conclusién sean
enunciados universales afirmativos (A). En la segunda figura la conclusion
siempre es negativa (E u O)y, por esto, una de las premisas debe se negativa.
En la tercera figura todas las conclusiones son particulares (I u O).

Las reglas de construccion de los silogismos determinan cuales son
las formas validas posibles dentro de cada una de las figuras.

A la muerte de AristOteles se aniade, a las tres figuras aristotélicas,
una cuarta figura (atribuida falsamente —segun los Kneale— a Galeno,
siglo II de nuestra era), con seis modos validos. Esta cuarta figura invierte
la estructura de las premisas de la 12 figura:

42 figura modos
premisa mayor D-C A, A/ A, E/E
premisa menor 7 7Cﬂ37 I, A/I E, A/O
conclusiéon . B-D E, /0 A, E/O

2. Megaricos y estoicos

En el caso de los megaricos y de los estoicos poco podemos decir, ya que
hay escaso material conservado acerca de su trabajo. Los megaricos, sena-
lan los Kneale, hicieron tres aportaciones a la légica en lo relativo a las
paradojas, a una destacada revisién de los conceptos modales y comen-
zaron un importante debate con relacién a los enunciados condiciona-
les. En lo que sigue algo se dird acerca de la tercera propuesta y muy
poco acerca de las dos primeras.
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De las paradojas megdrico-estoicas que hasta nosotros han llegado hay
que subrayar la muy conocida del mentiroso, atribuida a Eubulides: Si
alguien dice ‘estoy mintiendo’, ;es verdadero o falso esto que dice? Aqui
vale recordar minimamente las alternativas: si lo que dice es verdad, enton-
ces, estd mintiendo, por tanto, lo que dice es falso, entonces no estd min-
tiendo; por otra parte, si lo que dice es falso, entonces no estd mintiendo,
esto es, estd diciendo la verdad, a saber, estd mintiendo. La conclusion
es, entonces, que si estd mintiendo estd diciendo la verdad y si esta diciendo
la verdad, entonces esta mintiendo. Esto muestra que el sujeto, a la vez,
miente y 7o miente. Pero los dos enunciados no pueden ser verdaderos
dentro de una légica bivaluada en la que vale una ley equivalente a la sena-
lada para los enunciados contradictorios (cf. supra, pp. 50-51).

Con respecto a la naturaleza de los enunciados condicionales, los pri-
meros en estudiarlos, de acuerdo a los Kneale, fueron Diodoro Crono
y su discipulo Fil6n. Lo que nos dicen acerca de esto es que «Sexto Empi-
rico, al resenar la disputa sobre los condicionales, senala que Filon sos-
tiene que un condicional correcto (vytes ovvnuuéror) es uno que no
comienza con una verdad y concluye con una falsedad; pero Diodoro
dice que un condicional asi es uno que no comienza ni puede comenzar
con una verdad y acabar con una falsedad...». En el primer caso, el de
Filén, tenemos la que Russell denominé ‘implicacién material’; conforme
a la caracterizacién de Filéon, un condicional como «si ahora es de dia
entonces 2 + 2 = 5» serd verdadero si se dice de noche, en tanto que nunca
serd verdadero, de acuerdo a la caracterizacién de Diodoro, ya que puede
comenzar con una verdad, si el condicional se dice de dia, y concluira
con una falsedad. De acuerdo a la propuesta de Diodoro, entonces, un
condicional serd verdadero con s6lo que su antecedente (o la parte que
viene después de ‘si’ y antes de ‘entonces’) sea siempre falso o que su con-
secuente (0 la parte que viene después de ‘entonces’) sea siempre verda-
dero; de esta manera, se cumple con la exigencia de que nunca se dé el
caso de que el antecedente sea verdadero y el consecuente falso.

La implicacién de Filon (implicaciéon material) es la implicaciéon de
la légica clasica contemporanea, en tanto que el dltimo tipo de implica-
cidn, la de Diodoro, es la relacién de implicacién logica o implicacion
estricta que adoptd C. 1. Lewis en su logica modal.

I1. LOGICA MEDIEVAL

Los légicos medievales no llegan a formular una teoria légica tan plena-
mente formalizada como la que tenemos hoy en dia por la razén de que
su interés se centraba en estudiar y formular las leyes 16gicas de una lengua
natural, el latin, a diferencia de la practica de los l6gicos contempora-
neos, cuyo interés es, mas bien, el estudio y la construccién de lenguajes
simbolicos (artificiales), que tengan ciertas propiedades que se conside-
ran utiles teniendo en cuenta ciertos propositos a la vista.
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Sin embargo, un rasgo basico que establece una fuerte liga entre los
logicos medievales y el trabajo contemporaneo en esta disciplina, es la
clara conciencia que tenian los primeros de que la misma es un estudio
de estructuras formales y que precisamente era por medio de la forma
de las proposiciones como se podrian evaluar los argumentos y determi-
nar los casos de consecuencias logicas correctas.

Para poner lo anterior de relieve sigo, en parte, a Philoteus Bohner
y senalo las que él considera las principales aportaciones de esta época.
Los encabezados bajo los que las retne, son: “Términos sincategorema-
ticos’, ‘Teoria de la suposicién’ y “Teoria de las consecuencias’.

1. Términos sincategoremadticos

Sobre los términos sincategorematicos o palabras cosignificantes, Boh-
ner sefiala que hay una fuerte relacion entre el uso escoldstico y el estoico
de las mismas. En ambos casos se usa la misma palabray se le da el mismo
significado. Bochenski también encuentra una fuerte relacion con los estoi-
cos y senala, por su parte (1961, 189), que la teoria de las consecuencias
es «esencialmente un avance de la légica proposicional estoica», aun
cuando, quizds, no hubo ninguna influencia estoica directa en la cons-
truccién medieval.

Los términos sincategorematicos se contrastan con los categoremati-
cos; éstos, segun lo senala Alberto Magno, son los «que, tomados signi-
ficativamente, pueden ser sujetos o predicados —o parte del sujeto o parte
del predicado distribuido— de una proposicién categérica; por ejemplo,
los términos ‘hombre’, ‘animal’, ‘piedra’, se llaman categorematicos por-
que tienen una significacion definida y cierta» (Perutilis logica, § 44). Los
términos sincategorematicos, en cambio, son los que #o pueden ser suje-
tos ni predicados de una proposicion (a menos que se tomen material-
mente, como en «Y’ es una conjuncion»)y, en el caso preciso de la logica,
esos términos son los «signos universales o particulares» (como los llama
Alberto: ibid.), que son nuestros cuantificadores, asi como las conecti-
vas légicas: negacién, conjuncién, disyuncién, etc. Lo que Bohner senala
acerca de estos términos es que la importancia que los escolasticos les
dieron senala con claridad que tenian muy en cuenta el caracter formal
de sus investigaciones. Los términos sincategorematicos que aqui hemos
senalado son los pertinentes para el estudio de la légica, ya que influyen
directamente en la verdad o en la falsedad de las proposiciones.

Para mostrar como entendian los autores medievales la funcion de
los términos sincategorematicos, vuelvo a citar a Alberto de Sajonia quien,
al responder la objecion de que, aparentemente, «y» puede formar parte
del sujeto de una proposiciéon, como, por ejemplo, en ‘Socrates y Platén
corren’, parece ser que el sujeto es «Socrates y Platon», Alberto dice,

... en la proposicion ‘Socrates y Platdn corren’, «y» no es parte del sujeto, sino que
solamente son sujetos el término ‘Socrates’ y el término ‘Platdn’; esto es claro, pues
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la contradictoria es ‘Socrates o Platén no corren’; pero ambas proposiciones no serian
contradictorias si «y» fuese parte del sujeto de la primera, pues entonces las dos
proposiciones no tendrian el mismo sujeto.

(ibid. § 52)

De las consideraciones anteriores, Alberto precisa los sentidos de con-
secuencias material y formal y, segun lo sefiala acertadamente Bohner,
el uso que se les da a los términos categorematicos escolasticos es como
el de nuestras variables predicativas y los términos sincategorematicos
se presentan como nuestras constantes logicas. En otro pasaje de su Peru-
tilis logica, Alberto nos dice:

975. De las consecuencias, una es formal y otra material...

976. ...y tal como hablo aqui de formas y materia, se entiende por materia
de la proposicion o de la consecuencia, los términos puramente categorematicos
—como son los sujetos y los predicados—, prescindiendo de los sincategoremas que
les acompanan y por los que tales se coordinan o distribuyen, al ser llevados a un
determinado modo de suposicién.

977.Y ala forma se dice que pertenece todo lo demas; de modo que la copula,
tanto de la categérica como de la hipotética, pertenece a la forma de la proposi-
cion. Del mismo modo, las negaciones y los signos y el orden mutuo de éstos y
los modos de significar pertinentes a la cantidad de la proposicion categdrica, como
la discrecion, comunidad, etc...

(§ 975-7)

Al considerar la teoria de las consecuencias volveremos sobre el tema
que aqui aparece apuntado acerca, justamente, de las consecuencias for-
males, que segun dije al iniciar esta seccién, son el nucleo del estudio
de la légica.

2. Teoria de la suposicion

Bajo el nombre de proprietates terminorum, se estudiaron, principalmente
en la baja Edad Media, la significatio, la copulatio, la appelatio y la sup-
positio. La teoria de las proprietates terminorum crecié en complejidad
a medida que diversos autores daban diferentes formulaciones de las mis-
mas e introducian matices y distinciones varias en ellas. Nuevamente aqui
se hace palpable la diferencia, ya sefialada, en la manera de tratar la l6gica
por parte de los escolasticos y de los autores modernos. Los primeros
ofrecen andlisis del latin (un lenguaje natural), a diferencia de los segun-
dos que proponen sus andlisis de un lenguaje artificial.

A pesar de las diferencias en el tratamiento, Bohner (pp. 29-30),
encuentra similitudes entre la teoria de la suppositio medieval y el cal-
culo funcional contemporaneo. En cambio, acerca de la misma supposi-
tio, Bochenski (1961, 162-3) nos dice que la doctrina fue una de las crea-
ciones mds originales de los escolasticos, pero desconocida tanto para
la légica antigua como para la moderna.
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Aqui s6lo menciono la doctrina y algunas de los importantes autores
que escribieron sobre ella: Guillermo de Shyreswood, Tomas de Aquino,
Vicente Ferrer, Walter Burleigh, Guillermo de Ockham, etc.

3. Teoria de las consecuencias

Una doctrina en la que puedo detenerme mds, ligada con mayor clari-
dad a nuestra logica formal contemporénea, es la teoria de las conse-
cuencias. El origen de una doctrina clara Bochenski (1961, 199-200) lo
atribuye a Buriddn, a Ockham e incluso a Pedro Hispano. La doctrina,
fuertemente influenciada por Buridan, aparece con precisién en la Peru-
tilis logica de Alberto Magno, la que Filoteo Bohner considera una pie-
dra miliar en la teoria de la consecuencia y, afirma, «estamos firmemente
convencidos de que, en muchos respectos, es superior a la Summa Logi-
cae de Ockham» (Bohner, 70). Alberto, en el libro mencionado, luego
de considerar diversas definiciones de antecedente y consecuente, formula
la siguiente caracterizacién de estas expresiones en una relacion de con-
secuencia:

. una proposicion es antecedente de otra si se relaciona de tal manera con ella
que es imposible que las cosas sean como, del modo que sea, las significa la pri-
mera —siempre que se mantenga fijo el uso de los términos—, sin que sean como
las significa la otra.

(IV, 1, § 962)

(version modificada, siguiendo las sugerencias de Bohner y de Bochenski, de
la traduccién de Angel Munoz).

Lo que propone Alberto, entonces, de manera muy similar a la de
Diodoro (cf. supra, p. 53), es afirmar que una proposicion es antecedente
de otra (se refiere al objeto que sea y siempre que los términos se apli-
quen de igual manera) si no es posible que la primera sea verdadera y
no lo sea la segunda. (Véase la justificacion que da Bohner de esta lec-
tura en Bohner, 71-72.) Vale la pena anadir aqui, que esta lectura de
Alberto no convierte en modal la proposiciéon de consecuencia, pues la
imposibilidad (necesidad) no se predica de la proposicién misma, sino
del valor de verdad de tal conexidn (cf. ibid.).

Tal como Bohner analiza el condicional de Alberto, llega a la con-
clusion de que, para éste, se trata de una implicacién formal o necesaria,
no del tipo de implicacién material, a la manera de Filon.

Mis adelante, en la misma Perutilis logica, Alberto hace una distin-
cién entre implicaciones o consecuencias formal y material; asi, en ibid.
§ 975, senala (ya citado, en parte en supra, pp. 54-55):

De las consecuencias, una es formal y otra material. Consecuencia formal se llama

a toda proposicion semejante en la forma a la que, si se formara, fuese buena con-
secuencia, como aqui: ‘B es A; luego, lo que es A es B’.
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Y, en la siguiente seccién, senala:

§ 976. Consecuencia material es aquella tal que no toda proposicién semejante a
ella en la forma es buena consecuencia [...] y [...] se entiende por materia de la
proposicion o de la consecuencia, los términos puramente categorematicos —como
son los sujetos y los predicados—, prescindiendo de los sincategoremas que los acom-
panan...

Con la cita anterior cierro esta breve incursién por el mundo de la
logica medieval, en el que pudimos atisbar intuiciones muy licidas que,
en muchos casos, tuvieron muy amplio desarrollo posterior gracias a la
creacion de lenguajes simbolicos adecuados que fueron vehiculos mas 4gi-
les para el manejo logico que los lenguajes naturales en los que se formu-
laba anteriormente la argumentacion.

II. LA LOGICA ANTES DE FREGE

1. Leibniz y su idea de un lenguaje universal

Tras la propuesta de Ramon Llull (1235-1315), en su Ars Magna, de
formular un lenguaje universal de razonamiento, fundado en el supuesto
de que todo el conocimiento no es sino un complejo que se forma a par-
tir de la unién de ideas basicas, simples, muchos intentos se hicieron por
formular un lenguaje de esta naturaleza. En el siglo xvil diversos pensa-
dores hacen propuestas mas claras y precisas que las de Lulio; entre ellos,
Descartes formuld una propuesta a este respecto (carta a Mersenne del
20 de noviembre de 1629), en la que alude al orden numérico y a la for-
macion de nuestros pensamientos a partir de pensamientos simples. En
Inglaterra también se hicieron propuestas (John Wilkins [1614-1672]
y George Dalgarno [1626-1687]) de construir un lenguaje en base a prin-
cipios simples y con una gramatica regular. Lo que esto daria como resul-
tado seria facilitar la comunicacién y hacer, por esto, mas rapida la difu-
sion de las ideas.

Vale la pena destacar aqui la aparicién, en 1662, de uno de los libros
mds influyentes de la época, La logique ou l'art de penser (conocida como
la Légica de Port Royal), de los pensadores ]ansemstas de Port Royal,
Antoine Arnauld y Pierre Nicole. Este libro se siguié imprimiendo hasta
el siglo x1x. Los temas que trata, sin embargo, no son lo que hoy en dia
reconoceriamos como temas de ldgica y, segun lo sefialan los Kneale,

. es la fuente de la mala costumbre de confundir la logica con la epis-
temologia». Sin embargo, hay que sefialar que, entre otras cosas, en el
libro se hace la distincidn entre extension y comprension de un término.

Uno de los grandes fildsofos de la época moderna que mads se inte-
reso por la logica y por la creacion de un lenguaje simple de razonamiento,
fue G. W. Leibniz (1646-1716) quien, a los 19 afios, llegd a acariciar
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el proyecto de construir una lingua philosophica o characteristica univer-
salis, esto es, un lenguaje que reflejara la estructura del pensamiento y
que, por su medio, se pudiera llevar a cabo un célculo que permitiera
decidir todas las cuestiones relacionadas de consistencia y consecuencia.
La propuesta de Leibniz, segiin se ha senalado aqui, no fue la primera
pero si mas elaborada que las que se hicieron previamente. Leibniz for-
mula su proyecto en su texto De Arte Combinatoria de 1666. La manera
como ¢él vislumbraba este nuevo lenguaje era en términos de una analo-
gia con la construccién de los enteros: asi como todos los numeros ente-
ros o bien son primos o bien pueden obtenerse como productos de pri-
mos (2, 3,5, 7,11, 13, 17, 23, etc. o bien 4=22% 6=2x3, 8=27,
9=3%,10=2xS5, 12=2%x3, etc.), asi, en este nuevo lenguaje leibni-
ziano, se podrian expresar las ideas simples (el equivalente de los niame-
ros primos) y las ideas complejas (que serian un compuesto de ideas
simples).

Leibniz intenta reflejar la complejidad de nuestro pensamiento en la
simplicidad de la estructura matematica; el problema aqui es que, junto
con la estructura, se requiere dar un andlisis de los contenidos de los pen-
samientos y esto va mas alld de lo que se puede hacer con sélo un andli-
sis del lenguaje, en caso de que esto fuera todo lo que Leibniz deseara
hacer.

Sin embargo, para que surgieran realmente cambios y se avanzara
en logica habria que esperar hasta el siglo Xix. Como es bien sabido,
Kant, en el ‘Prefacio’ a la segunda edicion (1787) de su Critica de la razén
pura (B viii), dejé sentado que la légica, desde Aristételes, no habia avan-
zado nada y, asi, senala que ‘... tiene toda la apariencia de ser perfecta
y estar completa’.

2. Antecedentes matematico-geométricos de la logica actual

Para llegar a presenciar los cambios en la visién de la logica que surgen
en el siglo XIX, es preciso tener en cuenta los avances en la investigacién
en matematicas que dan origen, entre otras cosas, al surgimiento del alge-
bra abstracta, de las geometrias no euclideas y a la preocupacién por deter-
minar la consistencia de la matematica misma.

Con respecto al dlgebra abstracta, los trabajos en el siglo xix, de Pea-
cock, Hamilton, Abel, Galois, Cayley, etc. muestran que las operacio-
nes aritméticas, hasta entonces usadas con un solo significado, podian
redefinirse segin diversas necesidades; de esta manera, una operacién
como la multiplicacién, x, por ejemplo, podria no ser conmutativa en
el caso de los cuaternios hamiltonianos o de los vectores.

Con respecto al surgimiento de las geometrias no euclideas, el siglo
x1X presencio el desenlace de la larga historia con respecto a si el postu-
lado V de Euclides, el postulado de las paralelas, era o no independiente
de los otros postulados de los Elementos. Decir que un enunciado e, es
independiente, de otros enunciados e,, e,,..., e,, es decir que e no es una
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conclusion deductiva de los enunciados e; (1 <j<n) o bien que no es
contradictorio anadir al conjunto de enunciados e, la negacién del enun-
ciado e, —e. Los resultados que se obtienen en el siglo x1X son de geo-
metrias en las que por un punto p, exterior a una recta r, puede trazarse
o bien mds de una recta, r’, paralela a r (Lobachevsky) o bien ninguna
recta r’ paralela a » (Riemann). Recordemos que, en la geometria de Eucli-
des, por un punto p, exterior a una recta r, podia trazarse exactamente
una recta »’ paralela a 7.

Los resultados anteriores, y algunos mds, hacen que los matematicos
de la época se preocupen por la consistencia de su herramienta de tra-
bajo. También en el siglo XIX se comienza a elaborar la axiomatizacién
de los nameros reales y a adquirir conciencia de las relaciones entre los
diversos tipos de nimeros que hasta entonces se habian estado usando
sin preocuparse por las posibles relaciones que entre ellos pudieran existir.

Lo que ahora es importante senalar, en base a lo que hasta aqui se
ha dicho, es que todos los anteriores avances ayudaron a que los mate-
madticos tomaran conciencia de que podian modificar, negar o rechazar
principios asumidos que sélo la costumbre habia hecho que parecieran
inamovibles. Los resultados que podian obtener serian no sélo consis-
tentes, sino también interesantes, teniendo en cuenta las posibles aplica-
ciones de los nuevos sistemas recién formulados o bien incluso por si mis-
mos, por las relaciones que mostraban que se daban entre sus elementos.
En el campo de la légica los avances en dlgebra influyen de manera impor-
tante la labor de George Boole.

3. Boole y el algebra de la légica

El trabajo de Boole tiene como antecedente inmediato la labor de De Mor-
gan y de Hamilton con relacién a los viejos enunciados aristotélicos A,
E, I, O. Si en la tradicion aristotélica anterior, el sujeto y el predicado
de los enunciados se veian como signos de cualidades, De Morgan y
Hamilton los ven como signos de las cosas que tienen esas cualidades.
Por otra parte, en la tradicion aristotélica, los enunciados afirmativos,
A, 1, se explicaban como relacionando el sujeto con sélo parte del predi-
cado; asi, “Todo S es P’ se entendia como afirmando que la cualidad de
ser P era parte de la cualidad de ser S pero, ademds, no se agotaba P
en ser S; en terminologia tradicional, en los enunciados afirmativos no
estaba distribuido el predicado. A diferencia de esto, en los enunciados
negativos el predicado si estaba distribuido. Hamilton, ademas de intro-
ducir una manera diferente de ver los términos de los enunciados, consi-
dera la posible cuantificacién del predicado y, asi, es posible tener dos
enunciados de tipo A: ‘Todos los S son todos los P’ asi como “Todos los
S son algunos P’. Con todos estos elementos a la mano, es posible dar
una interpretacion de los enunciados como afirmando relaciones entre
clases de objetos y, entonces, formular las relaciones entre éstas en tér-
minos de un algebra de clases.
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Boole desarrolla sus propuestas en su primer libro, The Mathemati-
cal Analysis of Logic, being an essay towards a calculus of deductive rea-
soning (1847) en el que propone un andlisis de los enunciados tradicio-
nales, A, E, I, O, en términos de ecuaciones y donde demuestra la validez
de un silogismo mediante manejos algebraicos: si de las premisas,
mediante manejos algebraicos, se puede obtener la conclusion, enton-
ces, el silogismo es valido. El manejo que se da de los términos de los
enunciados es mediante una interpretacién como términos de clases; la
siguiente tabla muestra la interpretacién de Boole:

A: Todo XesY x(1-y)=0
E: Ningun X es Y xy=0
I: Algin XesY xy #0
O: Algin X noesY x(1-y)#0

en donde la expresion (1 — )’ representa el complemento de la clase ‘o’.
Asi, la primera expresion se puede interpretar como que es vacia la inter-
seccién de la clase de las X y el complemento de la clase de las Y; la
segunda expresion sefiala que es vacia la interseccion de la clase de las
X y la clase de las Y; la tercera expresion sefiala que 70 es vacia la inter-
seccidn de la clase de las X y la clase de las Y y, finalmente, la cuarta
expresidn sefiala que no es vacia la interseccion de la clase de las X y
el complemento de la clase de las Y.

Los siguientes ejemplos de silogismos validos muestran, de manera
intuitiva, cémo se podrian emplear las ecuaciones (y las desigualdades),
junto con razonamiento algebraico, para obtener las conclusiones de-
seadas:

Primera figura (bArbArA):

Todo C es D c(l—d)=O.‘.c=Ov1—d=O
Todo B es C b(l1-¢)=0 . b=0v1-c=0
peroobienc:O(’)l d=0:
si c=0, entonces 1 —c#0, . b=O vb(1-d)=0
si 1-d=0, entonces b(1-d)=0
.en ambos casos, b(1-d)=0

esto es: Todo B es D

Segunda figura (bArOcO):
Todo Bes Cb(l1-¢)=0 -. b=0Ov1-c=0
Algin Dnoes Cd(1-¢) # 0 .. 1-c#0,d#0O yb=0

~ Algin D no es B pues d(1 —b)#0, ya qued(1 -b)=d(1-0)=d#0
Primera figura (dArll):

TodoCesB ¢(1-b)=0 .. ¢c=0v1-b=0
Algin D es C  dc#0 . ¢#0,d#0y 1-b=0 ~ b=1#£0

Algin D es B pues db=d#0O
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Las lineas anteriores hacen claro que mediante los manejos algebrai-
cos de Boole no sélo se puede validar un argumento de forma silogistica,
sino que también se puede obtener una conclusidn vélida si s6lo tenemos
a la mano las dos premisas del silogismo.

Sin embargo, no es posible validar el silogismo aristotélico de la ter-
cera figura (dArAptl), pues

Sélo si ¢#0O, entonces:
Todo C es B c(1-b)=0 - c=0Ov1-b=0/b=1
Todo C es D (1-d)=0 - c=0v1-d=0/d=1

. Algun D es B db#O - bd=1x1+£0

Aqui nos enfrentamos a una interpretaciéon de los enunciados uni-
versales que no les confiere contenido o carga existencial. Expresar, como
lo hace Boole, que un enunciado universal afirmativo (A), “Todo B es
C’, es algebraicamente representable como b(1 -¢)=0 o que uno uni-
versal negativo (E), ‘Ningin B es C’, es representable como bc=0, es
expresar que la interseccion de dos clases es vacia o que no existen indi-
viduos que tengan, conjuntamente, las propiedades by 1 —c o bien by
¢, respectivamente. Pero, de esto 7o se puede inferir que hay individuos
que sean ¢ o miembros de la clase c.

Conforme a esta interpretacién, que es la que se adopta en la légica
contemporanea, el que hemos presentado como cuadro de oposicién aris-
totélico (c¢f. supra, p. 50), pierde las aristas laterales, esto es, si los enun-
ciados universales, A y E, no tienen contenido existencial, pero si lo tie-
nen los enunciados particulares, I, O pues, en la versidn algebraica de
Boole, la representacién de estos enunciados es mediante una desigual-
dad que senala que no es vacia la interseccion de dos clases, esto es, (I)
‘Algunos B son C’, que se representa como bc#0 y (O) ‘Algunos B no
son C’, que se representa como b(1 — ¢) #0, entonces de la verdad de los
enunciados universales 7o se sigue la verdad de los particulares corres-
pondientes, esto es, desaparece la relacion de subalternacién. Pero, ade-
mads, si la clase b es vacia, entonces es verdadero tanto que b(1 —¢)=0
como que bc=0, y sera falso tanto que b(1 — 0) #0 como que bc #0. De
esto se sigue que, a diferencia del cuadro de oposicidn aristotélico, ahora
podrén ser verdaderos a la vez los enunciados universales, A y E, y falsos
a la vez los enunciados particulares, I y O, por lo que ya no habra mas
enunciados contrarios ni enunciados subcontrarios, asi como tampoco
valdra4 la relacidn de subalternacidn. El cuadro, asi, se ve reducido a sus
dos grandes diagonales, esto es, sigue habiendo enunciados contradicto-
rios: A 'y O, por una parte, y E e I por la otra:
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En la segunda mitad del siglo Xix hubo una gran proliferacién de
nombres importantes para el desarrollo de la légica. Por razones obvias
de espacio, no podemos detenernos a considerar minimamente a estos
lo6gicos. Un pensador, sin embargo, debe mencionarse pues con él surge
la l6gica en su version contemporanea: Gottlob Frege. Aqui sefialaremos
algunas de las aportaciones centrales de este hombre que creo la légica
de nuestros dias.

IV. LA LOGICA DE FREGE

Gottlob Frege (1848-1925), desarrolla un primer sistema axiomatico, ple-
namente simbolizado, consistente y completo, de légica de 1" orden,
aun antes de que se tuvieran las herramientas logicas adecuadas para lle-
var a cabo la prueba de la completud de un sistema deductivo cualquiera.
Como es bien sabido, el trabajo de Frege quedd, por un tiempo, fuera
del cauce principal del desarrollo de la ldgica debido, principalmente,
a su muy rigico y estorboso sistema de notacién. Por otra parte, el inte-
rés que tuvo Russell por su obra, con muchos puntos de contacto con
la suya propia, y la difusion que de ella hizo, la pusieron en el primer
plano de la atencion filoséfico-matematica de la Europa de los primeros
anos de este siglo y tal atencién aun sigue fija en su labor ahora a casi
setenta afios de su muerte.

El interés que se tiene por la obra de Frege no sélo se refiere a su
trabajo técnico matematico, sino también, y muy especialmente, a sus
formulaciones filosofico-matematicas acerca de diversos problemas tanto
epistémicos como Onticos que rebasan el terreno relacionado con sola-
mente los fundamentos de las matematicas. Aqui vale la pena mencionar
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su importante discusion de la distincién semantica entre sentido y refe-
rencia que, a partir de la atencién que le prestaron Carnap y Church,
ha sido estudiada con cuidado por un sinnumero de filésofos posteriores.

El Begriffsschrift y el origen de la légica contemporanea

En 1879, Frege publica una breve obra, la primera que dedica al campo
de la logica, su Begriffsschrift (1879), que se convertira en la obra que
marca el comienzo de la légica formal contemporanea. En ella, como
ya lo senalé, Frege formula un sistema de légica de primer orden en el
que su autor introduce una modificacion radical en el andlisis de las pro-
posiciones, ya que, en lugar de analizarlas como si fueran de la forma
sujeto-predicado, propone verlas bajo la forma de funcion y argumento
y, ademas, en su escrito las pruebas se llevan a cabo de una manera estric-
tamente formal. Hay que anadir que el trabajo de Frege también se carac-
teriza por el rigor en la presentacion de sus demostraciones, que no figura
en obras posteriores como los Principia Mathematica de Russell y White-
head, por ejemplo.

La preocupacién de Frege y el propésito de su trabajo se encuentran
claramente expresados en el ‘Prefacio’ del Begriffsschrift. Al considerar
cudl sea la forma mejor de establecer la verdad de una proposicién, nos
dice lo siguiente:

Obviamente, la manera més confiable de llevar a cabo una prueba es seguir la l6gica
pura; ésta es una forma que, al dejar de lado las caracteristicas particulares de los
sujetos, depende tan solo de las leyes en las que se funda todo conocimiento. Con-
forme a esto, nosotros dividimos en dos tipos todas las verdades que requieren de
una justificacion, a saber, aquellas para las que la prueba puede llevarse a cabo
de manera puramente ldgica y aquellas que deben apoyarse en hechos de la expe-
riencia.

Mas adelante nos sigue diciendo:

Para impedir que cualquier cosa intuitiva penetrase aqui desapercibida, tuve que
poner todo mi esfuerzo en mantener la cadena de inferencias libre de huecos...

y, para superar los obstdculos que le imponia el lenguaje natural, nos
sigue diciendo que eso lo

. llevé a la idea de la presente ideografia [Begriffsschrift]. Su primer propdsito
es, pues, proporcionarnos la prueba mas confiable de la validez de una cadena de
inferencias y senalar toda presuposicion que intente colarse desapercibida, de tal
manera que se pueda investigar su origen.

Otra virtud que Frege encuentra en su lenguaje simbélico es que, para
los propésitos cientificos para los que fue creado, el mismo facilitara el
proceso de andlisis y, si esto es asi, de ello se seguird una mayor facilidad
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para descubrir nuevas verdades, esto es, propiciara un mayor avance de
la ciencia.

Frege mismo sefala la relacién que su nuevo lenguaje puede tener
con el lenguaje universal —la characteristica universalis— de Leibniz, aun
cuando considera que el entusiasmo de éste fue demasiado y que, por
esto, subestimo las dificultades a las que habria de enfrentarse la tarea
de crear un lenguaje asi.

Si, ciertamente, la busqueda de un lenguaje simple, que facilite las
pruebas lo acerca a Leibniz, la idea general del método tiene claras remi-
niscencias cartesianas de las Reglas para la conduccién del espiritu.

Por otra parte, ademds de lo que anteriormente he sefialado con res-
pecto al sistema de Frege, es preciso recordar que, en el mismo, se puede
expresar, de manera clara, la cuantificacién multiple.

El sistema de Frege contiene, como sus conectivas basicas, la nega-
cién y el condicional, definido a la manera de Fil6n, y el cuantificador
que usa como primitivo es el universal.

Presento algunas expresiones formales en el simbolismo de Frege junto
con su traduccién al simbolismo de Peano:

== - A expresa, segun lo senala Frege, el juicio de que no
: ~'B sucede que A se niegue y B se afirme (esto es, que
no es el caso que B sea verdadera y A falsa).

En la notacién de Peano, la expresion anterior de Frege se convierte
en el condicional (BDA).

Frege Peano
I | T A (BD -A)
B
1A A (a) (x) ((y) B(x,y)D Ax)
Ler— B (a, e)
LA A (a) (x) ((dy) —B(x,y)DAx)
“r1er— B(a, e)

En el sistema de Frege (usando la notacién de Peano) figuran, junto
con la regla de derivacién modus ponens:

eDY
©

los siguientes nueve axiomas que cubren tanto los calculos proposicio-
nal y de predicados, asi como la teoria de la identidad:

1. (¢D (¥Do)) 2. ((xD (¥De) D ((xDY¥) D (xD¢))
8. ((xD (¥De)) D (¥D (xD¥)))
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28. ((yD¢) D (-¢D-¥)) 31. (¢D--9¢)) 41. (--¢De)
52. ((a=b) D (f(a) D (b))) 54. (a=a) 58. (x)f(x) D f(y)

La numeracién que aqui aparece es la que usa Frege en su escrito.

Frege, con su Begriffsschrift unifica lo que autores anteriores, a par-
tir de Aristételes habian propuesto por separado, la logica de enuncia-
dos y la l6gica de términos; por otra parte, introduce una teoria general
de la cuantificacién que resuelve muchos problemas a los que se habian
enfrentado los légicos medievales y, junto con las otras aportaciones sena-
ladas con anterioridad, da nacimiento a la légica contemporanea. Des-
pués de él, se intensifica la investigacion en la teoria ldgica y se diversifi-
can los sistemas l6gicos que toman como punto de partida la légica clasica
bivaluada, que Frege genera con su trabajo.

Aqui tan sé6lo apunto el bien conocido interés de Frege por fundar
la matemadtica en la logica, aspiracion que con él comparte Russell.
Lamentablemente, en 1903, Frege publica el volumen II de sus Grundge-
setze der Arithmetik al que anade un Postscriptum en el que anuncia la
paradoja, descubierta por Russell, que surge de sus sistemas, a saber,
la paradoja de las clases que no son miembros de si mismas, lo que le
produce un profundo pesar, ya que la misma muestra que su trabajo no
se puede proponer como una fundamentacién adecuada de la matema-
tica. No es posible, sin embargo, que aqui ampliemos estas breves obser-
vaciones, ya que las mismas rebasan propiamente el campo de la l6gica
elemental que es el tema que nos ocupa.

Finalmente, menciono que Frege mismo y otros pensadores, entre ellos
Boole y Peirce, proponen la idea de una matriz de evaluacion para los
enunciados del cdlculo proposicional y, mas adelante, la idea la elabo-
ran con mayor precision Lukasiewicz, Post y Wittgenstein.

V. DESPUES DE FREGE
1. Russell, Whitehead vy los Principia Mathematica

La obra monumental de Russell y Whitehead, Principia Mathematica,
cuyos tres volumenes se publicaron, respectivamente, en los afos 1910,
1912 y 1913, puede verse como la conclusién de una de las propuestas
centrales de Frege en su labor en fundamentos de la matematica: mos-
trar que la matemdtica puede fundarse en la légica. Russell y Whitehead
intentan evitar la paradoja en el sistema de Frege y llevar a cabo la tarea
de mostrar que es posible derivar toda la matemadtica de la l6gica. Rus-
sell, para enfrentarse a la paradoja mencionada, desarrolla su teoria de
los tipos logicos. Sin embargo, lo que Russell toma como el fundamento
l6gico, primeramente, va mas alld de lo que es la 16gica elemental o 1égica
de primer orden y, por otra parte, Kurt Godel mostré que es imposible
derivar toda la matemadtica de una base axiomitica.
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2. Kurt Godel

En el ano de 1930, un joven austriaco, Kurt Godel (1906-1978), de 24
afios presenta, como disertacion doctoral (que luego publicara), la demos-
tracién, sobre un conjunto de axiomas de ldgica elemental, de que a par-
tir de este conjunto es posible derivar todas (completud) y sélo (correc-
cién) las verdades légicas. Esto parecia apoyar la propuesta de Hilbert
de demostrar la consistencia de las matematicas, pues de la correccidn
del sistema se sigue sin problemas su consistencia, pero el mismo Godel,
un ano después, en 1931, muestra que una axiomatizacion lo suficiente-
mente fuerte como para derivar de ella la aritmética elemental de los ntiime-
ros naturales, s7 la misma es consistente, entonces sera esencialmente
incompletable, esto es, habrd verdades matematicas que no serd posible
obtener como teoremas, esto es, lo que muestra Godel es que no son equi-
valentes las nociones de verdad matematica y la de teorema o bien, que
no hay una equivalencia entre los aspectos semdntico y sintactico de la
matematica; ademds, Godel demuestra que serd imposible demostrar la
consistencia de ese sistema.

3. La lbgica y los fundamentos de la matematica

Para finalizar esta breve vision histérica de la logica, vale la pena senalar
la posicidn que la disciplina ocupa dentro de las diferentes doctrinas que
se propusieron para dar cuenta de los fundamentos de la matematica.

Lineas atras se sefiald el interés de Frege, que Russell comparte, de
mostrar que la matematica se funda directamente en lalégica o, de manera
quizd mds precisa, que no hay ninguna diferencia esencial entre logica
y matematica, ya que ésta es una continuacion de la primera. Aqui es
importante sefialar la visién ontolédgica de esta posicidon, conocida con
el nombre de logicismo: la matemadtica es un estudio descriptivo de una
realidad de tipo platdnico, por lo que los enunciados matematicos deben
de ser verdaderos de dicha realidad. Asi pues, la matematica es una con-
tinuacion de la logica que se funda en un conjunto verdadero de axiomas.

Una propuesta diferente a la logicista es la formalista, enunciada por
David Hilbert. Conforme a ella, se mantiene una visién similar a la logi-
cista en tanto que no se considera que haya una diferencia esencial entre
légica y matematica, tan s6lo que 7o se mantiene una posicion reduccio-
nista de la matematica con respecto a la logica, sino que se propone que
ambas se desarrollen conjuntamente a fin de mostrar que el sistema con-
junto esta libre de contradiccién. Aqui se dejan de lado los aspectos seman-
ticos de verdad de los axiomas y el criterio basico de correccion es uno
sintdctico, esto es, que sea imposible derivar en el sistema tanto una fér-
mula, ¢, como su contrapuesta sintdctica, — ¢, que se interpretaria como
la negacion de .

Hilbert propuso un programa que procediera de manera gradual (e/
programa de Hilbert) para demostrar la consistencia de la matemdtica
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pero, segun lo sefialé lineas atras, su cumplimiento se ve frustrado con
la demostracion de Godel de que esto es imposible.

Finalmente, la posicion intuicionista, cuyo principal defensor fuera Luit-
zen Egbertus Jan Brouwer (1881-1967), considera que la ldgica surge de
un proceso de abstraccion que se lleva a cabo en base a ciertas regularida-
des que se observan en el proceso mismo de desarrollar la matematica.
Asi, légica y matematica son dos disciplinas que claramente se distinguen
dentro de la perspectiva intuicionista. Aqui es importante hacer notar que
la l6gica intuicionista se desvia de la l6gica clasica en tanto que aquélla
no acepta, como una verdad logica, el principio + (¢D ——¢) de la
logica clasica.

4. Otras logicas

Segun lo senalé con respecto a la l6gica intuicionista, ésta se separa de
la légica clasica al no aceptar todas las tesis que figuran en ésta. Por otra
parte, también se distingue de la logica cldsica en tanto que acepta tres
valores de verdad, en lugar de los dos unicos valores, caracteristicos de
la tradicidn cldsica. De esta manera, tenemos un aumento en valores de
verdad y esto es algo que Lukasiewicz elabora, a partir de 1917, esto
es, una ldgica multivaluada y, de esta manera, se abre la posibilidad de
ampliar y generalizar el estudio de estas légicas hasta llegar a sugerir el
estudio de ldgicas infinitamente valuadas.

En 1918, C. 1. Lewis introduce una nocién de implicacién mas fuerte
que la material, la implicacién estricta, relacionada con la implicacién
de Diodoro, segun se sefialé en su momento y, con ello, presenta un sis-
tema de [dgica modal, que amplia el repertorio de la légica clasica.

Por el afio de 1956 Gregorio Klimovski y, mas adelante, Héctor Neri
Castaneda, Carlos Alchourrén y Andrés Raggio comienzan, en América
Latina, a hacer uso de la légica de manera creativa, en el caso de la teo-
ria de los conjuntos, el primero, en el caso de légica dedntica, Castafnieda
y Alchourrén y en el estudio de funciones recursivas y pruebas construc-
tivas el ultimo.

En 1963, Newton C. A. da Costa crea un nuevo sistema de logica,
denominado actualmente légica paraconsistente, que ha despertado el inte-
rés de muchos logicos contemporaneos.

En estos avances de la légica, post Principia Mathematica, se puede
hacer la distincion sefialada por Susan Haack entre légicas que son riva-
les o las que son ampliaciones de la ldgica clasica. El lector encontrara,
en las otras selecciones de este volumen, material que le permitira preci-
sar y ampliar las breves notas que figuran en esta historia minima de la
logica.

Antes de terminar y sabiendo de antemano que no es posible dar una
enumeracion minimamente satisfactoria de los estudiosos de la logica en
nuestros paises, me atrevo a mencionar a algunas de las figuras destaca-
das a las que no he aludido anteriormente.
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Me referiré aqui a Vicente Ferreira da Silva como el primer autor de
un libro de 16gica moderna editado en Latinoamérica, Elementos de l6gica
matematica (Sao Paulo, 1940) y a Francisco Mir6 Quesada como el ini-
ciador de los estudios de légica simbdlica en el Pert y en Iberoamérica,
con la publicacién de su Légica (1946).

En México, Javier Sanchez Pozos ha realizado trabajos importantes
en logicas no clésicas, especialmente en ldgicas relevantes; Adolfo Gar-
cia de la Sienra ha hecho aplicaciones de la légica a teorias econdmicas
y Raul Orayen, ademads de dedicarse a trabajar en la ensenanza y la inves-
tigacidon en logica ha publicado un importante libro de teoria ldgica.

En Esparnia es posible mencionar nombres destacados del pasado inme-
diato y del presente que dedican su atencion a esta disciplina; entre ellos
estan Alfredo Deano (1), Jesus Mosterin, Manuel Sacristan, Lorenzo Pena,
quien también realiz6 su trabajo en Iberoamérica, etc.
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LOGICA CLASICA DE PRIMER ORDEN

Daniel Quesada

La légica clasica de primer orden es la teoria mas versatil y aplicable, tam-
bién la mas estudiada y mejor conocida, de la légica contempordnea, y
ocupa un lugar central en esta ciencia, siendo el «punto de referencia»
para otras partes o teorias de la loégica. Otros nombres con los que se
la conoce son lgica de predicados (elemental) y l6gica cuantificacional.
Puesto que esta monografia sdlo trata de l6gica clésica, en adelante pres-
cindiremos en general de este adjetivo.

El objetivo mas patente de una teoria logica es ofrecer una explica-
cion de la relacidn de implicacion l6gica en que se encuentran las premi-
sas y la conclusion de una inferencia correcta. Otro objetivo es ofrecer
un método sistematico para separar las inferencias correctas de las que
no lo son. Al perseguir estos objetivos la logica contempordnea ha con-
cebido las inferencias como formuladas lingiiisticamente y se ha servido,
del modo que indicaremos, de lenguajes artificiales desarrollados preci-
samente para alcanzarlos. De entre éstos, precisamente la familia mds
importante es la de los lenguajes de primer orden.

La ldgica (clasica) de primer orden abarca también en cierto sentido
la légica (clasica) de enunciados (o l6gica proposicional). Loslenguajes uti-
lizados en esta rama de la 16gica muestran parte de los recursos linguisti-
cos de los lenguajes de primer orden. Por ello, a las exposiciones de la logica
de primer orden en sentido propio suele anteceder la de la l6gica de enun-
ciados, y también esta monografia comenzard por una exposicion de esta
rama basica de la l6gica. Muchos de los conceptos presentados en este
marco mas restringido nos servirdn luego en el mds amplio.

I. FUNCIONES VERITATIVAS

La idea intuitiva, pretedrica, que tenemos de una conexion logica o rela-
cién de implicacion légica entre las premisas y la conclusion de un argu-
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mento o una inferencia es la siguiente: es imposible que las premisas sean
verdaderas y la conclusidn sea falsa. Si ésta conexién se da, decimos que
las premisas implican légicamente la conclusion (o una variante termi-
noldgica de ello: que la conclusion se sigue logicamente de las premisas;
que es una consecuencia légica de ellas, etc.).

No importan pues a la légica las cualidades retdricas o estilisticas, o
la capacidad persuasiva de los argumentos. Ni tampoco los procesos psico-
légicos o neurofisioldgicos implicados en su produccién. Todo lo que importa
es la conexién, por el momento intuitivamente descrita, entre premisas (los
enunciados que se dan por supuestos en el razonamiento) y conclusion.

Lo que necesitamos es tener una buena explicacién de en qué consis-
tiria 0 a qué se deberia la mencionada imposibilidad de que en una infe-
rencia correcta las premisas sean verdaderas y la conclusion falsa, y tam-
bién, si ello es posible, un método que nos sirva para determinar si se
da o no en un caso cualquiera.

Algunos fragmentos del discurso, o usos de oraciones en el lenguaje
natural son veritativo-funcionales. Ello quiere decir que el valor verita-
tivo (verdadero o falso) del fragmento en cuestion o de la oraciéon com-
pleja utilizada es una funcion de los valores veritativos de las oraciones
simples que componen el discurso u oraciéon compleja, es decir, depende
de esos valores de una manera totalmente definida. Esta dependencia es,
como veremos en la seccidn siguiente, de gran relevancia para el estudio
de las propiedades logicas fundamentales.

Los lenguajes de la ldgica de enunciados estan disenados para estu-
diar sistemdticamente tales dependencias. Un lenguaje de éstos contiene
los siguientes elementos:

1) Letras de enunciado: p, q, 7, s, ...
2) Conectivas: —1,A, V,—>, <.
3) Paréntesis: (, ).

El numero de letras de enunciado de los lenguajes de la légica de enun-
ciados puede ser « grande»: podemos considerar lengua-
jes con un numero infinito numerable de ellas (tantas como nimeros natu-
rales: p,, p,, p3, ...)'. Estas letras pueden utilizarse para representar
oraciones simples (no compuestas veritativo-funcionalmente) o que, a los
propdsitos inmediatos, queramos considerar como tales.

Enseguida prestaremos una atencién especial a las conectivas. Sus
denominaciones mas comunes son, respectivamente, negacion, conyun-
cibn, disyuncién, condicional y bicondicional, y, como estos nombres indi-
can, los respectivos andlogos de las expresiones «no», «y», «o», «si...
entonces», «si y sélo si»*. Mas adelante mencionaremos también la posi-
bilidad de escoger otros conjuntos de conectivas.

1. Enlaactualidad se consideran incluso «lenguajes» con una cantidad no numerable de simbo-
los, pero esta posibilidad no seré tenida en cuenta en la presente monografia, ni en este caso ni en el
de primer orden.

2. Se utilizan a veces simbolos distintos para alguna de las conectivas. Asi, puede encontrarse
~ en lugar de =, & en lugar de A, y D en lugar de —.
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La funcion de los paréntesis es auxiliar: desambiguar sintacticamente.
Otras convenciones pueden adoptarse al mismo fin.

A partir de los mencionados elementos se construyen férmulas (bien
formadas); por ejemplo — g, rAp, p—(—1gvs). Recurriendo a sus ana-
logos, se leen asi, respectivamente: «no g», «ry p», «si p, entonces no-q
os». En camblo otras cadenas de simbolos que, en prmc1p10 podrla-
mos formar no constituyen férmulas: pA,— 5(qvs) (como serd obvio si
se leen utilizando las expresiones andlogas y teniendo en cuenta que las
férmulas pueden representar oraciones).

Las formulas de estos lenguajes se construyen sintdcticamente de un
modo preciso que excluye la ambigtiedad (al contrario de lo que sucede
con sus andlogos en el lenguaje natural). Esto se realiza mediante una
definicion que delimita la clase de las formulas (frente a otras cadenas
de simbolos no bien formadas).

Para dar tal definicién nos servimos de otra serie de simbolos —aqui
las letras griegas minusculas ®, ‘P, y, con subindices si es necesario—
para representar, en principio, filas de simbolos cualesquiera. Debe tenerse
en cuenta que estas letras no son simbolos de un lenguaje de la ldgica
de enunciados, sino simbolos de un lenguaje (concretamente: el espanol
ampliado con tales simbolos) que utilizamos para caracterizar tal lenguaje.
De forma totalmente general, en la terminologia técnica, al lenguaje que
en cada caso se utilice para describir o caracterizar otro lenguaje se le
denomina metalenguaje (que es una nocion relativa, puesto que en muchos
casos pueden «cambiarse las tornas»: es posible tanto utilizar el espanol
para describir el inglés como a la inversa).

Por lo dicho, las letras ®, 'V, vy, mientras no se especifique mas,
podrian representar una fila de signos cualquiera, por ejemplo, — vrga,
o bien 7Ap, el segundo de nuestros ejemplos anteriores de féormulas, o
una letra de enunciado. Mezclamos tales letras con simbolos de lenguaje
de un modo fécil de entender (por simplicidad no utilizaremos otros recur-
sos técnicos existentes para evitar toda posible confusién).

Con tales recursos, he aqui la definicién que delimita la clase de las
férmulas:

1) Toda letra de enunciado es una férmula.

2) Si ®@ es una férmula, también lo es — @.

3) Si ®, ¥ son férmulas, también lo son (®AY), (PVY), (P—Y),
(DoW).

4) Nada es una férmula a menos que resulte de aplicar las clausulas
1-3.

Ahora puede verse que (p— (— gvs)), por ejemplo, es una féormula.
En efecto: p, g, s son férmulas por la clausula 1; — g lo es entonces
por la 2; por tanto, (— qvs) lo es por la 3 y, finalmente, (p— (— gvs))
es una férmula, por la clausula 3. Cada paso descansa en el resultado
del anterior. Estas clausulas determinan ademas un analisis sintactico uni-
voco para cada férmula y hacen que se pueda hablar del tipo sintictico

73



DANIEL QUESADA

de formula sin ambigtiedad. Asi, por ejemplo, una férmula en cuya cons-
truccion la ultima cldusula aplicada es la del condicional, es un condi-
cional. (Incidentalmente: la parte de una férmula condicional a la
izquierda del signo — se denomina antecedente, y la parte de la derecha,
consecuente).

Normalmente se adoptan algunas convenciones para evitar el engo-
rro que suponen los paréntesis cuando no son necesarios para realizar
su tarea desambiguadora. Asi, por ejemplo, se establece la convenciéon
de no escribir los paréntesis mas externos al acabar de construir una for-
mula (en nuestros primeros ejemplos de férmulas se hizo ya uso de esa
convencion).

Este tipo de definicion en el que unas clausulas remiten a otras sin
circularidad se denomina definicion recursiva. Se le denomina «definicion»
porque, haciendo cierto uso de recursos técnicos, se la puede transfor-
mar en una definicion explicita.

En adelante, utilizaremos ®, W, v especificamente para formulas.
Mostremos ahora la dependencia funcional de los valores veritativos. Esta
se da en ultimo término porque las conectivas expresan funciones de ver-
dad, como revela la tabla (1.1).

Tabla (1.1)
(o) —® ® ¥ (OAY) (dVWY) (P-Y) (DoY)
\Y% F Vv Vv A% A% \Y% \Y%
F A% \Y% F F \Y% F F
F \Y% F \Y% \Y% F
F F F F v \Y%

En (1.1) se presentan las tablas de verdad correspondientes a cada
una de las conectivas de un lenguaje tipico de la légica de enunciados.
Estas tablas muestran el modo en que tales conectivas contribuyen a deter-
minar el valor veritativo (verdadero o falso, abreviadamente: V o F) de
cualquier formula construida mediante las mismas.

Atendiendo a las posibilidades combinatorias que las tablas hacen
patentes, vemos que hay mas conectivas posibles. Concretamente, hay
16 conectivas binarias, pero bastan las que se han dado para desempe-
nar la funcién de las restantes, pues éstas pueden definirse en funcién
de aquéllas. Incluso puede tomarse un conjunto mas reducido de ellas.
Puede demostrarse que, por ejemplo, basta tomar — y v como bdsicas,
oy —.

Naturalmente, el valor veritativo de una férmula no lo determinan
totalmente las conectivas que en ella intervienen. Tal valor depende, ade-
mas, de los valores veritativos que se asignen a sus letras de enunciado.
La contribucién de ambos factores puede apreciarse en la tabla de ver-
dad de, por ejemplo, la formula p—(— gqvs) (cf. 1.2).
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Tabla (1.2)

P 4q s p=(—qvs)
VvV V.V V F V
vV V F F F F
V F V V V. V
V F F VvV VvV V
F v V V F V
F V F V F F
F F V v V. V
F F F v V. V

3 1 2

En las tres columnas de la izquierda tenemos todas las maneras en que
es posible asignar valores veritativos a las letras de enunciado de la fér-
mula. En cada una de las filas correspondientes a esa parte izquierda tene-
mos una asignacion distinta. La asignacion se toma en el sentido matema-
tico de funcion: asignamos a cada cosa de un tipo exactamente una cosa
de otro (aqui, a cada letra de enunciado, exactamente un valor veritativo).
De manera que tenemos, para tres letras de enunciado, un total de ocho
de tales asignaciones (en general, para n letras, 2" asignaciones).

En las tres columnas de la derecha se reflejan los valores veritativos
que adquieren las diversas subférmulas de la férmula de nuestro ejem-
plo y también ésta misma. Los numeros (que se han puesto aqui para
ayudar a la explicacion, pero que son inesenciales) indican el orden en
el proceso. En primer lugar se calculan los valores veritativos de la
columna 1 teniendo en cuenta los valores de la férmula g (dados en una
de las columnas de la izquierda, pues es una letra de enunciado) y la con-
tribucién de la conectiva — (dada en la tabla de verdad para esta conec-
tiva en (1.1)). Fijémonos por ejemplo, en la tercera fila. En ella el valor
de g es F, por lo que el valor de — g, obtenido consultando la tabla (1.1),
debe ser V, y éste es, en efecto, el valor que aparece para esta férmula
en la tercera fila de la columna correspondiente a — g. Los valores asi
calculados para — g se utilizan ahora para, junto con los de la férmula
s obtener los de la formula (— gvs) (columna nimero 2), de acuerdo
con la tabla para la conectiva v (ver tabla (1.1)). Finalmente, los valores
de p—(—qvs) se obtienen (columna 3) de los de p y de los ya obtenidos
para (—gvs), de acuerdo con la tabla para —.

En la seccion siguiente se amplia la consideracion de estas nociones
y se examina su relevancia para la explicacién de la «conexion logica»
entre las premisas y la conclusién de una inferencia.

II. LOGICA DE ENUNCIADOS Y PROPIEDADES LOGICAS

Sea L un lenguaje de la légica de enunciados. Ademds de las conectivas
(y de los paréntesis, simbolos meramente auxiliares), L tiene letras de
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enunciado. Las formulas de L se obtienen por medio de una definicién
como la del apartado anterior. Sea A una asignacién de los valores veri-
tativos V o F a todas las letras de L. A partir de R se obtiene univoca-
mente una asignacion de valores veritativos a todas las férmulas de L.
Ello se desprende de la definicién de verdad para L.

Para presentar esta definicion es conveniente introducir algo de nota-
ciéon. Cuando @ sea una letra de enunciado, abreviaremos «A asigna
a @ el valor V» mediante A(®)=V. La definicién toma la forma de una
definicion recursiva de «® es verdadera en R», que abreviamos ast:
| @ |a=V, expresién en la que ® puede ser una férmula cualquiera
(letra de enunciado o férmula compleja)’. Como también es usual, abre-
viamos «® no es verdadera en A» mediante | @ [, #V.

A(Z.l) Para cualquier letra de enunciado ® de L, || @ [x=V si y sélo
st A(D)

Para cualesqulera férmulas @, ¥ de L,

| —® [a=Vsi y sélo si [ @ lazV

| (®PAP) |[a=V siy solo si || @ ||A—V y ¥ [a=V

| (@v) [la=V siysolosi|| @ [a=V ol ¥ [a=V o las dos cosas;

Il ( d)—>‘1’ [a=V siysélosi | @ [a#ZV o | ¥ [a=V;

((I)<—>‘P la=V siysélosi,obien || ® [a=Vy | ¥[a=V,obien
| ® ||A¢V ARSI

Podemos definir ahora | @ |a=F (® es falsa en la estructura A) sim-
plemente como: || @ [[4#V.

Introduzcamos algo mas de terminologia. En el contexto de la logica
de enunciados, a una asignacién de valores veritativos a las formulas de
un lenguaje L le llamamos una estructura para L. Si una férmula @ es
verdadera en una estructura A (es decir, si || ® |,= V), decimos que A
es un modelo de ®. Consideremos ahora un conjunto cualquiera de fér-
mulas de un lenguaje L; llamémosle T'. Si todas las férmulas de T" son
verdaderas en una estructura A, decimos entonces que A es un modelo
de I'.

Las nociones de estructura para un lenguaje y de modelo de una fér-
mula o conjunto de férmulas son nociones clave de la logica actual. Aqui
las encontramos en el contexto restringido de la légica de enunciados,
pero mas adelante las definiremos en el contexto mds amplio de la légica
de primer orden.

Introducimos el signo = para la nocién precisa de implicacion logica.
De manera que leemos

(2.2) TE®
como: «El conjunto de féormulas T implica l6gicamente 1a férmula ®»;
o también: «® es consecuencia l6gica de T'». La definicion de este con-
cepto es la siguiente:

3. Una notacion alternativa muy utilizada es A= ®. Esta notacion tiene el inconveniente de hacerle
desempefiar una doble funcién al simbolo & (véase algo més adelante la otra funcién de este simbolo).
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(2.3)TE® siy sélo si todo modelo de I es también un modelo de ®.

Mas adelante abordaremos la importante cuestion de cual es la rela-
cion entre la nocién precisa que acabamos de introducir y la nocién intui-
tiva que menciondbamos en el apartado anterior. Ahora aclararemos el
sentido de esta definicidn al hilo de un ejemplo.

¢Qué quiere decir que la relacion = de implicacién logica se da entre
el conjunto formado por las dos féormulas r—(—g—=p) y rA—1gq, vy la
férmula p? Expresado con simbolos:

(2.4) r=(—q=p), rn—gq =p

Aplicando la definicién (2.3) y atendiendo también al significado otor-
gado anteriormente a la nocién de modelo, lo que ello quiere decir es
que si en una estructura cualquiera las primeras dos férmulas son verda-
deras, también lo es la férmula p.

Ahora que comprendemos el sentido o significado que damos a la
nocién de implicacién légica resulta que también tenemos, en la légica
de enunciados, un método para averiguar si esa relacion se da en un caso
cualquiera. Esto se desprende de que una estructura es aqui también una
asignacién de valores veritativos a las letras de enunciado de un lenguaje,
y bastara entonces considerar las estructuras que difieren en lo que asig-
nan a las letras de enunciado de las formulas que estamos considerando.
Es decir, aplicamos el siguiente

TEOREMA 2.1 (Teorema de coincidencia): Si A y B son estructuras que asig-
nan los mismos valores veritativos a cada una de las letras de enunciados
de una férmula ®, entonces R=® si y sélo si B=®.

Segun esto, en nuestro ejemplo bastara considerar estructuras que asig-
nen valores distintos a las letras p, g, r. Las otras estructuras son, a los
efectos pertinentes, equivalentes a una de tales estructuras. Pero justa-
mente son las tablas de verdad las que recogen las asignaciones distintas.
Construyamos, por tanto, una tabla de verdad (cf. 2.5) para las férmu-
las del ejemplo anterior.

Tabla (2.5)
14 q r = (—qg—p) ™A g
A\ A\ \Y% V F V F F
Vv Vv F V F V F F
A\ F \Y% VvV vV V vV VvV
\Y% F F vV V. V F V
F \Y% Vv V F V F F
F \Y4 F V F V F F
F F Vv F V F vV VvV
F F F V V F F V

Tenemos ahora la situacién siguiente. La parte izquierda de cada una
de las filas de la tabla describe una de las estructuras relevantes. Por ejem-
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plo, en la segunda fila se describe una estructura que asigna V a las letras
de enunciado p y g, asigna F a r y asigna no importa qué a las restantes
letras de enunciado que pudiera haber en el lenguaje. Consideremos ahora
una fila cualquiera y una cualquiera de las férmulas de la tabla, ®; la
tablale da a @ el valor Ven esa filasi | ® ||,=V, donde A es una cual-
quiera de las estructuras asociadas con esa fila. Si | @ |, #V, entonces
la tabla le da a @ el valor F. Por ejemplo, como puede comprobarse utili-
zando la definicion (2.1), si A es una estructura que asigna Vapy q,
y asigna F a , entonces || 7= (—1g—p) [a=V, v, en efecto, si exami-
namos en la tabla el valor de esta férmula en la segunda fila, comproba-
mos que éste es V. Tal es la estrecha relacion que hay entre la definicion
de verdad (2.1) y las tablas de verdad.

Siguiendo con nuestro ejemplo, concentremos nuestra atencion en la
fila 3; ésta resulta ser la unica fila en que las dos férmulas r—(—1g—p)
y rA— g son verdaderas simultineamente. Pero p también es verdadera
en esa fila. Sucede pues que en todas las filas en las que las dos primeras
férmulas son verdaderas también lo es p. Por la relacién que se acaba
de explicar entre filas de una tabla y estructuras, podemos ahora decir
que en toda estructura en que las dos primeras férmulas son verdaderas,
p lo es también. O, dicho de otro modo, todo modelo de las dos prime-
ras formulas es también un modelo de p. Es decir, por la definicion (2.3),
el conjunto de esas dos férmulas implica logicamente la féormula p.

Es claro que este procedimiento lo podemos generalizar a cualquier
caso en que se trata de averiguar si ' = ®, siempre que I' sea un conjunto
finito de formulas (de lo contrario la tabla no se acabaria nunca de cons-
truir). Puede haber limitaciones practicas —si hay muchas féormulas impli-
cadas o éstas son muy complejas—, pero no hay limites de principio. En
tal sentido las tablas de verdad nos suministran un procedimiento de
decision.

Existe también la posibilidad de que una férmula ® sea verdadera
en toda estructura, lo que escribimos asi: =®. Este caso puede conside-
rarse un caso particular del caso general recogido en la definicién (2.3),
a saber el caso en que I es el conjunto vacio. Para este caso existe tam-
bién una terminologia especial; al menos en el contexto de la légica de
enunciados se dice entonces que @ es una tautologia. La nocién de ver-
dad en toda estructura es el concepto preciso que se corresponde con la
nocién intuitiva de verdad légica.

Naturalmente, también pueden utilizarse las tablas de verdad para
averiguar si una férmula cualquiera dada es o no una tautologia (se cons-
truye la tabla de verdad para esa férmula y se examina si la misma tiene
el valor V en todas las filas)*.

4. Las tablas de verdad fueron introducidas por primera vez por C. S. Peirce en Peirce, 1902;
también se utilizan en el Tractatus de Wittgenstein (1921), al parecer de manera independiente. «Tau-
tologia» es un término introducido por Wittgenstein, aunque en el Tractatus tiene un sentido vinculado
a la teoria de la figura que es la teoria del significado que en tal obra se defiende.
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He aqui una lista de algunas tautologias conocidas, a las que aun se
suele aplicar el antiguo rétulo de leyes légicas:

(2.6) Lista de tautologias:

— Las leyes conmutativa y asociativa para A, v, <; por ejemplo:
(OAY) o (PAD).

— Algunas propiedades de la negacién:

— 00,
—(O->V)o (PA— V).
— Leyes de De Morgan:
—(PAY)(— dv— VP).
—(OVY)eo(— DA VP).

— Otras leyes:
Tercio excluso: ®v— ®.
(No) contradiccion: — (OA— D).
Contraposicion: (O—>P)eo(— VY- — ).
Exportacion: (®@—>W¥)—y)e (PAY)—y).

Las tautologias de esta lista se dan en forma esquematica. Recuér-
dese que @, ¥, v, pueden ser cualquier féormula, por lo que, en realidad,
estos esquemas suministran infinitas tautologias. '

El siguiente teorema relaciona los casos de implicacion légica con las
tautologias:

TEOREMA 2.2 (Teorema de la deduccion): Ty, ®=W si y solo si
red-Y.

Aplicando este teorema se puede, por ejemplo, obtener implicacio-
nes logicas a partir de las tautologias de la lista anterior. Tomemos la
«ley» de exportacion; ésta, como la mayoria de las de la lista, esta for-
mulada mediante un bicondicional («). Ahora bien, éste se «desdobla»
en dos condicionales, obteniéndose asi:

E(P->Y)> (Yo —®);
E(—mWP—->—0)>(d—-VP).

Aplicando el teorema 2.2 a la primera de estas dos tautologias, por

ejemplo, se obtiene la implicacion:
O-oVE(—YPY>— ).

También se puede aplicar el teorema 2.2 para obtener, a la inversa,
tautologias a partir de implicaciones. Por ejemplo, a partir de (2.4) se
llega a una tautologia, aplicando dos veces el teorema. En un primer paso
se obtiene:

r(—g=p)=(rm—q)=p;
y, finalmente:
E(r=>(g=p))> (A1 g)2p).

A esta tautologia podria aplicérsele ahora la regla o ley de exporta-
cion para obtener otra. Pero baste esto como ejemplo de las multiples
transformaciones que se hacen posibles aplicando el teorema 2.2.

Puede defenderse que la logica de enunciados nos suministra una
buena teoria logica para los fragmentos veritativo-funcionales del len-
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guaje, ddndonos una explicacién de las propiedades logicas en ese con-
texto. Para verlo, comenzaremos por utilizar un ejemplo de inferencia
o razonamiento sencillo como el siguiente:

(2.7) La inflacién aumenta a menos que aumente la productividad
si aumentan los salarios. Los salarios aumentan pero la productividad
no. Por lo tanto, la inflacién aumenta.

(El simplismo de este argumento econdémico no importa desde un
punto de vista l6gico, como no importaria el posible refinamiento de otro
razonamiento que por su complejidad seria aqui tal vez menos adecuado
como ejemplo.)

Representando las oraciones «la inflaciéon aumenta», «la productivi-
dad aumenta», «los salarios aumentan» mediante letras de enunciado,
por ejemplo, p, g y r, respectivamente, se puede «modelar» lo que de
logicamente relevante tiene el razonamiento, tomando como premisas las
férmulas r—(— g—p) (para la oracién hasta el primer punto) y rA—1g
(la oracién entre el primer punto y el segundo), y como conclusién a p.
Afirmar entonces que el razonamiento es correcto equivaldria entonces
a hacer la precisa afirmacion (2.4), afirmacién que, como se ha visto ante-
riormente, es verdadera.

La légica de enunciados tiene pues la capacidad de ser utilizada como
teoria ldgica para mostrar la correccion o la incorreccién de un numero
indefinido de argumentos que responden a un nimero indefinidamente
grande de esquemas de argumentacion distintos, trascendiéndose en este
sentido la labor de la logica tradicional que se limitaba a presentar un
pequefio numero de esquemas de argumentacion correctos”.

Con todo, la capacidad de la l6gica de enunciados para dar cuenta
de la inferencia es muy limitada. Es mds justo hacer su evaluacion cuando
se la considera parte de la logica de primer orden, pero plantear la cues-
tién del primer modo ayuda a darse una idea, en un contexto mas senci-
llo, de qué es lo que esta implicado en el tema.

Como puede verse por el ejemplo anterior, la utilizacién de la logica
de enunciados como teoria logica depende de dos pasos cruciales. En pri-
mer lugar, de la «modelizacién» en el sentido apuntado, es decir, la re-
presentacion esquematica en el lenguaje artificial de las oraciones del
lenguaje natural que componen la inferencia (también llamada formali-
zacién). En segundo lugar supone la opcion por el concepto preciso de
implicacidn légica que se presentd anteriormente.

El primer paso depende, para empezar, de que podamos considerar
que las oraciones del fragmento de lenguaje que nos interesa sean verda-
deras o falsas, o que, al menos, sea una idealizacién razonable conside-
rarlas asi. Esta dependencia es clara, pues, como hemos visto, en la légica
clasica de enunciados se contemplan sélo esos dos valores veritativos como
valores posibles para las férmulas. Hay logicos que sefialan aqui una limi-

5. La superacion de la logica tradicional en este sentido concreto puede sefialarse por vez pri-
mera en Boole (1847) y Boole (1854).
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tacién de la ldgica clasica y han trabajado para ampliarla con la admi-
sion de otro u otros valores veritativos (cf. la monografia sobre «Ldgica
multivalente» en este mismo volumen).

Pero ese primer paso depende ademas de que consideremos a expresio-
nes COmMO «NO», «y», «PEr0», «0», «Sl...», «Si... entonces», «a Menos que»
y otras expresiones similares del lenguaje natural como adecuadamente repre-
sentadas por las conectivas. Esto ha sido vivamente discutido en algunos
casos, especialmente en el caso de «si... entonces» y su representacion
mediante — (el llamado condicional material). Se ha argumentado que «si...
entonces» supone a menudo una conexion «mas fuerte» que la veritativo-
funcional que se recoge mediante el condicional material. Pero también hay
buenas réplicas, que explican las discrepancias intuitivas apelando a la dis-
tincién entre el contenido semdntico estricto de una oracién usada en un
contexto y los principios pragmaticos que rigen la conversacién®.

Respecto al segundo paso, ¢qué es lo que justificaria la adopcion del
concepto preciso definido en (2.3)? No solo, por supuesto, que sea un
concepto preciso, que esté apoyado por un aparato matematico, pues no
se trata de cambiar de tema; la nocion precisa ha de tener un estrecho
vinculo conceptual con la nocién intuitiva de implicacién légica, carac-
terizada en los términos modales de posibilidad, imposibilidad o necesi-
dad (cf. el comienzo de la seccion I). Aqui la linea de justificacion consis-
tiria en defender, primero, que las inferencias correctas son inferencias
analiticas (inferencias realizadas en virtud del significado de las oracio-
nes componentes), o, tal vez, un subconjunto de ellas: inferencias que
tienen en cuenta exclusivamente la contribucién semdantica (contribucion
al significado) de expresiones que juegan un papel especial en el discurso
(para el fragmento del lenguaje que ahora estamos considerando, expre-
siones como «no», «y», «0», «si... entonces», etc.; y, segundo, que las
conectivas de la légica de enunciados recogen precisamente tal contribu-
cion, pues ésta estriba en la manera peculiar en que cada una de esas
expresiones produce un valor veritativo para las oraciones compuestas
con ella a partir de los valores veritativos de las oraciones componentes.

Algo analogo podria decirse de la relacién entre la nocién intuitiva
de verdad légica y la nocion precisa de verdad en toda estructura. Pero
el lugar para tratar estas cuestiones con mayor extension y profundidad
es el volumen de la Enciclopedia dedicado a la Filosofia de la ldgica.

1. CALCULOS LOGICOS

Un célculo logico es un sistema para obtener todas las tautologias e impli-
caciones logicas, a partir de un conjunto de las primeras, que se seleccio-

6. Para las criticas de la l1dgica contemporanea respecto a estos puntos cf. Strawson, 1952. Para
la mencionada defensa, Grice, 1989, capitulos 2, 3 y 4, y también Thomson, 1990. Véanse también
las monografias sobre logicas no clasicas del presente volumen.
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nan como axiomas del cédlculo, y/o una serie de reglas cuya aplicacion
solo atiende a la forma de las formulas a las que se aplican. Durante un
periodo importante del desarrollo de la légica contemporanea, los cal-
culos ldgicos tuvieron un protagonismo mayor que las consideraciones
semanticas en que se ha basado la linea de exposicion de las secciones
anteriores, pero aqui prescindiremos casi totalmente de consideraciones
histéricas, remitiendo a la monografia sobre historia de la 16gica de este
mismo volumen.

La taxonomia mas al uso sobre los célculos los clasifica en cdlculos
axiomaticos, cdalculos de deduccion natural y calculos de secuentes’.

Los cdlculos axiomdaticos, también llamados cdlculos «estilo Hilbert»
o sistemas «estilo Frege-Hilbert», consisten en una serie de férmulas a
las que se llama precisamente axiomas, y unas reglas (que se reducen nor-
malmente a una o dos en el caso de la logica de enunciados), llamadas
reglas de derivacion o deduccion (también reglas de inferencia, aunque
esta denominacion es menos adecuada). Como ejemplo, el siguiente cal-
culo se debe a Hilbert. Los axiomas son:

(A1) O=>(Y—d);

(A2) (@2 (=) 2 (PF) > (D—y));

(A3) (Y>> — D)~ (d—Y).

La unica regla del calculo es la llamada regla de separaciéon o, en ter-
minologia mds tradicional, modus ponens:

oY
(O

Y

Axiomas y reglas se dan en forma esquematica, de manera que admi-
ten infinitas ejemplificaciones (cf. seccidon 2). El calculo se presenta de
modo que — y — se toman como las Unicas conectivas primitivas o0 no
definidas.

Los axiomas (o sus ejemplificaciones) son todos ellos tautologias (por
ejemplo: (A3) es una direccidn de la «ley» de contraposicién presentada
antes) y las férmulas obtenidas a partir de ellos por la aplicacién de la
regla, los llamados teoremas, también lo son. Sin embargo, aunque esto
pueda jugar un papel en la motivacién del calculo (se pretende recoger
en él todas las «verdades ldgicas»), no juega ninguno en su presentacion
y funcionamiento. Para obtener teoremas cada uno de los pasos es o bien
la ejemplificacidn de un axioma o bien se obtiene de las férmulas obteni-
das en pasos anteriores mediante la aplicacidon de la regla de derivacion.
Veamos, por ejemplo, la derivacién o prueba formal de un teorema muy
simple: (P—d):

1) (P=(2—>P)= )= (P (P> D)) > (P—D))

7. Cf. Sundholm, 1983, que constituye una buena referencia para la presentacion comparada
de los diferentes tipos de calculos. Otra excelente exposicion, mds breve y elemental, se encontrard en
Hodges, 1983, secciones 6y 7.
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2) (O (2~ D)~ D))
3) (P (P—2D)) > (P D)

4) (O—(0— D))

5) (D).

La férmula de la primera linea en esta prueba es una ejemplificacién
(a su vez esquemadtica) de (A2) en la que @ y vy se han ejemplificado por
O,y ¥ por (®—®d). La féormula de la 2 es una ejemplificacion de (A1)
(®—® por W). La de la 3 se obtiene de las dos anteriores por aplicacion
de la regla. La férmula de la linea 4 es nuevamente una ejemplificacion
de (A1). Y, por aplicacion de la regla a las formulas de las lineas 3 y
4 se obtiene finalmente el teorema que queriamos probar.

Si se quiere utilizar un cdlculo de este tipo para derivar una férmula
a partir de unos supuestos que actien como premisas, entonces hemos
de tratar a éstos como si fueran axiomas adicionales.

Como puede verse por la ilustraciéon anterior, derivar formulas en
un célculo axiomatico es algo sumamente poco intuitivo que rapidamente
se transforma en una tarea muy compleja. Esta es la gran desventaja de
este tipo de calculos. Pero, si bien los célculos axiomaticos no son ade-
cuados para probar cosas en ellos, si lo son, por su reducido «bagaje»
inicial, para probar cosas sobre ellos. Ademas, tienen otra ventaja en el
caso de las [dgicas no clasicas, por la facilidad de «localizacién» (en los
axiomas) de las diferencias entre unos y otros sistemas.

Durante varias décadas, los cdlculos axiomaticos fueron los unicos
existentes, de manera que el trabajo pionero de légicos como Frege y Rus-
sell se desarrollé en su marco®. En el clasico Gentzen (1934) se intro-
dujeron los llamados cdlculos de deduccion natural. Diseniados para efec-
tuar pruebas formales de la manera mas sencilla (mds «natural») posible,
estos calculos se encuentran en multiples variantes y estan profusamente
representados en los libros de texto”.

Los céalculos de deduccion natural incluyen en torno a una decena
de reglas que, como la del modus ponens, tienen un caracter muy intui-
tivo. El modo general de proceder en la deduccién recoge también mane-
ras intuitivas de demostrar. Por ejemplo, si lo que se quiere es deducir
una férmula condicional, se puede adoptar el antecedente como supuesto
auxiliar, siendo el nuevo objetivo derivar el consecuente. O se puede ini-
ciar una deduccidn por reduccién al absurdo, suponiendo la negacién de
la férmula que se quiere derivar; si se llega entonces a una contradiccion
a partir de ese supuesto auxiliar, se considera deducida la férmula en
cuestion.

8. Cf. Frege, 1879-1893 y Whitehead y Russell, 1910, tres de los hitos més importantes en el
desarrollo de la l6gica contemporénea.

9. Algunas referencias: Anderson y Johnstone, 1962 (cf. Deafio, 1978); Garrido, 1981; Gutten-
plan, 1986; Kalish y Montague, 1980 (cf. Mosterin, 1983); Mates, 1987; Quine, 1981; Sacristan, 1973
y Suppes, 1975. En realidad, la mayoria de los autores presentan un célculo de la 16gica de enunciados
integrado en uno de primer orden.
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En el mismo articulo citado, Gentzen introdujo también los cdlculos
de secuentes. Como una breve explicacion de este tipo de calculos en su
forma original resultaria poco informativa, centraremos nuestra atencion
en un «descendiente», los cdlculos analiticos, exponiendo en detalle uno
de ellos.

El calculo que presentaremos constituye una variante de las llama-
das tablas semanticas'®. Como todos los cdlculos analiticos, estos cdlcu-
los estan muy estrechamente ligados a la siguiente consideracién seman-
tica: Si 'E®, no hay ninguna estructura que haga simultdneamente
verdaderas a las formulas de I' y falsa a ®@. Pero esto quiere decir que
no hay ninguna estructura que haga simultdneamente verdaderas a las
férmulas de I'' y a — @, pues @ es falsa en una estructura si y sélo si
— @ es verdadera en ella.

Un conjunto de férmulas para el que hay al menos una estructura
en la que todas las férmulas del conjunto son verdaderas se llama satis-
facible, en caso contrario, el conjunto es insatisfacible. Asi, si '=®, el
conjunto de férmulas que resulta de afiadir — @ a las de T es insatisfa-
cible.

Tomemos de nuevo un ejemplo. Supongamos que se trata de demos-
trar lo siguiente:

(3.1) p—=(—gnar), pr—igET.

Por lo que se acaba de decir, ello equivale a demostrar que el con-
junto de las tres formulas siguientes es insatisfacible:

(3.2) p=>(— gnr), pA—g,—r.

Veamos si podemos refutar esa afirmaciéon mostrando que ese con-
junto es satisfacible, es decir, que hay al menos una estructura en que
estas férmulas son verdaderas. En primer lugar, para que pA — g sea ver-
dadera, lo han de ser p y — g. Por otro lado, para que p—(— gar) sea
verdadera, una al menos de estas dos cosas debe suceder: que p sea falsa
(y, por lo tanto, — p verdadera), o que (— gar) sea verdadera. La pri-
mera de estas alternativas entra en conflicto con la exigencia anterior de
que p sea verdadera. Pero para que la segunda alternativa se dé, tanto
— q como r deben ser verdaderas, y esto es imposible porque — 7 ha
de ser verdadera para que el conjunto (3.1) sea satisfacible. Por consi-
guiente, ninguna estructura puede hacer verdaderas simultineamente a
las férmulas de (3.2).

El curso de este razonamiento puede organizarse en un diagrama como
el siguiente:

10. Cf. Beth, 1955, y Hintikka, 1955. Para un estudio detallado de los calculos analiticos y su
relacién con los calculos de secuentes de Gentzen, cf. Smullyan, 1968. Una breve pero iluminadora
explicacién se da en el texto de Hodges al que se hace referencia en la nota 7.
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p
g,
—p —gnr
#
—q
;
#

En este tipo de diagrama, se parte de las férmulas que se quiere hacer
verdaderas. Cada estadio comporta una nueva exigencia para que ello
sea posible. Cuando hay una ramificacion, lo que tenemos es una alter-
nativa: se requiere que las férmulas de al menos una de las ramas sean
verdaderas. Cuando, para alguna rama llegamos a la conclusién de que
ello es imposible, puesto que en esa misma rama aparece —a lo largo
de toda la ruta desde el origen— una férmula simple y su negacion, cerra-
mos la rama (poniendo una marca, por ejemplo:#). Cuando todas las
ramas estan cerradas ello significa que es imposible hacer simultineamente
verdaderas a esas formulas. El conjunto de partida es insatisfacible, y
la correspondiente pregunta sobre la implicacién logica se responde afir-
mativamente. Si, tras explorar todas las posibilidades, alguna rama que-
dara abierta, entonces ese conjunto es satisfacible, y la pregunta original
sobre la implicacién logica habria que responderla negativamente.

Todas estas consideraciones pueden conducir a formular un calculo pura-
mente formal. En él los sucesivos estadios se alcanzan mediante la aplicacién
de reglas de derivaciéon. Un conjunto de tales reglas puede ser el siguiente:

— P OAY —1(DAY) dvY — (VYY)
(o} ) —d Y (o}
v — o
|
|
v — Y
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|
—ie Y —v —¥ ¥

Cada una de estas reglas expresa lo que se requiere para que la for-
mula que encabeza la regla sea verdadera, como puede comprobarse por
las tablas de verdad o por la definicién de verdad (por ejemplo: para que
— (P« 'V) sea verdadera se requiere o bien que ® y — ¥ sean verdade-
ras o bien que lo sean — @ y ). Pero estas consideraciones semanticas
quedan fuera de la formulacion estricta del calculo.

Una de las cualidades de este calculo es que suministra un método
de decision para la légica de enunciados. Es decir, se puede utilizar el
cdlculo de una manera mecdnica para determinar si una férmula cual-
quiera del lenguaje es o no derivable, o derivable a partir de un conjunto
de premisas dado (en la determinacién de esto ultimo son relevantes otras
consideraciones que se hardn mas adelante, en la seccién V).

Un célculo formal sélo es un calculo légico si es correcto, es decir,
si solo pueden derivarse en él tautologias o implicaciones légicas. Ade-
mads, los calculos légicos son completos si todas las tautologias e impli-
caciones ldgicas pueden derivarse en ellos. Los calculos de la logica de
enunciados tienen estas dos propiedades. En cuanto a la correccion ello
puede ser bastante obvio en algunos casos (como el de nuestro célculo),
pero la demostracion de las afirmaciones anteriores cae por completo fuera
del alcance de esta monografia. Mas adelante, volveremos sobre estas
y otras importantes propiedades (cf., de nuevo, la seccion V).

IV. LOS LENGUAJES DE LA LOGICA DE PRIMER ORDEN

Los lenguajes de primer orden disponen de lo esencial para hablar sobre
los objetos de un dominio dado (también llamado universo del discurso),
que puede cambiar contextualmente y sobre el que la tnica restriccion
que suele imponerse es que no sea vacio. «Hablar» quiere decir: predicar
cosas sobre ellos, atribuirles propiedades, afirmar que estdn en determi-
nadas relaciones o que no lo estdn, etc.; y ello bien sea en aserciones par-
ticulares —es decir, aserciones acerca de objetos determinados—, bien
en aserciones generales, acerca de una multiplicidad de objetos —todos
los del dominio, o alguno o algunos de ellos solamente.

Para la predicacidn de propiedades o relaciones se utilizan los predi-
cados (incluyendo aqui expresiones de relacion). Si las aserciones son par-
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ticulares sera necesario servirse ademas de las constantes individuales, que
son el andlogo de los nombres propios, y si son generales, se utilizan los
cuantificadores y las variables.

Seguin esto, un lenguaje de primer orden tiene:

1) Variables: x, v, z, u, ...

2) Conectivas: =, A, v, =, ©,

3) Cuantificadores: V, H.

4) Constantes individuales: a4, b, ¢, ...
5) Predicados: P, O, R, S, ...

6) Simbolo de identidad: =.

7) Paréntesis: (, ).

Los simbolos de las tres primeras categorias son, con pequenas sal-
vedades, comunes a todos los lenguajes de primer orden. El nimero de
variables puede variar, pudiendo ser finito o infinito numerable (tantas
como numeros naturales: x,, x,, x3, ...). Ademas, hay algunas varian-
tes inesenciales respecto a las conectivas y los cuantificadores (conjunta-
mente conocidos como simbolos logicos). Ya sabemos que no se limita
el poder expresivo del lenguaje tomando algunos otros conjuntos alter-
nativos. Tampoco se limitaria tomando un solo cuantificador como sim-
bolo bésico, pues cualquiera de ellos puede definirse en funcién del otro
(con la ayuda de la negacion).

El cuantificador V es el cuantificador universal. Puede leerse «todos»
o «todo». H es el cuantificador existencial; pueden leerse «algiin», «<hay»
o «al menos uno»"'

Lo que varia de unos lenguajes a otros son las constantes individua-
les y los predicados. Es costumbre entonces utilizar las letras anteriores
para hablar de un modo general sobre los lenguajes de primer orden y
las propiedades logicas de sus férmulas, maxime cuando éstas no depen-
den del significado especifico de los predicados.

Por ultimo, el simbolo de identidad, un predicado especial que in-
cluimos entre los simbolos l6gicos, aumenta el poder expresivo del len-
guaje'’.

Con el ejemplo siguiente se pretende ilustrar varios aspectos del fun-
cionamiento de un lenguaje de primer orden. Supongamos que estamos
hablando de ciertas propiedades de las personas de una determinada
comunidad y de sus relaciones. Observamos, por ejemplo, que todos los
miembros de la comunidad son varones. Esto lo expresariamos asi:

11.  Existen variantes notacionales menos usadas, como lo son simbolos parecidos en la forma
a las conectivas A y v, pero de mayor tamano. Los cuantificadores siempre se escriben acompanados
de variables y, aunque ahora ha caido en desuso, historicamente era frecuente escribir «(x)» para lo
que hoy escribimos «Vx».

12, Laldgica de que hablaremos es, pues, la logica de primer orden con identidad, extremo éste
que a veces se especifica en la descripcion. Las expresiones logica de predicados y logica cuantificacio-
nal se utilizan (con o sin la anterior especificacidn) esencialmente como sinénimas de légica de primer
orden.
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(4.1) VxVarédn(x).

Algunos miembros son adultos, pero no todos:

(4.2) HxAdulto(x)a— VxAdulto(x).

Todos los adultos llevan barba.

(4.3) Vx(Adulto(x)—Barba(x)).

Algunos adultos son calvos, pero no todos los adultos lo son.

(4.4) Hx(Adulto(x)ACalvo(x))a— Vx(Adulto(x)— Calvo(x)).

Todos los adultos de la comunidad que llevan barba son tutor de
alguien pero no todo tutor de alguien lleva barba.

(4.5) Vx((Adulto(x)aBarba(x))— HyTutor(x,y))

A— Vx(HyTutor(x,y)—Barba(x)).

Todo tutor de un menor le ensefia.

(4.6) VxVy((Tutor(x,y)AMenor(y))—Ensefia(x,y)).

Algin miembro de la comunidad tiene mas de un tutor.

(4.7) HxHyHz(Tutor(x,z)ATutor(y,z)A—1x=1y).

Por ultimo, hay una (unica) persona que es el director de la comu-
nidad.

(4.8) Hx(Director(x)A Vy(Director(y)—x=1y)).

En las férmulas anteriores, palabras como «Adulto», «Barba» y
«Tutor» se han utilizado como predicados. Claro que no todos los pre-
dicados son sint4cticamente del mismo tipo. Los dos primeros, por ejem-
plo, son monadicos, es decir, exigen solamente una variable o constante
individual para formar una férmula (algo andlogo a una oracién). El ter-
cero es diadico (es decir, exige dos variables o constantes). Similarmente,
en un lenguaje de primer orden puede haber predicados triddicos, tetra-
dicos, etc., es decir, predicados n-adicos, para cualquier .

Las férmulas ilustran, de formas diversas, la interaccidn de los cuan-
tificadores entre si y de éstos con las conectivas, que como puede presu-
mirse, puede llegar a ser muy compleja (no existe limite tedrico para esta
complejidad). En general, como vemos, «todos», «todo», se expresan
mediante el cuantificador universal, mientras que «algunos», «alguien»,
«un» lo hacen mediante el existencial. Pero hay excepciones. Cuando hay
una condicién de unicidad y con «un» («uno», «una») se quiere decir
«exactamente uno» (como en la dltima oracién), la expresion en primer
orden requiere ademds del cuantificador existencial, el universal y el signo
de identidad. Y hay casos especiales que hacen traducir «un» mediante
el cuantificador universal, como en (4.6)".

Todas las formulas ilustran el hecho ya sefialado de que el dominio
se determina contextualmente. En este caso el discurso es acerca de los
miembros de una determinada comunidad, de manera que los valores
que adoptan las variables son objetos o individuos de tal conjunto. Esta
no ha sido una idea adoptada desde el origen de la l6gica de primer orden.

13. El tipo de oracidon que traduce (4.6) se denomina a veces oracién «de burrito», debido a
un ejemplo tradicional («Todo granjero que tiene un burro le pega»). Para los problemas seménticos
que plantean, cf. Neale, 1990.
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Frege, uno de los légicos a quien mas se debe el impulso de la 16gica con-
temporanea, consideraba fijo el dominio de cuantificacién, con lo cual
se trivializaba éste, al tratarse del dominio de absolutamente todo. La dife-
rencia puede explicarse en términos de nuestra ilustracién tomando, por
ejemplo, la férmula (4.1). Mientras que para nosotros puede parafrasearse
asi: «Para todo individuo de la comunidad, ese individuo es varén», con
la expresidn «de la comunidad» dada por el contexto, para Frege habria
que leerla de este otro modo: «Para todo individuo, ese individuo es varén».
Si quisiéramos decir lo que decimos pero a la manera de Frege, con un
solo universo de cuantificacion, deberiamos utilizar una férmula como:

(4.9) Vx(Comunidad(x)—Varén(x)),
donde la expresién «comunidad» expresaria la propiedad de ser un miem-
bro de la comunidad en cuestién. Y algo andlogo valdria para todos los
demds casos.

Las dos ultimas férmulas permiten hacer ver el valor expresivo del
simbolo de identidad, pues sin €l en ninguno de los dos casos seria posi-
ble expresar la idea que se intenta expresar.

V. VERDAD E IMPLICACION

La definicion de las propiedades logicas fundamentales para los lengua-
jes de primer orden sigue los mismos pasos que en la légica de enuncia-
dos. Ello quiere decir que, ante todo, se debe caracterizar exactamente
la sintaxis del lenguaje y el concepto de verdad en una estructura, para
la nocién de estructura adecuada al nuevo tipo de lenguajes.

La sintaxis delimita la nocién de férmula, mediante una definicién
recursiva como la de la seccion I, sélo que ahora es algo mas compli-
cada. La nueva cldusula 1 dice que anteponiendo un predicado —del
«numero adico» adecuado— al correspondiente numero de variables o
constantes (si el predicado es n-adico, 7 constantes o variables) se obtiene
una férmula. Las clausulas 2 y 3 quedarian igual en la nueva definicién.
Se anadiria ahora una cldusula al efecto de que anteponiendo a una fér-
mula un cuantificador acompaniado de una variable, se obtiene también
una féormula. La nueva definicién se cerraria con lo que en la anterior
es la cldusula 4.

Es preciso hacer ahora una distincién que se revelara importante en
lo que sigue: la que se da entre las férmulas que contienen al menos una
variable libre es decir, una variable que, al menos una de las veces que
aparece no estd afectada o ligada por ningun cuantificador (si x estd en
el alcance de Vx entonces esta ligada por el cuantificador) y férmulas
que, o bien no contienen variables, o en las que todas las veces que éstas
aparecen lo hacen ligadas por un cuantificador. A las primeras las lla-
maremos fOrmulas abiertas y a las segundas sentencias (todos los ejem-
plos del apartado anterior lo eran de sentencias). Es posible formular esta
distincién con mayor precision, pero no es necesario hacerlo aqui.
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Por lo dicho en la seccion anterior, una estructura para un lenguaje
de primer orden es un conjunto de objetos individuales (el dominio, que
estipulamos no vacio), junto con algin «mecanismo» que asocie las cons-
tantes individuales del lenguaje con objetos del dominio y los predicados
con propiedades adecuadas dado el «<ntimero adico» de aquéllos (por ejem-
plo, si el predicado es diddico, con una relacién binaria).

Ahora bien, lo que realmente se asocia a los predicados son conjun-
tos adecuados, obtenidos a partir de los objetos del dominio. A un predi-
cado monadico, por ejemplo, se le asocia un subconjunto cualquiera (y
uno sélo) de objetos del dominio; a uno diadico un conjunto de «dia-
das», es decir, de pares ordenados de objetos del dominio. Y asi sucesi-
vamente. El conjunto asociado a un predicado monadico contiene los
objetos de los cuales es verdadero el predicado, a los que se aplica con
verdad el predicado, como se reflejara mads tarde en la definicion de ver-
dad para el lenguaje. El conjunto de pares asociado a un predicado dia-
dico, contiene los pares de objetos del dominio a los que se aplica (en
el orden que presenta el par) tal predicado. Etc.

Con ello, hablar de la propiedad o la relaciéon asociada a un predi-
cado queda s6lo como una manera intuitiva de hablar que mantenemos
cuando conviene.

Expresamos estas ideas de un modo mds sucinto ayudandonos de la
letra «P» que tomamos aqui para representar a cualquier predicado de
L, el lenguaje de que se trate (ahora un lenguaje de primer orden)'*.

DEFINICION 5.1. Una estructura A para L es un par (A, <) enel que
A es un conjunto cualquiera no vacio e ¥ una funcién (llamada a veces
interpretacién) tal que:

1) ¥ asigna a cada constante individual de L, un elemento de A.

2) ¥ asigna a cada predicado P n-adico de L, un conjunto de n-tuplos
de elementos de A. (n=1).

El proximo paso es definir la nocidn de verdad en una estructura. Se
presenta aqui, sin embargo, una dificultad que no se daba en el caso de
la l6gica de enunciados. Alli se explicaba el modo en que el valor de ver-
dad de un enunciado complejo dependia de los valores de verdad de sus
constituyentes. El problema consiste en que ahora tenemos férmulas com-
plejas (las sentencias cuantificadas) cuyo valor veritativo no depende del
de sus constituyentes, por la sencilla razén de que éstos, por el tipo de
expresion que son, no tienen un valor veritativo. Por ejemplo, el valor
veritativo de — @ depende del de @, pero el de HxP(x) no depende del
supuesto valor veritativo de P(x) pues esta formula, sencillamente, no
tiene valor veritativo. Mas intuitivamente: el valor veritativo de HxVa-
ron(x) no depende del supuesto valor de Varon(x).

14. Utilizamos asi esa letra de una manera ambigua, pues antes figuraba como un predicado
de un lenguaje de primer orden, y ahora figura como una «letra esquematica» del metalenguaje. Pero
el contexo resuelve bien estas ambigiiedades y se evita asi introducir aparato adicional.
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Tarski, uno de los l6gicos importantes del presente siglo, dio con la
manera de salvar el escollo, introduciendo una nueva nocidn, la nocién
de satisfaccién, y un recurso técnico’’. Puede decirse que, esencialmente,
todas los procedimientos que hoy se utilizan para hacerlo son variantes
del suyo.

La nocion de satisfaccién es en principio muy sencilla. Consideremos
una estructura A= (A, ). Sea a, un elemento de A (utilizamos las
negritas como expresiones del metalenguaje para referirnos a elementos
del dominio). Decimos que a, satisface P(x) si a, es un elemento del con-
junto X(P) (el conjunto que < asigna a P). Ahora bien, para el caso de
un predicado diddico, digamos R, se necesitaria algo diferente: el par
(a,, a,) satisface R(x,y) si ese par es un elemento del conjunto Z(R) (un
conjunto de pares). Andlogamente, habria que cambiar la definicién para
el caso de que el predicado fuera triddico, tetradico, etc., por lo que,
en rigor, se obtendria una familia de conceptos de satisfaccién y no uno
solo. Ademas hay que considerar «casos mixtos», como la formula R(x,b)
con predicado diddico pero una sola variable libre.

Tarski soluciond el problema apelando a secuencias infinitas de obje-
tos y a la nocion de satisfaccién por una secuencia. Pero su definicion
original no estd hecha tomando en consideracion la posibilidad de cam-
biar de dominio y de estructura. Por ello las variantes actuales son algo
distintas. Aqui se utilizard la nocion de asignacién de objetos (de un domi-
nio) a variables como nocién auxiliar. Con esta nocién resolvemos el pro-
blema original esencialmente con la observacion de que, si bien una for-
mula abierta como P(x) no tiene en una estructura un valor veritativo
«absoluto», si lo tiene relativamente a la asignacion de un objeto a la varia-
ble. Cuando se trate entonces de dar las condiciones de verdad de un
enunciado como HxP(x) simplemente se le declara verdadero si hay un
objeto en el dominio que al ser asignado a la variable hace verdadera
la formula. Esta es la idea basica que serd desarrollada técnicamente a
continuacion.

Para ello necesitamos introducir nueva notacién y algunas nociones
auxiliares.

En la definicién utilizamos las letras ¢,, ..., ¢, para cualesquiera tér-
minos individuales (constantes individuales o variables). Nos servimos
de la letra s para referirnos a una asignacion de objetos del dominio a
variables. Mediante s(x/a) nos referimos a una asignacion que es exac-
tamente como s excepto posiblemente en que, sea lo que fuere lo que
ésta asigna a la variable x, aquélla le asigna el objeto a.

Es necesario un recurso para hacer referencia en general al objeto asig-
nado a un término individual, sea éste una constante individual (caso en
que la asignacion la hace la funcién ¥ de la estructura) o a una variable
(caso en que el objeto lo determina una asignacién s). A tal fin introduci-

15. Cf. el famoso Tarski 1935, editado por vez primera en polaco en 1933.
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mos una funcién s como extension de s, de modo que s(t) =s(t), si t es
una variable, y s(¢)= $(t), si t es una constante individual. (EI simbolo
«=» es un simbolo del metalenguaje, a distinguir de «=», el simbolo
de identidad del lenguaje, aunque su funcién sea la misma).

La expresion «syss» abrevia a «si y sdlo si». Utilizamos también la
letra x para referirnos a cualquier variable (vale aqui también la obser-
vacidn de la nota 14). con ® nos referimos ahora a una sentencia cual-
quiera del lenguaje de primer orden y con ®(x) a cualquier férmula que
tenga una variable libre.

Finalmente, utilizamos || @ [,.=V para abreviar «® es verdadera en
A con respecto a s», la nocién que vamos a definir recursivamente.

Sea A= (A, T) una estructura para un lenguaje de primer orden L.

DEFINICION 5.2.
1) Si P es un predicado #n-adico,
| P(z,, ..., t.)a. || = Vsyss la n-tupla (s(t,), ..., s(t,)>
es un elemento de I(P).
2) | ti=t, |a.=V syss s(t;) =s(t,).
3)-7) Igual que en la definicién 2.1 pero con la relativizacion a s.
8) || Vx®(x) |[a.=V syss, para todo elemento a de A,
[ ®(x) llasm=V.
9) | x®(x) |[a. =V syss, para al menos un elemento a de A,
“ D(x) ||A.S(x/a) =V.

La nocidén de modelo de una sentencia o un conjunto de sentencias
la podemos tomar ahora directamente de la seccion II (teniendo en cuenta,
claro esta, la diferente nocion de estructura subyacente) y llegamos asi
a la caracterizacion de las propiedades logicas fundamentales para el caso
de los lenguajes de primer orden. Sea L uno de estos lenguajes.

DEFINICION 5.3.
a) '=® syss todo modelo de I" es también un modelo de ®.
b) =® syss toda estructura (para L) es un modelo de ®.

Estas son, para el caso de los lenguajes de primer orden, las nociones
precisas de implicacién légica (o consecuencia) y, de verdad légica o vali-
dez, como se dice en este caso (el término «tautologia» no suele utilizarse
fuera de lalégica de enunciados). Como puede comprobarse, son del todo
andlogas a las nociones correspondientes del caso mds restringido de la
logica de enunciados. La diferencia radica en el tipo de estructura que
es apropiada para uno y otro.

En el contexto mas amplio de la ldgica de primer orden también nos
preguntamos por su capacidad como teorialdgica para dar cuenta de razo-
namientos intuitivamente véalidos. En realidad es en el marco global de
esta logica, y no en el mas limitado de la l6gica de enunciados, cuando
adquiere realmente sentido una respuesta. Pero en el planteamiento algo
artificial «en dos tiempos» que aqui se hace, simplemente a las anterio-
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res consideraciones afiadimos lo que haya que decir acerca de los cuanti-
ficadores y oraciones cuantificadas.

También respecto a éstos es posible defender la 16gica de primer orden
en una linea similar a la que se esbozd en el caso de la 16gica de enuncia-
dos. Puede decirse que las reglas seménticas para los cuantificadores (las
correspondientes clausulas de la definicidn de verdad) son una buena teo-
ria de su contribucién a las condiciones de verdad de las oraciones de
las que forman parte, pues las condiciones de verdad de una oracién cuan-
tificada no dependen sino de los conjuntos de objetos a los que se apli-
can los predicados.

Una fuente de posibles objeciones concierne a la falta de presuposi-
ciones existenciales del cuantificador universal en el analisis cuantifica-
cional. Vx(P(x)*Q(x)) no implica HxP(x); es mds, la primera sentencia
es verdadera si en el dominio no hay objetos a los que se aplique P. Ello
origina en ciertos contextos algunos juicios aparentemente poco intuiti-
vos sobre la verdad de las oraciones. Las consecuencias se ponen de mani-
fiesto claramente en el rechazo por incorrectas de inferencias que en la
l6gica silogistica tradicional se dan por correctas'®. Por ejemplo, la infe-
rencia (5.1) seria incorrecta.

(5.1) Todos los mamiferos son viviparos

Todos los mamiferos tienen pulmones

Algun v1v1paro tiene pulmones

Al juicio de incorreccion se llega representando las dos premisas
mediante sentencias cuantificadas universalmente como la del parrafo
anterior y la conclusion mediante una sentencia existencial del tipo
Hx(O(x)AR(x)). Sea A=(A, <) un modelo en el ¥ que asignaa Py a
O el conjunto vacio, siendo Py Q los representantes de «es un mami-
fero» y «es viviparo», respectivamente. A es entonces un modelo de las
premisas, pero no de la conclusién. Las premisas son verdaderas en esa
estructura porque, como se desprende de la definicién 5.2, una cuantifi-
cacion universal de un condicional es verdadera (vacuamente verdadera)
cuando el predicado del antecedente no se aplica a ningun objeto del
dominio.

Las causas relevantes del juicio negativo sobre (5.1) son, por tanto,
dos: nuestra decisién de representar las premisas como lo hemos hecho
y el veredicto que emite la definicion 5.2 sobre las cuantificaciones uni-
versales de condicionales con antecedente «vacuo». De tener serios moti-
vos para defender la validez intuitiva de (5.1) habria que revisar una,
al menos, de estas dos cosas. Revisar la segunda nos llevaria, desde luego,
fuera del marco de la logica cuantificacional cldsica. Revisar la primera
es mucho mas facil. Podriamos admitir que en el lenguaje cotidiano (al
contrario de lo que sucede en el lenguaje matematico) afirmaciones uni-

16. Se rechazan los modos silogisticos Darapti, Felapton, Bramantip y Fesapo. Cf. la monogra-
fia sobre Historia de la l6gica en el presente volumen.
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versales como las de las premisas de (5.1) tienen también un cierto con-
tenido existencial, de modo que habria que representarlas adecuadamente
mediante una férmula del tipo HxP(x)A Vx(P(x)— O(x)). Con ello se blo-
quearian contraejemplos como el anterior.

La cuestion es entonces si en el lenguaje cotidiano el significado de
las oraciones en cuestion incluye el mencionado «contenido existencial».
Para dilucidar esto seria aqui también relevante hacer la distincién entre
las condiciones de verdad de una oracién y los principios pragmaticos
que rigen su uso (cf. nota 6).

VI. PROPIEDADES DE LA LOGICA DE PRIMER ORDEN

Los calculos de la légica de primer orden no son sino ampliacién de los
de la logica de enunciados, a los que basta con anadir unas pocas reglas,
o axiomas (segun de qué calculos se trate) para las férmulas con cuanti-
ficadores y el simbolo de identidad .

Sélo se dard aqui un ejemplo. Del calculo analitico que se presentd en
la seccion 3 se obtiene un célculo de la 16gica de primer orden (dejando
en este punto de lado la identidad) anadiendo las siguientes cuatro reglas '*:

Vxd(x) — HxP(x) Hxd(x) — Vx®(x)
®D(a) —1®(a) D(a) —®(a)

Aqui, como anteriormente, la linea horizontal separa la formula a
la que se aplica la regla de la férmula resultado de su aplicacion. Indica
también que la aplicacion de la regla no tiene por qué hacerse inmediata-
mente debajo de la formula a la que se aplica.

Las dos ultimas reglas estin sometidas a la restricciéon de que a sea
una constante nueva, en el sentido de no utilizada aun en la derivacién
de que se trate.

Los calculos ocuparon un papel central en la légica clasica mientras
las consideraciones semanticas se hacian sélo intuitivamente, al no haberse
desarrollado aun las nociones semanticas de un modo sistematico, den-
tro de un marco matematico'”. Hoy en dia se ve su significacion a tra-
vés del teorema de completud. Por tanto, vamos a pasar ahora a exponer
el contenido y el significado de este resultado y otros resultados impor-
tantes relacionados con é1°°.

17. Todas las referencias de la nota 9 son pertinentes aqui.

18. ®(a) es el resultado de sustituir en la formula ®(x), con la x variable libre, esta variable por
la constante individual a. En la formulacion de la regla, la letra «a» figura como representante de cual-
quier constante.

19.  Otro tanto puede decirse de las logicas no clasicas. En las ultimas décadas, la introduccion
de consideraciones semadnticas sistematicas ha revolucionado completamente el estudio de éstas. Cf.
las monografias correspondientes de este mismo volumen.

20. Lademostracidn de todos estos resultados exige el desarrollo del aparato de las pruebas por
induccidn y las nociones de teoria de conjuntos que las justifican. Estas pruebas pueden encontrarse
en excelentes libros de texto como Boolos y Jeffrey, 1990; Enderton, 1972; Ebbinghaus, Flum y Tho-
mas, 1984 y Smullyan, 1971.
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Consideremos en adelante uno cualquiera de los célculos l6gicos a
los que se ha aludido. Introducimos el signo «+ » para abreviar la afir-
macion de que algo es derivable en él. Asi, I' - @ significa que ® es deri-
vable a partir del conjunto de premisas I', y — ® significa que ® es deri-
vable sin premisas, que, como se dice, es un teorema légico. (Este caso
simplemente es el caso particular del anterior en el que I" es el conjunto
vacio, por lo que lo consideramos incluido en el caso general.)

La propiedad basica esencial para que un sistema de manipulacién
formal sea un célculo légico es la correccion, expresada en el siguiente
teorema.

TEOREMA 6.1 (Correccién): Si I'—®, entonces I'=®.

Los calculos de primer orden son completos, en el sentido del siguiente
teorema’', que expresa la primera propiedad interesante que esos cal-
culos poseen.

TEOREMA 6.2 (Completud): Si I'=®, entonces I'—®.

Una manera de explicar el significado profundo de este teorema es
que muestra la medida en que es posible aproximarse al ideal leibniziano
de sustituir la discusion racional por un procedimiento calculistico. En
efecto, consideremos el conjunto de las verdades légicas de un lenguaje
de primer orden o de fragmentos del lenguaje natural representables en
ese lenguaje. Es decir, el conjunto de las férmulas u oraciones ® de esos
lenguajes tales que =®. Por el teorema de completud, existe una prueba
formal de @ en un calculo de primer orden, es decir ® es un teorema
l6gico, derivable sin premisas. Ahora bien, la cuestién de si algo consti-
tuye o no una prueba formal o deduccién de una férmula, es decidible
mecanicamente. Pero esto implica que existe la posibilidad de un «lis-
tado mecanico» de tales teoremas: genérense mecdnicamente todas las
cadenas de simbolos y decidase mecanicamente cudles son derivaciones
de una férmula; cada vez que se obtenga una que lo sea, anadase la fér-
mula a la lista.

La existencia de este procedimiento se expresa diciendo que el con-
junto de los teoremas ldgicos de primer orden es recursivamente (o efecti-
vamente) enumerable. Pero, dada la correccidn de los calculos, esto signi-
fica que también el conjunto de verdades logicas que considerabamos es
recursivamente enumerable: es mecanizable la tarea de construir una lista
tal que si una sentencia (de primer orden o representable en primer orden)
es una verdad ldgica, entonces aparecerd en la lista «en algiin momento».

Esto no implica en absoluto que tengamos un procedimiento de deci-
si6n, en el sentido aludido arriba y brevemente descrito en la seccion II1.
En este respecto la légica de primer orden esta en claro contraste con
la de enunciados.

21. La primera prueba de este teorema se dio en Godel, 1930. Las demostraciones que suelen
darse en la actualidad proceden de Henkin, 1950.
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El caso tedricamente mas interesante, sin embargo, es el de las impli-
caciones logicas. Ahora bien, cuando el conjunto de premisas es finito,
este caso simplemente se reduce al anterior por (sucesivas aplicaciones
de) el teorema 2.2 (que vale también en el contexto mas amplio de la
logica de primer orden).

Piénsese que entre las inferencias que interesan se encuentran espe-
cialmente aquéllas en las que el conjunto de premisas es el conjunto de
axiomas de una teoria matemadtica formulada en un lenguaje de primer
orden. Los resultados anteriores revelan asi la medida en que es posible
mecanizar la prueba matematica®’, y son por ello de importancia para
los fundamentos y la filosofia de la matematica. Y también son de signi-
ficacidn para teorias de otras ramas de la ciencia, en tanto éstas puedan
axiomatizarse en un lenguaje de primer orden o «contengan» teorias mate-
maticas.

Hemos explicado la relevancia del teorema de completud en el con-
texto de la mecanizacién de una prueba. La del teorema de compacidad,
el siguiente de los importantes resultados l6gicos de nuestra lista, ha de
explicarse por su estrecha vinculacion con la existencia de una prueba.
SiTE®, el teorema de completud garantiza la existencia de una prueba
formal (y, por lo tanto, de una prueba en definitiva), cualesquiera que
sean I' y @. Pero ¢como es esto posible en el caso de que I sea infinito
si una prueba es necesariamente algo que ha de ser inspeccionable, cons-
tatable y, por tanto, finito? La respuesta se deriva del teorema de
compacidad *.

TEOREMA 6.3 (Compacidad): Si todo subconjunto finito de un con-
junto de férmulas es satisfacible, entonces este conjunto es también satis-

facible.

La relevancia de este teorema se ve inmediatamente a través del
siguiente teorema, llamado a veces teorema de finitud, que puede pro-
barse con su ayuda®.

TEOREMA 6.4 (Finitud): Si T = ®, entonces hay un subconjunto finito
I', de T tal que I'y= .

La propiedad de compacidad (o finitud) es asi necesaria para la exis-
tencia de una prueba. Pero, juntamente con la enumerabilidad de los teo-
remas légicos, es también suficiente. En efecto, la primera garantiza la

22. Para las teorias finitamente axiomatizables (axiomatizables con un conjunto finito de axio-
mas). La discusién se podria extender tomando en consideracion las teorias cuyos axiomas, aunque
infinitos, son enumerables recursivamente, pero no podemos aqui tomar este caso en consideracion.

23. Probado por primera vez en Godel, 1930.

24. De hecho, los dos teoremas son equivalentes, pues también es posible demostrar el de com-
pacidad a partir del de finitud. La equivalencia de ambos teoremas hace que a veces se los formule
como variantes el uno del otro.
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reduccién de las implicaciones logicas al caso de un conjunto finito de
premisas. Pero, como hemos visto, el teorema 2.2 reduce el caso al de
averiguar la validez de una férmula, y, si ésta es valida, el procedimiento
de enumeracion antes aludido proporcionaria su prueba.

Otro de los teoremas fundamentales, el llamado teorema de Lowen-
heim-Skolem**, revela algo importante sobre las descripciones tedricas
de un dominio.

TEOREMA 6.5 (Lowenheim-Skolem): Si T' tiene un modelo, entonces
tiene un modelo numerable.

El teorema de Lowenheim-Skolem fue en algiin momento conside-
rado paraddjico. Asi el propio Skolem se hizo la pregunta (llamada pos-
teriormente paradoja de Skolem) de como era posible que un conjunto
de férmulas o proposiciones verdaderos sobre los numeros reales, que
forman un conjunto no numerable, pudiera también ser verdadero de un
ambito numerable. Sin embargo, esta situacion sélo puede verse como
paraddjica en el supuesto de que el objetivo de las teorias sea «definir»
un ambito determinado, es decir, caracterizar univocamente un ambito,
de modo que no haya otro ambito que responda a esa caracterizacion.
El teorema nos senala lo injustificado de ese supuesto. Siempre que ten-
gamos una teoria de una estructura infinita (en un lenguaje de primer
orden), hay modelos de esa teoria «esencialmente distintos», es decir, no
isomorfos (se dice entonces que la teoria en cuestién no es categorica).
Lo mismo podemos decir, en particular, del método axiomatico, que no
es sino una forma distinguida de dar una teoria.

El teorema de compacidad y el de Lowenheim-Skolem describen pro-
piedades «absolutas» de los lenguajes de primer orden, propiedades inde-
pendientes de cualquier calculo. Estas propiedades se utilizan para carac-
terizar el poder expresivo de los lenguajes de primer orden y de lenguajes
que son extensiones de aquéllos®®. Asi, en la denominada ldgica m,m se
tienen formulas con un numero infinito numerable de conjunciones o dis-
yunciones, con lo que, por ejemplo, es posible expresar enunciados como
«Todo objeto es un nimero natural» del siguiente modo:

(5.2) Vx(x=0vx=1vx=2v...).

Surge asi la cuestion de cuales de esas extensiones «anaden realmente»
algo a la capacidad expresiva de los lenguajes de primer orden. En este
sentido no se anade nada si, por ejemplo, para cualquier sentencia de
uno de esos lenguajes hay otra de primer orden que «dice lo mismo»,
es decir que es verdadera en las mismas estructruras. El teorema siguien-

25. Lowenheim (1915) ofreci6 una prueba del teorema para el caso de una sola férmula y Sko-
lem (1920) generalizo el resultado a conjuntos cualesquiera de formulas. Este teorema tiene variantes
significativas; cf. Manzano, 1989.

26. Los lenguajes de segundo orden no tienen ninguna de las dos propiedades. Tampoco puede
haber célculos completos para ellos. Cf. la monografia sobre Logica de orden superior en este volumen.
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7, que presentamos en una formulacién simplificada, caracteriza de
una manera abstracta los lenguajes (y con ello la l6gica) de primer orden.

TEOREMA 6.6 (Teorema de Lindstrém). Sea L una extension del len-
guaje de la légica de primer orden para el que vale el teorema de
Lowenheim-Skolem y el teorema de compacidad. Entonces toda senten-
cia de L tiene exactamente los mismos modelos que alguna sentencia de
primer orden.

Las propiedades descritas en los teoremas anteriores son propieda-
des de gran importancia epistemoldgica (puesto que conciernen a lo que
es posible demostrar y cémo), propiedades cuya presencia en la logica
de primer orden podemos probar precisamente por ser ésta una teoria
matematica (en el sentido de «formulada matemadticamente», es decir,
en el mismo sentido en que lo son las teorias de la fisica o la economia).

Hay otros lugares en que el hecho de que las teorias ldgicas sean teo-
rias matematicas (en el sentido apuntado), tiene consecuencias dignas de
ser notadas. Quiza la mds prominente de todas sea que, al pasar de la
presentacion intuitiva de los conceptos a una teoria logica, los dominios
de que hablamos intuitivamente se precisan como conjuntos, y, como son
precisamente las teorias matematicas acerca de los conjuntos las que nos
dicen lo que éstos son, las alternativas en esas teorias tienen repercusio-
nes para la teoria légica (cf. Jané, 1988-1989).

VII.  VARIANTES DE LA LOGICA DE PRIMER ORDEN

Filésofos contemporaneos tan importantes como Quine identifican la
logica de primer orden como /g l6gica sin mds, proponiendo un lenguaje
de primer orden —con la adecuada eleccion de predicados para satisfa-
cer requ1s1tos epistemoldgicos minimos— como el lenguaje canénico de
la ciencia®®. Davidson hace que los lenguajes de primer orden jueguen
un papel de condicién cuasitranscendental de la inteligibilidad del
discurso®’

La defensa de tales afirmaciones depende de teorias filoséficas subs-
tanciales. Y la propia capacidad general de los lenguajes de primer orden
para, con su ayuda, dar cuenta de diversos fendmenos semanticos y logi-
cas es controvertida (como se menciona en el apartado anterior). Lo que,
sin embargo, parece menos dudoso es que la introduccién de algunas
variantes aumentaria la plausibilidad de ver en los lenguajes de primer
orden buenos «modelos» de los lenguajes naturales, en el sentido que a
esta palabra se le da frecuentemente en la ciencia empirica, es decir, ana-

27. Demostrado por vez primera en Lindstrom, 1969. Sobre la cuestidn general de las propieda-
des y los limites de la 16gica de primer orden, cf. Hodges, 1983.

28. Cf. Quine, 1960.

29. Cf. Davidson, 1967-1974.
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logias simplificadas e idealizadas (no en el sentido técnico que tiene en
secciones anteriores).

Versiones de la logica de primer orden que no es infrecuente encon-
trar en los libros de texto incluyen los simbolos funcionales y, menos fre-
cuentemente, un operador para expresar las descripciones definidas. Con
ello se gana naturalidad en la representacion del lenguaje natural y mate-
matico en muchos contextos, sin obtenerse ninguna ampliacién sustan-
cial (al menos en el caso de los simbolos funcionales).

Las variantes de los lenguajes de primer orden que resultan de afiadir
simbolos funcionales y/o descripciones definidas no inciden, sin embargo,
en el aspecto mas central y seguramente mas problematico, desde el punto
de vista del presente tema, de los lenguajes de primer orden: la expresion
de la cuantificaciéon. Las dos variantes siguientes se dirigen precisamente
a este aspecto central.

La primera obedece a una doble motivacién, sintactica y semantica.
Desde el punto de vista sintactico, tenemos la evidencia linglistica que
apunta a la estructuracién de la oracion en sintagma nominal y sintagma
verbal. Desde el semdntico, tenemos la posibilidad de extender la capa-
cidad expresiva de los lenguajes de primer orden introduciendo cuantifi-
cadores como «la mayoria», «mas de la mitad», «<ambos», «muchos»,
«pocos», «unos cuantos». Para ello habria que renunciar a la idea, debida
a Frege, de que una afirmacién cuantificada consiste en predicar algo,
usualmente complejo, de todo o algin objeto del dominio de cuantifica-
cion. Asi, «todo A es B» se analiza como una predicacion compleja («si
algo es A, entonces es B») de todo objeto, haciendo que el término res-
trictivo, A, pase a formar parte del predicado. Este rasgo es uno de los
mds caracteristicos de los lenguajes de primer orden tal como se los for-
mula en forma estandar y hace que, por ejemplo, «la mayoria de los A
son B» no pueda expresarse en un lenguaje de primer orden, pues una
afirmacién de este tipo no puede reducirse a otra sobre la mayoria de
los objetos de un dominio.

Lanuevaidea es construir un lenguaje de primer orden de manera que
respete la unidad del determinante («todo», «algun», «el (1a)», «muchos»,
etc. con el término restrictivo)*’. Mds precisamente, reemplazariamos la
cldusula para la introduccién de los cuantificadores que se mencionaban
al comienzo de la seccién V por las dos cldusulas siguientes:

(7.1) Si ®(x) es una formula donde x esta libre, entonces

[Vx:®(x)] y [Hx:P(x)] es un sintagma cuantificacional.

(7.2) Si W(x) es una formula donde x esta libre, entonces

[ Va:®D(x)](P(x)) y [Hx:D(x)](¥(x)) son féormulas
donde [Vx:®(x)] y [Hx:®(x)] son sintagmas cuantificacio-
nales.

30. Cf. Barwise y Cooper, 1981 y Neale, 1990, para mayores detalles y para ver cémo se utiliza
la nueva version, respectivamente, en un andlisis general de la cuantificacion y en el de ciertos fenome-
nos anaféricos. El primero contiene ademds una prueba de la afirmacion anterior acerca de «la mayoria».

99



DANIEL QUESADA

Ejemplos similares a los que servian de ilustracion en la seccion IV
serian los siguientes:

(7.3) Algunos adultos llevan barba.

[dx: Adulto(x)] (Barba(x)).

(7.4) Todos los menores tienen un tutor.

[ Vx: Menor(x)] ([ dy: Cosa(y)] (Tutor(y,x)));
[Hy: Cosa(y)] ([ Vx: Menor(x)] (Tutor(y,x))).

Hemos introducido el predicado monadico «Cosa» para ayudarnos
en la representacion de (7.4). Ademas, esta oracién es ambigua, de modo
que la primera férmula vierte la interpretacion en que los menores tie-
nen tutores posiblemente distintos, mientras que la segunda corresponde
a la interpretacion en la cual el tutor es el mismo para todos ellos.

Si se quiere ahora extender el lenguaje de modo que incluya otros
cuantificadores, ello se puede hacer reformulando las cldusulas anterio-
res de un modo muy sencillo.

También es sencilla la manera de modificar la definicién 5.2 para
obtener una definicion de verdad para el nuevo lenguaje, restringiéndo-
nos ahora de nuevo a los dos cuantificadores clasicos. Simplemente sus-
tituiriamos las cldusulas 8 y 9 por las cldusulas siguientes:

) || [ Vx:®(x)](¥(x)) |la.=V syss para todo elemento a de

A tal que | [®(x) .=V, sucede | ¥(x) lacm=V-

) Il I EIx ®(x)](¥(x)) [a.=V syss para al menos un elemento a
de A tal que | ®(x) [lasw=V, sucede || ¥(x) llasm=V.

Veamos ahora para terminar otro tipo de modificacién de la légica
de primer orden.

En muchos contextos, es natural suponer que los objetos de que se
habla se agrupan en dominios distintos. Son de distinta «naturaleza», o
como diremos, introduciendo el término técnico, son de variedades dife-
rentes. Por ejemplo, supongamos que estamos hablando de las propie-
dades de ciertas familias y de sus miembros. Parece natural distinguir dos
dominios o universos del discurso, uno constituido precisamente por fami-
lias y otro por personas o individuos.

Podemos «modelar» las afirmaciones de ese tipo mediante una exten-
sion del lenguaje de primer orden. Distinguimos tipos distintos de varia-
bles, utilizando unas para hablar de objetos de una variedad y otras para
objetos de otras variedades. Asi, siguiendo con el ejemplo anterior, y uti-
lizando las letras x, y,... para los individuos y a, B,... para las familias,
podriamos hacer afirmaciones (posiblemente falsas) como las siguientes:

(7.1) Los hijos menores de una familia son inconformistas.

Vx(Ha Menor(x,a)— — Conformista(x)).
(7.2) En toda familia de mds de un hijo, de cada dos hijos siempre
uno es «superior jerarquico» del otro.
Va Hx Ty((— x =ya Hijo(x,a)a Hijo(y,a))—
(Superior(x, y) v Superlor(y,x)))

En general, en la sintaxis de un lenguaje multivariado se distinguen

distintas variedades de constantes individuales y de variables. Los predi-
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cados del lenguaje sélo se combinan sintacticamente con n-adas de cons-
tantes o variables de las variedades apropiadas. Semdnticamente, una
estructura multivariada A consta de una serie de dominios A, ..., A,.,
uno para cada variedad, sin elementos comunes, y una funcién < que
asigna a cada constante un objeto del dominio de la variedad correspon-
diente a esa constante y a cada predicado #n-4adico un #n-tuplo donde cada
miembro es de la variedad apropiada.

Siguiendo las pautas descritas en secciones anteriores, se introduciria
entonces el concepto de verdad en una estructura multivariada, modelo de
una sentencia o conjunto de sentencias de un lenguaje multivariado y a conti-
nuacion los de sentencia vélida e implicacion légica paralalégica multivariada.

La cuestion ahora es si con ello tendriamos una teoria légica dife-
rente, quizds una ampliacion de la légica de primer orden en el mismo
sentido que ésta amplia la de enunciados. La respuesta es que no, pues
es posible reducir la légica multivariada a légica de primer orden, por
el procedimiento que a continuacion describimos en lineas generales.

En primer lugar, introducimos un lenguaje de primer orden L* para
el lenguaje multivariado L de que se trate, simplemente anadiendo a todos
los simbolos de L una serie de predicados monadicos Pi,..., P,,, uno
para cada variedad. (En nuestro ejemplo, afnadiriamos los predicados
«Individuo» y «Familia».) A continuacién establecemos una correspon-
dencia entre las formulas de uno y otro de manera que a las férmulas
de las formas de (7.3) les hacemos corresponder, respectivamente, fér-
mulas de las formas de (7.4):

(7.3) YwY(w')y Huw¥(w')

(7.4) Vx(P(x)=Y¥(x))y "x(P(x)A¥(x)),
donde w' es una variable cualquiera de la variedad i, y x es una varia-
ble usual de primer orden. Llamemos ®* a la sentencia correspondiente
a ®. (La correspondiente a (7.1), por ejemplo, seria Vx(Individuo(x)—
(Hz(Familia(z)A Menor(x,z))— — Conformista(x))).)

A continuacién, convertimos cada estructura multivariada A para L
en una estructura A* para L* tomando como nuevo dominio el conjunto
de objetos que estan en cualquiera de los dominios de A y con la misma
asignacion de objetos a constantes y predicados. Puede probarse enton-
ces que una sentencia multivariada ® es verdadera en A si y sélo si ®*
es verdadera en A*. Consideremos ahora cualquier inferencialdgica I' = ®
de la logica multivariada. Consideremos el conjunto I'* de sentencias
correspondientes a las de I'. Afladamos a éste un conjunto de férmulas,
%, en el que estén precisamente, para cada variedad i, las férmulas P,(c)
(para cada constante del lenguaje) y HxP,(x). El teorema siguiente nos
da entonces la relacién exacta que hay entre una inferencia en la légica
multivariada y una en la de primer orden.

TEOREMA 7.1. 'E® si y sélo si I', Z=®.
En realidad basta con cumplir lo estipulado anteriormente para los
predicados y constantes que aparezcan en la inferencia. Siguiendo con
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nuestra ilustracion, consideremos, por ejemplo, la siguiente afirmacién
de légica multivariada:

Vx(HaMenor(x,a)— — Conformista(x)), HaMenor(a,a)

= — Conformista(a).

Por el teorema anterior, esta afirmacion es verdadera si y solo si la
siguiente afirmacion de la logica de primer orden lo es:

Vx(Individuo(x)—(Hdy(Familia(y)aMe-
nor(x,y))— — Conformista(x))),

Hy(Familia(y)AMenor(a,y)) = — Conformista(a).

Debido al teorema 7.1 podemos decir que la légica multivariada no
supone ninguna extension esencial de la légica de primer orden. No es
necesario elaborar una teoria independiente de la l6gica multivariada:
las propiedades de la de primer orden (completud, compacidad, Léwen-
heim-Skolem) se transmiten a aquélla. Por otro lado, precisamente por
esto mismo, podemos aprovechar cualesquiera ventajas en cuanto a intui-
tividad o naturalidad ofrezcan los lenguajes multivariados, sin perder nin-
guna de las que encontremos a la légica de primer orden.

Los lenguajes multivariados tienen un interés teorico al permitir mos-
trar como el caso de la ldgica de segundo orden con una semantica basada
en las estructuras generales es reducible al de la logica de primer orden.
Simplemente, las variables de segundo orden toman valores en uno de
los dominios de una estructura multivariada®.
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LOGICA DE ORDEN SUPERIOR

Ignacio Jané

I. INTRODUCCION

Lo que distingue los lenguajes de primer orden de los segundo orden y,
en general, de los de orden superior, es su restriccion a cuantificar sélo
sobre elementos del universo del discurso. Asi, en el lenguaje de primer
orden de la aritmética, es decir en el lenguaje de primer orden apropiado
para hablar de nimeros naturales con respecto al orden, la suma y el
producto, podemos expresar propiedades de numeros (como la de ser
par, primo, o perfecto), relaciones entre nimeros (como la de divisibili-
dad o la de congruencia médulo 5) y podemos formular aseveraciones
sobre nimeros (como que hay un numero infinito de primos, o que todo
numero natural es la suma de cuatro cuadrados) siempre que en las expre-
siones en cuestidn nos limitemos a cuantificar sobre numeros naturales.
Asi, podemos expresar en primer orden que un numero 7 es primo
diciendo que 1o hay ningiin numero distinto de n y de 1 que divide a
n; podemos expresar que un nimero n divide a m diciendo que hay un
ntzmero cuyo producto con n es m; y podemos expresar que hay un
numero infinito de primos diciendo que para todo niumero n hay un
nizmero m que es primo y mayor que #. Pero en este lenguaje no pode-
mos expresar hechos aparentemente tan simples como que todo conjunto
de nizmeros naturales no vacio tiene un elemento minimo; o que toda
propiedad poseida por el cero y transmitida de un nimero a su sucesor
(es decir: si un numero la posee, su sucesor también) es poseida por todo
numero natural. En estas oraciones cuantificamos sobre conjuntos de
numeros o sobre propiedades de numeros, no sobre numeros: cuantifi-
camos no sobre elementos del universo del discurso, sino sobre subcon-
juntos de este universo o sobre propiedades de sus elementos. En lo que
sigue, apenas hablaremos de propiedades, ya que todo cuanto podamos
decir con su ayuda podremos reformularlo en términos de conjuntos. A
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menudo (sobre todo en contextos matematicos) lo unico que importa de
las propiedades es su extension, y la extension de una propiedad (razo-
nable) es un conjunto.

Todos los lenguajes de que nos vamos a ocupar —ya sean de primer
orden o de orden superior— serdn lenguajes formales con simbolos de
dos clases: logicos y no légicos (ademds de los simbolos impropios: los
paréntesis). Los simbolos no légicos de un lenguaje constituyen el tipo
de semejanza del lenguaje en cuestion. Pueden ser de tres clases: constan-
tes de predicado, constantes funcionales y constantes individuales. Las
constantes funcionales y de predicado pueden serlo de distinto nimero
de argumentos. Diremos que una constante funcional o de predicado de
n argumentos (7= 1) es una constante n-aria. Asi, el tipo de semejanza
de un lenguaje apropiado para la aritmética constaria de:

— una constante de predicado binaria (<);
— dos constantes funcionales binarias (+ y X );
— dos constantes individuales (0 y 1);

mientras que el tipo de semejanza del lenguaje usual de la teorfa de con-
juntos contiene un unico simbolo no légico: la constante de predicado
binaria €.

Los simbolos logicos comunes a todos los lenguajes que aqui consi-
deraremos (de todos los drdenes) son:

— los conectores (—1,v,A, =, );
— el simbolo de igualdad (=);
— los cuantificadores (H, V).

Lo que, sintdcticamente, distingue los lenguajes de 6rdenes distintos
son las variables (que incluimos entre los simbolos 16gicos). Los lengua-
jes de primer orden contienen una sola clase de variables: las variables
individuales: x,, x,, ..., x,... Los lenguajes de segundo orden, ademas
de las variables individuales contienen variables de predicado: para cada
entero positivo 7 hay un numero infinito de variables de predicado n-
arias: X, X%,..., X%,...

Las variables toman valores. A cada clase de variable le corresponde
un dominio de variabilidad, constituido por la totalidad de los valores
que pueden tomar las variables de la clase. El dominio de variabilidad
de las variables individuales es el universo del discurso. Los posibles valo-
res de las variables de predicado unarias son subconjuntos de este uni-
verso, y los de las variables de predicado n-arias son relaciones #n-arias
en este universo. (Relaciones en extensidn, se entiende, del mismo modo
que los conjuntos son propiedades, o sea, relaciones unarias, en exten-
sion. Una relacidon n-aria en un universo U es, pues, un conjunto de n-
tuplas de elementos de U, es decir: un subconjunto de U").

Los lenguajes de orden superior a 2 (o los de orden infinito) contie-
nen otras clases de variables. De ellos hablaremos mas adelante. Ahora
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es el momento de precisar los elementos sintacticos y semanticos de los
lenguajes de segundo orden.

II. SINTAXIS DE LOS LENGUAJES DE SEGUNDO ORDEN

Supongamos que T es un tipo de semejanza.

Los términos de cualquier lenguaje sobre T son las expresiones (es decir,
las sucesiones finitas de simbolos) caracterizados por las siguientes clau-
sulas recursivas:

1) Toda variable individual y toda constante individual es un término;

2) si f es una constante funcional n-aria y ¢,,..., t, son términos,
entonces la expresion ft,... t, es un término;

3) solo son términos las expresiones obtenidas con ayuda de 1) y 2).

Una férmula atémica del lenguaje de segundo orden sobre T es una
expresion de una de las tres formas siguientes:

t,=t,, Rt, ... t,, Xt,... t,,

donde ¢,,..., t, son términos, R es una constante de predicado n-aria de
Ty X es una variable de predicado #n-aria (asi, X = X}, para algun k).

Finalmente, las formulas del lenguaje de segundo orden sobre T se
caracterizan recursivamente asi:

1) Toda férmula atdmica es una formula;

2) siay P son féormulas, también lo son — a, (avp), (arB), (a—B)
y (aeB);

3) si a es una formula y x es una variable individual (asi, x =x,,
para algun k), entonces Hxa y Vxa son férmulas;

4) si a es una férmula y X es una variable de predicado (asi,
X =X}, para algun n y algun k), entonces HXa y VXa son for-
mulas;

5) sélo son férmulas las expresiones obtenidas con ayuda de 1) - 4).

Las variables, tanto individuales como de predicado, pueden apare-
cer libres o ligadas en una férmula. No damos aqui la definicion de estos
términos, ya que es andloga a la correspondiente para lenguajes de pri-
mer orden. Baste recordar que una variable esta ligada por un cuantifi-
cador en una férmula si esta en el alcance del cuantificador. Una fér-
mula con variables libres es una férmula abierta; una formula sin variables
libres es una sentencia.

III. SEMANTICA DE LOS LENGUAJES DE SEGUNDO ORDEN

Construimos lenguajes para hablar de objetos (los elementos del universo
del discurso, muchas veces implicito) con respecto a ciertas relaciones
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y operaciones entre ellos. Algunos de estos objetos, no necesariamente
todos, tienen nombre en el lenguaje. Asi, en aritmética hablamos de nume-
ros con respecto a las operaciones de suma y producto y a la relacion
de orden; en la teoria de conjuntos hablamos de los conjuntos con res-
pecto a la relacién de pertenencia; en una posible teoria de las relaciones
sociales de cierta sociedad hablariamos de los individuos de esta socie-
dad con respecto a ciertas relaciones de parentesco; etc. El concepto gene-
ral que engloba estos y otros muchos casos es el de estructura.

Si T es un tipo de semejanza, una estructura de tipo T es un par
A=(A, %), donde A es un conjunto no vacio —el universo de la estruc-
tura— € S es una funcién (de interpretacién) con dominio T tal que:

1) Si R es una constante de predicado n-aria, S(R) es una relacién
n-aria en A, es decir, un subconjunto de A";

2) si f es un simbolo funcional #-ario, () es una operacién n-aria
en A, es decir una funcién de A" en A;

3) si ¢ es una constante individual, $(c¢) es un elemento de A.

Los términos sin variables denotan elementos del universo de la estruc-
tura y los términos con variables (necesariamente individuales) toman
valores en la estructura dependiendo de qué elementos asignemos a estas
variables. Asi, si A es el conjunto de los numeros naturales, A es una
estructura cuyo universo es A, 3(f) es la operacién suma e I(c) e 3(d)
son los nimeros 0 y 1, respectivamente, entonces el término ffcdfdd
denota el nimero 3 [ =(0+ 1)+ (1 +1)]; mientras que el término ffxyfyz
toma el valor 12 [ =(2+3)+(3+4)], si asignamos los numeros 2, 3 y
4 a las variables x, y y z, respectivamente.

Las sentencias son verdaderas o falsas en una estructura, mientras
que las férmulas abiertas son satisfechas o no en la estructura por los
objetos o relaciones que asignamos a sus variables libres. Un modelo de
una sentencia es una estructura en la cual la sentencia es verdadera. Los
conceptos de verdad y satisfaccién para férmulas de segundo orden son
extensiones naturales de los correspondientes para formulas de primer
orden, por lo que es innecesario definirlas con detalle (ver Enderton, 1972
o Boolos-Jeffrey, 1980). Basta tener presente que para determinar lo que
una férmula expresa en una estructura basta conocer la interpretacion
de los simbolos no logicos, el significado de los conectores y cuantifica-
dores, y recordar los dominios de variabilidad de las distintas clases de
variables que en ella aparecen. Asi, la féormula VxXxx, donde X es una
variable binaria, es satisfecha en una estructura A si asignamos a X cual-
quier relacion reflexiva en A, el universo de A, mientras que la férmula
Vx(Yx—Zx), donde Y y Z son variables unarias, es satisfecha en A si
asignamos a Y y a Z dos subconjuntos de A, el primero de los cuales
estd incluido en el segundo. Finalmente, la sentencia

INF: HX(Vx— XxxA Vx VyVz((XxyaXyz)— Xxz)A Vx HyXxy)
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es verdadera en una estructura A si y solo si hay una relacién binaria
en A irreflexiva, transitiva y sin elementos maximales. Relaciones de este
tipo las hay en conjuntos infinitos y sélo en ellos. Asi: 1) es verdadera
en una estructura si y sélo si su universo es infinito.

IV. ISOMORFISMO

Un isomorfismo entre dos estructuras A=(A, %) y A’=(A’, %) es una
biyeccion h entre A y A’ tal que:

1) SiR es una constante de predicado #-aria, $(R)=R, I(R’)=R’;
y @,,..., 4, son elementos de A, entonces R(@,,..., @,) si y so6lo si
R’(h(a,),..., h(a,)).

2) Si f es una constante funcional z-aria, 3(f)=f, I()=Fya,,...,
a, son elementos de A, entonces h(f): (a,,..., a,))=F(h@,),..., h(a,)).

3) Sic es una constante individual e $(c) =6, entonces 3’(c)=h(6).

Dos estructuras A y A’ son isomorfas (A= A’) si hay un isomorfismo
entre ellas. Asi, dos estructuras isomorfas sélo difieren, por asi decir, en
la naturaleza de los elementos de su universo. Por lo demds, toda des-
cripcion «formal» o «esquematica» o «estructural» de una de ellas lo es
también de la otra. En particular, dos estructuras isomorfas son mode-
los de las mismas sentencias de primer y de segundo orden.

V. CAPACIDAD EXPRESIVA DE LOS LENGUAJES DE SEGUNDO ORDEN

La capacidad expresiva de los lenguajes de segundo orden es muy supe-
rior a los de primer orden. Hay muchos conceptos importantes que no
son expresables mediante sentencias de primer orden pero si de segundo
orden. A continuacion discutimos algunos de ellos. Unos nos permiten
caracterizar clases de estructuras; otros definir ciertas relaciones u ope-
raciones entre los elementos del universo de una estructura.

1. Finitud e infinitud

Consideremos el concepto de infinitud. Hemos visto que la sentencia INF
de 111 es verdadera en las estructuras con universo infinito y sélo en ellas.
Asi, esta sentencia caracteriza la clase de las estructuras infinitas. El con-
cepto de infinitud es, pues, expresable mediante una sentencia de segundo
orden. Pero no lo es mediante una sentencia de primer orden.

En primer orden podemos expresar la infinitud del universo de la
estructura de que hablamos mediante un conjunto infinito de sentencias:

®={0,, 0,, 0,,... 0,,...}, donde
0,=Hx, Hx,—x,=x,
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0= HoxiHxyo Hx (—ximmA—xismAvs AT, =)
pues, para cada n, la sentencia 0, es verdadera en una estructura si y
solo si su universo tiene por lo menos 7 elementos. Sin embargo, el con-
cepto de finitud no puede expresarse en primer orden ni siquiera mediante
un numero infinito de sentencias. Un modo de verlo es el siguiente: Si
suponemos que ® es un conjunto de sentencias de primer orden verda-
deras en todas las estructuras con universo finito y sélo en ellas, enton-
ces todo subconjunto finito de @U® tiene un modelo (pues todo sub-
conjunto finito de O tiene un modelo finito). Asi, por el teorema de
compacidad de la légica de primer orden, ®@U® tiene un modelo: infi-
nito, por serlo de @; finito, por serlo de ®. Esto es absurdo. No existe,
pues, un conjunto @ tal.

Pero el concepto de finitud si es expresable en segundo orden: me-
diante la negacién de la sentencia INF.

FIN: —INF
2. Identidad

La relacion de identidad es definible mediante una férmula de segundo
orden, ya que el bicondicional

x=yo VX(Xxe Xy)

es satisfecho en una estructura por el par de objetos a y b si y sélo si
ay b pertenecen a los mismos subconjuntos del universo de la estruc-
tura, lo cual ocurre si y solo si a es igual a b. (Esta formula es una ver-
sion trivial del principio de la identidad de los indiscernibles: trivial por-
que debe su verdad al hecho de que para todo objeto, a, hay un conjunto
cuyo unico elemento es a.)

Pero la relacion de identidad no es definible en primer orden. De ah{
la necesidad de introducir en los lenguajes de primer orden el simbolo
~ como simbolo légico y, por tanto, no sujeto a reinterpretaciéon; en
segundo orden, como vemos, podemos prescindir de él.

3. Transitivizacidn de una relacion

La relacién de antepasado a descendiente no es mas que la transitiviza-
cién de la relacion de progenitor a hijo; es decir, es la menor relacion
transitiva que la extiende: a es un antepasado de b si y sélo si a es un
progenitor de b, o un progenitor de un progenitor de b, o... Cuantifi-
cando sobre conjuntos de personas podemos definir la relacion de ante-
pasado a progenitor observando, con Frege, que ser un antepasado de
b es ser miembro de todo conjunto de personas al que pertenecen los pro-
genitores de b y los progenitores de todos sus miembros.
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En general, si R es una relacion, podemos definir en segundo orden
la relacién R*, la transitivizaciéon de R, como sigue:

R*xye VX((Rzy— X2)A Vu Vw((Ruwa Xw)— Xu))— Xx).
4.  Operaciones aritmeéticas

Con los medios de primer orden no podemos definir la relacién que ordena
el conjunto de los numeros naturales a partir de la relaciéon R, que se
da entre un nimero » y su sucesor inmediato: R(7, m) siy s6lo si m = Sn.
Pero la relacién que ordena los numeros naturales segun su magnitud
no es mas que la transitivizaciéon de R: n<m si y sélo si m=Sn, o hay
k tal que m =S(k) y k=S(n), etc. Asi: la relacion de orden familiar entre
los numeros naturales es definible en segundo orden a partir de la opera-
cién de sucesor:

x <y VX((XSxA Vu(Xu— XSu))— Xy).

También, y en contraste con lo que ocurre en primer orden, son defi-
nibles en segundo orden las operaciones de suma y de producto a partir
de la de sucesor. La relacion ternaria R que subsiste entre los numeros
n, my ksiy solosi n+m=k esla menor relacién ternaria Z tal que
(1) para todo namero i: Z(1,0,i), y (2) para cualesquiera numeros i, j,
r: si Z(i, j, r) entonces Z(i, Sj, Sr). Asi, si ¢ es la constante cuya interpre-
tacion es el namero cero:

x+y=z0 VZ((VuZucun Vu Vo Vi Zuvw— ZuSvSw)) = Zxyz).

La definicién del producto en términos de la suma (y, en definitiva,
en términos de la operacidn de sucesor) es analoga. Basta observar que
nxm=k siy sélo sin, my k estan relacionados por la menor relacién
ternaria Z tal que (1) para todo namero i: Z(i, 0, 0), y (2) para cuales-
quiera numeros 7, j, r: si Z(i, j, r) entonces Z(i, Sj, r+1).

S. Los nitmeros naturales

Con sdlo los medios disponibles en primer orden no podemos caracteri-
zar el conjunto de los numeros naturales en términos de la operacién de
sucesor y del nimero cero. Ahora bien, los nimeros naturales constitu-
yen el menor conjunto que contiene el cero y también el sucesor de cada
uno de sus miembros. Esto es expresable en segundo orden mediante el
principio de induccidn:

PI: VX((XcA Va(Xx— XSx))— VaXx).

Nos falta anadir las propiedades basicas del sucesor: (1) 0 no es suce-
sor de ninglin numero, y (2) la operacion de sucesor es inyectiva. (1) y
(2) son expresables en primer orden:

Vx—Sx=c
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Vx Vy(Sx=Sy—x=y).

Estas tres sentencias caracterizan la estructura de los nimeros natu-
rales con el cero y la operacién de sucesor. Es decir, todo modelo (de
tipo de semejanza T={S, ¢}) de estas sentencias es isomorfo a ella.

6. Numerabilidad

Podemos caracterizar el orden de los nimeros naturales directamente,
sin reducirlo a la operacién de sucesor: Es un orden lineal sin elemento
méaximo con respecto al cual todo conjunto acotado superiormente es
finito. Dado que con los medios disponibles en segundo orden podemos
expresar el concepto de finitud, podemos también caracterizar salvo iso-
morfismo la estructura de los ndmeros naturales con su orden.

Pero entonces también podemos expresar el concepto de numerabili-
dad. Un conjunto es numerable si es biyectable con el conjunto de los
numeros naturales. Asi, un conjunto es numerable si puede ordenarse
con un orden isomorfo al de los nimeros naturales, es decir, si hay un
orden lineal en €l con las propiedades recién enumeradas. Con algo mas
de detalle: Sea ORD(X) —donde X es una variable binaria— la férmula
que expresa que X es un orden lineal estricto (es decir, no reflexivo) del
universo, y sea FIN(Y) —donde Y es unaria— la formula de segundo
orden que expresa que toda relacion irreflexiva y transitiva en Y posee
un elemento maximal (de modo que Y es finito). Entonces la sentencia
de segundo orden

NUM: @X(ORD(X)A Vx yXxya VY( Tz Vy( Yy— Xyz)—FIN(Y)))

es verdadera en una estructura si y solo si su universo es numerable.
7. Continuidad

El orden de los nimeros reales, el continuo lineal, puede caracterizarse
por las tres condiciones siguientes:

— Es un orden sin extremos;
— posee un subconjunto denso numerable;
— es condicionalmente completo.

Sabemos cémo expresar en primer orden que R es un orden sin
extremos:

ORD(R)A VxHyRxya Vx HyRyx.

Un subconjunto denso de (el universo de) un orden R es un conjunto
X tal que entre dos elementos cualesquiera del orden hay por lo menos un
elemento de X. En segundo orden sabemos expresar que un conjunto X
es numerable mediante una férmula, NUM(X), obtenida de modo analogo
ala sentencia NUM. Asi, también podemos expresar la segunda condicion:
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AX(NUM(X)A Vx Vy(Rxy— Hz(XzARxzARzY))).

Un orden es condicionalmente completo si todo subconjunto (de su
universo) acotado superiormente posee una cota superior minima. Que
y es una cota superior minima del conjunto X con respecto al orden R
lo expresamos asi:

CSM(y, X, R): Vx(Xx—Rxy)aVz( Vx(Xx—Rxz)—(Ryzvy=z)).

Asi, la siguiente sentencia de segundo orden expresa que el orden R
es condicionalmente completo:

CC(R): VX( "y Vx(Xx—Rxy)— y(CSM(y,X,R)))

Por consiguiente, podemos expresar en segundo orden que R es un
orden continuo, ya que los modelos de las tres sentencias que acabamos
de escribir son precisamente los érdenes continuos lineales, es decir, los
ordenes isomorfos al orden de los numeros reales.

Pero entonces también podemos expresar que un conjunto es biyec-
table con el conjunto de los numeros reales o, como suele decirse, tiene
la cardinalidad del continuo. Sea a(Z) la férmula obtenida formando la
conjuncioén de las tres sentencias que expresan la continuidad del orden
y reemplazando en ellas la constante R por la variable de predicado binaria
Z. Asi, a(Z) sera satisfecha en una estructura A por una relacién binaria
en A siy sélo si ésta es un orden continuo de A. En consecuencia, la
sentencia HZa(Z) sera verdadera en una estructura si y sélo si su uni-
verso tiene la cardinalidad del continuo.

8. Biyectabilidad

En segundo orden podemos también expresar que dos subconjuntos del
universo de una estructura son biyectables. Una biyeccién entre X e Y
es una funcién inyectiva de X sobre Y.
asociar a una funcion f una relacién: la que subsiste entre dos objetos
ay bsiysélosifla)=b. Asi, dado que para expresar que una relacién
estd asociada a una funcién y que esta funcién es una biyeccién entre
X e Y es suficiente cuantificar sobre elementos del universo de la estruc-
tura, podemos expresar que X e Y son biyectables cuantificando sobre
relaciones e individuos. Los recursos de segundo orden bastan para ello.
El truco aqui empleado de identificar funciones con ciertas relacio-
nes es perfectamente general y nos permite concluir que todo cuanto pode-
mos expresar cuantificando sobre funciones lo podemos expresar tam-
bién cuantificando sobre relaciones y, por tanto, en segundo orden.

VI. LA RELACION DE CONSECUENCIA

El concepto légico fundamental es la relacién de consecuencia: Una sen-
tencia a es consecuencia de un conjunto de sentencias X si a es verdadera
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en todo modelo de X, es decir, en todo modelo de todas las sentencias
de . Una propiedad fundamental de la relacion de consecuencia en pri-
mer orden es su cardcter finito: Si £ es un conjunto de sentencias de pri-
mer orden y o es una sentencia de primer orden que es consecuencia de
¥, entonces o ya es consecuencia de algin subconjunto finito de X. Esta
propiedad se pierde al considerar sentencias de segundo orden. Para verlo,
basta recordar (ver v.1) que en segundo orden podemos expresar la infi-
nitud del universo del discurso mediante una sola sentencia, INF, pero
también (ver v.2) mediante un conjunto, necesariamente infinito, de sen-
tencias de primer orden: © = {60,, 0;, 0.,..., 0,,...}. Asi, INF es conse-
cuencia de ©. Pero no lo es de ningun subcon]unto finito de 0, ya que
todo subconjunto finito de © tiene modelos finitos: si I' es un subcon-
junto finito de @ y 7 es el mayor subindice de una sentencia de I, cual-
quier estructura cuyo universo tenga # elementos serd un modelo de T'.

Otro ejemplo de que la relacion de consecuencia en segundo orden
no es de caracter finito lo obtenemos considerando la relacion de ante-
pasado (ver v.3). Del conjunto infinito de sentencias que expresan que
a no es un progenitor de b, ni un progenitor de un progenitor de b, ni
un progenitor de un progenitor de un progenitor de b, ...se sigue que
ano es un antepasado de b. Pero esto no se sigue, claramente, de ningtin
subconjunto finito suyo. En general, y con mayor precision, si R es una
constante de predicado binaria, ¢ y d son constantes individuales, y ¥
es el siguiente conjunto infinito de sentencias

— Rdc
— Hx ,(Rdx,ARx c)
— Hx, Hx,(Rdx,ARx,x,ARx c)

= Hx, Hx,...dx,_,Hx (Rdx ARx,x, A...ARx.x ,ARx ¢)

entonces — R*dc, o, explicitamente, la sentencia

— VX(( Vz(Rzc— X2)A Vi (Ruwon Xw) = Xu)) = Xd)
es consecuencia de X, pero no de ningin subconjunto finito suyo.

La relacion de consecuencia de un lenguaje es de caracter finito si
y solo si la logica de este lenguaje es compacta. Que la logica de un len-
guaje sea compacta significa que siempre que todo subconjunto finito de
un conjunto infinito de sentencias de este lenguaje tenga un modelo, el
conjunto infinito también lo tendra. La equivalencia entre la compaci-
dad de una légica y el caracter finito de su relacion de consecuencia es
facilmente demostrable a partir de la observacion segun la cual una sen-
tencia o es consecuencia de un conjunto de sentencias X si y solo si el
conjunto XU{— a}, obtenido al anadir — a al conjunto X, no tiene
modelo alguno.

Asi, la l6gica de primer orden es compacta, pero no la de segundo
orden: todos los subconjuntos finitos de ®U{FIN} poseen modelos, pero
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OU{FIN} carece de ellos. Lo mismo ocurre con el conjunto TU{R*
dc]}.

Otra propiedad importante que distingue la ldgica de primer orden
de la de segundo orden es que en aquélla, pero no en ésta, valen los teo-
remas llamados «de Lowenheim-Skolem», que sefialan limitaciones a la
caracterizacion de estructuras con universo infinito. Asi, segin (una forma
de) el teorema descendente de Lowenheim-Skolem, todo conjunto de sen-
tencias de primer orden que posea modelos infinitos poseerd también un
modelo numerable; mientras que (una version débil de) el teorema ascen-
dente de Lowenheim-Skolem dice que todo conjunto de sentencias de pri-
mer orden con modelos numerables tiene también modelos no numera-
bles. La posibilidad de caracterizar la numerabilidad (v.6) y la
continuidad (v.7) en segundo orden muestra que ninguno de estos dos
teoremas es generalizable a la I6gica de segundo orden.

VII. DEDUCIBILIDAD

La definicion de la relacion de consecuencia no es en absoluto construc-
tiva. No sugiere ningun camino para determinar si una sentencia dada
es consecuencia de un conjunto de sentencias, ni siquiera para obtener
algunas de las consecuencias del conjunto. Si quisiéramos aplicar la defi-
nicidn con este fin, deberiamos tomar en consideracién todas las estruc-
turas y evaluar en ellas las sentencias en cuestion. Esto es, obviamente,
impracticable.

Obtenemos consecuencias deduciendo, encadenando conclusiones
obtenidas a partir de premisas mediante transformaciones formales, de
indole sintactica. Sistematizamos los métodos de deduccién en calculos
deductivos. Los célculos contienen reglas de inferencia, reglas que per-
miten obtener conclusiones de modo inmediato a partir de sus premisas.
Tal vez contengan también axiomas, pero éstos son prescindibles, en
cuanto un axioma puede considerarse como la conclusion de una regla
sin premisas. Las reglas de inferencia del cdlculo nos permiten construir
deducciones. Dado un conjunto de sentencias £, una deduccion a partir
de X sera tipicamente una sucesion finita de formulas, cada una de las
cuales o bien pertenece a £ o bien se obtiene de las anteriores aplicando
alguna regla de inferencia. Si a es la ultima férmula de una deduccién
a partir de £ decimos que o es deducible a partir de X (en el cédlculo en
cuestion).

No en todos los calculos las deducciones son lineales o constan de
férmulas obtenidas exactamente del modo aqui descrito, pero en todos
ellos las deducciones son finitas y, por tanto, sélo dependen de un con-
junto finito de sentencias. La finitud de las deducciones es esencial si éstas
deben servirnos para obtener férmulas.

Un calculo deductivo es correcto con respecto a la consecuencia si toda
sentencia deducible a partir de un conjunto de sentencias es una conse-
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cuencia del conjunto. Un calculo es completo con respecto a la conse-
cuencia si toda consecuencia de un conjunto de sentencias es deducible
en el cdlculo a partir del conjunto. Asi, las sentencias deducibles a partir
de un conjunto en un cédlculo correcto y completo son exactamente las
consecuencias del conjunto: en un calculo tal, las relaciones de deducibi-
lidad y de consecuencia coinciden extensionalmente.

No hay ningun calculo deductivo correcto y completo con respecto
ala consecuencia de los lenguajes de segundo orden. La razén es simple:
Toda relacién de deducibilidad es de caracter finito (pues si @l es una
deduccion de a a partir de £, @l es también una deduccién de @ a partir
del conjunto T' de sentencias de £ que aparecen en @l y, por la finitud
de las deducciones, I' es finito), pero, como sabemos, la relacién de con-
secuencia no lo es. Asi, deducibilidad y consecuencia son extensional-
mente distintas.

Un caso limite de la relacién de consecuencia lo constituye la verdad
logica, entendida como validez universal. Una sentencia o es universal-
mene vélida si es valida en toda estructura. O, de modo equivalente, si
es consecuencia de todo conjunto de sentencias. También creamos cal-
culos deductivos para obtener verdades légicas. Un célculo es correcto
con respecto a la validez si toda sentencia deducible en él es universal-
mente valida, y es completo con respecto a la validez si toda sentencia
universalmente valida es deducible en él. A partir de un célculo correcto
para la consecuencia obtenemos uno correcto para la validez teniendo
en cuenta que una sentencia deducible sin premisas (es decir, deducible
a partir del conjunto vacio de sentencias) es universalmente valida. Pero
un calculo puede ser correcto con respecto a la validez sin serlo con res-
pecto a la consecuencia. Para verlo, basta observar que las reglas que
permiten substituir en una sentencia una constante de predicado por otra
del mismo numero de argumentos son reglas que transforman verdades
l6gicas en verdades logicas; pero su conclusidon no es consecuencia de su
unica premisa, por lo que no pueden formar parte de ningun calculo
COTTECto CON respecto a la consecuencia.

No hay ningun cdlculo correcto y completo para la validez de las sen-
tencias de segundo orden. La razon es mas profunda que en el caso de
la consecuencia. No depende unicamente de la finitud de las deduccio-
nes, sino de su efectividad. Para que un calculo pueda ser usado para
obtener férmulas de cierto tipo (en este caso verdades ldgicas) debe ser
efectivamente decidible si una sentencia dada se obtiene como conclu-
sion de una cierta regla de inferencia a partir de ciertas premisas. En tal
caso, serd posible decidir en un nimero finito de pasos si una sucesion
finita de férmulas es 0 no una deduccién segun las reglas del calculo.
Esto no significa que haya un método para decidir si una férmula es o
no deducible: sélo significa que habrd un método para determinar si una
supuesta deduccion de una férmula lo es o no. Pero entonces habra tam-
bién un método efectivo para generar, una a una, posiblemente con repe-
ticiones, todas las férmulas deducibles en el calculo. La idea es la siguiente:
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puesto que sabemos generar efectivamente las sucesiones finitas de for-
mulas y, de cada sucesion tal, sabemos decidir si es una deduccién, pode-
mos generar efectivamente las deducciones. Para generar las férmulas
deducibles, basta generar las deducciones y borrar de ellas todas las lineas
menos la ultima.

En términos mds precisos, el contenido del pérrafo anterior es que
el conjunto de las deducciones en un calculo es recursivo, mientras que
el de las formulas deducibles es recursivamente enumerable. Asi, si hay
un célculo completo y correcto para la validez de segundo orden, el con-
junto de las sentencias de segundo orden universalmente validas sera recur-
sivamente enumerable. Pero, como veremos a continuacion, no lo es.

En V.5 vimos que las tres sentencias

Vx—Sx=c
VxVy(Sx=Sy—=x=y)
VX((Xen Vx(Xx— XS8x))— VxXx)

caracterizan la estructura [N de los nimeros naturales con el cero y el
sucesor. Llamemos DED (por Dedekind) a su conjuncion. Asi, todo
modelo de DED es isomorfo a [N, de modo que las consecuencias de
DED son precisamente las sentencias de segundo orden (en el lenguaje
cuyos simbolos son S y c) verdaderas en N. Ahora bien, es claro que
si o es una sentencia de este lenguaje, a es consecuencia de DED si y
solo si la sentencia DED—a es universalmente vélida. Por tanto: o es
verdadera en N si y sélo si DED—a es universalmente valida. De aqui
se sigue que si hay un calculo correcto y completo con respecto a la vali-
dez en segundo orden, entonces el conjunto de las sentencias de segundo
orden verdaderas en [N es decidible (recursivo). Un método para deci-
dir si una sentencia a es verdadera en N es, a grandes rasgos, el siguien-
te: generamos una a una las sentencias universalmente vélidas de este
lenguaje hasta que damos con DED—a o con DED——a. Una de
estas dos formulas debe aparecer, ya que o bien o o bien — a es verda-
dera en IN. Si aparece DED—a, o es verdadera en IN; si aparece
DED— —a,—/a lo es.

Sin embargo, el conjunto de las sentencias de segundo orden verda-
deras en N no es decidible. Pues si lo fuera lo seria también el conjunto
de las sentencias de primer orden verdaderas en la estructura [N* de los
numeros naturales con la suma y el producto, que, por resultados de
Church, Godel y Tarski, no lo es (véase Tarski, Mostowski, Robinson,
1953, C.2). En efecto, en v.4 vimos como definir la suma y el producto
en términos del cero y el sucesor mediante una férmula de segundo orden.
Podemos usar estas definiciones para eliminar los simbolos + y x de
las férmulas que las contengan, transformando de modo efectivo cada
sentencia o del lenguaje de primer orden con los simbolos + y x en una
sentencia a* de segundo orden con sélo ¢ y S, de modo que a sea verda-
dera en IN* si y sélo si a* es verdadera en [N. Pero entonces, todo
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método de decisidn para el conjunto de las sentencias de segundo orden
verdaderas en N da lugar a un método para decidir si una sentencia de
primer (y también de segundo) orden es verdadera en [N*. Dada a, cons-
triyase a* y decidase si es verdadera en [N

VIII. LENGUAJES DE ORDEN SUPERIOR FINITO

Supongamos que estamos interesados en la existencia de cierto tipo de colec-
ciones de numeros naturales, por ejemplo, de cierto tipo de ideales. Un ideal
sobre un conjunto A es un conjunto no vacio I de subconjuntos de A tal
que, para cualesquiera subconjuntos X e Y de A, (1) si X€l e Yel, entonces
XUYel, y (2) si Xel y YSX, entonces Y€I. Para expresar, pues, que I es
un ideal sobre A cuantificamos sobre subconjuntos de A; pero para decir
que A admite cierta clase de ideales, es decir, que hay ideales sobre A con
tales o cuales propiedades, debemos cuantificar sobre conjuntos de subcon-
juntos de A. Es un recurso que nos ofrecen los lenguajes de tercer orden.

En un lenguaje de tercer orden podemos cuantificar sobre individuos,
es decir, sobre elementos del universo del discurso (como en primer
orden); sobre conjuntos de individuos y relaciones entre ellos (como en
segundo orden); pero ademads sobre conjuntos de conjuntos de individuos,
sobre conjuntos de relaciones entre individuos, sobre relaciones entre rela-
ciones entre individuos, etc. Sistematizando: Si A es el universo de la
estructura sobre la que hablamos, sea D,=A; sea D, el conjunto de
todos los subconjuntos de Aj; sea D, el conjunto de todas las relaciones
binarias en A, y, en general, sea D, el conjunto de las relaciones n-arias
en A. Asi, D, es el dominio de variabilidad de las variables #n-arias de
segundo orden. Sea, finalmente, D la union de los distintos D,. Las
variables de tercer orden toman como valores relaciones de cualquier
numero de argumentos entre elementos de D. Asi, para cada sucesién
finita de nimeros naturales #,,..., 7., un lenguaje de tercer orden con-
tendrd, ademds de los recursos de segundo orden, variables k-arias de
tipo (#,,..., 1,), cuyos valores seran relaciones k-arias entre un elemento
de D,,, un elemento de D,,,..., y un elemento de D,,.

De modo andlogo, en los lenguajes de cuarto orden podemos cuanti-
ficar sobre conjuntos de conjuntos de conjuntos de elementos del uni-
verso del discurso A, y, en general, sobre relaciones de cualquier nimero
de argumentos entre elementos de los distintos dominios de cuantifica-
cidn de las variables de los lenguajes de tercer orden. Un lenguaje de orden
n+ 1, en fin, se obtendra de uno de orden n anadiéndole variables cuan-
tificables cuyos valores seran relaciones entre elementos de los dominios
de cuantificacién de las variables del lenguaje de orden #.

IX. EL LENGUAJE DE LOS TIPOS

Todos los lenguajes hasta ahora considerados son fragmentos naturales
del lenguaje de los tipos, un lenguaje con variables cuantificables de todos
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los 6rdenes. Al igual que los anteriores, es un lenguaje aproplado para
hablar sobre estructuras, de modo que, como ellos, mas que un unico
lenguaje, lo que tenemos es una familia de lengua]es, uno para cada tipo
de semejanza.

Empecemos por sistematizar el camulo de variables a nuestra dispo-
sicion. Cada variable lo es de un cierto tipo, al igual que cada posible
valor de una variable. El tipo bdsico es el de los individuos: 0; los demas
tipos son sucesiones finitas de otros tipos. Los tipos se obtienen mediante
las dos reglas siguientes:

0 es un tipo;

si My,..., M, son tipos, la sucesién (M4,..., N,) e€s un tipo.

Cada tipo lo es de un cierto orden. El orden del tipo O es 1. El orden
del tipo (n,..., N.) es 1 + el maximo de los érdenes de los tipos 1,...,
M,

Los objetos de tipo 0 son los individuos, es decir, los elementos del
universo de la estructura en que interpretemos el lenguaje. 0 es el unico
tipo de primer orden (de orden 1). Los objetos de tipo (1,,..., n,) son
las relaciones entre objetos de los tipos 1,..., N.. Asi (0) es el tipo de
los conjuntos de individuos (0, 0) el de las relaciones binarias entre indi-
viduos, y, en general, (0, 0, ..., 0) (n ceros) es el tipo de las relaciones
n-arias entre individuos. Estos son los unicos tipos de segundo orden.
((0)), ((0), (0)), ((0), 0, 0) son tipos de tercer orden. El primero es el tipo
de los conjuntos de individuos, el segundo el de las relaciones binarias
entre conjuntos de individuos, y el tercero el de las relaciones ternarias
entre un conjunto de individuos y dos individuos.

El lenguaje de los tipos contiene un nimero infinito de variables de
cada tipo. El orden de una variable es el orden de su tipo. Las variables
individuales son las variables de tipo 0. Los simbolos l6gicos de este len-
guaje son las variables, los conectores, los cuantificadores y el simbolo
de igualdad. Los simbolos no légicos son los del tipo de semejanza que
consideremos.

Fijemos un tipo de semejanza t. Los t¢rminos de tipo 0 del lenguaje
de los tipos sobre T son los términos definidos en la secciéon 2. Sin es
un tipo distinto de 0, los términos de tipo n no son mds que las variables
de tipo M. Las férmulas atémicas del lenguaje de los tipos sobre T son
las expresiones de la forma

1) t,=t,, donde ¢, y ¢, son términos de tipo 0.

2) Rt,...t,, donde t,,..., t, son términos de tipo 0 y R es una cons-
tante de predicado n-aria de T,

y las de la forma

3) Xt,...t,, donde ¢,,..., t, son términos de los tipos M ,,..., N, res-
pectivamente, y X es una variable de tipo (n,,..., n.).

Las f6rmulas se definen recursivamente como en los lenguajes de pri-
mer y de segundo orden: toda férmula atémica es una férmula; si o y
B son féormulas, también lo son — a, (avp), (arB), (a—=B) y (a<B); si
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a es una formula y X es una variable de cualquier tipo, HXa y VXa
son formulas.

Para interpretar el lenguaje en una estructura A=(A, I), debemos espe-
cificar los dominios de variabilidad de los distintos tipos de variables. Los
valores de las variables de tipo 1 seran objetos de tipo 1 sobre A. Asi, para
tipo 1, definimos D, (A), el dominio de objetos de tipo 1 sobre A:

Sin=0, D, (A)=A;

Sin=My.-., M), Dy(A) es el conjunto de todas las relaciones n-arias
entre elementos de D, (A),..., D,.(A), respectivamente.

Es ahora claro como especificar cuando una féormula es satisfecha en
A por una asignacion de objetos a sus variables libres (donde a una varia-
ble de tipo n se le asigna un elemento de D, (A)). En el caso de las for-
mulas atémicas de la forma (3), las unicas nuevas, la definicidn es la
siguiente: La féormula Xz,... ¢, es satisfecha en la estructura por una asig-
nacion de objetos a sus variables libres si los objetos asignados a ¢,,...,
t, estan en la relacién asignada a la variable X. En cuanto a la cuantifi-
cacion, basta recordar que si X es una variable de tipon, #X... significa
que hay un objeto de tipo 1 (un elemento de D, (A)) tal que.. Analoga-
mente para VX... Los conceptos de consecuencia y validez universal pue-
den definirse ahora como antes.

La plétora de tipos puede reducirse grandemente gracias en parte a la
posibilidad de identificar n-tuplas con conjuntos. Asi, en el caso de los
pares ordenados, podemos definir, como es usual en teoria de conjuntos,

(x, vy ={{x},{x, y}},
de modo que, si x e y son individuos, objetos de tipo 0, {(x, y) es un
conjunto de conjuntos de individuos: un objeto de tipo ((0)). En general,
y con cierto cuidado, podemos reformular el lenguaje de los tipos usando
solo los tipos

0, (0), ((0)), (((0))), +..((---(0)...)), ...

Los dominios de variabilidad de las variables con respecto a una
estructura cuyo universo es A son, entonces

D(A)=A
D(())(A) = P(A)
Do)(A)= P(D(A)) =P*A)

D((..,(m,..))(A) = P(D(...m).,.)(A)) =P ‘(A)

ey

donde P(A)= {X:X<Z A}, el conjunto potencia de A; y, para cada n,
P"*'(A)=P(P"(A)), el conjunto potencia de P"(A).
X. LENGUAJE Y TEORIA DE TIPOS

En el lenguaje de los tipos tratamos los conjuntos y las relaciones como
objetos, de tal modo que ellos mismos pueden pertenecer a otros con-
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juntos o estar relacionados mediante relaciones de orden superior. Pero
usamos este lenguaje para hablar acerca de los elementos del universo
de una estructura, no para estudiar los conjuntos y las relaciones en cuya
base estdn estos elementos. Se trata de un lenguaje, no de una teoria de
conjuntos o de relaciones. Qué conjuntos y qué relaciones hay en cada
dominio se supone entendido al usar el lenguaje. Si queremos profundi-
zar en el estudio del lenguaje, si queremos conocer mejor su semantica,
debemos acudir a la teoria de conjuntos o, tal vez, a la teoria (en oposi-
cidn al lenguaje) de los tipos. Una teoria tal nos iluminard acerca de lo
que hay en cada dominio, nos dird, por lo menos parcialmente, cémo
obtener cada D,(A) a partir de A. Pero no lo olvidemos: el lenguaje que
hemos introducido no es un lenguaje para hablar de conjuntos y relacio-
nes sobre el universo de cierta estructura, sino para hablar, con ayuda
de aquellos conjuntos y relaciones, sobre esta estructura. Si queremos
estudiar conjuntos o relaciones acudiremos a una teoria apropiada que
hablara de ellos. Ellos seran los individuos bajo observacion, ellos cons-
tituirdn el universo del discurso, el dominio de valores de las variables
individuales del lenguaje que decidamos usar, el lenguaje en que formu-
lemos esta teoria (que podria ser un lenguaje de tipos).

XI. CUANTIFICACION PLURAL

En el lenguaje de los tipos y, en general, en los lenguajes con variables
de orden tercero o superior, nos vemos obligados a tratar los conjuntos
y las relaciones como objetos. No sélo los tratamos de hecho como obje-
tos, sino que no podemos hacerlo de otro modo. Pues los valores de las
variables de orden mayor que dos, digamos, para concretar, de las varia-
bles de tercer orden de tipo ((0)), son conjuntos cuyos elementos son a
su vez conjuntos. Y los elementos de un conjunto son objetos. Asi, el
uso de un lenguaje con variables de tipo ((0)) nos obliga a dar cabida
en nuestra ontologia a conjuntos de individuos. En general, el uso de
un lenguaje con variables de orden n + 2 comporta la reificacion de con-
juntos y relaciones de objetos de orden n, y el uso del lenguaje de los
tipos presupone tratar como objetos a conjuntos de cualquier orden finito
sobre el universo de la estructura que nos ocupe.

En segundo orden, la situacién es distinta. Es cierto que, tal como
hemos introducido la semantica, en los lenguajes de segundo orden cuan-
tificamos sobre conjuntos de individuos y sobre relaciones entre ellos,
de modo que, en tanto que elementos de un dominio de cuantificacién,
tratamos a unos y a otras como objetos. Pero, a diferencia de lo que ocu-
rre en érdenes superiores, cabe la posibilidad de que la reificacién de con-
juntos y relaciones sea s6lo un requisito de nuestro modo de presentar
la semdntica, ya que, en el lenguaje mismo, las variables de segundo orden
s6lo aparecen en posicion de predicados y no en la de términos que requie-
ren un predicado para constituir una férmula; en otras palabras, no apa-
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recen en posiciones reservadas a nombres o a pronombres: en posiciones
propias de términos que denotan objetos. Los unicos términos de un len-
guaje de segundo orden son las variables y las constantes individuales.

De hecho, es posible interpretar los lenguajes de segundo orden sin
objetivizar conjuntos ni relaciones. El dominio de cuantificacion es el
mismo tanto si las variables cuantificadas son individuales como de pre-
dicado: el universo de la estructura considerada. La diferencia reside en
el modo de cuantificar: cuantificaciéon singular en el primer caso; cuanti-
ficacion plural en el segundo (ver Boolos, 1984 y Lewis, 1991, 62-71).
Es la diferencia que se ejemplifica en el par de oraciones: «Hay personas
que se admiran so6lo a si mismas» y «Hay personas que se admiran sélo
unas a otras». En el primer ejemplo, cada persona que sélo se admire
a si misma puede aducirse como prueba de la verdad de la oraciéon; no
asi en el segundo, donde lo que se afirma es la existencia de varias perso-
nas con cierto comportamiento mutuo: cada una de estas personas, si
admira a alguien, es a otra de ellas. La primera oraciéon puede formali-
zarse en primer orden. Su forma es: Hx Vy(Rxy—x =1y). Para la segunda,
recurrimos a segundo orden: HX(HxXxA VxVy((XxARxy)=(—x=
yAXy))). Enla lectura usual, esta férmula afirma la existencia de un con-
junto no vacio de personas cada una de las cuales, si admira a alguien,
es a otro miembro de este conjunto. Pero la lectura anterior, con cuanti-
ficacion plural sobre personas, parece ser perfectamente apropiada.
Cuando hablamos de conjuntos, o de grupos, de personas, no solemos
pensar en el conjunto, en el grupo, como un objeto. Sélo se trata de un
util recurso de expresion.

Mediante la cuantificacion plural, la definicién de antepasado en tér-
minos de progenitor (ver V.3) seria: «a es un antepasado de b si y sélo si
siempre que hay personas tales que 1°) cada progenitor de b es una de
ellas, y 2°) si cada progenitor de cualquiera de ellas es una de ellas, a es
también una de ellas». Tal vez esta formulacién no sea mds directamente
inteligible que la de V.3, pero lo interesante es que es inteligible y que en
ella se cuantifica solo sobre personas, no sobre conjuntos de personas.

Hay dos puntos que es preciso mencionar acerca de la cuantificaciéon
plural como semantica de los lenguajes de segundo orden. El primero
hace referencia al lugar del conjunto vacio. En la semantica usual, este
conjunto es un valor de las variables de predicado, por lo que la cldusula
« 4 X...» no debe, en rigor, interpretarse como «Hay objetos tales que...»
sino mas bien como «Hay cero o mas objetos tales que...». Si no lo hace-
mos, ciertas formulas, como "X Vy(Xy< (Pya— Py)), toman distinto
valor de verdad en las dos semanticas. El segundo punto tiene que ver
con la interpretacién de las variables de predicado de mas de un argu-
mento. Si la cuantificacion de variables unarias se interpreta como cuan-
tificacion plural sobre los elementos del dominio, la cuantificaciéon de
variables binarias deberia interpretarse como cuantificacion plural sobre
pares de elementos del dominio, la de variables ternarias sobre triples
de elementos del dominio, etc. Asi, si X es binaria, las sentencias
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X VxXxx HX Vx Vy(Xxy— Xyx)

podrian leerse, respectivamente, como: «Hay pares de objetos tales que
para todo objeto x el par xx es uno de ellos» y «Hay pares de objetos
tales que para cualesquiera objetos x, y: si el par xy es uno de ellos, tam-
bién lo es el par yx». Admitir pares, triples, y, en general, n-tuplas de
elementos de un dominio no es ontologicamente mucho mas comprome-
tido que admitir los elementos mismos, ya que 51empre podemos preci-
sar cudles son estos pares, estos triples, etc., en términos de los elemen-
tos del dominio. Este no es el caso con los conjuntos de elementos de
un dominio infinito. De ahi que la cuantificacion plural, incluso sobre
pares, triples y n-tuplas, pueda verse como un intento de descargar onto-
logicamente la légica de segundo orden que, segun el conocido aforismo
de Quine (1970, 66), es teoria de conjuntos con piel de cordero.

XII. ESTRUCTURAS GENERALES

La gran capacidad expresiva de la ldgica de segundo orden y superior
se debe a la riqueza de sus dominios de cuantificacién. Asi, si en segundo
orden podemos caracterizar el orden de los numeros reales es porque nues-
tras variables toman como valores todos los subconjuntos del universo
de la estructura que consideremos. Si por ejemplo la relacion de orden
de la estructura considerada, digamos (A, ), no es condicionalmente
completa, habr4 un subconjunto acotado de A sin cota superior minima.
Pero este subconjunto, llamémosle S, serd un valor de las variables una-
rias. S satisfara la formula (ver V.7)

1) HyVx(Xx—Rxy),
pero no satisfara la férmula
2) "y(CSM(y,X,R))

y, por tanto, en nuestra estructura serd falsa la sentencia CC(R), que
expresa que $(R) es un orden condicionalmente completo.

(Lo mismo ocurriria si interpretaramos el lenguaje de segundo orden
segun la cuantificacion plural, si bien la fraseologia seria algo menos pers-
picua: Si S es un conjunto acotado sin cota superior minima, sus elemen-
tos son testigos de la falsedad de CC(R), ya que 1) son numeros tales
que hay un numero mayor o igual que todos ellos, pero 2) no hay nin-
gun nimero mayor o igual que todos ellos que sea menor o igual que
todos los numeros mayores o iguales que todos ellos).

Como vimos en X, la riqueza de los distintos dominios de cuantifi-
cacién se presupone en el uso de los lenguajes de segundo orden y de
orden superior. Esto significa que si usamos un lenguaje de segundo orden
para comunicarnos, los interlocutores debemos entender del mismo modo
la referencia a «todo subconjunto» y a «toda relacion» (ver Shapiro,
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1985). Si no fuera asi, ;como podriamos concluir que, continuando con
el ejemplo anterior, el orden que nuestro interlocutor dice satisfacer la
sentencia CC(R) es condicionalmente completo? No podriamos. Si el con-
junto S antes citado no es uno de los valores posibles de sus variables
de predicado unarias (porque no estd en su dominio de cuantificacién
pertinente), nuestro interlocutor podra tomar por condicionalmente com-
pleto un orden que no lo es.

Esta presuposicion puede resultar irrazonable. :Cémo podemos
garantizar que, por ejemplo, nuestro dominio de cuantificacién Dy,(A)
contiene todos los subconjuntos de A si, en el caso en que A sea infinito,
la mayor parte de ellos serdn totalmente indescriptibles? Ciertamente sabe-
mos reconocer un subconjunto de A si nos es dado (descrito), también
sabemos qué significa ser un subconjunto de A: ser un conjunto cuyos
elementos pertenecen todos a A; pero de que sepamos estas y otras cosas
no se sigue que tengamos una concepcion precisa de qué conjuntos hay
en P(A), es decir, de la totalidad de los subconjuntos de A. De ahi que
se haya considerado una semantica alternativa para los lenguajes de orden
superior, una semdntica que no presuponga la comprensién univoca de
«todo predicado», «toda relacién», etc.

Presentemos esta semantica, debida a Leon Henkin (1950), para el
lenguaje de los tipos. Si A = (A, 3’) es una estructura, una estructura general
sobre A consta de A y de una funcién, C, cuyo dominio es el conjunto
de los tipos, tal que (poniendo ‘C,’ en vez de ‘C,)):

Sin=0, C,(A)=
Sin=My,..., n,,), n( ) es un conjunto de relaciones #-arias entre
elementos de C,,(A),..., C,.(A), respectivamente

En una estructura general sobre A podemos interpretar el lenguaje
de los tipos como hicimos en 1X, con la unica diferencia que ahora las
variables de tipo 1 toman como valores elementos de C,(A). C,(A) es,
pues, el dominio de cuantificacién de tipo 1 de la estructura general. Es
claro que cada C,(A) es un subconjunto de D, (A). La estructura gene-
ral maxima, aquella en la cual para cada n:C,(A)=D,(A), es la estruc-
tura principal sobre A.

Es conveniente limitarse a considerar estructuras generales en las que
sean verdaderos todos los axiomas de comprehension:

donde X,,..., X, son variables de cualquier tipo, Z,,..., Z, son varia-
bles de tipos m,,..., M., respectivamente, Y es una variable de tipo
(Mise-y Ma), ¥ O €S una férmula todas cuyas variables libres se encuen-
tran entre X ,..., X,,Z,,.

Estos axiomas garantlzan que, para cada tipo n, todas las relaciones
definibles de tipo 1 perteneceran al dominio de cuantificaciéon C,(A). En

particular, el complemento, la unién y la interseccién de elementos de
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C,(A) serdn a su vez elementos de C,(A). Esto es algo que esperamos
de un dominio de cuantificacién razonable: Si Sy,..., S, son posibles
valores de las variables, también debe serlo toda relacién definible en el
lenguaje a partir de S,,..., S,.

Una estructura general sobre A puede ser muy distinta de la corres-
pondiente estructura principal. Asi, si A es numerable, hay estructuras
generales sobre A tales que cada dominio de cuantificacién C,(A) es
también numerable. Pero la cardinalidad de los dominios de cuantifica-
cién de la estructura principal sobre A crece exponencialmente con el
orden de los tipos. D,(A) tiene cardinalidad & ,; D,(A) tiene la cardi-
nalidad del continuo: 6=2%° D ,(A) tiene cardinalidad 2% etc. (La
enorme cardinalidad de los dominios de cuantificacién en la interpreta-
cién principal del lenguaje de los tipos puede aducirse en contra de la
razonabilidad de la semantica usual.)

Con la semdntica de las estructuras generales, el lenguaje de los tipos
se convierte esencialmente en un lenguaje de primer orden. Definamos
los conceptos logicos de esta semantica: una sentencia es consecuencia
de un conjunto de sentencias X si es verdadera en todos los modelos gene-
rales de X; y una sentencia es universalmente valida si es verdadera en
todas las estructuras generales. Para esta relacion de consecuencia en sen-
tido general hay un célculo correcto y completo, y, por tanto, hay tam-
bién un célculo correcto y completo para la validez logica (Henkin, 1950).
Por la existencia de un calculo completo y correcto para la consecuen-
cia, esta relacion es de caracter finito y, por consiguiente, vale el teo-
rema de compacidad. También los teoremas de Lowenheim-Skolem se
cumplen: Si un conjunto finito o numerable de sentencias tiene un modelo
general con universo infinito, tiene también un modelo con universo infi-
nito de cualquier cardinalidad.

Pero el gran poder expresivo de los lenguajes de orden superior se
desvanece al darles la semantica de las estructuras generales. No pode-
mos caracterizar la finitud: la sentencia — INF de V.1 tiene modelos
generales infinitos; no podemos definir la transitivizaciéon de una rela-
cién (ver V.3): si el conjunto de los antepasados de a no estd en C,(A),
b puede pertenecer a todos los conjuntos de C,(A) que contengan a los
progenitores de a y a los progenitores de todos sus miembros sin ser por
ello un antepasado de a; no podemos tampoco caracterizar los nimeros
naturales (V.5) ni el orden de los numeros reales (V.7), etc. Ni siquiera
podemos definir la relacion de identidad (V.2): si no introducimos el sim-
bolo de igualdad como un simbolo logico del lenguaje (interpretdndolo
como identidad) sino que lo introducimos mediante la definicion

x=yo VX(Xxe Xy),

podemos mostrar sin gran dificultad que hay estructuras generales que
contienen elementos distintos que, sin embargo, satisfacen la férmula x=~y
porque no hay suficientes conjuntos en C(A) para distinguirlos.
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Asi, la semdntica de las estructuras generales desvirtua la logica de
orden superior, rebajiandola en cierto sentido a primer orden. La razén
de que esto ocurra es, a grandes rasgos, la siguiente: Como hemos visto,
en esta semantica los dominios de cuantificacion superiores estan sujetos
a interpretacion; no estan, como en la semdntica usual, determinados por
el universo individual de la estructura. La libertad en la eleccion de estos
dominios de cuantificacién es tanta que la totalidad de las estructuras
generales sobre estructuras de un tipo de semejanza T puede describirse,
salvo isomorfismo, mediante un conjunto de sentencias de primer orden
en un tipo de semejanza ampliado 1%, obtenido al anadir a T constantes
de predicado que se interpretardn como los distintos universos de cuan-
tificacion. De este modo, hacer logica de orden superior sobre estructu-
ras de tipo de semejanza T es equivalente a hacer logica de primer orden
sobre estructuras de tipo de semejanza t* (ver Enderton, 1972, C. 4).

XIII.  CONSIDERACIONES FINALES

De]emos atras la semdntica de las estructuras generales y volvamos a la
semantica usual, la que da a los lenguajes de orden superior su gran poten-
cia expresiva. Permanezcamos, ademds, en segundo orden, el lenguaje
que, en parte por razones de simplicidad, hemos descrito con mayor deta-
lle. Restringirnos a segundo orden no es una decisién arbitraria, ya que
el gran salto en la capacidad de caracterizacion de estructuras y de clases
de estructuras se da entre primer y segundo orden. En cierto modo, los
lenguajes de orden mayor que dos pueden reducirse a los de segundo orden
(ver Van Benthem, Doets, 1983, 323-324).

Una diferencia fundamental entre los lenguajes de primero y los de
segundo orden tiene que ver con la evaluacion de una sentencia en una
estructura. Si o es una sentencia de primer orden, la verdad o falsedad
de o en una estructura A depende unicamente de a y de lo que esta expli-
citamente dado al dar A, a saber: su universo, A, y la funcion de inter-
pretacion, ¥, de los simbolos del lenguaje. Nada mds es necesario. La
evaluacion de o en A puede llevarse a cabo con sélo estos ingredientes,
pues 12 el valor de una férmula atémica depende unicamente de la inter-
pretacion de las constantes que en ella aparecen y de los elementos de
A asignados a sus variables; 2° el valor de una férmula obtenida a partir
de otras con ayuda de los conectores (—, v, A. =, <) sélo depende
del valor de aquéllas; y 3° el valor de una cuantificacion Hxp o Vxp esta
determinado por los valores que toma B al asignar a x cada uno de los
elementos de A.

Sin embargo, para determinar si una sentencia de segundo orden es
verdadera en una estructura A debemos salir fuera de A; nos hace falta
recurrir a la totalidad de subconjuntos de A y a la de relaciones de cual-
quier numero de argumentos entre elementos de A. Y, como vimos en
los primeros pdrrafos de XII para evaluar correctamente las formulas de
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segundo orden es esencial que consideremos todos estos subconjuntos
y todas estas relaciones.

Entendemos qué es un subconjunto de un conjunto y qué una rela-
cion entre elementos del conjunto. Pero esto no significa que seamos capa-
ces de precisar qué subconjuntos tiene un conjunto dado y qué relacio-
nes se dan entre sus elementos. Esto es un tema principal de la teoria
de conjuntos. De ahi que para resolver problemas en ldgica de segundo
orden debamos recurrir una y otra vez a las ensenanzas de la teoria de
conjuntos (ver Jané, 1988). De hecho, la relacion entre logica de segundo
orden y teoria de conjuntos es mas intima de lo que estas frases sugieren
(y se mantiene si interpretamos la logica de segundo orden en términos
de cuantificacion plural).

Uno de los principios cominmente admitidos de la teoria de conjun-
tos es el axioma de eleccion. En una de sus multiples formulaciones equi-
valentes, este axioma dice que toda relacion incluye una funcién con su
mismo dominio. M4s detalladamente: Si R es una relaciéon y A es un con-
junto tal que para todo a€A hay algin objeto b tal que R (a, b) entonces
hay una funcion f tal que para todo a€A, R (a, fla)). Asi, para cada a€A,
f «elige» un objeto, f(a), entre todos aquéllos con los que a se relaciona.
El axioma de eleccién ha sido el mas polémico de los axiomas de la teo-
ria de conjuntos (ver Russell, 1919, C. 12) debido a su caracter pura-
mente existencial: afirma la existencia de una funcion sin decirnos nada
acerca de como calcularla. Ahora bien, hay una sentencia de segundo
orden que es légicamente valida si y sélo si el axioma de eleccion es ver-
dadero. Esta sentencia, una formalizacién del axioma, es

VXHY(Vxyz((YxyaYxz)—=y=z)A Vx(HyXxy— Hy(XxyaYxy))),

donde X e Y son dos variables de predicado binarias. Asi, si el axioma
de eleccion es verdadero, la semantica usual de segundo orden le otorga
la categoria de verdad légica.

Algo andalogo ocurre con la llamada hipétesis del continuo, segin la
cual todo conjunto infinito de nimeros reales es o bien numerable o bien
tiene la cardinalidad del continuo. La verdad o falsedad de esta hipédte-
sis, propuesta por Cantor, nos es desconocida. Mds aun, es independiente
de los axiomas usuales de la teoria de conjuntos, y, en la medida en que
éstos recogen todo cuanto sabemos acerca de los conjuntos, es indepen-
diente de nuestro conocimiento matematico. Sin embargo, hay una sen-
tencia de segundo orden que es logicamente valida si y solo si la hipdte-
sis del continuo es verdadera. La sentencia dice: «Para cualesquiera
conjuntos (de elementos del universo considerado) X, Y, Z: si X tiene
la cardinalidad del continuo, Y es numerable, e YS ZCS X, entonces Z
es biyectable con Y o Z es biyectable con X». No es dificil construir esta
sentencia con los medios de v; y no es dificil ver que su validez l6gica
es equivalente a la verdad de la hipdtesis del continuo.

Estos hechos no son excepcionales. Hay muchas proposiciones con-
juntistas cuya verdad nos es desconocida y que, sin embargo, es equiva-
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lente a la validez logica de cierta férmula de segundo orden. La ldgica
de segundo orden es, pues, de una potencia extraordinaria, ya que tiene
la solucion a muchos problemas matematicos. Pero al no poder disponer
de un calculo que nos permita generar las verdades ldgicas de segundo
orden, esta solucidn nos es inaccesible.
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LOGICA DEONTICA

Eugenio Bulygin

I. INTRODUCCION

La logica dedntica tiene una fecha de nacimiento muy precisa: 1951, afio
en que aparece el famoso articulo de Georg Henrik von Wright «Deontic
Logic» (von Wright, 1951)', sin perjuicio de que se pueda encontrar
numerosos antecedentes, por lo menos desde el siglo x1v>. Entre los ante-
cedentes mas recientes cabe mencionar a Bentham, Leibniz y Mally®.

El impulso inmediato para la creacion de una logica dedntica fue la
observacién hecha ya por Leibniz y luego, independientemente, por von
Wright sobre una serie de analogias sugestivas entre el comportamiento
logico de los conceptos modales aléticos (posible, imposible, necesario)
y los conceptos dednticos o normativos de permitido, prohibido y obli-
gatorio. Tomando uno de esos conceptos como primitivo, se puede defi-
nir los otros dos de una manera estructuralmente similar. En efecto, si
tomamos como primitivo los conceptos de posible (M) y permitido (P),
los otros dos pueden ser definidos con la ayuda de la negaciéon. Colo-
cando I por imposible, N por necesario, F por prohibido y O por obliga-
torio y usando el simbolo habitual para la negacién ( — ), obtenemos el
siguiente cuadro:

I=-M F=-P

N=-M-(=I-) Op=-P-(=F-)

Naturalmente se puede tomar como primitivo cualquiera de los otros
dos conceptos, por ejemplo, N (O) y definir los otros en funcion de éste:

1. En la misma época aparecieron dos trabajos mas, dedicados al tema de la légica dedntica:
Becker, 1952 y Kalinowski, 1953. Pero la influencia decisiva se debe a la contribuciéon de von Wright
y es por eso que se le considera generalmente, con razén, como el padre de la légica dedntica.

2. Cf. Knuuttila, 1981. Sobre antecedentes mas inmediatos véase Follesdal-Hilpinen, 1971.

3. Cf.]J. Bentham, 1970, Leibniz, Elementa Juris Naturalis, 1672, y E. Mally, 1926.
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M = - N - P = - O -
[=N- F=0-
El otro aspecto similar esta dado por las leyes de distribucion: tanto

los conceptos modales, como los dednticos se distribuyen de igual manera
respecto de la disyuncién y la conjuncién.

M(pvq)«MpvMq P(pvq)©PpvPq
I(pvq)«Ip&iq F(pvq)<Fp&Fq
N(p&q)<Np&Nq O(p&q)«Op&Oq

Hay, sin embargo, una diferencia significativa entre el comporta-
miento logico de las modalidades aléticas y las correspondientes modali-
dades dednticas: mientras que en todos los sistemas de l6gica modal las
féormulas «p—>Mp» y «Np—p» son validas, las correspondientes férmu-
las dednticas «p—Pp» y«Op—p» no pueden serlo. Claramente del hecho
de que algo sea (verdad) no se sigue que esté permitido y no todas las
obligaciones se cumplen de hecho.

En el primer sistema de von Wright (1951) se acepta que toda tauto-
logia de la légica proposicional es una férmula valida del sistema cuando
las variables proposicionales son reemplazadas por férmulas dednticas,
es decir, formulas en las que un operador dedntico es seguido por una
expresion de la ldgica proposicional. Ademas, se aceptan las definicio-
nes de prohibido y obligatorio en términos de permision (que figura como
término primitivo), conforme al esquema dado m4s arriba. Finalmente,
se aceptan como axiomas la ley de distribuciéon P(pvq)<PpvPq y el lla-
mado principio de permisiéon: PpvP-p (que equivale a Op—Pp). A este
sistema lo llamaré el sistema clasico. (El mismo von Wright presenta este
sistema en forma axiomatizada en von Wright, 1968)".

No es mi propésito analizar aqui el desarrollo de la l6gica dedntica
a partir de la primera obra de von Wright. Dejaré de lado también los
problemas de aplicacion de la l6gica dedntica con sus conocidas parado-
jas, asi como muchos temas que han preocupado a los l6gicos dednticos
en estos ultimos cuarenta afios. Me concentraré, en cambio, en el pro-
blema de la interpretacion de las férmulas dednticas, que presenta inte-
resantes facetas filosoficas.

II. EL DILEMA DE JORGENSEN

El tema de la interpretacion de la logica dedntica estd en buena medida
influenciado por el problema que en los anos treinta fue formulado por

4. Porrazones de simplicidad paso por alto una complicacién: en su presentacion originaria von
Wright usaba en lugar de variables proposicionales letras mayusculas (A, B, etc.) interpretadas como
nombres de actos y solo con posterioridad comenzo a usar las variables proposicionales, siguiendo una
propuesta de Prior.
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el filésofo danés J. Jorgensen y que desde entonces es conocido en la lite-
ratura como el dilema de Jorgensen®. El dilema se apoya en las cuatro
tesis siguientes:

1) En el lenguaje corriente se usan en contextos normativos los tér-
minos l6gicos tipicos tales como «no», «y», «0», «si», - «entonces», etc.
de la misma manera o al menos de una manera muy similar como en
el lenguaje descriptivo, lo que sugiere la idea de considerarlos como conec-
tivas proposicionales. Ademas, se hacen inferencias en las que las nor-
mas figuran como premisas y como conclusiones y tales inferencias tie-
nen todo el aspecto de ser logicamente validas. Por lo tanto, hay una
l6gica de normas que subyace al lenguaje corriente.

2) Enlatradicidnlégica desde Aristételes hasta nuestros dias las rela-
ciones logicas de implicacion (consecuencia légica) y contradiccion se defi-
nen en términos de verdad. (Lo mismo ocurre con las conectivas propo-
sicionales.) En consecuencia, s6lo expresiones verdaderas o falsas pueden
ser objeto del estudio de la légica.

3) Las normas carecen de valores de verdad.

4) No hay relaciones légicas entre normas y, por consiguiente, no
hay una légica de normas.

La tesis 4), que se infiere de 2) y 3), contradice la tesis 1), que puede
ser considerada como expresion de un hecho preanalitico. Si se quiere
evitar la tesis 4) hay que abandonar la tesis 2), o bien la tesis 3). Si, en
cambio, se acepta la tesis 4), hay que desarrollar una teoria sustitutiva
capaz de reemplazar la l6gica de normas para dar cuenta del hecho expre-
sado en 1). Buena parte del desarrollo de la l6gica dedntica desde la publi-
cacion del primer articulo de von Wright hasta nuestros dias puede ser
considerado como una discusion del dilema de Jorgensen.

En von Wright (1951), la l6gica dedntica es concebida como una logica
de normasy lasnormas son tratadas —sin ofrecer mayor fundamentacion—
como entidades verdaderas o falsas. Pocos anos después (en el Prefacio a
von Wright, 1957) el autor califico su primer ensayo como «filos6ficamente
poco satisfactorio» justamente por haber atribuido a las normas valores
de verdad y expreso la idea de que la importancia de la légica dedntica
residia precisamente en el hecho de que las normas, aunque alejadas del
ambito de la verdad, estdn sin embargo sometidas a leyes l6gicas («though
removed from the realm of truth, yet are subjectto logical law»). Esta obser-
vacion sugiere la ampliacion del concepto de ldgicay, por lo tanto, el rechazo
de la tesis 2), pero von Wright no ha desarrollado luego esta idea®.

Algunos logicos y filosofos del derecho han intentado escapar al
dilema de Jorgensen mediante el rechazo de la tesis 3), ya sea atribuyendo

5. Cf. Jorgen Jorgensen, «Imperatives and Logic»: Erkenntnis, 7, 1937-38.

6. Solo en un trabajo no publicado, presentado en un simposio de Pisa en 1989, von Wright
admite la posibilidad de las relaciones l6gicas entre normas, pero le da una fundamentacion diferente
a la de Alchourrén y Martino, 1990.
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valores de verdad a las normas, ya sea postulando valores analogos a
la verdad y falsedad, como por ejemplo validez e invalidez (cabe men-
cionar en este contexto a Kalinowski, Klug y Rodig). Pero ninguno de
estos autores ha llevado a cabo una realizacion satisfactoria de esta idea.

III. INTERPRETACION DESCRIPTIVA DE LA LOGICA DEONTICA

Aquellos autores que en los afios cincuenta y en los comienzos de los afios
sesenta han trabajado en el campo de la légica dedntica (Prior, Ander-
son, Lemmon) atribuyeron a las expresiones deonticas valores de ver-
dad, sin preocuparse de la cuestion de si éstas expresaban normas o pro-
posiciones acerca de las normas. Es tan sélo en el transcurso de los afios
sesenta que esta distincion entre normas y proposiciones normativas fue
formulada con claridad (sobre todo en von Wright, 1963), si bien ya se
encuentran atisbos de esa distincion en muchas obras anteriores (por ejem-
plo, en Bentham, Kelsen, Hedenius y Alf Ross). Esa distincién, que parte
del hecho de que las oraciones del lenguaje corriente en las que figuran
términos tipicamente deodnticos (‘obligatorio’, ‘prohibido’, ‘permitido’,
etc.) son sistemdaticamente ambiguas, pues pueden ser interpretados tanto
prescriptivamente (como expresiones de normas), como descriptivamente
(como expresiones de proposiciones acerca de las normas), abre el camino
para la construccion de una logica dedntica (inobjetable desde el punto
de vista de la concepcidn tradicional de la légica) como una légica de
las proposiciones normativas. Este camino fue recorrido por von Wright
en Norma y Accién (1963) al concebir la logica desarrollada en ese libro
como una logica de las expresiones dednticas interpretadas descriptiva-
mente. Pero su idea fue que la peculiaridad de esa logica de las proposi-
ciones normativas consiste en que en ella se reflejan las propiedades de
las normas mismas. En consecuencia, von Wright propuso en lugar de
dos simbolismos diferentes (uno para la légica de normas y uno para la
logica de las proposiciones normativas) desarrollar un solo simbolismo
que admita dos interpretaciones diferentes, una interpretacion prescrip-
tiva y otra descriptiva. Esto resultd ser, en mi opinién, un serio error,
pues muchos l6gicos creyendo que se trata tan solo de un problema de
interpretacion han caido en la tentacion de interpretar los sistemas cldsi-
cos de l6gica dedntica como una ldgica de las proposiciones normativas.
Pero en realidad los operadores dednticos (obligatorio, prohibido, per-
mitido) tienen propiedades logicas muy diferentes cuando son usados pres-
criptiva o descriptivamente, es decir, cuando figuran en las normas o en
las proposiciones normativas. Por esta razon es imprescindible usar dife-
rentes simbolos. Usaré los simbolos habituales «O» y «P» para los ope-
radores prescriptivos: en consecuencia la férmula «Op» expresard una
norma que ordena p; «O — p» expresard una norma que prohibe p y «Pp»,
una norma que permite p. Una orden (esto es, una norma que ordena
o hace obligatorio p) exige que p se dé; una prohibicidn (esto es, una
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norma que prohibe p) excluye a p, es decir, exige que p no se dé, y una
norma permisiva autoriza que se dé p, es decir, dice que p puede darse.

Los operadores dednticos descriptivos enuncian qué status deéntico
tienen determinados estados de cosas o acciones. Este status dedntico lo
confieren las normas: cuando una norma N prescribe que p debe ser o
se debe hacer (Op), decimos que p es obligatorio en relacion a la norma
N; cuando una norma N prescribe que p no debe ser o no se debe hacer
(O -p), decimos que p estd prohibido en relacion a la norma Nj cuando
una norma N prescribe que p puede ser o se puede hacer (Pp), decimos
que p esta permitido en relacién a N.

Podemos también plantear la cuestién bajo qué condiciones una accién
o estado de cosas p es obligatorio, permitido o prohibido en relacion a
un conjunto de normas a. La respuesta es: p es obligatorio en relacion
a a siy sOlo si una norma que prescribe que p debe ser, es decir, una
norma de la forma «Op» pertenece a las consecuencias de a. Y p estad
prohibido en relacion a a si y sélo si una norma que prohibe p (es decir,
una norma de la forma «O — p») pertenece a las consecuencias de a.

La situacion es bastante mas complicada en el caso de la permisidn.
La oracion descriptiva «P estd permitido en a» es ambigua; a veces lo
que se quiere decir con esta oracidn es que una norma que permite p (es
decir, una norma de la forma «Pp») pertenece a las consecuencias de a,
pero otras veces la misma oracién es usada en un sentido diferente, a
saber, en el sentido de que p no esta prohibido en a, esto es, que una
norma de la forma «O — p» no pertenece a a. Esto significa que nos tene-
mos que ver aqui con dos conceptos de permision diferentes; los dos ope-
radores permisivos descriptivos seran denominados en lo sucesivo per-
mision positiva y permision negativa’.

Las proposiciones normativas son siempre relativas a una norma o
a un conjunto de normas, esto es, a un sistema normativo; por €so vamos
a usar los siguientes simbolos para los operadores dednticos descripti-
vos: «Bu», «P*a» y «P~a», que se leen «p es obligatorio en a», «p esta
positivamente permitido en a» y «p esta negativamente permitido en a.»,
respectivamente.

Las definiciones correspondientes son:

D1. Oop =def. «Op»€Cn(a)
D2. 0o - p=def. «O-p»€eCn(a)
D3. P*ap=def. «Pp»€Cn(a)
D4. P-ap =def. «O - p»€Cn(a)

Como ya se ha mencionado, la distincién entre normas y proposicio-
nes normativas ha hecho posible interpretar las expresiones dednticas

7. En trabajos anteriores de Alchourrén y Bulygin fueron usados, siguiendo a von Wright, los
términos «permision fuerte» y «permision débil» (cf. Alchourrén, 1969 y Alchourrén-Bulygin, 1971
y 1984a). Esa terminologia tiene, sin embargo, la desventaja de sugerir la idea de que la permision
fuerte implica a la permisidn débil, cosa que en realidad no se da. De ahi el cambio terminoldgico.
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como proposiciones acerca de las normas y con ello construir una logica
deontica en forma inobjetable desde el punto de vista de la concepcién
tradicional de la logica (tesis 2). Esta l6gica de las proposiciones norma-
tivas fue interpretada como una teoria sustitutiva para la légica de nor-
mas. Pero la caracterizacion de los operadores dednticos descriptivos dada
mads arriba muestra claramente que no es suficiente interpretar descripti-
vamente el simbolismo de los sistemas clasicos de la légica dedntica; la
logica de las proposiciones normativas exige un simbolismo propio, por-
que se distingue en aspectos muy esenciales de la l6gica de normas.
Las notas distintivas mds importantes son las siguientes:

1) Las expresiones de la 1égica de las proposiciones normativas son
siempre relativas a un sistema, por eso aparecen los suscriptos . La misma
accion p puede naturalmente estar prohibida (permitida, obligatoria) en
un sistema normativo y al mismo tiempo no estar prohibida (permitida,
obligatoria) en otro. Por eso la proposicion normativa «p estd prohibido»
no es completa: mientras no se indique de qué sistema normativo se trata,
esta oracion carece de valor de verdad. En cambio, las expresiones de
la l6gica de normas no estan referidas a un sistema normativo; se trata
de conceptos absolutos, no relativos®.

2) En el ambito del lenguaje prescriptivo no hay nada andlogo a la
distincion entre la permision positiva y negativa. Solo hay un concepto
de permisidn.

3) Los operadores prescriptivos «O» y «P» son interdefinibles:

Op=def—P-p Pp=def—O-p O-p=def-Pp P-p=def-Op

Contrariamente a la opinién de algunos autores como Weinberger
(cfr. C.y O. Weinberger, 1979, 105) esta interdefinibilidad no presu-
pone en modo alguno que el sistema normativo en cuestion esté cerrado
y coherente, pues los operadores prescriptivos no estdn referidos a un
sistema determinado, esto es, tienen el mismo significado con indepen-
dencia del sistema en que figuran.

En cambio, los operadores dednticos descriptivos no son interdefini-
bles sin mds, justamente porque hay dos operadores permisivos distin-
tos. Soélo la permisidon negativa es interdefinible con la prohibicion:
P-ap =def. —0a-p, pero no la permisiéon positiva.

4) La definicién de los operadores dednticos descriptivos presupone
ya la existencia de las relaciones légicas entre normas: las consecuencias
logicas de a es la clase de todas las normas que se siguen légicamente de
a. Por lo tanto, la l6gica de las proposiciones normativas es una extension
de la I6gica de normas y los operadores descriptivos se definen en térmi-
nos de operadores prescriptivos. Sobre este tema volveré mas adelante.

S) Finalmente, la negacion de los operadores dednticos descriptivos
es considerablemente mds complicada que la de los prescriptivos. Esto
sera analizado mds detenidamente en la proxima seccion.

8. Cf. Carnap, 1942, 41 ss. y 89 ss.
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IV. LA NEGACION BE LAS PROPOSICIONES NORMATIVAS

El papel de la negacién en el 4mbito de las normas es distinto del de la
negacion en el ambito de las proposiciones normativas, por de pronto
porque hay dos tipos de negacion de las proposmones normativas: la
externa y la interna. En el lenguaje corriente la negacién de la proposi-
cién normativa «p estd permitido en a», es decir, «p no estd permitido
en o» es ambigua: puede significar que o contiene una norma que pro-
hibe p 0 que o no contiene una norma que permite p. Por lo tanto, resulta
conveniente introducir dos signos de negacién: « —» para la negacion
externa y «—1» para la interna, cuyas definiciones son las siguientes:

Negacion externa:

—Prap=def. «Pp»¢Cn(a)
—P-op=def. «—Pp»€Cn(a)
—0op =def. «Op»éCn(a) =def. « —P—p»¢Cn(a)

Negacién interna:

— P ap=def. «—Pp»eCn(a)
— P op=def. «Pp» ¢ Cn(a)
— 0ap =def. «—Op» € Cn(a) =def. «<P-p» € Cn(a)

De estas definiciones surge que la negacién externa de la permisién
negativa equivale a la negacién interna de la permisi(')n positiva y, en
forma similar, la negacién interna de la permlslon negativa es equiva-
lente a la negacion externa de la permision posmva Por lo tanto, sélo
hay dos formas de negacion de la proposicion «p esta permitido en o»
(y no cuatro, como se podria creer), Y también hay dos formas de nega-
cién de la proposicion «p es obligatorio en o»: la negacion externa signi-
fica que la norma que ordena p no pertenece a o y la negacion interna
significa que una norma que permite — p, es decir, una norma de la forma
«—Op» (0 «P — p») pertenece a a. En otras palabras: la negacién externa
niega la pertenencia de la norma al sistema, mientras que la negacién
interna afecta a la norma misma.

Si se considera a la norma «P —p» como norma-negacion de «Op»
(y correspondientemente, la norma «Pp» como norma-negacion de
«O = p»)?, entonces resulta que la negacién interna es una operacion que
lleva de la proposicion normativa que afirma la existencia de una norma
a la proposicién normativa que afirma la existencia de su norma-negacion.
Pero la negacién interna no cumple —a diferencia de la negacién ex-
terna— los requisitos habituales que se espera debe cumplir una nega-
cién. Estos requisitos pueden ser expresados mediante los siguientes cinco
postulados '’

9. Cf. von Wright, 1983, 133-134.
10.  Cf. von Wright, 1963, 138.
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1) La negacion de una proposicion ha de ser una proposicion.

2) Tiene que haber una y s6lo una negacién de una proposicion.

3) La negacidn tiene que ser reciproca, esto es, si una proposicion
es negacidn de otra proposicion, entonces la segunda proposiciéon ha de
ser la negacion de la primera.

4) Una proposicion y su negacion tienen que ser mutuamente exclu-
yentes, es decir, no pueden ser verdaderas las dos.

S) Una proposicidon y su negacion tienen que ser conjuntamente
exhaustivas, es decir, no pueden ser falsas las dos.

Claramente s6lo la negacion externa satisface estos cinco postulados;
la negacion interna no satisface los postulados 4) y 5), pues tanto la pro-
posicién normativa como su negacion interna pueden ser ambas verdade-
ras y también ambas falsas. Son ambas verdaderas cuando el sistema nor-
mativo en cuestion es inconsistente (contradictorio) y son ambas falsas
cuando el sistema es incompleto. Es justamente la posibilidad de sistemas
normativos inconsistentes e incompletos la que hace tan importante la dis-
tincion entre operadores dednticos prescriptivos y descriptivos, pues cuando
o es un sistema consistente y completo las distinciones entre la permision
positiva y negativa y entre negacion externa e interna se desvanecen.

Es interesante investigar el papel de la negacion en el ambito del len-
guaje prescriptivo. En los primeros tres postulados es suficiente reem-
plazar el término «proposicion» por el de «<norma» para poder aplicarlos
a las normas, pues las normas satisfacen claramente estos tres postula-
dos: la negacion de una norma es también una norma (por ejemplo, «Op»
y «P —p»); para cada norma sélo hay una norma-negacién; una norma
y su norma-negacion son reciprocas (si «Op» es la negacion de «P — p»,
«P—p» es la negacion de «Op»).

Los dos ultimos postulados, es decir, los postulados 4) y 5) s6lo pue-
den valer para las normas en un sentido analdgico, pues las normas care-
cen de los valores de verdad. Sin embargo cabe afirmar que una norma
como «Pp» («Op») y su norma-negacion «—Pp» («—-Op») son mutua-
mente excluyentes y que las dos normas son conjuntamente exhaustivas,
pues las férmulas «Pp v = Pp» y « — (Pp& — Pp)» son validas en la loglca
de normas, tal como ésta ha sido desarrollada en Alchourrén (1969).
Pero es importante darse cuenta cual es exactamente su significado.
Cuando se dice que «Pp» y « — Pp», es decir, una norma permisiva y una
norma prohibitiva de p, se excluyen mutuamente, esto no significa que
un sistema normativo no pueda contener estas dos normas. Sélo signi-
fica que estas dos normas son incompatibles (porque la satisfaccion de
la prohibicion hace imposible hacer uso de la permisién y viceversa, el
hacer uso de la permision de hacer p hace imposible la satisfaccion de
la prohibicién). La légica de normas establece criterios para la consis-
tencia, pero no dice nada respecto de la existencia de las normas"'

11. Cf. Alchourrén y Bulygin, 1989, 684-85.
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Por razones similares, cuando se afirma que las normas «Pp» y «—Pp»
son conjuntamente exhaustivas, esto #o significa que todo sistema norma-
tivo necesariamente contiene una permision o una prohibicién de p. Sélo
significa que toda regulacion de la accién p implica necesariamente la per-
mision o la prohibicién de p. Seria un error pretender inferir de alli que toda
accion esté siempre regulada en todo sistema normativo (y que, por lo tanto,
todos los sistemas normativos sean completos y no puedan tener lagunas),
justamente porque la logica de normas nada puede decir sobre los hechos
(existencia de normas). En consecuencia, la aceptacion de «Ppv—Pp» y
«—(Pp& ~Pp)» como férmulas validas de la légica de normas no implica
en modo alguno que todos los sistemas normativos sean por razones logi-
cas completos y consistentes, como lo han afirmado algunos filésofos del
derecho. Esas formulas sélo establecen dos condiciones que las normas han
de satisfacer: a) una condicion minima que toda formulacién normativa ha
de satisfacer para expresar una norma (cuando una formulacién normativa
no permite ni prohibe la accién p, no expresa ninguna norma respecto de
p), y b) una condicién para la consistencia, es decir, una condicién que toda
norma ha de satisfacer para ser consistente (una norma que permite y a la
vez prohibe p es contradictoria respecto de p).

He analizado en algun detalle el problema de la negacidn en la logica
de normas y en la légica de las proposiciones normativas, porque suele
haber no poca confusiéon respecto de este problema inclusive entre los
logicos que se ocupan de la logica dedntica'®.

V. LA LOGICA DE LAS PROPOSICIONES NORMATIVAS

La importancia de la logica de las proposiciones normativas —que, como
surge de las consideraciones anteriores, acusa diferencias importantes res-
pecto de lalégica de las normas— reside en que puede ser entendida como
una ldgica de los sistemas normativos en el mismo sentido en que la logica
normativa es una logica de las normas. Las proposiciones normativas son
afirmaciones acerca de un sistema normativo —en nuestro simbolismo
acerca de Cn(a)— que dicen que determinadas normas pertenecen 0 no
pertenecen a un sistema normativo dado. Una norma pertenece a un sis-
tema normativo cuando o bien ha sido promulgada por alguna autori-
dad competente del sistema o bien puede ser derivada (es consecuencia
légica) de otras normas que forman parte del sistema. Estas tltimas son
las normas derivadas. (Para simplificar omito toda referencia a las nor-
mas consuetudinarias.)

Las proposiciones normativas se formulan en un lenguaje que es un
metalenguaje con respecto al lenguaje en el cual estan formuladas las nor-

12. Por ejemplo, en C. y O. Weinberger, 1979 (pp. 121-122) encontramos una nocion de nega-
cién normativa que no satisface ninguno de los cinco postulados: la negacién de una norma no es una
norma, la reiteraciéon de la negacion no es admisible y la férmula «Ppv —Pp» no es valida.
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mas. Por lo tanto, las oraciones de esta ldgica son expresiones metalin-
glisticas acerca de los sistemas normativos. Es indispensable introducir
simbolos especiales para esas expresiones, porque algunas propiedades
sumamente importantes de los sistemas normativos, tales como la com-
pletitud y la consistencia no pueden ser expresadas adecuadamente en
la l6gica dedntica tradicional, tanto en su interpretacién prescriptiva,
como en la descriptiva. En este sentido es interesante comparar los teo-
remas de los sistemas clasicos (LD) con los de la l6gica de las proposicio-
nes normativas (LPN).
Las tesis siguientes son caracteristicas del sistema DL:

T1. —(Op&O-p) (Op—-0-p)
T2. Ppo-0O-p

T3. O(p&q)«>Op&Oq

T4. P(pvq)«PpvPq

T5. Op—Pp

T6. PpvP-p

Estas tesis reflejan las propiedades légicas de los operadores norma-
tivos O y P. Si se los compara con los operadores dednticos descriptivos
0u, P*a y P-a obtenemos el siguiente cuadro:

1) T1 no es valida en LPN, pues la férmula « — (Bop&0a — p)» puede
ser falsa, ya que Cn(a) puede contener tanto «Op», como «O — p» (cuando
esto ocurre o es inconsistente).

2) Hay una férmula analoga a T2, pero sélo para la permision nega-
tiva: P-ape —0a —p.

3) El principio de distribucién T3 vale en LPN para Oa.

4) El principio de distribucién T4 sélo vale para la permision nega-
tiva Pa.

5) TS5 vale en cambio sélo para la permisién positiva: «Bap—P *ap»
es una férmula valida. Pero la férmula «@ap—P ~ap» no es valida.

6) La férmula andloga a T6 no vale, ni para la permision positiva, ni
para la negativa: <P *ap v P ap» no es valida en LPN porque el sistema
normativo puede tener lagunas, esto es, puede ser incompleto. De 1) se sigue
que la formula «P op v P o—p» tampoco es valida, porque el sistema
puede ser inconsistente. Esto ocurre cuando o contiene tanto la prohibi-
cién de p, como la prohibicion de —p, es decir, cuando la accién p es, a
la vez, obligatoria y prohibida en el sistema Cn(a). La contradiccion con-
siste en que las dos normas no pueden ser ambas obedecidas por razones
légicas. Cuando una accidn es a la vez prohibida y permitida positivamente
el sistema normativo correspondiente también es inconsistente. Cabe mos-
trar que este ultimo caso es un caso especial y no un tipo diferente de incon-
sistencia (aqui las dos normas son inconsistentes porque es légicamente impo-
sible hacer uso de la permisiéon sin violar la norma prohibitiva).

Un estado de cosas p es normativamente determinado en un sistema
normativo o si, y sélo si, p estd o bien permitido positivamente o bien
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prohibido en a, esto es, cuando la férmula «P *ap v 0o - p» es verda-
dera. El concepto de determinacién normativa puede servir para la carac-
terizacion de los conceptos de laguna y de completitud de los sistemas
normativos. Un sistema normativo Cn(a) tiene una laguna o es incom-
pleto cuando un estado de cosas p no esta normativamente determinado
en o. Solo cuando todos los estados de cosas (de una cierta clase) estan
determinados, decimos que Cn(a) es completo (en relacién a esa clase).

Puesto que las normas (y muy en especial las normas juridicas) no
solo pueden ser creadas, sino también anuladas o derogadas, necesita-
mos un aparato conceptual capaz de dar cuenta del caracter dindmico
del orden normativo. La logica de las proposiciones normativas es ade-
cuada para ello. Un orden juridico puede concebirse como una secuen-
cia temporal de sistemas normativos que cambian o se modifican con el
transcurso del tiempo*’.

VI. EL SISTEMA CLASICO COMO LOGICA DE NORMAS

He tratado de mostrar que no se puede escapar al dilema de Jorgensen
recurriendo simplemente a la interpretaciéon descriptiva de las férmulas
de la légica dedntica. La légica de las proposiciones normativas tiene sus
propias leyes que son muy diferentes de las del sistema estandar. La logica
LPN es una herramienta importante para el andlisis légico de los siste-
mas normativos, pero no sirve sin mas como una teoria sustitutiva de
la l6gica de normas, en particular, para la justificacién de las inferencias
normativas. Ademds ella (al menos en la forma en que ha sido expuesta
aqui) presupone ya una légica de normas, pues sus conceptos fueron defi-
nidos en términos de consecuencia ldgica y esto implica ya que hay rela-
ciones ldgicas entre normas (de lo contrario las normas no tendrian con-
secuencias logicas). Por lo tanto, si pensamos que las relaciones logicas
solo pueden ser definidas en términos de verdad (tesis 2) y que las nor-
mas carecen de valores veritativos (tesis 3), estamos de nuevo frente al
mismo dilema: o bien abandonamos la tesis 2 o tenemos que desarrollar
una teoria sustitutiva para dar cuenta de las relaciones ldgicas entre nor-
mas. Este dltimo camino fue elegido en Alchourrén-Bulygin (1981) bajo
la forma de la concepcidn expresiva de las normas. Esta teoria tiene su
punto de partida en la comprobacion de que muchos autores, especial-
mente los filésofos del derecho, conciben a las normas no como una cate-
goria semantica, sino como una categoria pragmatica: lo especificamente
normativo estaria dado en el momento pragmatico del uso del lenguaje.
En Alchourrén-Bulygin, 1981, se intentd investigar esta concepcién para
determinar su alcance. En esta conceptién las relaciones légicas no se
dan entre las normas (que son actos de ordenar), sino entre sus conteni-
dos, esto es, entre las proposiciones ordenadas. Esto conduce a una logica

13. Cf. Alchourrén y Bulygin, 1981.
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de las proposiciones normativas inobjetable desde el punto de vista de
la tradicién légica.

Hoy este intento no me parece totalmente satisfactorio. No tanto por-
que esta logica «expresiva» de las proposiciones normativas se apoye en
una légica de normas encubierta, como fue sefialado por Weinberger ',
ni tampoco porque la concepcién expresiva no haya podido hasta ahora
ofrecer una teoria satisfactoria de las normas condicionales, sino basica-
mente porque la justificacidn de una sentencia judicial —que tiene cardcter
normativo— requiere premisas normativas. Esto significa que el juez ha
de derivar su decision de las normas mismas y no de meras proposicio-
nes acerca de las normas. Por eso una ldgica de normas es imprescindible.

Qué aspecto ha de tener una genuina légica de normas ya fue sena-
lado en Alchourrén, 1969. Mas tarde, estos andlisis fueron usados en
Alchourrén-Bulygin, 1971, donde fueron construidos dos sistemas 16gi-
cos, uno para la légica de normas y otro para la de las proposiciones
normativas. Esto puso de manifiesto un hecho interesante, a saber, que
el sistema estandar de logica dedntica result6 ser una reconstruccion basi-
camente correcta de las propiedades logicas de los operadores normati-
vos O y P. Pero es fundamental que esta logica de normas sea suplemen-
tada con una légica de las proposiciones normativas.

Sin embargo, ni en Alchourrén, 1969, ni en Alchourrén-Bulygin,
1971, se encuentra una fundamentacion satisfactoria de la légica de nor-
mas. Se trabaja alli con conectivas proposicionales y se habla de relacio-
nes ldgicas entre normas, sin explicar de qué manera esto es compatible
con el hecho de que las normas carecen de valores de verdad. Y es signi-
ficativo que en los ultimos afios justamente von Wright, uno de los fun-
dadores de la logica dedntica, se ha vuelto escéptico respecto de su posi-
bilidad.

Si se acepta que las normas carecen de valores de verdad, no cabe
duda de que una ldgica de normas genuina solo es posible si se amplia
el concepto de logica de tal manera que las conectivas proposicionales
y los conceptos de implicacién (consecuencia) légica y de consistencia
puedan ser definidos sin hacer referencia a la nocion de verdad. Una pro-
puesta en tal sentido fue formulada recientemente en Alchourrén-Martino,
1990. Estos autores proponen definir la nocién de consecuencia ldgica
sobre la base del concepto abstracto de consecuencia (caracterizado por
Tarski), que se usa como concepto primitivo y que no es ni sintdctico,
ni semdntico. Las conectivas proposicionales se definen luego a la manera
de Gentzen mediante reglas de introduccién y eliminacion. Para eludir
los peligros sefialados en Prior, 1960, tales reglas se introducen en el sen-
tido de Belnap, 1962, en un contexto de deducciéon caracterizado axio-
maticamente.

Esta propuesta consiste fundamentalmente en justificar la idea, ya
expresada en von Wright, 1957, de que el campo de la ldgica es mas

14. Cf. Weinberger, 1984a.
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amplio que el de la verdad. Esta no serd objeto de analisis en este tra-
bajo, pero es claro que si tal propuesta resultara viable, se lograria un
terreno firme para fundamentar una auténtica légica de normas.
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Raunl J. Carnota

... there is very little difference between traditional work in philosophical
logic and logical research in theoretical Al...(R. Thomason).

I. INTRODUCCION

En las primeras épocas de la Inteligencia Artificial (IA), dos de sus pio-
neros sefialaban:

...A computer program capable of acting intelligently in the world must have a general
representation of the world in terms of which its inputs are interpreted. Designing
such a program requires commitments about what knowledge is and how it is obtai-
ned. Thus, some of the major traditional problems of philosophy arise in artificial
intelligence... More specifically we want a computer program that decides what
to do by inferring in a formal language that a certain strategy will achieve its assig-
ned goal. This requires formalizing concepts of causality, ability, and knowledge.
Such formalisms are also considered in philosophical logic... (McCarthy y Hayes,
1969).

Esta cita es representativa de la fascinacion que ejercié la Logica sobre
una buena parte de los pioneros de la [A. Sin embargo, durante mucho
tiempo existio un cierto aislamiento entre los dos campos, hasta que a
fines de los 70 y comienzos de los 80, el auge de la IA promovié el inte-
rés de cientificos de disciplinas como la filosofia, la l6gica, la lingiiistica
y la psicologia, que se introdujeron, con su bagaje previo, en el nuevo
campo.

A partir de ese momento, las interconexiones comenzaron a ser mas
ricas: no solo desde la 1A se utilizaban los resultados de la Logica, sino
que las necesidades surgidas de la aspiracion de inculcar raciocinio «inte-
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ligente» a una maquina y la intencion de hacerlo a través de reconstruir
formalmente los procesos del razonamiento, motivaron a muchas perso-
nas relevantes del drea de la ldgica.

Este articulo intenta reflejar algunas de las facetas de estas relacio-
nes, poniendo el énfasis en cdmo las dificultades halladas en los intentos
de uso de la Logica Clasica, reverdecen discusiones que vienen de anti-
guo en el campo filoséfico y en como el objetivo de producir el diserio
de sistemas computacionalmente operables provoca al interior de la Logica
un nuevo estimulo para responder a viejas preguntas en una forma que
debe ahora ser mucho més concreta y no discursiva.

No pretendemos ignorar que la IA estd atravesada por distintas
corrientes, cada una de ellas con sus puntos de vista notoriamente diver-
gentes acerca de como llevar adelante los objetivos del campo, y que
muchos de sus mas prominentes investigadores no son, ni mucho menos,
partidarios del uso de la Logica (incluso en sus variantes no cldsicas) para
reconstruir la «inteligencia» en los robots.

Las propias expresiones de McCarthy-Hayes que citamos antes,
podrian ser refutadas por otros investigadores y la referencia al «conoci-
miento» que el programa posee como el resultado de un proceso inferen-
cial en un lenguaje formal seria senalada, mas como una limitacién (en
el sentido de sus hipdtesis acerca de la inteligencia humana), que como
una aspiracion.

No abordaremos aqui esta polémica (salvo una minima referencia en
la secciéon II) y consideraremos sélo los enfoques « de
representacion y manipulacién de la informacion que han sido los esti-
muladores del desarrollo de nuevos formalismos basados en légica. Una
discusion extensa de los fundamentos de 1a IA y de las distintas corrien-
tes que coexisten en la disciplina puede encontrarse, entre otras fuentes,
en nimeros especiales de las revistas Dedalus (1987) y Artificial Intelli-
gence, Al (1991).

Un objetivo esencial en la IA es la formalizacion del «razonamiento
de sentido comun». En la vida cotidiana extraemos conclusiones en base
a generalizaciones que tienen excepciones («los pajaros vuelan», «si el
auto tiene combustible y bateria, arranca»). Sin embargo estas conclu-
siones, ante la adquisicion de nueva informacion (que el pajaro en cues-
tién es un pingiiino, que existe un cable cortado en el motor), pueden
resultar erréneas.

La representacion directa en Légica Clasica (LC) de estos razonamien-
tos trae problemas. Si tenemos:

Vx (Mamifero(x) = — Vuela(x)), y
Vx (Murciélago(x) — Vuela(x)),

se deriva en LC que no pueden existir individuos que sean a la vez mami-
feros y murciélagos. Esto es debido a que la LC es mondtona en el sen-
tido de que, al ser las premisas condicién suficiente para la conclusidn,
el agregado de nuevas premisas no puede invalidar nunca la conclusién.
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Los intentos de formalizaciéon del Razonamiento No Mondtono
(RNM) son, quizds, el caso mds claro de desarrollos que han afectado
al propio campo de la légica, tal vez por sus conexiones con viejos pro-
blemas ya planteados en aplicaciones cientificas (suposiciones «ceteris
paribus»), dednticas (obligaciones «prima facie»), del discurso cotidiano
(condicionales contraficticos), etc. Su analisis serd el tema central del pre-
sente trabajo.

La busqueda de inspiracion para el disefio de sistemas inteligentes en
las caracteristicas de la inteligencia humana es una fuente de otras criti-
cas y de desafios que afectan a la légica. La constataciéon de que los seres
humanos no siempre somos consistentes ha motivado la aplicacién de
logicas paraconsistentes. El convencimiento de que la mente humana toma
decisiones sin analizar todas las alternativas (sorteando los problemas
de complejidad computacional por medio de supuestos) es también una
incitacion al desarrollo de procedimientos y lenguajes que reconstruyan
esa performance. Lo mismo puede decirse de las caracterizaciones vagas
o difusas, los razonamientos por analogia, el aprendizaje como proceso
inductivo, etc. Si bien es imposible en pocas péginas desarrollar todos
estos aspectos, vale su mencion por tratarse de cuestiones vivas y actua-
les en la investigacion conjunta de Légica e Inteligencia Artificial. Final-
mente, la Logica es usada, también, como «metalenguaje» de los lengua-
jes de representacidn, esto es, como herramienta para caracterizar el poder
inferencial de un lenguaje, tal como ha sido propuesto por A. Newell,
en Newell (1981), al caracterizar el «nivel del conocimiento» en los sis-
temas inteligentes.

En la préoxima seccién se hace un breve repaso de los objetivos
de la TA. La seccion III presenta, bajo la hipdtesis de una representa-
cién «declarativa» del conocimiento, las conexiones «naturales» entre
la Légica y la IA. La seccion 1V resefia los principales cuestionamien-
tos al uso de la Légica Clésica, en particular a su capacidad para cap-
turar el razonamiento «de sentido comun». En la secciéon V, la cen-
tral del trabajo, se discuten algunas cuestiones ldgicas ligadas a la
formalizacién del raciocinio no monotono. Finalmente, en la seccidon
VI se realizan algunas reflexiones finales sobre el rol de la Légica en
la TA.

II. INTELIGENCIA ARTIFICIAL

...Most practitioners would agree on two main goals in Al. The primary
goal is to build an intelligent machine. The second goal is to find out about
the nature of intelligence... (R. Schank).

Desde tiempos inmemoriales los seres humanos han imaginado artefactos
animados —idolos, imprevisibles dioses, obedientes esclavos, robots—,
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que compartieran la «esencia humana». Qué componia esa «esencia» es
algo que fue cambiando con el tiempo, pero con un elemento invariante:
ser humano es pensar, razonar, asociar, crear.

Mitos, historias, argumentos filos6ficos o busquedas cientificas —co-
mo elixir de la vida— reflejan a través de los siglos esa obsesion.

Pero recién con la existencia de las computadoras, los primeros ins-
trumentos aptos para procesar simbolos en forma totalmente general,
es que esta busqueda mitica pasa a constituirse en una zona de investiga-
cién formal, con posibilidad de definir rigurosamente aspectos de la acti-
vidad inteligente, testearlos y lograr la realimentacion rédpida que per-
mita el avance de la experimentacién. Y hemos dicho aspectos, porque
la definicion de inteligencia es una bruma que envuelve a cualquiera que
desee comenzar a caracterizar el area.

Desde su fundacion formal en la Conferencia de Darmouth en 1956,
la investigacidn en 1A se ha realizado siguiendo dos enfoques conectados
y enfrentados mutuamente. El primero tiene por meta principal la cons-
truccién de sistemas orientados a la resolucién de problemas, sin necesa-
riamente imitar la forma en que la mente humana realiza esta tarea aun-
que si buscando alcanzar su performance. El segundo intenta imitar los
modos de funcionamiento de la inteligencia humana por medio de un
programa de computacion, buscando arrojar luz sobre el proceso cogni-
tivo humano

En un caso se busca producir conductas que podrian ser producidas
a través del uso de la inteligencia, independientemente de los medios
empleados en obtener el resultado. Si la conducta obtenida tiene un grado
considerable de inteligencia, la simulacion es exitosa.

En el otro se pretende construir modelos. Un modelo debe producir
también una salida apropiada, pero debe hacerlo mediante procesos y
representaciones de informacién que sean espejo de los procesos inteli-
gentes que se producen en la mente humana.

En esta direccion la corriente que iniciaron en los 40 McCulloch y
Pitts y que se inspiraba en los paralelos entre la naturaleza binaria de
las neuronas y los componentes electrénicos de las computadoras luego
de casi dos décadas de margmahdad revive en la investigacion actual
en redes neuronales. Sin embargo, mas que por aquella analogia, mucho
del impulso actual de esta corriente se explica por su aparente capacidad
para encarar eficientemente problemas que el enfoque simbdlico no ha
resuelto.

1. El paradigma simbélico

A physical symbol system has the necessary and sufficient means for general
intelligent action. By necessary, we mean that any system that exhibits general
intelligence will prove upon analysis to be a physical symbol system. By suf-
ficient we mean that any physical symbol system of sufficient size can be
organized further to exhibit general intelligence (Newell y Simon, 1976).
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En la primera corriente, Newell y Simon suponen que el cerebro
humano y la computadora, siendo totalmente distintos en estructura y
en mecanismos, tienen una descripcion funcional comun en cierto nivel
de abstraccién. En ese nivel ambos pueden ser vistos como ejemplos de
un «aparato» que genera conductas inteligentes manipulando simbolos
por medio de reglas formales.

En la cita previa, physical significa que dichos sistemas obedecen las
leyes de la fisica —en particular son construcciones ingenieriles concre-
tas—. Por symbol system se entiende una coleccion de patrones y proce-
sos. Los procesos son capaces de producir, destruir y modificar los sim-
bolos. Los patrones tienen la capacidad de designar objetos, procesos u
otros patrones. Cuando un patrén designa a un proceso, puede ser «inter-
pretado», lo que implica llevar adelante el susodicho proceso.

Inteligencia es, en este punto de vista, la habilidad para procesar sim-
bolos.

Dentro del paradigma simbolico, se pueden distinguir numerosas pos-
turas diferentes sobre la naturaleza de los procesos mentales y las subse-
cuentes actividades de los cientificos de la IA. En un extremo se encuen-
tran los llamados «logicistas», cuyas posiciones estan desarrolladas en
Nilsson (1991), que sostienen la posicién de que la «inteligencia» esta
basadaen una representacién declarativa de las creencias acerca del mundo
y que la actividad cognitiva estd basada esencialmente en procesos infe-
renciales. En este enfoque, la cuestion determinante para un disefiador de
una Base de Conocimientos seria la conceptualizacion del «mundo» que
quiere reflejar. Esta conceptualizacion se volcaria luego en esta Base bajo
la forma de un conjunto de sentencias de algun lenguaje proposicional.
La representacién asi alcanzada aspira a ser lo mds independiente posible
del modo en que puede llegar a ser usada la informacion.

Alrededor de la aceptacion o rechazo de algunas de estas hipdtesis
giran otras corrientes de investigadores. Polemizando con Nilsson, en
Birnbaum (1991) se resalta la imposibilidad de una caracterizacion del
conocimiento totalmente independiente del uso y se propone, como alter-
nativa a la semantica de la teoria de modelos, una «semantica funcio-
nal», basada en la idea de que la representacion toma sentido en funcién
de su rol causal en los procesos mentales, y, en ultima instancia, en la
percepcién y en la acciéon. El concepto de nimero primo, ejemplifica,
no significa lo mismo para mi (Birnbaum), que para un matematico espe-
cializado en teoria de nimeros. Y su sentido cambiard también para mi
si comienzo a estudiar alguna de tales teorias. Con esta aproximacion,
no se puede lograr una especificacién de lo que un organismo conoce
independientemente de lo que hace.

En el resto de este trabajo vamos a adoptar un enfoque de tipo «sim-
bolista», por ser el marco en el cual se producen las conexiones mas ricas
entre la Logica y la TA.

En particular, al hablar de estructuras de Representacién del Cono-
cimiento (RC) en un sistema, nos limitaremos a las ,
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es decir, estructuras de datos interpretables como férmulas logicas de
algun tipo.

De acuerdo con Levesque (1986a), este tipo de estructuras deben
ser interpretables proposicionalmente, es decir, como expresiones en un
lenguaje con una teoria de verdad. Debe ser posible sefialar una de
dichas estructuras y decir como debe ser el mundo para que ella sea
verdadera.

2. La Inteligencia Artificial como interdisciplina

En todo caso, mds alld de las facciones, la IA se constituye creciente-
mente en una zona de convergencia de las mas diversas disciplinas: la
logica, la psicologia, la filosofia, la economia, la matematica y, también,
las ciencias de la computacion. Un resultado valedero en IA lo es en la
medida en que aporte en alguno de los aspectos que requerimos para con-
siderar un agente como inteligente: capacidad de comunicacién, conoci-
miento de si mismo (conocimiento de su conocimiento), conocimiento
del mundo, acumulacién de experiencia para reusarla en la interaccion
con él, intencionalidad en sus objetivos (capacidad de construir y adap-
tar planes segun las circunstancias), creatividad (al menos en algin sen-
tido débil, como la adaptacion a cambios en el ambiente, en suma, apren-
dizaje). Tépicos que, sin duda, estdn mejor tratados en libros de psicologia
o filosofia que en los textos de IA. En consecuencia, si ese resultado existe,
deber4 ser reconocido «fuera» de la IA, como un aporte. La caracteris-
tica especifica de estos aportes de la IA es la mecanizacidn, particular-
mente cuando las formas standard de mecanizacién han demostrado ser
intratables (en el sentido de la complejidad computacional).

Todos los campos del conocimiento son, en alguna medida, IA.
Todos tratan acerca de la naturaleza del hombre. La importancia de la
IA est4a dada en la medida en que sus aportes tecnoldgicos sean significa-
tivos. Las preguntas que intentamos responder es lo inico que realmente
importa.

III. LA CONEXION CON LA LOGICA

...logic is at the heart of reasoning, and reasoning is at the heart of intelli-
gence (W. J. Rapaport).

Como ya vimos, en el contexto del paradigma simbdlico de la IA, un
sistema «inteligente» es aquel con habilidad para procesar simbolos
mediante reglas formales.

En un sistema que se inspire en las funciones inteligentes de los huma-
nos, podemos distinguir varios tipos de procesamientos de simbolos. Las
funciones perceptuales, que detectan los distintos datos del mundo; los
procesos de memorizacion, que almacenan y organizan la informacion
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y luego son capaces de recuperarla de acuerdo a ciertos objetivos; los
que podriamos llamar procesos deliberativos, el nucleo del «razona-
miento», en los que se construyen hipoétesis, se analizan alternativas,
se deciden caminos, etc.; y las funciones efectoras que actuan sobre
el mundo de acuerdo a las acciones decididas en los procesos delibe-
rativos.

Para construir un sistema computacional que realice estas activida-
des, se precisan definir ciertos procedimientos destinados a cumplir esas
funciones. En particular nos interesan los procedimientos destinados a
elaborar la informacion.

Aceptemos que las unidades minimas en que se recoge y almacena
la informacién son los enunciados de algun lenguaje formal. El asunto
no es trivial, ya que segin como sea el instrumento que usemos para
receptar y almacenar la informacidn, serd el modo en que podamos ela-
borarla.

Supongamos que A,...A, son distintas oraciones del lenguaje ele-
gido, almacenadas mediante algun procedimiento. Ese conjunto finito
de oraciones representard cierta informacion significativa que interesa
retener.

Convengamos que «elaborar » esa informacion sig-
nifica obtener nueva informacién a partir de la misma. Esta nueva infor-
macion serd representada por enunciados, en principio diferentes de los
de partida y que, de alguna manera, estdn vinculados a éstos. Estos enun-
ciados amplian la informacién que el sistema posee.

Si Ay,...,A, es la informacién de partida, llamaremos B a la infor-
macion que se alcanza luego de un nimero finito de pasos.

Esta imagen secuenciada de pasos en los que la informacién poseida
se va enriqueciendo, tiene una cierta connotacion psicoldgica y no es
extrafio que haya sido tomada como una metéafora del funcionamiento
del raciocinio humano.

¢De qué manera, bajo qué condiciones y qué cosas se agregan en cada
paso a la Base de Conocimientos existente? Bajo nuestras hipotesis de
partida, esto tiene que estar bien especificado por medio de «reglas for-
males», para que la maquina sepa qué hacer frente a cada situacién o
estado. Cada informacién agregada se vincula a algunas de las informa-
ciones existentes (eventualmente a todas). Por ejemplo, cierto B, se agre-
gard a resultas de la presencia de A, y A,. Llamemos al procedimiento
que permitio este paso Regla 1 (regla de transformacién 1). Asi, cada
uno de los pasos estaran justificados por algin conjunto R, R,,..., R,
de reglas de transformacion, cuyo sentido es incorporar nuevas informa-
ciones a partir de las originales.

El proceso asi descrito no es otra cosa que lo que la légica siempre
tuvo en su historia como su objetivo: cémo (bajo qué condiciones) justi-
ficar ciertos enunciados, apoyandose en otros enunciados. Siguiendo la
tradicidn escoldstica, dadas las oraciones:
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Sécrates es un hombre (A,) y
Todos los hombres son mortales, (As)
coémo justificar la oracion
Socrates es mortal (B)
Si tenemos los enunciados A ,,...,A, y se ha podido construir un pro-

ceso de transformaciones que terminan en B, anotamos:

() Al""’An = Bs . . . .
que se lee «B es conclusién sintactica de las premisas A,...,A,».

Lo que (*) representa es abreviatura de la siguiente afirmacién exis-
tencial: existe una secuencia de enunciados del lenguaje utilizado, tal que
el altimo de la secuencia es B, y tal que los enunciados de la secuencia,
o bien son los A;, o bien se van construyendo, a partir de los anterio-
res, en base a reglas de transformacién (reglas de inferencia en el len-
guaje de la logica).

La clave de lo enunciado hasta aqui, parece estar en las reglas de trans-
formacién.

Si lo inico que le pedimos a una regla es que transforme unos enun-
ciados en otros, una regla podria, por ejemplo, convertir enunciados que
comienzan en vocal en otros que terminan con consonante.

Ver a las reglas logicas como reglas de transformacion es correcto.
Pero no cualquier regla de transformacion es considerada una regla logica.

¢Cudl es el «control de calidad» que tenemos que reclamar de las reglas
de transformacion?

La respuesta de la filosofia de la 1égica contemporanea estd en el con-
cepto de consecuencia légica. Para evitar meras transformaciones sintac-
ticas que puedan llevar a verdaderos absurdos, las transformaciones deben
tener cierta calidad que, segun Tarski (1956), puede formularse asi:

(1) Si A,,...,A, — B entonces A,,...,A, E By se lee «para que B
sea una conclusion de A, “aceptada”, debe ocurrir que B sea logicamente
implicado por los enunciados A».

La nocién de «légicamente implicado» se define asi: B esta légica-
mente implicado por los A; si, en cualquier contingencia posible en la
que los A, sean verdaderos, B no tenga mas remedio que ser verdadero.
O sea que la verdad se hereda a todo lo que se va obteniendo como resul-
tado de la aplicacion de las reglas de transformaciéon. O también que B
tenga justificada su verdad toda vez que se tenga justificada la verdad
de los A,. Esta relacién de justificacién la tendra cada enunciado de la
secuencia respecto a los enunciados de partida y es una condicion adi-
cional en la construccién de la secuencia.

La idea central de la l6gica vira hacia el estudio de estas «condicio-
nes de calidad» de las inferencias. Una inferencia sera «buena» si cumple
con la condicién de (1). Se esta pidiendo que la conclusién tenga garan-
tizada su verdad a partir de la verdad de las premisas.
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La cuestién conversa es pedir que, en el caso de que la verdad de B
esté garantizada por la verdad de los A, se pueda construir una secuen-
cia, mediante reglas de transformacion, que empiece por los A; y ter-
mine con B:

(2) Si A,,...,A, = B entonces A,,...,A, — B.

Cémo encontrar, dado B, y un conjunto de reglas de transforma-
cién, una secuencia de pasos que partiendo de nuestras «premisas», lle-
gue a B, es el problema de la decision para la nociéon de consecuencia
sintactica.

De lo expuesto hasta aqui se podria concluir que existe una casi total
superposicion entre las actividades de la logica y los procedimientos de
elaboracién de la informacion en un sistema de IA.

Aqui surge, sin embargo una pregunta:

¢Son las restricciones expresadas en (1) y (2) adecuadas respecto a
los ob]etlvos de la TA? Este es el tema que discutiremos en la préxima
seccion.

IV. LOS CUESTIONAMIENTOS A LA LOGICA DEDUCTIVA

..logical reasoning is more appropiate for displaying or confirming the results
of thinking than for thinking itself... (M. Minsky).

¢Coémo impartir nociones de sentido comun a un robot?

¢Coémo diseniar un robot con una capacidad de razonamiento sufi-
cientemente poderosa y util como para que, una vez provisto de un sub-
conjunto de ese «sentido comun», sea capaz de generar suficiente del resto
como para adaptarse a su entorno y operar inteligentemente sobre él?

¢Serd la Légica el marco adecuado para afrontar este desafio?

Partiendo de su referente basico, la naturaleza del raciocinio humano,
muchos investigadores de la IA encuentran a la légica como demasiado
formal y limitada, y perciben que los procesos de razonamiento abarcan
un espectro mucho mds amplio que el analisis 16gico deductivo.

Curiosamente, estos cuestionamientos no SON NUEVOS:

Stuart Mill (citado en Cohen y Nagel, 1957), afirmaba que era incon-
testable que, en el ejemplo de Sécrates, (B) esta presupuesta en (A,) y que
—peor ain— no podemos asegurar la mortalidad de todos los hombres,
a menos que estemos convencidos de la de cada hombre en particular.

Por su parte, en Cohen y Nagel (1957), se formula asi la llamada
«paradoja de la inferencia»: Si en una inferencia la conclusion no estd
contenida en la premisa, la inferencia no puede ser valida; y si la conclu-
sion no es diferente de las premisas, la inferencia es inutil; pero la con-
clusion no puede estar contenida en las premisas y al mismo tiempo poseer
novedad; en consecuencia las inferencias no pueden ser a la vez vdlidas
y utiles.
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M. Minsky, exponente de los que consideran inadecuada a la pos-
tura logicista (entendida como la reduccion del proceso de construccién
de un sistema inteligente a la seleccidon de un conjunto de sentencias en
un lenguaje légico, sobre el que opera un demostrador de teoremas como
emulador de los mecanismos de razonamiento), sintetiza, en Minsky
(1975), sus cuestionamientos.

Los principales problemas que senala son los siguientes:

1. El problema de la relevancia. La informacion contenida en una
Base de Conocimientos (BC) precisa de meta-informacién que indique
en qué circunstancias y de qué manera va a ser usada. Asimismo un sis-
tema inteligente deberia tener claro cuando es pertinente o no realizar
ciertas deducciones.

2. Elproblema de la monotonia, que ya se ilustré en la Introduccién.

3. La separacion entre axiomas y deduccién (que equivale a inde-
pendizar el conocimiento de su forma de uso), dificulta la clasificacién
de las proposiciones y el control del proceso deductivo. Si, por ejemplo,
se desea axiomatizar la relacion de proximidad, resulta natural que sea
transitiva:

(A prox B) A (B prox C) — (A prox C).

Sin embargo, una aplicacioén irrestricta de esta regla, puede conducir
a que todo esté proximo a todo. En un sistema légico «puro» no es facil
hacer un nuevo axioma que «prohiba» aplicar la transitividad més de
cierto nimero de veces.

4. Laexplosion combinatoria. Los sistemas basados en logica no esca-
pan al problema de la explosién combinatoria, cuando se encaran domi-
nios complejos.

5. La exigencia de consistencia. En un sistema basado en la LC, no
es posible representar una sentencia y su negacion, sin que el proceso
inferencial «trivialice» las conclusiones (permita derivar cualquier sen-
tencia). Esta propiedad, lejos de ser una virtud, es, para M. Minsky, ni
necesaria ni deseable, ya que hace que los sistemas asi constrenidos resul-
ten muy débiles en relacion al poder de raciocinio de los agentes huma-
nos inteligentes. Nadie es completamente consistente. Lo que es impor-
tante es como el agente maneja paradojas o conflictos, como aprende
de los errores, como intenta sortear las situaciones de las que sospecha
que puedan resultar inconsistentes.

Minsky reconoce la necesidad del uso de mecanismos deductivos, pero
los circunscribe:

...I do not mean to suggest that «thinking» can be proceeded very far without some-
thing like «reasoning». We certainly need (and use) something like syllogistic deduc-
tion; but I expect mechanisms for doing such things to emerge in any case from
processes for «matching» and «instantiation» required for other functions. Tradi-
tional formal logic is a technical tool for discussing either everything that can be
deduced from some data or whether a certain consequence can be so deduced; it
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cannot discuss at all what ought to be deduced under ordinary circunstances. Like
the abstract theory of Sintax, formal Logic without a powerful procedural seman-
tics cannot deal with meaningful situations... (Minsky, 1975).

Como se ve, Minsky sefiala las dificultades de la LC, tanto para la
representacién de propiedades «tipicas», como para decidir qué deberia
inferirse en condiciones «tipicas» o «normales».

1. La relevancia

... The logical view of thinking has considerable attraction, since logic offers
valuable insight into the relation between rational held beliefs. Unfortuna-
tely, it does not cover all such relations. Its more striking omission is any
consideration of the purpose (or purposes) of reasoning. That is, the logical
view of thinking ignores questions of whether one should or should not draw
some inference, and whether one inference is better or more appropiate than
another... (J. Doyle).

La ldgica propone inferencias seguras, pero no siempre las utiles para
determinados propositos. Una inferencia apropiada en un dominio,
puede ser irrelevante en otro. Similares reclamos se realizan desde el
campo filoséfico (teoria de la argumentacién). En ambos casos se pos-
tula la necesidad de una «racionalidad util», ya que el mero razonar
correcto —que es lo que garantizan los procesos deductivos— puede
ser «irracional» considerando los propdsitos del razonador y el domi-
nio en que estd operando.

Un concepto de «racionalidad itil», presentado en Doyle (1989), pos-
tula que cada paso de razonamiento sea dado en el sentido de maximizar
la funcién de valor que el agente establece en base a sus expectativas y
preferencias. En ese caso, antes que formular la pregunta acerca de si
las inferencias son «seguras», importa preguntarse si los pasos de razo-
namiento dados y las conclusiones alcanzadas sirven eficientemente a los
propositos del razonador.

En otras palabras, si el razonar del robot tiene como paradigma el
razonar humano y quiere, al menos, imitar su performance no le servira
cualquier inferencia, por mas que sea légicamente valida, si no es rele-
vante para sus objetivos.

Contrario sensu, hay situaciones en las que el sistema debe actuar aun-
que no posea una descripcion completa del estado de cosas existente o
aunque, en caso de poseerla, no resulte tolerable en el tiempo el anlisis
de todos los factores en juego. En este caso actuard a partir de extraer
conclusiones no seguras (en el sentido del «control de calidad» exigido
por la légica standard), corriendo el riesgo de que, ante la llegada de nueva
informacion, las decisiones adoptadas hayan resultado erréneas. Esta con-
tracara de la racionalidad util nos lleva a la cuestion de las extensiones
no monotonas de las inferencias deductivas.

153



RAUL J. CARNOTA
2. La monotonia

...A key property of intelligence —whether exhibited by man or by machine—
is flexibility. This flexibility is intimetely connected with the defeasible nature
of commonsense inference(s)...; we are all capable of drawing conclusions,
acting on them, and then retracting them, if necessary in the face of new
evidence. If our computer programs are to act intelligently, they will need
to be similarly flexible... (M. Ginsber).

Supongamos que un amigo nos menciona un pdjaro, llamado Pi-pio, que
tiene en su casa. Seguramente lo imaginaremos en una jaula ya que, si
no tenemos mds informacidn sobre el mismo, es razonable suponer que
vuela.

¢Como representar esta asociacion heuristica?

Un camino en Légica de primer orden es la formulacion «Todos los
pajaros vuelan»:

Vx Pdjaro(x) — Vuela(x) (1).

¢Qué ocurre en ese caso si Pi-pio es un pingtino?
Podemos representar nuestro conocimiento sobre los pingtiinos
mediante otro condicional standard:

Vx Pingiiino(x) — Vuela(x) (2).

El problema es que la representacion conjunta de (1) y (2) determina
que no pueden existir individuos que sean a la vez pdjaro y pingiino.
En la LC, si T es un conjunto de sentencias y P es una sentencia,

si T — Pentonces T UN + P,
para cualquier conjunto N de sentencias. Si consideramos que:

Pajaro(Pi-pio) (3),
y Tes (1), (2) y (3) resulta que T + Vuela(Pi-pio).

Por la monotonia de la consecuencia clésica, si conocemos el nuevo

hecho:
Pingiiino(Pi-Pio) (4),

tendremos que T U {Pingtino(Pi-pio)] +— Vuela(Pi-pio), y, a la vez, de
(2) y (4) se deduce — Vuela(Pi-pio).

Sin embargo, una persona normal, aun aceptando las «reglas» antes
serialadas, resolveria la situacion aplicando un «principio de predomino
de la informacién mads especifica», que jerarquiza (2) sobre (1), y descar-
taria esta ultima sentencia al opinar sobre Pi-pio, sabiendo que es pin-
guino.

En esta deduccidn, hemos aplicado un esquema parecido al ejemplo
de Sécrates. ¢Qué es lo que falla? Pareceria que no hay dudas sobre que

154



LOGICA E INTELIGENCIA ARTIFICIAL

«Todos los hombres son mortales», mientras que al representar nuestra
creencia en la forma «Todos los pajaros vuelan» estamos «forzando» una
cuantificacién universal, que no es el adecuado reflejo de la expresion
del lenguaje corriente «LLos pajaros vuelan» (o al menos no lo es en nues-
tro mundo real, aunque tal vez lo sea en un mundo hipotético alterna-
tivo, sin pajaros excepcionales).

Una solucién seria representar asi nuestro criterio para decidir sobre
la capacidad de vuelo de los pajaros:

V¥x Pajaro(x) & — Pingiiino(x) — Vuela(x) (5).

El problema es si Pi-pio es avestruz, o tiene el ala rota o las patas
amarradas a una piedra, o...

La regla tiene excepciones y no sabemos enumerarlas todas. Sin
embargo la seguimos usando a propésito de cualquier pajaro que nos
es mencionado, mientras no existan evidencias en contrario (como que
es pingliino, que tiene alas rotas, que tiene las patas atadas, etc.).

A estos casos se referia Minsky al indicar la incapacidad de la LC
para tratar las propiedades «tipicas» de los individuos de un dominio.

Otro ejemplo, inspirado en J. McCarthy, es el siguiente. Suponga-
mos que entre nuestras creencias se encuentra que: «5i el tanque de com-
bustible no esta vacio y la bateria estd cargada, el auto va a arrancar».
Pero este condicional no va a ser verdad en un mundo (que podria ser
el real), en el que el carburador esta roto, o en el cual estén cortados
los cables de la bateria, o en el cual el tanque, si bien no esta vacio, esta
lleno de agua, o « » que seria necesario verificar para que
se pueda deducir que el auto arranca. Sin embargo, planeamos el dia de
trabajo sobre la base de verificar sélo las premisas de la regla simple ante-
rior. Si luego se adiciona la informacién de que el tanque estaba lleno
de agua, la conclusién nueva sera que el auto no arranca. La conclusién
previa es «derrotada» siendo que sus premisas siguen siendo verdaderas.

El llamado Nixon Diamond, nos enfrenta a una situacion mds com-
plicada. Si entre nuestras creencias tenemos que «Normalmente los cua-
queros son pacifistas» y que «Normalmente los republicanos son belicis-
tas», ¢qué podremos afirmar de Nixon, del que sabemos que es cudquero
y republicano? En una formalizacion «clasica» de este problema, esas dos
caracteristicas no pueden ser verdaderas a la vez en ningun individuo.
Si en el caso de los pdjaros existia una heuristica llamada «principio de
predominancias de lo especifico», y en el caso del auto otra heuristica
sobre la relevancia de los distintos factores que condicionan el arranque
normal, en este caso, no existen principios intuitivos generales que guien
la respuesta de un agente inteligente. Cada uno podra preferir una u otra
respuesta, segun la fortaleza que le asigne a cada creencia, o permanecer
agnostico.

Problemas como los que hemos presentado, han aparecido, desde
antes del nacimiento de la [A, en otros campos, notoriamente en el Dere-
cho, la Etica y la Metodologia de la Ciencia.
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Consideremos el cuerpo legal total en un momento y pais dado.
Las premisas para que el juez resuelva el pago de un siniestro por parte
de una compania de seguros estdn todas estipuladas de un modo u
otro. Sin embargo el juez resuelve el caso verificando algunas de esas
premisas y dejando a la parte demandada el trabajo de presentar prue-
bas para las otras (por ejemplo una condicién de excepcionalidad que
invalida el pago). Mientras la compania no presente pruebas, el juez
supone «por defecto» que dichas condiciones de excepcionalidad no
existieron, y, si se verifican las premisas principales, concluye que debe
pagarse.

En este caso, si bien son conocidas todas las posibles excepciones,
su verificacién completa resulta muy «costosa». Las conclusiones que
surgen son derrotables, en el sentido de que la presentacion de prue-
bas que contrarien la «asignacion por defecto», significard su retrac-
tacion.

En Etica, la discusion sobre el caracter prima facie de los principios
morales ya trajo antano conflictos respecto a su formalizacion. Conside-
remos el principio moral: «Las promesas deben ser respetadas». Una for-
malizacién universal como «Toda promesa debe ser respetada», pierde
de vista el caracter prima facie del principio, donde las posibles excep-
ciones seran reflejos de conflictos morales (una ruptura de una promesa
que sirva para aliviar un sufrimiento). El fil6sofo W. D. Ross (1927),
refiriéndose a este tipo de casos afirma:

..Any act that we do contains various elements in virtue of which it falls under
various categories. In virtue of being the breaking of a promise, for instance, tends
to be wrong; in virtue of being an instance of relieving distress it tends to be right...

Sin embargo, para Ross, la ruptura de la promesa, aun justificada,
no elimina el reconocimiento de la obligacién «prima facie» de mantener
las promesas.

¢Cémo decidir sobre la conveniencia o no de aplicar en cada caso
los «principios prima facie» o sus excepciones, de forma de sortear el con-
flicto?

En el campo del Método Cientifico, en Black, 1935, se afirma que,
en general, es imposible explorar cada una de las posibilidades que
podrian ser relevantes para la solucién de un problema. El anico proce-
dimiento factible es tomar la verdad de cierto nimero de supuestos como
dada, y concentrar la atencion en el testeo de las hipotesis principales.
La decision acerca de cudles proposiciones seran consideradas hipdtesis
principales y cuales subsidiarias, no puede especificarse en una regla y
debe remitirse a un juicio sensato.

La alternativa a una larga y completa, pero muy costosa, si no impo-
sible, descripcion de las precondiciones de una regla es basar las conclu-
siones sdlo en informacion parcial, y rezar para que los factores que han
sido ignorados no aparezcan. En ese caso habrd que estar preparados
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para que cada tanto se produzcan errores en las conclusiones (el costo
de relajar el «control de calidad de las inferencias»). Este problema de
equilibrar el monto de conocimiento requerido para hacer una inferen-
cia por un lado, con la exactitud de la inferencia por el otro, es el lla-
mado en A qualification problem (el problema desaparece, por supuesto,
si se suponen mundos ideales, de modo de operar como si las excepcio-
nes no existieran, pero el sistema asi construido no sera muy util).

Tomar los atajos e ignorar mucha de la informacién que es poten-
cialmente relevante, pagando el precio de tener que retraer algunas con-
clusiones frente a evidencia contradictoria, es el camino que recorren los
procedimientos para el razonamiento no monotono.

3. Loégica y complejidad

Supongamos que se desea interrogar al sistema, cuyas informaciones alma-
cenadas son A,,...,A,, sobre si «cree» en B. Si entendemos esto como
la pregunta acerca de si B se da en los estados del mundo concebidos
por el agente en que se dan A,,...,A,, la légica standard nos propor-
ciona un método de prueba puramente sintactico. La aplicacion de este
método equivale a hallar alguna secuencia de férmulas del lenguaje, que
termine en B y que esté compuesta solo por A,,...,A, y los axiomas de
la logica subyacente o por férmulas derivadas de las anteriores de la
secuencia por medio de las reglas de inferencia R ,...,R.,.

El primer inconveniente es que, si el lenguaje es el del calculo de predi-
cados de primer orden, esto no es posible en general, ya que dicho cédlculo
no es decidible. Existen subconjuntos decidibles de dicho lenguaje, pero
incluso en esos casos, considerando que el lenguaje posea negacion y dis-
yuncion, el problema de la decision (decidir si una férmula es o no teo-
rema) resulta computacionalmente intratable. Por lo tanto existirdn situa-
ciones en que la respuesta no aparecera en tiempos razonables, y no se
puede prever cuando estas situaciones van a ocurrir. Esto es preocupante
si el robot tiene que actuar en tiempo real (por ejemplo un robot industrial).

La aceleracién de los tiempos de proceso por mejoras tecnoldgicas
no resuelve el problema, precisamente porque el peor caso no tiene una
cota de tiempo fija. Imaginemos disyunciones del siguiente tipo:

Hecho 1: Adolfo es profesor de IA o de Programacién.
Hecho 2: Jorge es profesor de Lingiiistica o de Sistemas Operativos.

Es claro que tenemos cuatro posibilidades a considerar. Si los hechos
aumentan, los casos crecen exponencialmente. Si agregamos procesado-
res para su computo, los tiempos decrecen linealmente. Esto conduce a
la siguiente tabla, extraida de Levesque (1986b), donde TIEMPO 1 repre-
senta una velocidad de analisis de un millén de posibilidades por segundo,
el TIEMPO 2, un millén de millones de posibilidades por segundo, y
el TIEMPO 3, un millén de maquinas en paralelo, cada una de ellas ana-
lizando un millén de millones de casos por segundo:
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Hechos Casos Tiempo 1 Tiempo 2 Tiempo 3
1 2 - — -
2 4 — — -
S 32 — — -
10 1.024 —_ — —
25 30 millones 30 seg. — —
50 30 anos 20 min. 0,001 seg.
100 10 ** 16 anos 30.000 mill. anos 30.000 anos

Si estamos representando hechos simples por medio de expresiones
atdmicas o sus negaciones, las disyunciones del tipo ejemplificado arriba
van a ser usadas cuando el conocimiento del dominio es incompleto.

Del mismo modo, la negacién de un hecho puede sugerir una dis-
yuncion de muchos otros, si el dominio es rico en individuos:

— Profesor(Raul), que nos dice que Raul no es profesor, pero no
nos dice qué es Raul ni quiénes de los otros individuos es profesor,

3x.Profesor(x) A Dicta(x,IA) que dice que existe al menos un profe-
sor de Inteligencia Artificial, sugiriendo una disyuncion sobre los indivi-
duos que podrian serlo.

La pobreza de conocimientos acerca del dominio requiere, para ser
representada, una mayor riqueza del lenguaje, independientemente de si
se utiliza 0 no un formalismo basado en LC. En este sentido, la Logica
de primer orden permite un alto grado de expresion de estas «indetermi-
naciones» del conocimiento. El precio a pagar consiste, en cualquier caso,
en mayor complejidad computacional.

Empobrecer el lenguaje, al menos si la expresion del problema lo
admite, es una forma de restringir la complejidad. Un ejemplo son los
lenguajes basados en cldusulas de Horn, en que se evitan la disyuncion,
la negacion y la cuantificacion existencial. Esto evita reescrituras com-
plejas de hechos simples, como las derivadas de equivalencias logicas
(P = (p&q) V (p&—q)).

Otra alternativa consiste en el «forzar el completamiento» de la infor-
macion de la BC, mediante ciertos mecanismos ad-hoc que se supone que
los agentes inteligentes utilizan para actuar frente a incertidumbre (valo-
res por defecto, reglas heuristicas, supuestos de mundo cerrado, etc.).
Esto permite llegar a conclusiones que no estan implicadas deductiva-
mente por aquello que la BC conoce y que luego pueden ser derrotadas
al adquirirse nueva informacion.

Dentro de estos mecanismos pueden encuadrarse, ahora desde otra
motivacion, las caracterizaciones prototipicas de los objetos del domi-
nio: «Si es pajaro, entonces vuela» (condiciones necesarias prototipicas
del ser pajaro) o «Si vuela y canta, entonces es pajaro» (condiciones sufi-
clentes prototipicas).

Consideremos el caso de un robot que, de acuerdo con sus objetivos,
decide trasladarse en una habitacion desde un punto A hasta otro punto B.

158



LOGICA E INTELIGENCIA ARTIFICIAL

Las modificaciones que esta accién produzca en su BC, le permitiran saber
que, luego de dicho traslado, su posicién en el escenario en que esta ope-
rando serd B. Pero también necesitara saber qué ocurre con el escenario
en su totalidad luego de ese movimiento. En verdad, nada asegura que
otros factores presentes en la escena no hayan cambiado mientras el robot
ejecutaba su movimiento. Volver a un proceso deliberativo que analice
el curso de accién posterior requeriria, entonces, una nueva caracteriza-
cién de todo el escenario. Esto es muy costoso. Por otra parte no es el
modo de actuar inteligente que queremos construir. Luego del movimiento
del robot no parece razonable que la pintura del techo haya cambiado
de color (jaunque no es imposible!). Un supuesto «razonable» es que sélo
cambia lo minimo imprescindible de acuerdo con las acciones explicita-
das y las proposiciones que describen el escenario. Este supuesto, cono-
cido como frame axiom, completa la descripcidn del escenario en forma
no segura, pero permite operar al sistema con mayor eficiencia (evitando
considerar todas las alternativas de cambios), a riesgo de cometer errores.

Estos mecanismos de completamiento nos llevan nuevamente al
campo del razonamiento no monétono, ya que el agregado de informa-
cion puede llevar a deshacer inferencias previas. Si bien esto también tiene
su costo, si la eleccién de las suposiciones es razonable, en el sentido de
que sea poco probable que luego deban ser levantadas, el balance final
de limitar los casos sobre los que se razona serd ventajoso. Este también
es el caso en que se posee informacién completa, pero en que el andlisis
exhaustivo es muy complejo.

Sin embargo, pese a lo atractivo del planteo, los mecanismos de «com-
pletamiento» no siempre redundan en una reduccién de la complejidad,
como se comenta en la préoxima seccidn.

4. La consistencia

Otro cuestionamiento a la utilizacion de la logica estandar, segin las ideas
de Minsky, es la condicién de consistencia como requisito para desarro-
llar teorias no triviales (en las que no toda formula del lenguaje es deri-
vable de los axiomas de la teoria).

Puede ocurrir que una BC tenga alguna inconsistencia «local», que
puede considerarse «irrelevante» en vista del conjunto total de informa-
cién contenida. La aspiracidn es poder continuar sacando conclusiones
interesantes. Sin embargo, en LC, esta Base seria trivial, en el sentido
de no poseer ningun modelo.

En el 4rea de Sistemas Expertos, distintos expertos suelen no coinci-
dir sobre un mismo aspecto del conocimiento del dominio. Si se consi-
dera un problema de diagndstico médico, es natural que, a partir de los
mismos sintomas observables, distintos especialistas tengan opiniones con-
flictivas. En los textos estandar del drea se recomienda «evitar» esta situa-
cion por medio de algun tipo de arbitraje. Esto no siempre es posible,
ni tampoco es posible, en general, «depurar» grandes Bases de Conoci-
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miento. Probablemente, en casos como el de la medicina, tampoco sea
deseable: conocer la existencia de diagn6sticos en conflicto es muy impor-
tante para el paciente.

En los ultimos tiempos se han desarrollado aplicaciones a IA de las
logicas paraconsistentes. Una légica es paraconsistente si puede ser la
logica subyacente de teorias inconsistentes, pero no triviales. Estas 16gi-
cas fueron propuestas en forma independiente por el ldgico polaco Jas-
kowsky y por el brasileno Newton Da Costa, y desarrolladas amplia-
mente por éste ultimo, con aplicaciones interesantes a la IA. Entre muchos
articulos, se puede consultar Da Costa y Marconi (1989); Da Costa y
Subrahmanian (1989) y D’Ottaviano (1990).

El problema de mantener consistencia es central en las formalizacio-
nes del RNM, y produce una complejidad computacional extra. Los con-
flictos que se desean evitar al usar las inferencias por defecto, como en
el caso del Nixon diamond, pueden, en un contexto paraconsistente, verse
como situaciones normales, causadas por la falta de informacién com-
pleta: «... thinking is a process of resolution of conflicts, by the analysis
of evidences. Better saying, thinking is a process of resolution of con-
flicts, if possible. It may perfectly happen two opposite conclusions having
equal rights to be achieved, under the light of available knowledge. Thus
contradiction could not be removed, unless by the drastic measure of dis-
missing both conflicting conclusions. An alternative, not seriously con-
sidered so far, (is)... holding both conclusions and keep on reasoning them
out, no matter the contradiction, until incoming knowledge may evan-
tually enable a decision...» T. Pequeno (1990).

En Pequeno (1990) se sugieren formalizaciones proximas a la Logica
Default, pero con una logica de base paraconsistente.

S. Discusién

Hemos mostrado cdmo, a partir de algunos cuestionamientos basicos al
uso de la LC en los sistemas de IA, se motivan busquedas en Légica que
intentan salvar esos problemas. Pero la lista es muy incompleta.

El aprendizaje, aspecto clave en la definicion de inteligencia, se intenta
formalizar como un proceso inductivo. Esto reaviva el viejo proyecto de
fundar una logica inductiva, que viene desde los albores de la ciencia expe-
rimental. El proyecto consistia en ampliar los conocimientos elaborados
a partir de los datos experimentales incluyendo algunos que no estan total-
mente justificados por la verdad de las premisas. Nuevamente, este enfo-
que determina una nocién no mondtona de inferencia, ya que nuevos
datos (nuevas experiencias de aprendizaje) pueden no encajar en las reglas
generalizadoras e invalidar conclusiones previas. Se intentan desarrollar
también «légicas de la analogia», siempre con vistas a inferir consecuen-
cias plausibles a partir de casos previos similares.

La pregunta desde la ldgica es: ¢cudl es el control de calidad que le
pedimos a estas transformaciones? Obviamente, la respuesta no podria
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ser «ninguno», ya que entonces las conclusiones serian totalmente arbi-
trarias y no podriamos hablar de procesos inferenciales mas o menos gene-
rales.

Aun relajando el control de calidad de las inferencias, éstas deben
tener cierto grado de confianza, en el sentido de que no nos van a defrau-
dar en la mayoria de los casos. Esto sugiere una definicion ad-hoc de
cuando algo va a ocurrir mas frecuentemente que lo opuesto. Si para infe-
rir B a partir de A ya no exijo que B sea verdadero en todas las situacio-
nes en que A es verdadero, quiere decir que existirdn situaciones en que
— By A sonverdaderos y otras en que B y A son verdaderos. Qué sera
lo mas conveniente aceptar en esos casos, dependera de algun criterio
de preferencia entre los A&B estados y los A& — B estados.

V. INFERENCIAS NO MONOTONAS

...Monotonic logics lack the phenomenon of new information leading to a
revision of old conclusions... (McDermott y Doyle).

Los ejemplos de la seccién IV sugieren que, dada una coleccion de items
de informacién, representados como un conjunto P de proposiciones
en algun lenguaje 1égico, las conclusiones deductivas no son suficientes
para satisfacer los requisitos del razonamiento de «sentido comun». Esta
constatacion motivd, a partir de fines de los anos 70, el desarrollo de
numerosos procedimientos para formalizar el razonamiento no mond-
tono.

En estos procedimientos se establecen reglas de inferencia que per-
miten «saltar» a conclusiones no establecidas deductivamente a partir
de las premisas. Estas conclusiones no son seguras, en el sentido de
que las premisas no son condiciones suficientes para su obtencion. El
agregado de nuevas evidencias puede llevar a la cancelacion de inferen-
clas previas.

El tipo de reglas inferenciales utilizadas ya no puede ser las del tipo:
SiP,,...,P, entonces Q (logica estandar) porque en ese caso el agregado
de nuevas premisas no invalida la conclusion.

Las reglas de inferencia no monétonas son de tipo global y siguen
patterns como el siguiente:

Si Py,...,P,, y no se da que R,,...R,,, entonces Q,

donde el anadido de Rj puede invalidar la conclusién.

Lo que se espera de un sistema inferencial no mondétono es que, dados
P y P’ conjuntos (finitos) de sentencias y A una sentencia, si se da que
P |~~ A, no se siga que PUP’ |[~~ A, donde |~~ es el simbolo usado
para denotar una tal relacién de inferencia.

Esta caracterizacion negativa es muy vaga y abarca demasiados for-
malismos, motivados a veces desde perspectivas diferentes. Una de ellas
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es la del razonamiento «presuntivo» o por defecto, en contraposicién a
los sistemas basados en estimaciones de probabilidad o plausibilidad. No
siempre el razonamiento presuntivo tiene una interpretacion estadistica.
Esta ultima puede darse en el caso de supuestos como «si me hablan de
un pajaro, supondré que vuela», pero no en el de los criterios presunti-
vos utilizados por los jueces, como «todo acusado es inocente mientras
no se demuestre su culpabilidad», ni en el caso de razonamientos «autoe-
pistémicos» como «no tengo hermano mayor, porque si tuviera uno lo
sabria».

Los sistemas mas conocidos para formalizar el razonamiento por
defecto son: la negacion por falla de Prolog, caracterizada en Clark
(1978), la Légica Default, en Reiter (1980), Circunscription, en McCarthy
(1980 y 1986), Légica Modal No Monétona, en McDermott y Doyle
(1980), Légica Autoepistémica, en Moore (1985), y Redes con Heren-
cia, en Touretzky (1986). Cada uno de estos sistemas se presentd con
sus propios principios, sin que existiese un marco general en el cual todos
pudiesen ser comparados.

La generacién de formalismos para reconstruir el RNM, y la bus-
queda de sus principios generales ha sido uno de los estimulos mas des-
tacados desde la 1A sobre el campo de la Logica, y muchos investigado-
res de esta ultima disciplina se han involucrado activamente.

1. Caracteristicas de los procedimientos no mondtonos

El antecedente mas difundido de los procedimientos no monotonos es
la «hipdresis de mundo cerrado» (HMC), que se agrega a la informacion
contenida en una Base de Datos (BD). La HMC estipula que, si una por-
cidon atomica de informacion no se puede extraer de la BD, se supone
que vale su negacion. El efecto de este supuesto en una BD en que se
representan conexiones aéreas, es que, si no se puede obtener de la BD
una conexién entre Jujuy y Rio Gallegos, es porque no existe tal cone-
xién. En ese caso, se considera que la no existencia de la conexion es
una consecuencia de la BD extendida con la HMC. Si luego se agrega
a la BD informacion que permite establecer dicha conexion, la conclu-
siéon negativa previa desaparece.

En el caso mas general de una Base de Conocimientos (BC) consti-
tuida por una coleccién de cldusulas Horn (por ejemplo, un programa
Prolog con negacién por falla), este principio se formula as{, para cual-
quier literal positivo «ground» P(t):

(RHMC) Si BC#P(t), entonces BC |~~ — P(t),

donde |~~ representa la inferencia no monétona inducida por la HMC.
Si analizamos la estructura de la regla (RHMC), hallamos varias carac-
teristicas distintivas:
1) la regla es de tipo global, es decir, que la inferencia depende de
todas las consecuencias de la BC,
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2) lainferencia depende de los conocimientos presentes en la BC, pero
también de los ausentes,

3) desde el punto de vista del control de calidad de las inferencias,
si bien la regla no es segura (la presencia del conocimiento almacenado
en la BC no es suficiente para garantizar la conclusion), sin embargo esta-
blece un criterio de resguardo de consistencia en la primera parte de su
formulacién. Este criterio estipula que — P(t) se satisfaga en al menos
alguno de los mundos descritos por la BC,

4) satisfechas las garantias, se efectiviza el «salto a las conclusiones»
que era el objetivo original. De este modo se incorpora — P(t) a las con-
secuencias ampliadas de la BC (o sea, las consecuencias no mondétonas
de BC). Los modelos de la BC ampliada seran el subconjunto de los mode-
los de la BC original en que se satisface — P(t). Mas en general, las con-
secuencias no monotonas de la BC original seran las consecuencias stan-
dard de BC U HMC(BC), donde HMC(BC) es el conjunto de
informaciones agregadas por la (RHMC).

Podemos ejemplificar este mecanismo con nuestro caso canénico:

1) Vx (Pdjaro(x)& — Anormal(pajaro(x))— Vuela(x))

2) Vx (Pingtino(x)— Anormal(pdjaro(x)))

3) P4ajaro(Pi-pio),
que nos expresa que «normalmente los pajaros vuelan», «los pingiiinos
son pajaros anormales» y que «Pi-pio es un pajaro». En principio nada
podemos afirmar sobre la capacidad de volar de Pi-pio, dado que no sabe-
mos que sea 0 no anormal como pdjaro. Pero si aplicamos la (RHMC)
a Anormal(p4jaro(Pi-pio)), podemos concluir no monoténicamente:

4) — Anormal(pajaro(Pi-pio)), y por lo tanto,

5) Vuela(Pi-pio).

Si luego se agrega:

6) Pingiino(Pi-pio),
ya no podremos derivar 4) ni 5) de la BC.

Los «criterios de control de calidad» de las inferencias no monéto-
nas suelen tener por objetivo el impedir que la BC se convierta en incon-
sistente ante la llegada de nueva evidencia (como que Pi-pio es pingtiino).

La (RHMC) no puede aplicarse a una BC que no sea formada por
cldusulas Horn, porque en ese caso fracasa el «control de calidad»
impuesto por la primera parte de la regla. En efecto, si tenemos una BC
compuesta solo por la disyuncion PVQ, la aplicacion reiterada de la
(RHMC) permite inferir — Py —Q, y luego — (PVQ), lo que consti-
tuye una contradiccién con la BC original.

El procedimiento de Circunscripcion de McCarthy generaliza la
nocién de inferencia no mondtona basada en la HMC para superar sus
limitaciones. Se basa en la idea de seleccionar como modelos «preferi-
dos» de una BC los que posean extensiones minimales de ciertos predi-
cados como por ejemplo Anormal. Esta restriccion de los modelos equi-
vale a reforzar la BC, lo que se hace por medio del «Axioma de
Circunscripciéon» (AC), que depende de la BC y de los predicados que
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se estan circunscribiendo. Las conclusiones por defecto seran las que se
obtengan deductivamente de la BC U AC(BC, Anormal), y serdn satisfe-
chas en todos los modelos de esta Base ampliada, es decir, en los mode-
los preferidos seleccionados de la BC original.

En la Logica Default (LD) de Reiter, otro de los formalismos conoci-
dos, se aumentan las conclusiones deductivas de un conjunto de axio-
mas W, mediante el agregado de reglas de la forma:

A:B/C

Una lectura informal de dicha regla es:

«si A se da en la extension y no se da — B (es consistente suponer
B), entonces infiera C».

Su uso genera extensiones de las consecuencias standard de W.

Una Teoria Default es un par {W,D), donde W es un conjunto de
formulas y D un conjunto de reglas Default. En nuestro ejemplo:

D = {P4jaro(x): Vuela(x)/Vuela(x)}

W = {Pajaro(Pi-pio)}.

Dado que en el contexto de esa teoria no es inconsistente suponer
que Pi-pio vuela, la extension (unica) de la teoria incluird la conclusién
(derrotable) Vuela(Pi-pio). No es dificil observar que el mecanismo de
la LD, aunque distinto al de Mundo Cerrado y Circunscripcién, man-
tiene las caracteristicas generales comentadas mds arriba. En particular,
en cada regla del tipo «normal»:

A:B/B,
la condicion «es consistente suponer B» constituye el control de calidad
que, si es satisfecho, nos permite pasar de la premisa A a la conclusién
por defecto B.
Incluyendo conocimientos sobre pingiiinos, obtenemos:

!’;'}i;tr(}{_\'): Vug_l_ﬁ(x) Pingiiino(x): — Vuela(x)
Vuela(x)

W1 = {Pingtiino(Pi-pio), Vx Pingiiino(x) —P4jaro(x)]}.

En este caso nos encontramos con dos posibles «extensiones» o esce-
narios, en uno de los cuales Pi-pio vuela y en el otro no vuela. Si adopta-
mos una vision escéptica (considerar solo las consecuencias que surgen
en todas las extensiones) nada podemos afirmar sobre esa propiedad de
Pi-pio. Larazén del comportamiento antiintuitivo es que falta la informa-
cién de que los pingtiinos son pdjaros excepcionales respecto al volar (que
en el ejemplo de aplicaciéon de la HMC se reflejaba en (2)). Esto nos lleva
a modificar las reglas, incluyendo en las mismas las excepciones conocidas:

D2 = {Pajaro(x) & — Pingtino(x): Vuela(x)/Vuela(x);
Pingtino(x): — Vuela(x)/ — Vuela(x)}.

Por un lado esto revela una cierta «fragilidad» en la representacion,
ante la aparicion de nuevas excepciones. Por otra parte, notese que la
regla modificada sigue siendo una regla por defecto, ya que, en el mundo
real, existen otros casos de pdjaros que no vuelan.

D1 = :

— Vuela(x)
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Desde el punto de vista semantico, en la Logica Default, se restrin-
gen los modelos de W de acuerdo a las reglas Default. En nuestro primer
ejemplo, se descartan aquéllos en que Pi-pio no vuela. Los restantes mode-
los seleccionados de la BC son exactamente los modelos de la extension.
Entre estos ultimos puede no estar el mundo real. La inferencia Vuela
(Pi-pio), a partir de Pajaro(Pi-pio), puede no ser vélida en dicho mundo.
El «control» de la regla sélo nos asegura que existe algin mundo com-
patible con la BC, en que Pi-pio vuela. En el caso de la teoria (W1, D1),
existen dos subconjuntos de modelos de la BC en competencia. La modi-
ficaciéon de la regla en D2 representa la preferencia por uno de los dos.

En el caso de la HMC, si considero las sentencias (1) a (3), entre todos
sus modelos existirdn algunos en que Pi-pio es anormal (y no vuela) y
otros en que no es anormal (y vuela). La condicién de la regla (RHMC)
nos asegura que estos ultimos existen, y los modelos de las conclusiones
extendidas seran aquellos en que la extensiéon de Anormal es minima (en
este caso, vacia). Si se agrega (4), el panorama cambia, la extension
minima de Anormal ahora incluye el individuo Pi-pio, y el control de
calidad de la (RHMC) impide la aplicacion de la regla, ya que, ahora,
en todos los mundos compatibles con la nueva BC, Pi-pio es anormal.

La aplicacién de las reglas de la Logica Default o de esquemas como
Circunscripcidn sobre alguna propiedad reflejada en la BC, equivale a
restringir el conjunto de modelos de la BC segun ciertas heuristicas que
el constructor de la BC tiene en mente: por ejemplo, que un pajaro, del
que no se conoce mds informacién, vuela. Estos modelos preferidos por
el disenador de la BC, serdn los modelos de la extensién generada por
el procedimiento no mondtono. En el «Nixon diamond» la preferencia
puede establecerse a partir de una mayor confianza en un supuesto que
en otro. Si no es posible establecer esta preferencia, no hay restriccién
de modelos y el sistema se mantiene «agndstico» (o presenta las dos alter-
nativas contradictorias).

2. La légica de las inferencias no mondtonas

D. Gabbay, en Gabbay (1985), fue el primero en preguntarse, dada una
relacion |~~ entre enunciados, cudles serian las propiedades formales
que la podrian caracterizar como la relacion de inferencia de un sistema
no monétono. El punto de partida para este analisis fue la consideracion
del caso de una relacién estandar deductiva . La respuesta en este caso
habia sido dada por A. Tarski. Si + satisface las tres condiciones que
siguen (y que estdn expuestas en una version finitaria, es decir, conside-
rando s6lo conjuntos finitos de premisas), es la relacién de inferencia de
algun sistema de logica deductiva.

Reflexividad: A,,...,A,, BB
A, A X5 ALLLAL, XHB
C : 19 sfin 5 Lyeeesfhny ]
ut A, A.rB
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A,...,A.+B
A,...,A,, X+B
Los distintos sistemas deductivos conocidos se obtienen agregando
diversas propiedades a este conjunto minimo. En particular, si se desea
trabajar con un lenguaje mads rico, que contenga las conectivas clasicas,
deben agregarse las propiedades que caracterizan a dichas conectivas.
Gabbay propuso, analogamente, unas propiedades minimas, que
deberia satisfacer una relacién de inferencia no monoétona. Estas son
Reflexividad, Cut y una forma mas débil de monotonia, que fuera bauti-
zada en Makinson (1989) como Monotonia Cautelosa (cautious
monotony):

Monotonia:

A, A l~~ X5 A, A, |-~ B

A,.. A, X|~~ B

En este contexto, el Cut expresa el hecho de que una conclusion plau-
sible es tan segura como los supuestos en los que esta basada, y por lo
tanto se puede «acumular» en las premisas. En otras palabras, no hay
pérdida de confianza en la cadena de derivaciones plausibles. Esto no
ocurre en las inferencias de tipo probabilistico, y es un hecho que este
tipo de inferencias no satisface Cut.

Cautious Monotony expresa el hecho de que incorporar una nueva
premisa, cuya verdad habia sido concluida plausiblemente de los cono-
cimientos previos, no deberia invalidar las viejas conclusiones.

Siguiendo a Makinson, se define una relacién de inferencia como
cumulativa si y solo si satisface Reflexividad, Cut y Monotonia Cautelosa.

Independientemente, en Shoham (1987), se propuso una teoria de
modelos general para las inferencias no monotonas. Sabemos que, en
logica estandar, una proposicién B se sigue logicamente de otra proposi-
cién A, y lo notamos:

AEDB siy sélo si B se satisface en todos los modelos de A.

Es inmediato que con dicha definicion, por ser los modelos de A& X
un subconjunto de los de A, la consecuencia l6gica = es monétona. Sho-
ham sostiene que una nocion de consecuencia logica no mondtona puede
caracterizarse a partir de algin subconjunto de los modelos de A:

A |~~ Bsiy solo si B se satisface en los modelos «preferidos» de A.

Dada una légica estandar L, Shoham construye una Logica Preferen-
cial L, anadiendo al conjunto de interpretaciones de 1., una relacion de
«preferencia» (() entre ellas. La relacién de preferencia es un orden par-
cial y un mundo V es preferible a otro mundo W, si el agente considera
a V como «mads normal» que W. Asi es posible, dado A, concluir «por
defecto» B, si todos los mundos «mas normales» entre los A-mundos,
también satisfacen B. En otras palabras, B se sigue «por defecto» de A
en L, si los B-mundos son un superconjunto de los A-mundos «mas
normales».

Esta nocion de «normalidad» es una generalizacion de la HMC y Cir-
cunscripcion, tal como lo muestra el ejemplo de V.1. Alli los mundos

Monotonia Cautelosa:
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«mas normales» eran aquellos modelos de la BC que poseian la minima
extension de Anormal posible. Si en todos esos mundos «mas preferi-
dos», segin dicho criterio, Pi-pio no es anormal, entonces concluimos,
por defecto, que vuela.

Para Shoham, todo sistema no mondtono puede tener una semantica
en términos de una relaciéon de preferencia adecuada.

En Makinson (1989) se generaliza la definicion de las estructuras de
modelos preferenciales. Una estructura M es una terna:

M=<S, =, O,
donde S es un conjunto arbitrario no vacio («estados»), { una relacién
(de «preferencias») en S y &= una relacién entre las sentencias del len-
guaje y los elementos de S (de «satisfacibilidad»).

Una estructura de modelo preferencial M induce una relacion de infe-
rencia |[~~m de la siguiente manera:

A |~~m B siy sélo si, para todo s € S, si s (A, (satisface preferen-
cialmente A segun la relacion (), entonces s=B, donde

sE= (A siy solo si sEA y no existe s” € S, con s’s tal que s’ A.

La caracterizacion mas precisa de los elementos del modelo permite
definir distintas familias de relaciones de inferencia inducidas, y estudiar
las propiedades que poseen.

En particular, la clase de las relaciones cumulativas definidas por Gab-
bay coincide con las inducidas por las estructuras de modelo preferen-
cial stoppered (se dice que M = (S, =, () es stoppered si, dado cualquier
subconjunto T de S y un elemento t en él, o bien t es (minimal, o bien
existe  en T, ¢’ (ty € minimal).

Con estas herramientas es posible analizar los sistemas de RNM pro-
puestos en la literatura. Esto se realiza en Makinson (1991).

El procedimiento inferencial basado en la HMC y aplicable a clausu-
las de Horn extendidas, resulta ser cumulativo. Si se considera S, el con-
junto de todas las cldusulas Horn expresables usando un conjunto de sim-
bolos de predicado y simbolos de funcion primitivos, {A,, A,,...,A,} un
subconjunto finito de S, que denominaremos A, y B una sentencia, la
relacion de inferencia inducida por este procedimiento es:

Al~~B si y sélo si A UHMC(A)+B,

donde HMC(A) es el conjunto de los atomos negativos ground que
se infieren de A por la (RHMC), es decir:

HMC(A)={ —P(t): AVP(t)}.

Con esta definicidn es facil verificar que |~~ cumple las tres propie-
dades de Gabbay.

Makinson demostrd también que la nocidn de inferencia subyacente
en Circunscripcion de McCarthy es cumulativa.

Por el contrario, la Logica Default de Reiter, no resulta cumulativa,
aun en su version mds «conservadora» (considerando las inferencias plau-
sibles de un conjunto A, con reglas Default normales D, como aquellas
vélidas en todas las extensiones Default del mismo).

Consideremos una teoria Default con dos reglas:
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W.: (0} y D: {0:P/P; PVQ: —P/—P}.

Las consecuencias no mondtonas C(W,) coinciden con Cn({P}).
Consideremos ahora otra teoria con las mismas dos reglas y con:

W,:{PVQ}.

Esta teoria tiene tiene dos extensiones, ya que las dos reglas son apli-
cables, pero no compatibles. Una extensiéon es E, =Cn({P}) y la otra es
E,=Cn({ —P, Q}). Definiendo C(W2)=E, N E,, es claro que P no
pertenece a C(W2).

La situacién es, entonces, la siguiente:

W1 € W2 < C(W1), pero C(W1) € C(W2), y equivale a la falla
de (CM), si definimos A|~~B si B € C(A)

3. Sistemas no mondtonos condicionales

Un camino parcialmente distinto es el seguido en Kraus, Lehman y Magi-
dor (1990), al caracterizar varias familias de relaciones de consecuencia
preferenciales en términos sintacticos y semanticos. Con este propdsito
aumentan el conjunto de propiedades propuesto por Gabbay, de modo
de tratar con un lenguaje que posea las conectivas clasicas. Su objetivo
es elucidar las relaciones entre pruebas y modelos, con el objeto de per-
mitir el disefio de procedimientos de decision que sirvan para realizar infe-
rencias plausibles a partir de Bases de Conocimientos.

Cada familia de relaciones se identifica con cierto tipo de modelos
de tipo preferencial. A la vez, todas las relaciones de consecuencia defi-
nidas por los distintos modelos de una dada familia estdn cerradas por
un determinado conjunto de reglas de inferencia que las caracterizan sin-
tacticamente.

La relacion de inferencia Cumulativa se presenta como la mas débil
de la familia, y coincide con la propuesta por Gabbay.

Las dos familias que han sido mas tratadas desde entonces son la Pre-
ferencial y la Racional.

Una estructura de modelo preferencial KLM es una terna M = (S, 1(),
donde S es un conjunto («estados»), 1:S— U una funcién que asigna a cada
estado un «mundo posible» y ( es un orden parcial estricto en S, que
satisface la smoothness condition (stoppered, en el léxico de Makinson).

La funcion | permite caracterizar la nocion de satisfacciéon de una pro-
posicién A en un estado s, como 1(s) = A en el sentido usual de satisfac-
cién en un mundo.

En Kraus et al. se prueba un resultado de representacién del sistema
P de reglas en términos de los modelos preferenciales definidos arriba.
El sistema P esta constituido del siguiente modo:
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(RW) FA—B,Cl-~A (CM) Al=~B, A|~~C
Cl~~B A&B|~~C

(LLE) FA<B, Al-~C (REF) Al~~A
B|~~C

(AND) Al~~B, Al=~C (OR) Al==C, Bl=~C
Al~~B&C AVB|~~C

Donde «|~~» es una relacién de inferencia:

|~~ < L xL,yconsideramos que el par A, B es equivalente a la con-
juncién A&B, por lo que la representacion finitaria se reduce a una sola
férmula en el lado izquierdo de la relacién.

En el sistema P la regla Cut es una regla derivada, lo que permite definir
a la operacién de inferencia caracterizada por el sistema P como cumulativa:

(Cut) Al=~B, A&B|-~C
Al~~C

Una relacién de inferencia es racional, si es la relacién inducida por
un modelo ranked. Los modelos ranked son modelos preferenciales en
los cuales la relaciéon de orden tiene la propiedad ranked: existe una fun-
cién r: S=T, donde T es un conjunto totalmente ordenado por la rela-
cién [, tal que s ¢ s’ en S siy solo sir(s) [ r(s’) en T.

Las relaciones racionales resultan ser las cerradas por el sistema R,
que incluye todas las reglas de P, m4s la siguiente de monotonia racional
(rational monotony):

RM) Al~~B, Al=~—C
A&C|~~B

que expresa el grado mas alto de monotonia compatible con una nocién
de inferencia no mondtona.

Llegada a este punto, la relacion de inferencia |[~~ ha sido embutida
en un lenguaje, en el que juega el rol de un conectivo especial, lenguaje
gobernado por reglas del tipo deductivo. Las expresiones de este lenguaje
son llamadas por KLM «aserciones condicionales». Formalmente, exis-
ten notorias similaridades con los sistemas de la Légica Condicional
(LCOND), como algunos de los propuestos, entre otros, en Lewis (1973),
y con los sistemas de la obligacion condicional, que fueron presentados
en von Wright (1971), y en Hansson (1971). Desde el punto de vista sin-
tactico, el condicional especial de las LCOND, que notaremos ), no posee
la propiedad de refuerzo del antecedente, que si posee el condicional stan-
dard o material, es decir que: de (AYB) no se sigue (A& C)B), lo que le
da una caracteristica de «<no monotonia» en el plano del lenguaje. Ade-
mas los axiomas y reglas de inferencia tipicos de los sistemas de LCOND
muestran una fuerte similaridad con las reglas de P y R.
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La siguiente caracterizacion sintictica del sistema de Logica Condi-
cional NP de Delgrande (1987) es ilustrativa al respecto:

(ID)-AYA

(CC)H((A)B)&(AYC)) —»(AX)B&C))

(RT)FAYB—((A&B))C)—(A)C))

(CV)= — (AYB)—((A)YC)—(A& — B)C))

(CC)=((AYC)&(BYC))—((AVB))C)

RCM Si —B—C, de A)B se sigue A)C.

Notese la similaridad entre los 5 axiomas y las reglas (REF), (AND),
(CUT), (RM) y (OR), respectivamente, asi como entre la regla RCM y
la regla (RW), todas del sistema R.

Enrealidad las analogias son mas profundas, ya que una motivacion
de dichas logicas fue el poder representar situaciones en las que el agre-
gado de condiciones «derrote» las conclusiones del condicional, sin gene-
rar conflicto (inconsistencias potenciales). En otras palabras, que pue-
dan representarse simultineamente los condicionales: AYB, A&C) — B,
sin que esto acarree la imposibilidad de A&C.

Por otra parte, las similitudes semdnticas se hacen evidentes a partir
del trabajo de Shoham. En la LCOND se tiene una medida de similari-
dad entre mundos posibles. La verdad de un condicional AYB en un
mundo de referencia W se establece cuando B es verdadero en ciertos
A-mundos « respecto de W. En los sistemas de LCOND
contrafacticos clasicos, estos mundos «seleccionados» se caracterizan
como los «mas proximos» al de referencia en los cuales A es verdadero.
En el extremo, si el mundo de referencia W es un A-mundo, el seleccio-
nado serd el mismo W.

Sin embargo, hay que sefialar como restriccion en estas comparacio-
nes que el signo |~~, definido por reglas como las presentadas antes,
no permite anidamiento (ocurrencias iteradas), ya que estd reflejando una
nocion metalingtiistica de consecuencia. Por lo tanto, una correspondencia
con el condicional especial ) de las LCOND, sélo deberia tener en cuenta
aquellas féormulas AYB donde ni A ni B contienen a su vez el simbolo
» (férmulas no anidadas o «flat»).

Tampoco aparece en las LNM la nocién de mundo de referencia, con
lo que la relacidn de preferencia entre mundos es unica en cada modelo
preferencial.

A partir de Arlo Costa y Carnota (1989a y 1989b), se comenzaron
a establecer formalmente los primeros resultados que conectan sistemas
de LCOND vy los sistemas de tipo preferencial de las LNM. Posterior-
mente los mapeos entre LNM y LCOND fueron extendidos en Arlo Costa
y Shapiro (1991).

4. El dilema de las l6gicas condicionales

Antes del desarrollo de los sistemas preferenciales, ya existieron intentos
de utilizar sistemas de la LCOND para la formalizaciéon del RNM. La
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idea era reconstruir afirmaciones prototipicas y «reglas por defecto»
mediante el condicional especial. Asi, «<normalmente los pajaros vuelan»,
se representaria como:

Vx Pajaro(x) ) Vuela(x).

El filésofo D. Nute, atraido por las propiedades del condicional con-
trafactico, se propuso implementar un razonador no monétono mediante
un demostrador de teoremas de algin sistema de Légicas de la obliga-
cién condicional, como las presentadas en Hansson (1971), que son un
antecedente importante de los sistemas condicionales que buscan la expre-
sién del Razonamiento No Monétono. En el campo dedntico, los mun-
dos «absolutamente normales» son los «mundos ideales» donde todas las
obligaciones y deberes son respetados.

Las unicas conclusiones que se pueden extraer con los condicionales
derrotables son conclusiones en los mundos ideales o «mds normales»
(para un analisis mds detallado, ver Alchourrén, 1986 y 1991, y Car-
nota, 1991). Tanto en las LNM preferenciales Py R, como en las LCOND
correspondientes es valida esta regla (o teorema) de «modus ponens debi-
litado»:

(WMP) True [~~A, A|l~~B
True|~~B

El (WMP) nos dice que si A es verdadero en los mundos «absoluta-
mente mas preferidos» (que no suelen incluir al actual), entonces, de la
verdad de la asercion condicional A|~~ B se puede inferir que B es ver-
dadero en dichos mundos «ideales». Nada nos dice sobre el mundo actual.
El (WMP) sirve para razonar sobre las condiciones ideales, pero no sobre
las condiciones reales.

Los sistemas de la LCOND sin detachment, resultan ser los que for-
malmente corresponden a los sistemas de la LNM preferencial, del tipo
de P o R, por lo que estos tltimos resultan compartir las dificultades infe-
renciales de los primeros.

En Kraus, Lehman y Magidor (1990) se sugiere la posibilidad de usar
sistemas como P para obtener respuestas de una BC. La propuesta es:
si se tiene A en un stock de hechos y se deriva, mediante las reglas de
P, el condicional A|~~ B, a partir de la BC, a la pregunta «¢Es esperable
B?» se responderia positivamente. Esto parece equivaler a sostener el
«detachment» para |~~ . Dado lo informal del comentario es dificil inda-
gar lo que los autores tienen en mente, pero si también es derivable
C|~~ — B y el stock de hechos contiene A& C, se vuelve al conflicto ya
comentado, salvo que se use una logica especial en los hechos, que no
permita derivar ni A ni C de la conjuncién.

S. Las LNM y el detachment de las reglas Default

¢Cémo funcionan los formalismos conocidos para extraer conclusiones
por defecto?
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Como se vio al inicio de esta seccion, los procedimientos del RNM
poseen reglas para autorizar o bloquear el detachment de los condicio-
nales Default, de acuerdo a determinados criterios (por ejemplo criterios
de consistencia). Nuevas evidencias incorporadas a la BC pueden provo-
car el bloqueo del detachment de ciertos condicionales Default (para evi-
tar una inconsistencia en la BC), por lo que no se siguen derivando con-
secuencias previamente establecidas.

Repasemos el funcionamiento de nuestro ejemplo:

1) Vx (P4jaro(x)& — Anormal(aspectol(x)))— Vuela(x)

2) Pajaro(Pi-pio).

Con la (RHMC) aplicada a Anormal (aspectol(Pi-pio)), donde
aspectol define «ser anormal como pdjaro respecto al volar», obtene-
mos Vuela(Pi-pio). De entre todos los modelos de la BC hemos preferido
los que minimizan la extension de Anormal. El mundo real puede no estar
entre ellos, pero al menos sabemos que no es un conjunto vacio.

Si ahora sabemos que Pi-pio es pingliino y que, normalmente, los pin-
gliinos no vuelan, agregamos a la BC:

3) Vx (Pingliino& — Anormal(aspecto2(x)))— — Vuela(x)

4) Pingiino(Pi-pio).

Si aplicamos (RHMC) nuevamente, nos encontramos en la misma
situacién andémala senalada para el caso de la LC. Si agregamos:

5) Vx (Pingiiino(x)— Anormal(aspectol(x))), la aplicacién de la
(RHMC) ya no permite inferir Vuela(Pi-pio).

Esto restringe los modelos de la BC a aquellos donde vale Anor-
mal(aspectol(Pi-pio)). En este punto no podemos inferir nada sobre Pi-
pio. Aqui interviene entonces la (RHMC), que infiere por defecto:

— Anormal(aspecto2(Pi-pio)), garantizando, como «control de cali-
dad», que exista al menos algun modelo de la BC en que dicha conse-
cuencia se satisfaga (y donde Pi-pio no vuela). Evidentemente no tene-
mos certidumbre alguna de que las conclusiones por defecto sean valederas
en el mundo real. Solo tenemos la garantia de que, si son extraidas, no
es imposible que se verifiquen en dicho mundo. La autorizacion del detach-
ment del condicional por defecto consiste en la aceptacién —provisoria—
del consecuente, dado el antecedente y provista la garantia de consistencia.

La restriccion de los modelos equivale a afirmar en el antecedente
del condicional por defecto la negacion de todas las excepciones aun no
conocidas.

Al especificarse las propiedades de un operador |~~ mediante reglas
al estilo de los sistemas P o R, se establecen las condiciones de deriva-
cidn de condicionales a partir de condicionales, pero no se determinan
los mecanismos concretos que controlan el «salto a las conclusiones».
En ese sentido son postulados generales que caracterizan completamente
una clase de relaciones de inferencia, pero no una relaciéon de inferencia
concreta. Cada modelo concreto de esos postulados es una LNM, en la
que, bajo ciertos resguardos, se afirma la verdad por defecto del conse-
cuente.
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6. Logica no mondtona y revision de creencias

La teoria del cambio de creencias trata de la dinamica de los estados de
creencias, con el objetivo de modelizar las actualizaciones de los estados
de creencias de un agente o de un sistema de computacién, como resul-
tado de recibir nueva informacién. Existen varios tipos de cambios de
creencias. El mas simple es el que surge por el aprendizaje de algo nuevo
y es conocido como expansion. A veces, sin embargo, estas nuevas evi-
dencias contradicen creencias previamente aceptadas, lo que lleva a una
revision del estado de creencias con vistas a mantener su consistencia.
Esta revisién requiere la eliminacién de viejas creencias. Otras veces el
descubrimiento de que las razones para sostener una creencia han desa-
parecido conduce a una contraccién del estado de creencias. Una revi-
sion de un conjunto de creencias K, como resultado del aprendizaje de
una evidencia A, puede ser considerada como la sucesién de una con-
traccion de dicho conjunto por la negacién de A, y luego el agregado
(por expansion) de A. El primer paso asegura que la incorporacién de
la nueva evidencia no provocara inconsistencia en K. Una operacion de
contraccidn (y por ende una revisién) no es sencilla de definir: dado un
conjunto K y una sentencia C, existen varias formas de eliminar senten-
cias que puedan implicar C. Sii incorporamos, como criterio de raciona-
lidad, que la operacién redunde en la menor pérdida de informacién posi-
ble, una manera informal de visualizar una contracciéon de K por una
creencia C, es en términos de la familia de los subconjuntos maximales
de K que no implican C, que se nota K 1L C.

Alchourrén, Gardenfors y Makinson desarrollaron una teoria del cam-
bio racional de creencias, presentando construcciones explicitas de las
operaciones de cambio (en particular, las basadas en los subconjuntos
maximales citados), asi como postulados que dichas operaciones debe-
rian cumplir. Los dos enfoques son conectados en Alchourrén, Garden-
fors, Makinson (1985) a través de teoremas de representacion.

Los postulados AGM de revisién racional de creencias son ocho, seis
de los cuales son denominados basicos y dos complementarios Si deno-
tamos con * la funcién de revision, y consideramos conjuntos de creen-
cias cerrados por consecuencia loglca clasica (teorias), siguiendo a Gar-
denfors (1988), ellos son:

K*1) Si K es una teoria y A una sentencia, K*A es una teoria.

K*2) A € K¥A.

K#3) K*A < K'A (la expansion de K por A).

K*4) Si — A¢K, entonces KA © K*A.

K*5) K*A = Kfalso siy sOlo si = — A (donde Kfalso denota el
conjunto de creencias inconsistente).

K*6) Si A+« B entonces K*A =K*B.

K*7) K*(A&B) < (K*A)*B.

K*8) Si — B¢K*A, entonces (K*A) "B < K*(A&B).

173



RAUL J. CARNOTA

Consideremos un ejemplo en el que un estado de creencias de un sis-
tema estd reflejado por una BC y sus consecuencias ldgicas. Esta situa-
cién es la normal en la practica, y se dice que BC es una base del con-
junto de creencias K. Las funciones que efectivizan cambios en teorias
apelando a cambios en sus bases, son llamadas «revisiones de bases» y
estan siendo estudiadas entre los investigadores de IA.

Sea, en una situacion dada, la BC constituida por:

1) Vx (P4jaro(x)— Vuela(x))

2) Vx (Pingtino(x)— — Vuela(x))

3) Pajaro(Pi-pio).

Entre las creencias implicitas del sistema estaran:

4) Vuela(Pi-pio), y

S) — Pingiiino(Pi-pio).

Si ahora obtenemos una nueva evidencia:

6) Pingliino(Pi-pio), para acomodar (6) a la BC, manteniendo la con-
sistencia, debemos eliminar alguna creencia previa, entre 1), 2) ¢ 3). La
eleccion de qué creencias se eliminan (o de qué subconjunto se prefiere
conservar) dependera de algun criterio de preferencia entre las creencias
(o entre los subconjuntos maximales que no implican (5)).

Entre las funciones de contraccidn propuestas en Alchourrén, Gar-
denfors y Makinson (1985), la «partial meet contraction» de K por una
sentencia C, se define como la interseccién de una subfamilia de K L C.
Esta subfamilia es elegida por medio de una funcién de seleccion S, que,
si bien puede ser arbitraria, es razonable de suponer que escoja los sub-
conjuntos «mejores» de un cierto orden:

S(KLC)={K € KLC:K’(K’ para todo K” € KL CJ.

La contraccién K¢ resulta luego: K. =NS(K L C).

De acuerdo al criterio indicado antes, la revision de K por A, notada
K*A
(

En Makinson y Gardenfors (1990), se sugiere un método de traduc-
cién entre postulados de revision de creencias y propiedades de las LNM.
La idea basica es ver una expresidn de la forma:

BeK*A,

K como conjunto de hipétesis (o expectativas por defecto) auxiliares. A
la inversa, una expresion de la forma:

A|~~B de una LNM, se traduce a una de la forma B € K*A
sion, donde K es introducido como un conjunto de creencias fijo. La forma
de traduccidn es, entonces:

Al~~B si y sélo si B € K*A

Usando esta receta, es posible traducir los 8 postulados de revision
de AGM en reglas que definen propiedades del operador |~~, en parti-
cular, validas casi todas en el sistema R. A la inversa, los distintos postu-
lados para las LNM se traducen en condiciones de cambio de creencias
que son derivadas de los 8 postulados de la revision AGM. Por ejemplo,
la monotonia cautelosa (CM), se traduce en:

bl
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SiB e K*Ay C € K*A, entonces B € K*A&C, que se deriva de los
postulados de revisién.

Posteriormente, en Gardenfors y Makinson (1991), se proponen diver-
sos formalismos, «basados en expectativas» para generar procedimien-
tos de inferencias no monotonas. Estos formalismos se inspiran directa-
mente en distintos modelos de la teoria de cambio de creencias, y pueden
verse como generalizaciones del trabajo de Poole (1988). Una operacion
de inferencia basada en conjuntos de expectativas puede definirse infor-
malmente asi:

A implica no monoténicamente B si y sélo si B se sigue légicamente
de A junto con tantos elementos como sea posible del conjunto fijo K
de expectativas, con la condicidon de que sean compatibles con A.

Mas formalmente, dado un conjunto de expectativas K no vacio y
una funcion de seleccion S del tipo de la mencionada mas arriba, la ope-
racion de inferencia C se define como:

C[K,S] (A)=n{Cn({AJUK:K € S(KA —A)}.

Esta caracterizacion es la misma de (*), donde se define una revisién
de K por A basada en una «partial meet contraction function». Lo inte-
resante es que si S selecciona los mejores subconjuntos segiin un orden
transitivo, C[K,S] satisface todas las reglas del sistema R (asi como la
respectiva revision cumple los 8 postulados), mas una regla adicional que
no todos los sistemas R cumplen, llamada «Preservacion de Consisten-
cia» y que es la traduccion del K*§ (si A|~~ falso, entonces A+ falso).

Del punto de vista semantico, es facil ver que hay una relacién uno a
uno entre los A-mundos y los subconjuntos de la familia K L — A, por lo
que la aplicacién a esta ultima de una funcion de seleccion que elige segun
un orden transitivo, tiene las mismas caracteristicas de una seleccion de mun-
dos «preferidos» en una ldgica preferencial del tipo de la de Shoham.

Llegado a este punto, se evidencia una correspondencia formal muy
solida entre cierto tipo de revision de creencias (la denominada AGM)
y las relaciones de inferencia no mondétonas preferenciales mas «fuertes»
(mas proximas a la LC).

En una inferencia no monétona basada en expectativas se considera
un conjunto K fijo de hipétesis y se extraen del mismo conclusiones por
defecto (que mantienen el control de consistencia al restringirse a las con-
secuencias clasicas de sélo un subconjunto de K). En revision, las con-
clusiones son siempre deductivas a partir de un nuevo conjunto K’, resul-
tante de la previa contraccion de las premisas. En ambos casos, dado
el mismo criterio de «preferencia» los resultados (las conclusiones extrai-
das) son los mismos.

Esta vinculacién complementa y confirma resultados previos obteni-
dos en Alchourrén y Makinson (1981) que, en su momento, por el aisla-
miento mutuo de los campos de la Légica y la IA no tuvo repercusion
en este ultimo.

Una interpretacion epistemolodgica de esta correspondencia, sugerida
por Gardenfars y Makinson (1991), es pensar el conjunto de creencias
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K en dos fases. Mientras se lo esta utilizando, sus elementos son full beliefs
y se extraen las consecuencias deductivas de los mismos. Pero tan pronto
se procede a su revision, estos elementos son cuestionados, por lo que pier-
den su status de full beliefs, para convertirse en expectativas o hipdtesis
sobre el dominio, algunas de las cuales deberan ser descartadas con el fin
de introducir creencias nuevas, preservando la consistencia del conjunto.

7. Inferencias no mondtonas y complejidad

En la seccién 4 el problema de la complejidad computacional aparecio
vinculada al tema del RNM, a partir del uso de supuestos, como el «frame
axiom», para llenar lagunas del conocimiento. La hipotesis subyacente,
tal como se presenta en Levesque (1988), es la siguiente:

...The deviations from classical logic that will be necessary to ensure the tractabi-
lity of reasoning stand in very close correspondence to the deviations from logic
that we would have to make anyway to be psychologically realistic. If we look at
the kinds of mistakes people make, the kinds of problems people run into, and the
corners that are cut to get around them, we will find modifications to classical logic
that ensure the computational tractability of the associated thinking...

Uno de los caminos sugeridos para el completamiento de las BC es
el de las inferencias por defecto. Como ya se discutio, este camino puede
verse como una restriccion en el andlisis de los modelos s6lo a aquellos
«preferidos», en algun sentido, por el disefiador del sistema (precisamente
aquellos donde no se verifican ciertas excepciones).

El efecto de esta restriccién es que se deben analizar menos modelos
con la consiguiente simplificacién de los procesos de decisién.

Pero el reflejo de esta restriccidn en la teoria de prueba es inverso. Ahora
las inferencias son globales y deben realizar «controles» (usualmente de con-
sistencia), para justificar los «saltos a las conclusiones» no deductivos.

La simplificacion del proceso de decision lleva a la pérdida de la «natu-
ral computabilidad» de las reglas de inferencia deductivas.

Si bien a la hora de decidir si B se sigue de A,,...,A,, ya no debemos
explorar exhaustivamente todos los factores en juego (todos los modelos
de A,,...,A,), en cambio trasladamos a las reglas «no mondétonas» un pro-
blema de decisién ain mas complejo como es el de probar que una senten-
cia no se deriva de otras (problema ni siquiera semidecidible en el caso general
de primer orden). Es claro que muchas veces la motivacién de dicha infe-
rencia no monatona es la falta de conocimiento y la imposibilidad de infe-
rencia alguna (costosa o no). Pero el problema del test de consistencia ha
hecho que los formalismos de raciocinio no mondétono carezcan, en gene-
ral, de implementaciones efectivas, salvo para casos particulares.

Distinguiendo las dos etapas del proceso, es posible extraer conclu-
siones por defecto en forma rdpida. El costo computacional esta en los
controles de calidad.
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Este resultado es paradojal si con el «salto a las conclusiones» se
intenta imitar el «razonar de la gente», cuando evita el analisis de todas
las circunstancias posibles.

Como se afirmé en I1.2., el abordaje de problemas caracteristico de
la TA consiste en buscar heuristicas que eviten los analisis de todas las
posibles alternativas. De hecho estas heuristicas son «inferencias por
defecto ad hoc». El problema que detectamos es, entonces, el fracaso en
construir marcos formales generales de estas inferencias, que sean «natu-
ralmente computables».

En la practica, sin embargo, existen casos particulares en los que los
formalismos son implementables de modo que realicen inferencias en tiem-
pos razonables.

Estos casos particulares surgen de imponer restricciones al lenguaje
en que se expresan las premisas del razonamiento o al tipo de teorias
expresables. Ejemplos de esto son las restricciones que se hacen para
lograr computar ciertos casos de circunscripcién en Gelfond y Lifschitz
(1988), o las que se hacen en Shoham (1988), sobre la expresividad de
las teorias representadas, o el éxito del procedimiento de negacion por
falla en programas Prolog, o el uso de valores por defecto en redes semén-
ticas representando taxonomias.

En su trabajo, Shoham demuestra que ciertas restricciones expresi-
vas en las teorias formuladas llevan a restringir el andlisis a un unico
modelo. Una de las restricciones consiste en no permitir reglas Default
con efectos opuestos y donde las premisas puedan ser consistentes (tener
instancias comunes). En el caso conocido del Nixon diamond:

los cudqueros son pacifistas,
los republicanos son no pacifistas,
resulta claro que las premisas son consistentes y ese tipo de situaciones
no pueden ser expresadas para asegurar condiciones de computabilidad.
En particular, esta restriccion evita el tener que establecer criterios de
preferencias y tener que optar entre distintos conjuntos de Defaults con-
sistentes.

Lo antedicho sugiere la idea de que el factor de complejidad sélo puede
ser resuelto por una combinacién de inferencias Default y restricciones
expresivas. El proceso de control para poder aplicar una regla no moné-
tona, es naturalmente m4s tratable en lenguajes pobres (por ejemplo que
solo admiten clausulas de Horn). En lenguajes mads ricos expresivamente,
las inferencias no monotonas conocidas constituyen operaciones de alta
complejidad.

8. La pragmatica de las inferencias no mondtonas
¢Cémo deben entenderse estos mecanismos o reglas de «salto a las con-
clusiones»? ¢Son reglas de inferencia clasicas?

Por un lado, una regla de inferencia logica se caracteriza por inter-
actuar con los conectivos del lenguaje al margen de todo tipo de denota-
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ciones. Una regla que afirma — (—a)¢ a, no tiene «contenido» extra,
ligado a una teoria de un dominio particular. En ese sentido, podemos
decir que es «vacua» de contenido.

Las hipétesis de completamiento, de uso corriente en IA, tales como
el Frame Axiom, la HMC, etc. suponen una gran cantidad de conocimiento
especifico. Aceptar — P(t) si no es derivable P(t) no es una decisién trivial.
La justificacion de estas hipdtesis esta en supuestos heuristicos sobre el com-
portamiento del mundo (o de ciertos dominios o contextos).

Las reglas Default tampoco son generales. En realidad, son sustanti-
vas, en el sentido de que proveen conocimiento especifico de lo que se
espera que ocurra con ciertas propiedades de ciertos individuos en cier-
tos dominios.

Si proponemos un Default que afirme:

«Si una casa es habitable entonces esta calefaccionada»,
resultara muy razonable en Escandinavia, pero muy irrazonable en zonas
tropicales.

Esto es asi, ya que la razén de la adopcién de una hipétesis derrota-
ble es econdmica. Se espera que, a la larga, si el Default esta bien ele-
gido, la mayoria de las inferencias sera correcta. El caso es que el con-
cepto de «bien elegido» depende de factores externos —y dependientes
del dominio— como el dafio que puede hacer una inferencia errénea. Si
el 5% de los pdjaros no vuela, adoptar el supuesto «Los pdjaros vuelan»
es razonable. Siel 5% de la gente que anda por la calle tiene la costum-
bre de dar punaladas en la espalda, el Default «si se cruza una persona
por la calle, no es preciso cuidarse la espalda» es peligroso (si el porcen-
taje cae a 0,000005%, ya seria aceptable).

Este mismo criterio pragmatico es el que guia la utilizacién de nor-
mas presuntivas en el sistema juridico. Un principio que afirma: «Si
alguien falta de su domicilio y no da noticias por S anos, se lo considera,
a todos los efectos legales, como fallecido» es adoptado por la justicia
considerando que el margen de error sera muy bajo (esta vez en base a
consideraciones referidas a las normas de convivencia social, y no consi-
deraciones estadisticas) y el beneficio de resolver cuestiones legales tra-
badas es muy alto.

Los formalismos basados en ordenamientos de sentencias o de con-
juntos de estados, en cada caso apelan a criterios pragmaticos (considé-
rese lo que implica en este sentido «preferir» una conclusién u otra en
el problema de Nixon diamond). Si bien se pueden senalar sus propieda-
des generales, dadas las propiedades del orden subyacente, cada logica
preferencial concreta es la que se construye a partir de un orden especi-
fico. En cada modelo preferencial, el orden particular ¢ refleja un cono-
cimiento del dominio (una intuicién del disenador acerca de cudles son
los «modelos preferidos» en una aplicacion de IA). En realidad, cada vez
se estan considerando teorias parciales de los dominios representados,
teorias que engendran los casos particulares de reglas, meta-reglas, orde-
namientos, etc. en que se sustentan las inferencias no mondtonas.
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En resumen, podemos decir que el RNM se inscribe dentro del razo-
namiento pragmatico, en el sentido en que es particular a un contexto,
en el cual la informacidn es limitada, y que emplea criterios heuristicos
para arribar a conclusiones razonables. Sus reglas son, en realidad, meta-
reglas para razonar sobre dichos contextos particulares. La monotonia
es una propiedad caracteristicamente libre de contexto, y por eso no puede
caber en este tipo de raciocinio.

Cada LNM particular esta definida en una sola estructura de modelo
y las inferencias en este modelo, que podriamos llamar inferencias prag-
maticas, se caracterizan por la verdad del antecedente en sélo un sub-
conjunto preferido pragméticamente de los estados del modelo. Estas res-
tricciones hacen que tal vez sea mas adecuado hablar de «Procedimientos
Inferenciales No Monotoénicos basados en Logica» y que el problema de
la nomonotonia, mds que un problema con la logica sea un problema
acerca de como la ldgica es usada.

VI. LA LOGICA EN LA INTELIGENCIA ARTIFICIAL (A MODO DE CONCLUSION)

...It may appear that logical proof is being opposed to reasoning. The correct
view seems to be that logical proof is a tool used in reasoning... (D. Israel).

La pregunta que formulamos al final de la seccion III era: ¢es el pro-
ceso de elaboracién de la informacion del «robot» un proceso deduc-
tivo? De lo discutido hasta aqui, parece evidente que no. Los objetivos
de la IA no se satisfacen reduciendo el proceso de elaboraciéon de infor-
macion de un sistema inteligente a un demostrador de teoremas. Esta
evidencia ha promovido en la [A y en la Légica, desarrollos de logicas
no clasicas. Los mds caracteristicos han sido los motivados por el Razo-
namiento No Mondtono. Sin embargo, los formalismos logicos para
el RNM no han resultado satisfactorios, hasta ahora, salvo en casos
particulares. A partir de estas dificultades, cabe preguntarse: ¢Cual es
el lugar de la l6gica en los procesos de reconstruccion formal del «racio-
cinio inteligente»?

Creemos que la légica retiene al menos dos roles de importancia, uno
al interior y otro al exterior de los procesos deliberativos de los sistemas
inteligentes.

El primero surge a partir de entender las diferencias entre razonar
y deducir.

Como hemos visto, el razonar incluye el deducir, pero requiere tam-
bién ir mds alla de lo absolutamente seguro. Es un fenémeno global (y
no local, como la inferencia deductiva) y debe tener en cuenta juicios
acerca de la relevancia y los pesos de evidencia de los argumentos en juego.
Puede juzgar que las evidencias no son suficientes y solicitar mds infor-
macion. Puede (y debe) eliminar viejas creencias, a la luz de nuevas evi-
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dencias, de acuerdo a criterios racionales determinados para cada caso.
Supongamos que aceptamos una sentencia de la forma «si P entonces Q»
y aceptamos el antecedente. :Nos obligaria este hecho a aceptar Q? No
necesariamente. Tal vez tengamos muy buenasrazones «de jerarquia supe-
rior» para creer no-Q. En todo caso esto no llevara a rever nuestra creencia
en el condicional o en el antecedente.

Eliminar viejas creencias no es en manera alguna ilogico, especial-
mente si ellas implican conflictos con las que ahora tenemos buenas razo-
nes para sostener. El punto es que no debemos esperar que sea la légica
la que nos diga qué retener y qué eliminar, ni que nos diga que hacer
cuando —gracias a su ayuda— descubrimos que poseemos creencias
inconsistentes.

La deduccién logica, lejos de estar enfrentada al razonamiento, debe
verse como una herramienta usada en el proceso de razonar. Los crite-
rios de calidad de la l6gica son un punto de referencia sélido para eva-
luar la confiabilidad de las reglas del razonar.

Razonar es mas proximo a revisar creencias. En la base de un sis-
tema de revision racional de creencias, tendremos alguna légica, aunque
luego el sistema inteligente decida las acciones a tomar en base a un
esquema de preferencias de tipo pragmatico. Las reglas de inferencia
deductivas sirven para explicitar el contenido informativo de la Base de
Creencias, pero no alcanzan para determinar las politicas racionales de
transformacion de dicha Base, que den cuenta de los procesos de «apren-
dizaje», a partir de las interacciones entre el robot y su medio.

El paradigma del razonamiento de sentido comtn ha sido, en la dltima
década, el RNM. Hemos visto que es posible entender estas inferencias
no deductivas en términos de una combinacién de inferencias deductivas
y revisién de creencias, evitando la proliferacion de nuevas logicas, que
muchas veces llevan a resultados antiintuitivos y/o poco operativos.

En segundo lugar, la légica tiene un rol descriptivo y, en cierto modo
normativo, respecto de los mecanismos implementados en los sistemas de IA.

Aun cuando descartemos la Logica como simbolismo de representa-
ciéon y elaboracion de los datos que el sistema posee, ella es una herra-
mienta adecuada para dar cuenta de los procesos que el sistema realiza
en términos mas confiables que una descripcién computacional.

Frente al argumento de que la l6gica es «demasiado prolija» para ata-
car problemas inherentemente complejos y poco claros —los procesos
cognitivos—, hay que coincidir en que cualquier modelo que pretenda
echar luz sobre los fendmenos del razonamiento, tiene que poder ser enten-
dido claramente. De lo contrario, dado que el objeto modelado es de por
si poco conocido y la conducta del modelo no es totalmente clara, poco
es lo que se podra concluir o resolver. «In extremis» dicha argumenta-
cion contra la logica es una argumentaciéon contra todo rigor.

Puede argumentarse que la comprension de los alcances del modelo
también puede hacerse en alguna teoria matematica. Esto es cierto. Sin
embargo, considerando que:
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a) asumimos la restriccion de la representacion de conocimientos
declarativa, que implica una estructura proposicional (aunque no nece-
sariamente en un lenguaje de la légica), donde una pieza de estructura
del formalismo representard una asercidn (conocimiento o creencia) acerca
del dominio, y

b) dada una representacidon declarativa (red semadntica, «frame»,
estructura ad hoc para posiciones del ajedrez o cualquier otra), interesa
determinar exactamente qué conocimiento esta siendo representado (no
s6lo explicitamente, lo que finalmente se reduce a una enumeracién, sino
implicitamente) y caracterizar, mediante alguna «teoria de la verdad»,
cudn confiables son los conocimientos implicitos que el sistema puede
inferir de los explicitos, en términos del universo que queremos modeli-
zar, entonces la logica parece la herramienta mds adecuada para anali-
zar y comprender el comportamiento del sistema.

Este enfoque es el aplicado por Brachman y Levesque (1984), a la
caracterizacion funcional de un esquema de Representacion de Conoci-
miento (RC). En esta vision, no interesa el detalle de cémo esta cons-
truido el sistema de RC o qué estrategias usa para ser eficiente. Lo que
importa es lo que sabe del mundo (en términos de sus creencias bésicas
y de su capacidad de derivar de ellas otras creencias). De hecho Makin-
son ha utilizado la légica con ese sentido metatedrico al estudiar las pro-
piedades de los formalismos del RNM. La ldgica es también usada en
Balkenius y Gardenfors (1990) para caracterizar el poder inferencial de
ciertos tipos de redes neuronales.

En sintesis, un rol fundamental de la l6gica en IA es como herramienta
para el andlisis del contenido de conocimiento involucrado en la Base
de Conocimientos (KB) del robot, antes que para reconstruir el modo
de razonar de seres inteligentes. Es decir, que la l6gica es el marco ade-
cuado para analizar el sentido de las expresiones que aparecen en los for-
malismos de representacion y para juzgar la validez de las inferencias,
independientemente de que los lenguajes ldgicos sean, en si mismos, ade-
cuados formalismos de representacion, y de que la aplicaciéon de reglas
de inferencia deductivas a férmulas légicas sea un buen método para
reconstruir el razonar de sentido comun.
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LOGICA PARACONSISTENTE

Newton C. A. da Costa y Renato A. Lewin

I. INTRODUCCION

Varias son las razones que originaron el surgimiento de la légica para-
consistente. Mencionaremos las siguientes:

1) En la teoria de conjuntos, tratada en forma intuitiva y no axio-
matica por Cantor, su creador, y por los matematicos de fines del siglo
pasado, existe un principio basico denominado el axioma de separacién
(o de comprensién).

Toda propiedad determina un conjunto, aquél formado por los obje-
tos que poseen tal propiedad. Este postulado parece sensato y figuraba,
de modo implicito, en el sistema légico-formal de Frege. Como sabemos,
usando leyes y reglas l6gicas muy simples, se puede probar que este pos-
tulado conduce a contradiccién (la paradoja de Russell).

Después del descubrimiento de la paradoja de Russell a comienzos
del siglo xX, se hizo necesario axiomatizar la teoria intuitiva de conjun-
tos, restringiendo el principio de separacion para evitar las paradojas.
El camino seguido fue el de introducir restricciones al referido principio
manteniéndose la légica clasica (esencialmente el calculo de predicados
de primer orden, con o sin identidad) como légica subyacente de las teo-
rias de conjuntos obtenidas. Aparecen asi las teorias de Zermelo-Fraenkel,
de Von Neumann-Bernays-Godel, de Kelley-Morse, de Quine (NF y ML),
etc.

Surge entonces la pregunta: tanto el principio de separacién como
la logica elemental cldsica parecen ser plausibles; ¢por qué entonces modi-
ficar el primero y conservar la segunda? ¢No seria posible mantener el
principio y modificar la légica tradicional? Evidentemente, en caso de
que se quiera proceder de esta manera, la ldgica resultante, debe «acep-
tar» contradicciones ya que el principio en cuestion nos lleva en forma

185



NEWTON C. DA COSTA Y RENATO A. LEWIN

natural a inconsistencias. En realidad, la l6gica clasica (y muchas otras
como la intuicionista) es tal que si basamos en ella una teoria en la que
podemos derivar una contradiccion (una proposicion y su negacion),
entonces la teoria es trivial, en ella se puede «demostrar cualquier cosa».
Luego, si queremos desarrollar teorias de conjuntos en las cuales el prin-
cipio de separacion esté sujeto a restricciones mas débiles que aquellas
de las teorias de conjuntos usuales, o que no esté sujeto a ninguna res-
triccion, debemos emplear ldgicas tales que puedan servir de base a teo-
rias inconsistentes (contradictorias), pero no triviales. Estas logicas se
denominan paraconsistentes.

Hoy en dia se sabe que se puede construir numerosas teorias de con-
juntos, inconsistentes no triviales (ver Arruda, 1964, 1970a y 1970b;
Arruda y da Costa, 1970, da Costa 1964d, 1965 y 1986).

En general, tales teorfas contienen al conjunto de Russell, formado
por los conjuntos que no pertenecen a si mismos y solamente. por ellos.
Tal conjunto pertenece y no pertenece a si mismo. En cierto sentido son
teorias mas fuertes que las teorias de conjuntos usuales ya que, ademads
de los conjuntos normales, clasicos, poseen conjuntos «inconsistentes»,
como el de Russell. Puede demostrarse también que muchas de esas teo-
rias son no triviales si y solamente si ciertas teorias cldsicas, como la de
Zermelo-Fraenkel, son consistentes (ver da Costa, 1986).

2) Se sabe que para ciertos cultores de la dialéctica (como en el caso
de Hegel, segtn algunos de sus intérpretes), esa disciplina encierra con-
tradicciones. Por eso, autores como Popper argumentan que la dialéc-
tica es logicamente imposible: en efecto, la ldgica cldsica no puede ser
la l6gica subyacente a la dialéctica, pues si eso ocurriese, seria trivial;
luego, como en la época en que Popper estudio los fundamentos de la
dialéctica no se conocia la logica paraconsistente (algunos pensaban
incluso que tal légica no podria existir, como el mismo Popper), esto pro-
baba logicamente la imposibilidad de la dialéctica. Ahora bien, la l6gica
paraconsistente, por si sola, no la justifica pero evidencia que las criticas
a su estructura légica, como las senaladas, son infundadas. La logica de
la dialéctica, en conformidad con algunas de sus interpretaciones, tiene
que ser paraconsistente (ver da Costa y Wolf, 1980).

3) El filésofo austriaco Meinong desarrollé una teoria de los obje-
tos, en la cual objetos como el circulo cuadrado son legitimos; ver Mei-
nong (1907). No podemos aqui entrar en detalles sobre esa teoria, sélo
nos limitaremos a sefialar que Bertrand Russell la critic especialmente
por conducir a contradicciones, al infringir la ley de contradiccion. Una
manera de superar tal dificultad seria el utilizar una logica paraconsis-
tente como ldgica bésica de la teoria de Meinong.

4) La logica paraconsistente naci6 también del deseo de esclarecer
mejor determinadas cuestiones logicas. Por ejemplo, ¢qué es la negacion?
La negacidn cldsica posee ciertas propiedades, pero hay varias negacio-
nes paraconsistentes que poseen propiedades andlogas y que pueden, por
lo tanto, también ser tenidas por negaciones. Aqui sucede algo similar
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a lo que sucede con el concepto de recta, que puede ser tanto la recta
de la geometria euclidiana como de las no-euclidianas.

5) Existen teorias paraconsistentes de la verdad que extienden la teo-
ria tarskiana. Esto significa que hay semdnticas alternativas de la seman-
tica cldsica, asi como hay geometrias distintas de la geometria euclidiana,
mereciendo todas ser consideradas como geometrias. El deseo de saber
si habia semanticas paraconsistentes fue otro de los motivos de la crea-
cién de la logica paraconsistente.

6) La manipulacién sensata de sistemas inconsistentes de manejo de
informacién, por ejemplo como se da hoy en inteligencia artificial, fue
otra razon para elaborar una logica paraconsistente. Una situacion simi-
lar ocurre cuando se trata de sistematizar logicamente codigos éticos o
juridicos, que en general son inconsistentes, sin intentar desfigurarlos
haciéndolos consistentes. Hacer esto o bien es imposible en la practica,
o bien se transforma tales cédigos en otra cosa: ya no estamos hablando
de lo mismo. Por eso, el tratamiento paraconsistente de los codigos éti-
cos o juridicos constituye una posible solucion aunque existen autores
que proponen otras alternativas. En tanto, en inteligencia artificial parece
no haber indicaciones de una solucién alternativa a la paraconsistente.

Otras razones para la introduccidn de la légica paraconsistente resul-
taran evidentes a medida que avance nuestra exposicion.

Podemos pasar ahora a una presentacion mas rigurosa de la légica
paraconsistente.

Una teoria deductiva T se caracteriza por su lenguaje L, por su légica
Ly por sus principios especificos (axiomas y postulados). Supongamos que
L contiene un simbolo para la negacién (por ejemplo, — ). Se dice enton-
ces que T es trivial si todos sus enunciados (férmulas, muchas veces sélo
nos interesan las formulas cerradas u oraciones) son teoremas. En caso con-
trario se dice que T es no trivial. La teoria T se dice inconsistente (o contra-
dictoria) si ella contiene, al menos, dos teoremas de la forma oy — a, uno
de los cuales es la negacion del otro. En caso contrario T se dice consistente.

Una logica se dice paraconsistente si puede ser la logica de teorias
inconsistentes pero no triviales. Una tal teoria se denomina teoria para-
consistente. Luego una légica es paraconsistente si puede ser la logica
subyacente de teorias paraconsistentes. Evidentemente la mayoria de las
l6gicas usuales, como la clasica, no son paraconsistentes. Por otro lado
en una logica paraconsistente se puede, a veces, basar teorias consisten-
tes; ademds, el que una légica £sea paraconsistente no implica que una
teoria basada en ella no pueda ser trivial.

Dada un logica <, puede ocurrir que el lenguaje L. contenga mas de
una negacion, digamos — y ~. En este caso, < puede ser paraconsis-
tente con respecto a una de estas negaciones, por e]emplo —, pero no
con respecto a la otra negaciéon ~. Situaciones como ésa (y otras atn
mads complicadas) han sido consideradas, pero para los objetivos de este
trabajo, no vamos a estudiarlas.
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El principio de contradiccion tiene varias formulaciones que no son
equivalentes entre si. Para nosotros, las dos siguientes son importantes:

I. Dadas dos proposiciones o y — d, una de las cuales es la nega-
cion de la otra, una de ellas es falsa.

II. La proposicion — (ar—1 a) es verdadera, donde o es una pro-
posicion cualquiera, — es el simbolo de negacién y A representa
el conectivo de conjuncion.

En una logica paraconsistente £, la formulacion I del principio de
contradiccidn no puede ser valida. En efecto, si Zes paraconsistente exis-
te al menos una teoria T, basada en £, que tiene como teoremas propo-
siciones de la forma o y — a; entonces o y — a deben ser ambas verda-
deras en T y el principio es violado. En tanto, en la formulacion II, el
principio puede valer en una ldgica paraconsistente.

Asi, hay leyes y reglas que no pueden ser validas en una légica para-
consistente. Si = y v representan respectivamente la implicacion (que satis-
face la regla de Modus Ponens) y la disyuncion, mencionaremos aqui algu-
nos principios que no son validos: a— (—a—fB),—a—>(a—p),
(ar—a)=B, ((avB)r—1a)=p.

En relacién a la légica paraconsistente en nuestra opinion se puede
asumir dos posiciones:

1) La légica paraconsistente es considerada rival de la logica clasica,
destinada a sustituirla en todos o algunos campos del saber.

2) Ella puede considerarse un complemento de la logica clasica; esta
ultima seria la l6gica basica aplicable en principio a todas las circunstan-
cias. La logica paraconsistente constituiria una especie de formalismo
légico-matematico que en ciertas situaciones, por ejemplo en inteligen-
cia artificial, deberia ser usado por motivos de conveniencia prictica aun-
que la logica cldsica contintie operando.

Decidir, en caso de que sea posible, cual de esas posiciones es la correcta,
lo que constituye un problema de ldgica filosofica, es importante pero no
sera tratado aqui. El desarrollo de la logica paraconsistente como disci-
plina cientifica importante no depende de su solucién. De cualquier forma
el nacimiento de la l6gica paraconsistente produjo un cambio en el para-
digma en el campo de la logica, de la ciencia y de la filosofia, especial-
mente si la consideramos como rival de la logica clasica.

Algunas légicas paraconsistentes difieren mucho de la clasica (por
ejemplo la logica de la paradoja de Priest, 1979). Sin embargo, hay siste-
mas paraconsistentes, que aunque difieren del cldsico, lo contienen como
una parte que se aplica en ciertos casos, que dan origen a una matema-
tica paraconsistente mads fuerte que la cldsica y que contienen a ésta pro-
piamente y significativamente (ver da Costa, 1974b).

Para terminar esta introduccién, creemos conveniente hacer algunos
comentarios sobre una légica que es la «dual» de la paraconsistente: la
logica paracompleta.
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El principio del tercero excluido es susceptible de diversas formula-
ciones alternativas, pero no equivalentes. Aqui nos interesaran dos:

I. Dadas dos proposiciones contradictorias o y — a, una de ellas
es verdadera.
II. La proposiciéon av— a es verdadera.

Esencialmente, una logica paracompleta viola al menos una de estas
formulaciones del «tertium non datur». La ldgica intuicionista de Brou-
wer y Heyting es paracompleta; lo mismo ocurre con varias légicas poli-
valentes.

Normalmente toda légica paraconsistente tiene una dual paracom-
pleta y reciprocamente. Existen logicas paracompletas que no son para-
consistentes y viceversa. Cuando una légica es simultdneamente para-
consistente y paracompleta se le llama no-alética. Légicas de esta ultima
categoria han sido empleadas en los campos de la ética y del derecho.

II. ASPECTOS HISTORICOS DE LA LOGICA PARACONSISTENTE

La paraconsistencia es el conjunto de temas historicos, filosoficos y cien-
tificos relacionados con el concepto de contradiccidn; engloba temas como
la filosofia de Her4clito, Hegel y Marx, la naturaleza y los limites de la
dialéctica, contradiccidn y realidad y el significado de una ontologia para-
consistente (esto es, basada en una légica paraconsistente). Actualmente
la légica paraconsistente constituye un asunto técnico y cientifico bien
definido, al igual que, por ejemplo, la ldgica tradicional, y no se con-
funde con la paraconsistencia en general.

No nos ocuparemos aqui de la paraconsistencia en general sino sélo
de la historia de la légica paraconsistente como disciplina cientifica. Ade-
mds solo trataremos los aspectos que creemos mds importantes de esa
historia. Para tener una idea mas acabada del tema el lector puede con-
sultar, por ejemplo, Arruda (1980 y 1984), da Costa y Marconi (1986),
D’Ottaviano (1990) y Priest, Routley y Norman (1989). Una introduc-
cidn elemental a la logica paraconsistente, con referencias histdricas es
Grana (1983); Marconi (1979) también contiene abundantes observa-
ciones de indole histérica. La l6gica relevante, es claro, estd intimamente
ligada a la légica paraconsistente; por lo tanto cabe mencionar también
la obra de Routley et al. (1983), la cual contiene numerosas referencias
histdricas pertinentes.

Dos precursores de la l6gica paraconsistente fueron el logico polaco
J. Lukasiewicz y el filésofo ruso N. A. Vasilev. Ambos en 1910, en forma
totalmente independiente, estudiaron la posibilidad de una légica para-
consistente. El primero, en un articulo bien conocido (1910, traduccién
inglesa, Lukasiewicz, 1971), discurrié sobre una légica donde no fuera
valida la ley de contradiccion en alguna de sus formas. Ahora bien, en
aquella época no es extrano que él solo considerase la légica tradicional
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en su formulacién aristotélica; no obstante, el hecho es que €él habla de
la derogacion de la ley de contradiccion, lo que implica el aceptar tener
proposiciones contradictorias verdaderas (esto es, pares de férmulas con-
tradictorias o y — o, simultineamente verdaderas). Sin embargo, ¢él no
elabora ningun sistema explicito de ldgica paraconsistente.

Vasilev, por su lado, modifica la logica en su presentacion aristoté-
lica, construyendo logicas imaginarias, las cuales no eliminaban la exis-
tencia de contradicciones verdaderas (ver Vasilev, 1925). Sin embargo,
el 16gico ruso no desarrolld sus sistemas dentro de los patrones de rigor
y amplitud de la légica contemporanea, permaneciendo prisionero de la
concepcion aristotélica de la logica. La obra de Vasilev ha sido muy estu-
diada ultimamente, especialmente por autores soviéticos como W. Smir-
novy V. A. Bazhanov (Bazhanov, 1989, en una obra muy buena). La
logica brasilenia A. I. Arruda dedico varios articulos a la obra de Vasilev
(ver, por ejemplo, Arruda, 1977 y Arruda, 1984).

El primer autor en formular un calculo proposicional paraconsistente
fue el logico polaco S. Jaskowski, segin ¢l mismo afirma, a sugerencia
de Lukasiewicz, en 1948. El llamé a su calculo logico discusivo o discur-
sivo, ya que una de las motivaciones para construir un sistema era la
siguiente: si queremos reunir en una unica teoria todas las afirmaciones
hechas en una discusion, como los términos usados no son empleados
siempre con el mismo sentido, muchas veces sucedera que la teoria con-
siderada contendra proposiciones contradictorias, defendidas por los dife-
rentes participantes de la discusion o por el mismo participante en momen-
tos distintos. Asi, si debe evitarse la trivializacidn, la l6gica de una teoria
como ésa deber ser paraconsistente.

Jaskowski no axiomatizé su calculo proposicional. Tan so6lo lo defi-
ni6 por intermedio de una interpretacion en el sistema modal S5 de Lewis.
No fue sino hasta varios afios después que su sistema fue axiomatizado
en da Costa y Dubikajtis (1968 y 1977) y extendido a un calculo de pre-
dicados de primer orden y de orden superior, ver también da Costa
(1975), Kotas (1975) y Kotas y da Costa (1977). Hoy en dia la logica
discusiva estd bien desarrollada y ha encontrado numerosas aplicacio-
nes; por ejemplo, es la logica subyacente de una nueva conceptualiza-
cién de verdad pragmatica, como se demuestra en da Costa y Chuaqui
(en prensa). Se puede constatar ficilmente que la logica discusiva tam-
bién puede ser interpretada como una légica de la vaguedad.

En el presente estado de evolucion de la 16gica, para tener una logica
o sistema ldgico propiamente tal, es necesario que esté desarrollado al
menos un cdlculo de predicados de primer orden con identidad; en otras
palabras, se hace imprescindible que se sepa operar con los conectivos
logicos, pero ademds, con cuantificadores y la identidad.

Si adoptamos ese punto de vista, podemos decir que el verdadero crea-
dor de la légica paraconsistente fue N. C. A. da Costa. En efecto, en
las décadas de los 50 y de los 60, en Brasil e independientemente de los
trabajos de Lukasiewicz y de Vasilev, cuyas investigaciones sobre para-
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consistencia, asi como los trabajos de Jaskowski, quedaron practicamente
olvidadas, N. C. A. da Costa construyd jerarquias infinitas de calculos
logicos paraconsistentes, calculos proposicionales, calculos de predica-
dos de primer orden, con y sin identidad, calculos de descriptores y teo-
rias de conjuntos paraconsistentes, ver da Costa (1958-1974). Con sus
discipulos brasilenos desarrollé enormemente tal légica, desarrollo 16gi-
cas paraconsistentes de distinta naturaleza, por ejemplo sistemas rela-
cionados con la vaguedad en Arruda y Alves (1979a y 1979b); logica
polivalente en D’Ottaviano (1982, 1985a y 1985b); légica relevante en
Arruday da Costa(1966y 1984); [6gicas dednticas y modales en da Costa
y Carnielli (1986), Puga, da Costa y Carnielli (en prensa) y Puga (1985).
Numerosos otros desarrollos de la l6gica paraconsistente efectuados por
miembros de la escuela brasilera de légica, tales como A. Loparic, C.
A. A. P. Abar, E. H. Alves, A. I. Arruda, W. Carnielli, L. H. dos San-
tos, [. M. L. D’Ottaviano, L. de Moraes, W. daSilva, J. Abe, D. Krause,
L. P. de Alcantara y A. M. Sette, son descritos en D’Ottaviano (1990)
y da Costa y Marconi (1989).

La logica paraconsistente dio origen a varios desarrollos técnicos que
tienen un significado que trasciende el campo de la paraconsistencia. Aun-
que no podemos entrar en detalles, creemos conveniente senalar los
siguientes:

1) La algebrizacion de ciertas légicas paraconsistentes no puede
hacerse mediante las técnicas tradicionales de la légica algebraica, a tra-
vés de las denominadas algebras de Lindenbaum. Luego fue preciso que
se elaborasen nuevas técnicas como se hizo por ejemplo en da Costa, Sette
(1969).

2) Se cred semanticas para las logicas paraconsistentes; un método
para ello es el método de las valuaciones (ver Grana, 1990b). Se verificd
entonces que la teoria de la verdad de Tarski, como dijimos anterior-
mente, puede ser ampliada al caso en el que hay contradicciones «verda-
deras». También Routley y Meyer construyeron semanticas para la logica
relevante que se aplican al caso de la paraconsistencia (ver Routley y
Meyer, 1976, y Routley, 1979).

3) Se estd desarrollando una matematica paraconsistente. Para citar
dos ejemplos, ya se estudié una geometria afin paraconsistente en da Costa
(1989), y en Mortensen (1990) se formula una versién paraconsistente
del calculo diferencial. Notemos, para terminar esta referencia a la mate-
madtica, que ésta estd intimamente relacionada con la matematica «fuzzy».

La légica paraconsistente se ha convertido en una de las disciplinas
mas cultivadas en el mundo, en gran medida, por sus aplicaciones a las
ciencias de la computacién, en especial, a la inteligencia artificial.

Describiremos ahora superficialmente lo que se ha hecho en el campo
de la logica paraconsistente en algunos centros fuera de Brasil.

En Estados Unidos, C. Pinter (1980) investig6 un interesante sistema
logico, emparentado con la logica discusiva de Jaskowski que se deno-
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mina logica de la ambigiiedad inherente, la cual tiene aplicaciones en inte-
ligencia artificial y en lingtistica. R. L. Epstein (1990) se ocup6 de la
paraconsistencia dentro del campo de una vision propia de la logica. R.
C. Wolf trat6 cuestiones filosoficas relacionadas con las légicas paracon-
sistentes y relevantes (da Costa'y Wolf, 1980 y 1985). N. Belnap (1977)
trabajando en fundamentos de computacién formulé una légica tetrava-
lente que es paraconsistente. Otros logicos y filésofos como J. M. Dunn
y S. French han trabajado en tépicos cercanos a la paraconsistencia.
Merece destacarse el articulo pionero de Nelson (1959), y el libro de N.
Rescher y R. Brandon (1964).

En Chile, R. Chuaqui trato la logica de la verdad pragmatica, en una
de sus posibles interpretaciones, evidenciando con da Costa que ella es
una logica discusiva (ver da Costa y Chuaqui, en prensa). Otros logicos
chilenos han estudiado fundamentalmente aspectos algebraicos de la
logica paraconsistente; aplicando los conceptos desarrollados por Blok
y Pigozzi han establecido la algebrizabilidad de algunos sistemas como
el sistema P, de Sette (1973). Asimismo, han demostrado la no algebri-
zabilidad de otros simplificando demostraciones anteriores (ver Lewin,
Mikenberg y Schwarze, 1990; 1991). También han estudiado las alge-
bras que se obtienen en el proceso de algebrizacion (ver Lewin, Miken-
berg y Schwarze, 1994).

Dentro de lo realizado en Argentina, recordemos el trabajo de l6gica
algebraica paraconsistente de M. Fidel (1977) y las investigaciones de
A. R. Raggio en la formulacion estilo Gentzen de ciertos sistemas para-
consistentes en Raggio (1968). El l6gico argentino F. Asenjo, hoy radi-
cado en Estados Unidos, construyé una logica antinémica y traté los fun-
damentos de la teoria de conjuntos, obteniendo, con J. Tamburino, una
teoria de conjuntos paraconsistente extremadamente fuerte (ver Asenjo,
1966 y Asenjo y Tamburino, 1975). Asenjo fue uno de los pioneros de
la logica paraconsistente, sus estudios iniciales se hicieron independien-
temente de los de da Costa y otros.

En Uruguay hay un pequefio grupo de légicos que se interesan sobre
todo por las aplicaciones a la filosofia de la logica paraconsistente. C.
E. Caorsi ha intentado aplicar ciertos sistemas paraconsistentes a los fun-
damentos del psicoanalisis.

Ellégico F. Miré Quezada fue quien acunié en 1976 la palabra «para-
consistencia» para designar la nueva logica; también se deben a él los
términos «paracompleto» y «no-alético». Miré Quezada se ha ocupado,
principalmente, de la filosofia de la logica paraconsistente (ver, por ejem-
plo, su articulo en Priest, Routley y Norman, 1989).

En Israel, A. Avron (1990a y 1990b) desarroll6 una versién nueva
tanto de la paraconsistencia como de la relevancia. Sus resultados son
significativos desde el punto de vista tedrico y tienen aplicaciones a la
informatica.

En Australia se encuentra uno de los grupos mas fuertes de légicos
que se dedican a temas paraconsistentes. No es posible analizar aqui todo
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lo que se ha hecho en Australia, nos limitaremos pues a hacer algunas
indicaciones. Routley y Meyer estudiaron una forma de ldgica paracon-
sistente y relevante que bautizaron légica dialéctica (ver Routley y Meyer,
1976, importante sobre todo desde el punto de vista filoséfico). Ellos
desarrollaron una semantica para la légica relevante que también tiene
aplicaciones en el campo de la paraconsistencia. Routley traté temas como
logica dedntica paraconsistente, teoria de Meinong, teoria de la decision,
calculo de probabilidades, etc. G. Priest, como ya observamos, cre un
sistema paraconsistente, que ha intentado aplicar practicamente a todos
los problemas mas importantes de la filosofia, la ciencia y la técnica. C.
Mortensen ya estructur6 un calculo diferencial paraconsistente y esta desa-
rrollando una matematica paraconsistente (la que incluye el algebra, el
andlisis, la geometria y la mecanica). Otro l6gico importante radicado
en Australia es M. Bunder con una vasta contribucion técnica (ver Bun-
der, 1974-1989).

En la Unién Soviética, la légica paraconsistente encontrd un campo
fértil para prosperar. Entre los especialistas soviéticos que desarrollaron
nuevos sistemas, la historia o aplicaciones de la paraconsistencia men-
cionaremos a W. Smirnov, V. A. Bazhanov, A. S. KarpenkoeI. S. Narski.
El articulo de Karpenko (1984) es una muestra significativa de lo reali-
zado en la Unién Soviética.

La contribucion polaca a la paraconsistencia es fundamental. Fuera
de Jaskowski, mencionaremos a L. Dubikajtis y sus discipulos, quienes
se dedicaron principalmente a la axiomatizacién de sistemas paraconsis-
tentes; también J. Kotas, quien elaboré simultineamente sistemas poli-
valentes y paraconsistentes y profundiz6 una investigacion de la logica
discusiva.

En Italia, la obra de D. Marconi, N. Grana, S. Coradeschi, P. Bot-
tura y M. L. Dalla Chiara, entre otros, merecen mencién. Dalla Chiara
empled técnicas paraconsistentes en los fundamentos de la fisica, en par-
ticular, de la mecdnica cudntica. N. Grana (1983 y 1990a) escribid la
primera introduccién elemental a la légica paraconsistente y estudié la
l6gica deéntica paraconsistente. D. Marconi, entre otras contribucio-
nes, trato la légica de Hegel bajo el prisma de la logica paraconsis-
tente.

El filosofo espaiiol L. Pena (1979 y 1980) construy6 una logica para-
consistente de indole fuzzy basado en un profundo analisis filosofico.
Fuera de eso ha aplicado sus ideas ldgicas a los mds variados tdpicos,
como por ejemplo, la dialéctica.

En Francia (M. Guillaume, J. V. Béziau,...), en Bulgaria (H. Smole-
nov, S. Petrov,...) y otros paises también se ha cultivado la l6gica para-
consistente.

Por motivos obvios una exposicion histérica como la anterior no
puede ser ni completa ni equilibrada, sin embargo, creemos que las refe-
rencias bibliograficas ayudardn al lector a completarla.
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. ALGUNOS ASPECTOS TECNICOS

Describiremos en esta seccién algunos sistemas deductivos paraconsisten-
tes, aspectos semanticos de éstos y por dltimo algunos aspectos algebraicos.

1. El sistema de Jaskowski

Como dijimos Jaskowski no introdujo un sistema paraconsistente pro-
piamente tal sino que hizo una interpretacion de sus conectivos discusi-
vos en la légica modal S5 de Lewis. Su conjuncién, implicacion y equi-
valencia discusiva se definia como sigue

prAq i = prlg,
p=iq:= Op—gq
o q 1= (Op=gINCg—p),

donde A, = y © son los funtores de S5. El operador © se puede leer
como «alguien afirma que».

En da Costa y Dubikajtis (1968), se introduce la siguiente axiomati-
zacion, el sistema J, para este cdlculo y se inicia su estudio semantico:

Ji o O((A=B)=((B—C)—~(A—=()))

J,: O(—A—A)>A)
J,: D(B~(AvB))
J.: O(O@A-B)»0O(0A—OB)
Js: d{(A=C)=((B=C)—=((AvB)—()))
J.: O(A=(—A—B))
J>+ O(A—(AvB))
Js: O(OA—A)
J,: OA—-0O0A)
r . AOU—B)
' B
CA
Ry : 5

Alli prueban que el sistema ] es equivalente a la l6gica de Jaskowski.
En un trabajo posterior (da Costa, Dubikajtis, 1977), los autores intro-
ducen sistemas de légica discusiva de orden superior basados en S5, y
definen una semadntica que extiende a los modelos de Kripke para logica
modal.

Resulta claro que a cualquier l6gica modal puede asociarse la corres-
pondiente logica de Jaskowski. Estas fueron estudiadas en Kotas y da
Costa (1977), siendo algunas de ellas interesantes.

2. La jerarquia C,, 1 =n<w, de da Costa

El célculo C, tiene como simbolos primitivos variables proposicionales
—, V, A, = y paréntesis. Los axiomas y reglas de C, son los siguientes:
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: A= (B—A)

: (A=B)=((A—(B—C))—=(A—())
: A= (B—AAB)

: AAB—A

: AAB—B

: (A= C)=((B—C)=((AvB)—())

: A—>AvB

: B> AvVB

1/ A-A

: Av—/A

: B°=((A—>B)=((A>—B)>—A))
: A°AB°—=(A—B)°A(AAB)°A(AVB)°
 ALA—B

’ B

donde A° : = —(AA— A). Intuitivamente, A° significa que A se com-
porta «bien», es decir, no es contradictoria. Esto se fundamenta en el
axioma A,;, el que no dice otra cosa que el principio de reduccion al
absurdo se puede aplicar siempre que la oracién que se «corta» no sea
contradictoria. El axioma A, nos dice que el buen comportamiento se
extiende a las oraciones complejas. Para justificacidn intuitiva de estos
axiomas ver da Costa y Carnielli (1986).

N N

BEppprppran

=
=

Para 1 <n<w definimos
A" :=A°"°, n vecesy
A = APAACCOA...AA".

Los calculos C,, 1<n<w, se obtienen reemplazando los axiomas
A,y A,,, respectivamente, por

A} BY=((A=B)~>((A=>—1B)> — A))
Al : A”AB®™—(A—B)"A(AAB)"'A(AVB)"".

Finalmente C, estd definido por los axiomas A,—A , y la regla MP.
En los calculos C,, n<w, se define la negacién fuerte

—17Ar= 1 ANAYY

No es dificil verificar que — * tiene todas las propiedades de la nega-
cién cldsica.

Algunos teoremas importantes que pueden encontrarse en da Costa
(1958-1974) son los siguientes:

Teorema: Todas las reglas y esquemas validos del calculo proposicio-
nal positivo clasico son validos en C,, isn<w.

Teorema: Si I' es un conjunto de oraciones y A,,..., A,, son las com-
ponentes primas de las férmulas de TU{A}, entonces I'+—c, A si y sélo si
I', A, A, para 1 <n<w, donde C, es el calculo proposicional clasico.
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En virtud de este teorema, todos los teoremas de C, son validos en
C,, 1 =n<w, para las oraciones «buenas».

Un sistema no trivial S es finitamente trivializable si existe una for-
mula F tal que el sistema obtenido al agregar F a §, como nuevo axioma,
es trivial.

Teorema: Los sistemas C,, 1<n<w, son no triviales. Los C,,
1=n<w son finitamente trivializables, pero C, no lo es.

Otro resultado interesante que aparece en Alves (1976) es el siguiente:

Teorema: Los axiomas de C,, 1 =n<w, son independientes. Cada
sistema es estrictamente mdas fuerte que los que lo siguen.

En Urbas (1989) se hace notar que los calculos C,, 1 =n<w, no tie-
nen la propiedad de sustitucién de equivalentes; también se demuestra alli
que si agregamos reglas para remediarlo, por ejemplo RC : C>D
—D—->—C
todos los sistemas excepto C,, colapsan a C,. Esta debilidad est4 en la
base de la no algebrizabilidad de estos sistemas, como veremos mds ade-
lante.

3. Las jerarquias C,y C;, 1=n<w

Da Costa extendio su jerarquia al calculo de predicados de primer orden
y de primer orden con identidad obteniendo los sistemas C, y C.,
1 =n<w, respectivamente.

Los axiomas para C,, 1 =n<w son los de C,, 1 =n<w, mis los si-

guientes:

A:Si Ay B son féormulas congruentes (ver Kleene, 1952), o una se
obtiene de la otra eliminando cuantificadores vacios, entonces A< B es
un teorema.

A Vx(A(x))"—(VxA(x))™
A5 Vx(A(x)) "= (HxA(x))"™

Los postulados de C_ son los de C, mas los del calculo de predicado
cldsico y A1.

Los postulados de C, 1=n<w, son los de C, mds los axiomas
usuales para la identidad.

C, obtenido de C; agregando el nuevo postulado — (Ar— A), es
el calculo de predicados clésico.

A modo de ilustracion, las siguientes oraciones no son validas en C;:

— Hx— A(x)e VxA(x)
— Vx— A(x)o HxA(x).

Teorema: Los cdlculos C,,y C;, 1 =n<w, son indecidibles.
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Por ultimo, podemos decir que los calculos C,, 1 <7< w, son exten-
siones conservadoras de los respectivos calculos C,. Lo mismo ocurre
para C; y C,, 1=n<uw.

4. Semdantica

En da Costa y Alves (1977) se presenta una semantica estilo Henkin sobre
la base de una generalizacion del concepto clasico de valuacién. Con ellos
demuestran que los sistemas de da Costa son completos.

Una valuacién para C,, 1 =n<w, es una funcién v:F— (0,1}, donde
F es el conjunto de las férmulas de C,, tal que

Si v(A)=0, entonces v(—A)=1,
1) Si v(— ﬁA)—l entonces v(A) =
i) Si v(B")=v(A—B)= (A—>ﬁB)

0

1)
|
iv) “lA—B)=1 si y sélo si v(A)= (;
)
)
)

—
S0

ntonces v(A)=0,

v) v(AAB)=1siy sélo si v(A)=1y v
vi) ¥(AvB)=1 si y sélo si v(A)=1 o v
vii) Si v(A"™)=v(B")=1, entonces v((A— )"”) v((AAB)™)

= o((AvB)") = 1.

1,
1,
v(B) =
(B)=
(B)=

Una valuacién es un modelo de un conjunto de oraciones I' si y sélo
si para todo A€T", v(A) = 1. El concepto de consecuencia semanticaI' = A
se define en la forma habitual.

Podemos enunciar los teoremas demostrados en las obras citadas.

Teorema: Todo conjunto maximal no trivial de oraciones de C,,
1=n<w, (consistente o no) tiene modelo.

Teorema: I't~, A si y sélo si 'EA, 1=n<w.

Teorema: Los cdlculos C,, n<w son decidibles.

Cabe aqui destacar que en Arruda (1975) se demuestra que estos sis-
temas no son decidibles por matrices finitas. En Arruda y da Costa (1977)
se extiende el método de valuaciones a los sistemas C,,, 1 <n<w. El caso
de C_y CZ requieren de un tratamiento especial.

5. Aspectos algebraicos

La construccion del dlgebra de Lindenbaum de un sistema légico ha pro-
ducido grandes frutos, sin embargo, no puede aplicarse a la mayoria de
los sistemas paraconsistentes. El motivo de esto es que la relacion de equi-
valencia correspondiente no es una congruencia, o bien, no es compati-
ble con el conjunto de los teoremas del sistema. Si bien el concepto de
Lindenbaum-algebrizable estaba claro, no resultaba claro si existen otros
métodos de algebrizar una logica. El motivo de esto es que no existia
una teoria general de la algebrizabilidad de sistemas deductivos. Cree-
mos que el trabajo reciente de Blok y Pigozzi (1989), provee ese marco.
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Se ha intentado algebrizar los cilculos C,,, 1 <n<w, al menos de tres
maneras distintas. Da Costa (1966b), y da Costa y Sette (1969) presen-
taron una forma de algebrizacidon que refleja algunas propiedades de sus
sistemas logicos.

Carnielli y de Alcantara (1984) presentan en términos conjuntistas
una version algebraica de C,, a la que llaman algebras paraconsistentes
de conjuntos. Estas contienen un cuasi-orden que representa la deduci-
bilidad l6gica del sistema C,.

Estas algebrizaciones, si bien reflejan algunas propiedades algebrai-
cas de los sistemas, tienen la dificultad de que no se puede identificar
férmulas intuitivamente equivalentes, luego los modelos son mas com-
plicados.

Mortensen (1980) contiene la primera demostracion de que C, (y
por lo tanto C,, 7<1) no es Lindenbaum-algebrizable. Alli se prueba
que en el algebra absolutamente libre de férmulas de C,, no existe una
relacion de congruencia no trivial que sea compatible con los teoremas
de C'. Lewin, Mikenberg, Schwarze (1991) contiene una version sim-
plificada de este resultado.

Usando los métodos desarrollados en Blok y Pigozzi (1989), se ha
algebrizado la logica P' de Sette (1973) y la logica J; de D’Ottaviano y
da Costa (1970), el sistema de Batens (1980) y otros. Estos resultados
pueden encontrarse en Lewin, Mikenberg y Schwarze (1990), Blok y
Pigozzi (1989), y Lewin, Mikenberg y Schwarze (1989).

IV. PRINCIPALES APLICACIONES DE LA LOGICA PARACONSISTENTE

Dividiremos las aplicaciones mds significativas de la logica paraconsis-
tente en aplicaciones filoséficas, aplicaciones cientificas y aplicaciones
tecnoldgicas. De la exposicidn anterior se entrevé muchas de tales apli-
caciones. En esta seccidon nos limitaremos a mencionar algunas otras que,
en nuestra opinion, son de gran importancia.

1. Aplicaciones filoséficas

Gracias a la l6gica paraconsistente, la [6gica dialéctica y la teoria de los
objetos de Meinong tienen formulaciones l6gicamente inobjetables. Tam-
bién, comprendemos mejor la nocién de negacion y sus posibles varian-
tes; asi también, como lo hicimos notar, existe una teoria de la verdad,
similar a la de Tarski, que es paraconsistente. Claramente todo esto con-
lleva revisiones de algunas tesis filosoficas las que, para ser justificadas,
requieren de nuevas indagaciones logicas.

Otra aplicacidn se refiere a la ontologia, la disciplina de las caracte-
risticas mas generales de lo que existe. Si se usa la légica tradicional como
logica de la ontologia, entre los objetos existentes no se encuentran, auto-
madticamente, ciertos objetos «inconsistentes», como por ejemplo el con-
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junto de Russell. Sin embargo, cuando recurrimos a una légica paracon-
sistente, todo cambia. Como dijimos, hay teorias de conjuntos donde el
conjunto de Russell «existe». Luego, una ontologia fundada en una légica
paraconsistente puede, en principio, contener objetos contradictorios.
Aceptar o no esa tesis implica, obviamente, que se argumente en profun-
didad y se analice los cimientos tanto de la légica como de la ontologia.
En cierto sentido se puede sustentar que mientras mds débil sea nuestra
logica, tanto mas rica es nuestra ontologia.

La propia logica paraconsistente nos obliga a repensar la misma
nocion de légica. ¢Es lalégica paraconsistente una verdadera légica? Estos
problemas, que surgen en relacién a todas las logicas no-clasicas, pro-
puestas como rivales de la légica clasica, asumen un cariz dramadtico en
lo tocante a la logica paraconsistente ya que ésta deroga el principio de
contradiccién, generalmente considerado como el més evidente de todos.
Lo que la légica en cuestién parece demostrar es que existe logicidad
incluso si este principio es limitado. Sin embargo, todo indica que los
sistemas paraconsistentes necesitan de €l, al menos en parte, para su desa-
rrollo.

La utilizacion de la logica paraconsistente hace repensar muchos pro-
blemas filosoficos de extraordinario interés y en eso reside una de las mas
sobresalientes aplicaciones de la misma en el campo de la filosofia.

2. Aplicaciones a la ciencia

En matematica, la logica paraconsistente ha originado nuevas ideas y
métodos. Asi, hoy existe una teoria de modelos paraconsistentes que, en
su formulacion general, se convierte en una semdntica para cualquier sis-
tema logico (ver Grana, 1990b). Las versiones paraconsistentes de la geo-
metria y del calculo dieron origen a nuevos conceptos y estructuras mate-
maticas. Creemos que eso no destruye la matematica tradicional sino que
la amplia y pone en evidencia sus limitaciones. Hay aqui un progreso
efectivo y ampliacion de horizontes.

Ya mencionamos que la paraconsistencia entré en el campo de la
fisica. Ciertas formulaciones de la mecanica cudntica involucran nocio-
nes paraconsistentes como pusieron en evidencia Dalla Chiara y su
escuela.

También se ha intentado aplicaciones a la psicologia (ver da Costa
y French, 1990).

3. Aplicaciones tecnolbgicas

Sin duda las mds significativas y atractivas aplicaciones de la l6gica para-
consistente se verifican en el dominio de la informatica, en particular,
de la inteligencia artificial.

Para manipular informaciones inconsistentes, no existen sistemas 16gi-
cos apropiados y como dejamos claro anteriormente, éstos deben ser para-
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consistentes. Asi, en Subrahmanian (1987), y Blair y Subrahmanian (en
preparacion, 1987ay 1987b) se introduce un sistema ldgico paraconsis-
tente, denominado légica anotada, estableciendo una forma de progra-
macion paraconsistente. La logica anotada empleada por estos autores
fue construida sélo parcialmente, dado que su finalidad inicial era servir
de base a una programacién paraconsistente. La formulacion de la logica
anotada como un sistema légico completo es obra de da Costa, Subrah-
manian y Vago. Esta estd siendo desarrollada por estos autores y por
J. Abe. Se intenta desarrollar una légica anotada de orden superior, una
teoria de modelos anotada y una teoria de conjuntos anotada.

No es posible entrar aqui en los detalles técnicos del tema ya que son
altamente matematizados. Lo unico que debe quedar claro es que la pro-
gramacién anotada evidencia una enorme fuerza y simplicidad, encon-
trando las mas variadas aplicaciones en numerosos sistemas expertos de
la economia, la medicina, etc. Para una descripcién de la programacion
paraconsistente, consultar da Costa y Subrahmanian (1989).

Técnicas paraconsistentes no anotadas importantes en programacion,
demostracién automatica de teoremas e inteligencia artificial son las de
Carnielli (1987, 1990), Carnielli y Marques (1990) y Buschbaum y
Pequeno (en prensa).

En sintesis, la manipulacion de sistemas complejos de informacion,
que generalmente aparecen por ejemplo en inteligencia artificial, sélo
puede ser efectuada de modo natural y cémodo por medio de técnicas
paraconsistentes. Quizas no sea una exageracion afirmar que las maqui-
nas del futuro serdn, bdsicamente, paraconsistentes.

BIBLIOGRAFIA

Alves, E. H. (1976), Légica e Inconsisténcia: Um Estudo dos Calculos C,, 1 <n<w, Uni-
versidade Estadual de Campinas, Brasil.

Arruda, A. 1. (1964), Consideragdes sobre os Sistemas Formais NF,, Universidade Fede-
ral do Paran4, Curitiba, Brasil.

Arruda, A. 1. (1970a), «Sur les systemes formels NF, de da Costas: C. R. Acad. Sc. Paris,
270A, 1.081-1.084.

Arruda, A. 1. (1970b), «Sur le systeme NF _»: C. R. Acad. Sc. Paris, 270A, 1.137-1.139.

Arruda, A. 1. (1974), «Le schéma de la séparation et les calculs J,,»: Matematica Japoni-
cae, 19, 18-186.

Arruda, A. 1. (1975), «Remarques sur les systemes C,»: C. R. Acad. Sc. Paris, 280A,
1.253-1.256.

Arruda, A. 1. (1977), «On the imaginary logic of N. A. Vasilév», en Arruda, da Costa
y Chuaqui (comps.), 1977.

Arruda, A. 1. (1980), «A survey of paraconsistent logic», en Arruda, da Costa, Chuaqui
(comps.), 1980.

Arruda, A. 1. (1984), «N. A. Vasilév: A forerunner of paraconsistent logic»: Philosophia
Naturalis, 21, 472-491.

Arruda, A. 1. y Alves, E. H. (1979a), «Some remarks on the logic of vagueness»: Bull.
Sec. of Logic, Polish Acad. Sc., 8, 133-138.

200



LOGICA PARACONSISTENTE

Arruda, A. I. y Alves, E. H. (1979b), «A semantical study of some systems of vagueness
logic»: Bull. Sec. of Logic, Polish Acad. of Sc., 8, 139-144.

Arruda, A. I. y Alves, E. H. (1966), «O paradoxo de Curry-Moh Shaw-Kwei»: Boletim
da Sociedade Matematica de Sao Paulo, 18, 83-89.

Arruda, A. I.y Alves, E. H. (1970), «Sur le schéma de la séparation»: Nagoya Mathemati-
cal Journal, 38, 71-84.

Arruda, A. 1.y Alves, E. H. (1977), «Une semantique pour le calcul C,=»: C. R. Acad.
Sc. Paris, 284A, 279-282.

Arruda, A. I. y Alves, E. H. (1984), «On the relevant systems P and P* and some related
systems»: Studia Logica, 43, 33-49.

Arruda, A. I. y da Costa, N. C. A. (1964), «Sur une hiérarchie de systemes formels»: C.
R. Acad. Sc. Paris, 259, 2.943-2.945.

Arruda, A. 1., da Costa, N. C. A. y Chuaqui, R. (comps.) (1977), Non-Classical Logic,
Model Theory and Computability, North-Holland, Amsterdam.

Arruda, A. I., da Costa, N. C. A. y Chuaqui, R. (comps.) (1980), Mathematical Logic
in Latin America, North-Holland, Amsterdam.

Arruda, A. 1., da Costa, N. C. A. y Sette, A. M. (comps.) (1980), Proccedings of the Third
Brazilian Conference on Mathematical Logic, Sociedade Brasileira de Ldgica, Sdo Paulo.

Asenjo, F. G. (1966), «A calculus of antinomies»: Notre Dame Journal of Formal Logic,
7, 103-10S.

Asenjo, F. G. y Tamburino, J. (1975), «Logic of antinomies»: Notre Dame Journal of For-
mal Logic, 16, 17-44.

Avron, A. (1990a), «Relevance and Consistency-a new approach»: Journal of Symbolic
Logic, 55, 707-732.

Avron, A. (1990b), «Relevance and Paraconsistency-a new approach»: Notre Dame Jour-
nal of Formal Logic, 31, 169-202.

Batens, D. (1980), «A completeness proof method for extensions of the implicational frag-
ment of the propositional calculus»: Notre Dame Journal of Formal Logic, 21, 509-517.

Batens, D. (1980), «Paraconsistent extensional propositional logics»: Logique et Analyse,
90-91, 195-234.

Bazhanov, V. A. (1989), N. A. Vasilev, Nauka, Moscu.

Belnap, N. (1977), «A useful four-valued logic», en Dunn y Epstein (comps.), 1977.

Blair, H. A. y Subrahmanian, V. S., A logical framework for approximate reasoning in
logic programming (en preparacion).

Blair, H. A. y Subrahmanian, V. S. (1987a), «Paraconsistent logic programming», en Lec-
ture Notes in Computer Science, 287, 340-360.

Blair, H. A. y Subrahmanian, V. S. (1987b), «Paraconsistent generally Horn logic pro-
gramming language: syntax and semantics», manuscrito.

Blok, W. y Pigozzi, D. (1989), «Algebraizable logics»: Memoirs of the American Mathe-
matical Society, 77, 396.

Bunder, M. V. (1974), «Propositional and predicate calculs based on combinatory logic»:
Notre Dame Journal of Formal Logic, 15, 25-34.

Bunder, M. V. (1980), «A new hierarchy of paraconsistent logic», en Arruda, da Costa
y Sette (comps.), 1980.

Bunder, M. V. (1983), «On Arruda and da Costa’s logics J, to Js»: The Journal of Non-
Classical Logic, 2, 43-48.

Bunder, M. V. (1989), «On paraconsistent combinatory logic», en Priest, Routley y Nor-
man (comps.), 1989.

Buschbaum, A. y Pequeno, T., Légicas que son simultaneamente paraconsistentes y para-
completas (en prensa).

Carnielli, W. A., Inconsistent reasoning with consistent conclusions: a paraconsistent
approach to machine thinking (en prensa).

201



NEWTON C. DA COSTA Y RENATO A. LEWIN

Carnielli, W. A. y Alcdntara, L. P. (1984), «Paraconsistent algebras»: Studia Logica, 43,
79-88.

Carnielli, W. A. y Marques, M. L. (1990), «Reasoning under inconsistent knowledge»,
Rapport Interne IRI'T/90-15/R, Université Paul Sabatier, Inst. de Recherche en Inf.,
Toulouse.

Costa, N. C. A. da (1958), «Nota sobre o conceito de contradi¢ao»: Anudario da Soc. Para-
naense de Matemadatica, 1, NS, 6-8.

Costa, N. C. A. da (1959), «Observagdes sobre o conceito de existéncia em Matematica»:
Anudrio da Sociedade Paranaense de Matemdatica, 2, 16-19.

Costa, N. C. A. da (1963a), Sistemas Formais Inconsistentes, Universidade Federal do
Parand, Brasil.

Costa, N. C. A. da (1963b), «Calculs propositionels pour les systéemes formels inconsis-
tents»: C. R. Acad. Sc. Paris, 257, 3.790-3.793.

Costa, N. C. A. da (1964a), «Calculs de prédicats pour les systemes formels inconsistents»:
C. R. Acad. Sc. Paris, 258, 27-29.

Costa, N. C. A. da (1964b), «Calculs de prédicats avec égalité pour les systemes formels
inconsistants»: C. R. Acad. Sc. Paris, 258, 1.111-1.113.

Costa, N. C. A. da (1964c), «Calculs de descriptions pour les systemes formels inconsis-
tants»: C. R. Acad. Sc. Paris, 258, 1.366-1.368.

Costa, N. C. A. da (1964d), «Sur un systéme inconsistant de théorie des ensembles»: C.
R. Acad. Sc. Paris, 258, 3.144-3.147.

Costa, N. C. A. da (1965), «Sur les systemes formels C,, C}, C;, D, et NF»: C. R. Acad.
Sc. Paris, 260, 5.427-5.430.

Costa, N. C. A. da (1966a), Algebras de Curry, Sao Paulo.

Costa, N. C. A. da (1966b), «Opérations non-monotones dans les treillis»: C. R. Acad.
Sc. Paris, 263A, 429-432.

Costa, N. C. A. da (1967a), «Une nouvelle hiérarchie de théories inconsistants»: Publica-
tions du Département de Mathématiques, Université de Lyon, 4, 2-8.

Costa, N. C. A. da (1967b), «Filtres et idéaux d’une algebre C,»: C. R. Acad. Sc. Paris,
264A, 549-552.

Costa, N. C. A. da (1971), «Remarques sur le systeme NF »: C. R. Acad. Sc. Paris, 272A,
1.149-1.151.

Costa, N. C. A. da (1974a), «Remarques sur les calculs C,, C;, Cz et D,»: C. R. Acad.
Sc. Paris, 278A, 819-821.

Costa, N. C. A. da (1974b), «On the theory of inconsistent systems»: Notre Dame Journal
of Formal Logic, 16, 497-510.

Costa, N. C. A. da (1975), «Remarks on Jaskowski’s discussive logic»: Reports on Mathe-
matical Logic, 4, 7-16.

Costa, N. C. A. da (1986), «On paraconsistent set theory»: Logique et Analyse, 115,
361-371.

Costa, N. C. A. da (1989), «Matematica e Paraconsisténcia», Monografias da Soc. Para-
naense de Matematica, Curitiba, Brasil.

Costa, N. C. A. da y Alves, E. H. (1977), «A semantical analysis of the calculi C,»: Notre
Dame Journal of Formal Logic, 18, 621-630.

Costa, N. C. A. da y Carnielli, W. A. (1986), «On paraconsistent deontic logic», Philo-
sophia, 16, 293-30S.

Costa, N. C. A. da y Chuaqui, R., The logic of quasi-truth (en prensa).

Costa, N. C. A. da y Dubikajtis, .. (1968), «Sur la logique discoursive de Jaskowski»:
Bull. Acad. Pol. Sc., 15, 551-557.

Costa, N. C. A. da y Dubikajtis, L.. (1977), «On Jaskowski’s discussive logic», en Arruda,
da Costa y Chuaqui (comps.), 1977.

202



LOGICA PARACONSISTENTE

Costa, N. C. A. da y French, S. (1988), «Belief and contradiction»: Critica, 20, 3-11.

Costa, N. C. A. da y Marconi, D. (1986), «A note on paracomplete logic»: Atti Accad.
Lincei Rend. Ol. Sci. Fis. Mat., Natur, 8, 80, nos 7-12, 504-509.

Costa, N. C. A. da y Marconi, D. (1989), «An overview of paraconsistent logics in the
80s»: The Journal of Non-Classical Logic, 1, 5-31.

Costa, N. C. A. day Sette, A. M. (1969), «Les algebres C»: C. R. Acad. Sc. Paris, 268,
1.011-1.014.

Costa, N. C. A. day Wolf, R. G. (1980), «Studies in paraconsistent logic I: The dialectical
principle of the unity of opposites»: Philosophia, 9, 189-217.

Costa, N. C. A. day Wolf, R. G. (1985), «Studies in paraconsistent logic II: Quantifica-
tion and the unity of opposites»: Revista Colombiana de Matematicas, 19, 56-67.

Di Prisco, C. (comp.) (1985), Methods in Mathematical Logic, Springer, Berlin.

D’Ottaviano, I. M. L. (1982), Sobre uma Teoria de Modelos Trivalentes, Universidade
de Campinas, Brasil.

D’Ottaviano, I. M. L. (1985a), «The completeness and compactness of a three valued first-
order logic»: Revista Colombiana de Matematicas, 15, 31-42.

D’Ottaviano, I. M. L. (1985b), «The model extension theorems for J-theories», en Di
Prisco (comp.), 198S5.

D’Ottaviano, I. M. L. (1990), «On the development of Paraconsistent Logic and da Costa’s
work»: The Journal of Non-Classical Logic, 7, 1/2, 9-72.

D’Ottaviano, I. M. L. y Costa, N. C. A. da (1970), «Sur un probleme de Jaskowski»: C.
R. Acad. Sc. Paris, 270, 1.349-1.353.

Dunn, H. M. y Epstein, R. L. (comps.) (1977), Modern Uses of Multiple-Valued Logics,
Reidel, Berlin.

Epstein, R. L. (1990), The Semantics Foundations of Logic, Volume I: Propositional Logics,
Nijhoff International Philosophy Series, vol. 35, Kluwer.

Fidel, M. (1977), «The decidability of the calculi C,»: Reports on Mathematical Logic,
8, 31-40.

Grana, N. (1983), Ldgica Paraconsistente, Loffredo, Napoli.

Grana, N. (1990a), Contradizione e Incompletezza, Liguore, Napoli.

Grana, N. (1990b), Sulla Teoria delle Valutazioni di N. C. A. da Costa, Liguore, Napoli.

Heyting, A. (comp.) (1959), Constructivity in Mathematics, North-Holland, Amsterdam.

Karpenko, A. S. (1984), «Paraconsistent structure whithin many-valued logic», en Many-
valued, Relevant, and Paraconsistent Logics, Logic Seminar, Institute of Philosophy,
Acad. Sc. URSS, 39-39 (en ruso).

Kleene, S. C. (1952), Introduction to Metamathematics, Van Nostrand, Amsterdam.

Kotas, J. (1975), «Discussive sentential calculus of Jaskowski»: Studia Logica, 34, 149-168.

Kotas, J. y Costa, N. C. A. de (1977), «On some modal systems defined in connection
with Jaskowski’s problem», en Arruda, da Costa y Chuaqui (comps.), 1977.

Lewin, R. A., Mikenberg, I. F. y Schwarze, M. G. (1990), «Algebraization of Paraconsis-
tent Logic P,»: The Journal of Non-Classical Logic, 7, 145-154.

Lewin, R. A.,; Mikenberg, I. F. y Schwarze, M. G. (1991), «C, is not algebraizable»:
Notre Dame Journal of Formal Logic, 32, 609-611.

Lewin, R. A., Mikenberg, I. F. y Schwarze, M. G. (1994), «P, algebras»: Studia Logica,
53, 21-28.

Lewin, R. A., Mikenberg, I. F. y Schwarze, M. G., «Algebraization of several deductive
systems», manuscrito.

Lukasiewicz, J. (1910), «Uber den Satz des Widerspruchs bei Aristoteles»: Bull. Inter. de
I’Académie des Sciences de Cracovie, Classe d’Histoire de Philosophie, 15-38.
Lukasiewicz, J. (1971), «On the principle of contradiction in Aristotle»: Review of Metaphy-

sics, 24, 485-509.

203



NEWTON C. DA COSTA Y RENATO A. LEWIN

Marconi, D. (comp.) (1979), La formalizzazione della Dialettica, Rosenberg & Sellier,
Torino.

Meinong, A. (1907), Uber die Stellung der Gegenstandstheorie im System der Wissens-
chaften, R. Voitlander, Leipzig.

Mortensen, C. (1980), «Every quotient algebra for C, is trivial»: Notre Dame Journal of
Formal Logic, 21, 694-700.

Mortensen, C. (1990), «Models for inconsistent and incomplete differential calculus»: Notre
Dame Journal of Formal Logic, 31, 274-285.

Nelson, D. (1959), «Negation and separation of concept in constructive mathematics»,
en Heyting (comp.), 1959.

Pefia, L. (1979), Contradiction et Verité, Université of Liege.

Pefia, L. (1980), Formalizacién y légica dialéctica, Universidad Catdlica de Ecuador.

Pinter, C. (1980), «The logic of inherent ambiguity», en Arruda, da Costa y Sette (comps.),
1980.

Priest, G. (1979), «The logic of paradox»: Journal of Philosophical Logic, 8, 219-241.

Priest, G., Routley, R. y Norman, ]J. (comps.) (1989), Paraconsistent logic. Essays on the
inconsistent, Philosophia Verlag, Miinchen.

Puga, L. P. (198S5), Uma légica do Querer, Universidade Catdlica de Sao Paulo.

Puga, L. P., Costa, N. C. A. day Carnielli, W. A. (1993), «Kantian and non-kantian logic»:
Logique et Analyse, 121-122, 3-9.

Raggio, A. R. (1968), «A propositional sequence-calculi for inconsistent systems»: Notre
Dame Journal of Formal Logic, 9, 359-366.

Rescher, N. y Brandon, R. (1980), The Logic of Inconsistency, Basil Blackwell, Oxford.

Routley, R. y Meyer, R. K. (1976), «Dialectical logic, classical logic and the consistency
of the world»: Studies in Soviet Thought, 16, 1-25.

Routley, R., Meyer, R. K., Plumwood, V. y Brady, R. (1983), Relevant Logics and their
Rivals, Ridgeview.

Sette, A. M. (1973), «On the Propositional Calculus P'»: Mathematicae Japonicae, 16,
173-180.

Subrahmanian, V. S. (1987), «On the semantics of quantitative logic programs», en Pro-
ceedings of the 4th IEEE Symposium on Logic Programming, Computer Society Press,
Washington DC, 173-182.

Urbas, I. (1989), «Paraconsistency and the C-systems of da Costa»: Notre Dame Journal
Formal Logic, 30, 583-597.

Vasilev, N. A. (1925), «Imaginary (non-aristotelica) logic», Atti dei V Congresso Interna-
zionale di Filosofia, Napoli, 107-109.

204



LOGICA EPISTEMICA

Max A. Freund

INTRODUCCION

Nuestro discurso sobre el conocimiento y creencia adquiere diversas pers-
pectivas y niveles de generalidad. Podemos establecer, por ejemplo, rela-
ciones entre los mecanismos biol6gicos del ser humano y el conocimiento
de éste, concentrarnos en la fundamentacion del conocimiento matema-
tico o ligar los elementos psicoldgicos a las creencias cosmoldgicas. Este
tipo de discurso ha sido denominado «epistémico» y es la forma de dis-
curso presente en este articulo. Sin embargo, no todas las perspectivas
y niveles de generalidad de este discurso se desarrollaran aqui. No trata-
remos, por ejemplo, las dimensiones filoséficas o sociopsicoldgicas ya
apuntadas.

La dimension de nuestro discurso interpretard la entidad presupuesta
en los conceptos de conocimiento y creencia, esto es, aquello que conoce
o cree (el cual llamaremos «el agente»), de una manera muy general. Este
enfoque, entonces, no se concentrara solamente en un agente con ciertas
caracteristicas definidas (como podria ser un ser humano), sino que con-
templara las diferentes posibilidades que ofrece el uso de los conceptos
de creencia y conocimiento. De este modo, nuestra dimensién permitird
identificar, en ciertos casos, aquello que conoce o cree como un ser
humano particular y, en otros, como un grupo social, individuo ideal,
computador, serie de computadores o, en forma mas general, como un
autémata o serie de autématas'’.

Nuestro discurso toma como punto de partida la posibilidad misma
de razonar relativo a un agente o agentes dados. Este punto de partida
considera el hecho patente de que ciertos razonamientos, dentro de con-
textos epistémicos, no parecen regirse por las légicas clasicas proposi-

1. Cf. Hopcroft y Ullman (1979) para detalles sobre teoria de autdmatas.
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cional o de primer orden con identidad’. Recuérdense dos principios
basicos en estas l6gicas: la regla de reemplazo de oraciones equivalentes
y la ley de Leibniz de substituciéon de los idénticos”’.

Deberia ser posible, de acuerdo con la ley de Leibniz, argumentar
que (C) José Rubi sabe que César Augusto Sandino fue mandado asesi-
nar por el padre del dictador nicaragliense que muri6 en Paraguay, a partir
de las afirmaciones: i) José Rubi sabe que César Augusto Sandino fue
mandado asesinar por el padre de Anastasio Somoza Debayle, y ii) Anas-
tasio Somoza Debayle es el dictador nicaragiiense asesinado en Paraguay.
Por otra parte, la regla de reemplazo deberia justificarnos en la siguiente
inferencia: i*)
siva. ii™)
maéquina de registros ilimitados. Por lo tanto, (C*) Julio Ramirez cree
que una funciéon computable es computable por una maquina de regis-
tros ilimitados.

Los razonamientos antes descritos, sin embargo, no pueden ser con-
siderados vélidos, pues es posible que (i), (ii), (i*)
sen verdaderas, pero (C)y (C¥)
ejemplo, que Rubi no supiera a donde se fue Somoza al huir de Nicara-
gua o si murié. En el segundo caso, podria ser que los conocimientos
de Julio sobre funciones recursivas se hubiesen limitado a un curso intro-
ductorio de teoria de computabilidad en donde el tema de los registros
ilimitados nunca fue considerado.

Hay argumentos, por lo tanto, que no parecen obedecer a principios
importantes de la logica cldsica. Una manera de explicar estas anoma-
lias ha sido suponer que los operadores de la forma «8 sabe que B» y
«8 cree que B» son, en realidad, relaciones sintacticas de primer orden,
esto es, en forma mds precisa, relaciones entre individuos y nombres de
oraciones. Si S es una oracién, designaremos el nombre de esta oracién
con «S». De acuerdo con esa propuesta, entonces, las oraciones (i)
(i) deberian ser expresadas, respectivamente, como Cree (Julio, «una fun-
cién computable es recursiva») y Sabe (José Rubi, «César Augusto San-
dino fue mandado asesinar por el padre de Anastasio Somoza Debayle»)
Esta interpretacion mostraria, evidentemente, por qué los principios 16gi-
cos de primer orden mencionados son maphcables en el primer razona-
miento, porque el término «Anastasio Somoza Debayle» en (ii) y en (i)
constituirian diferentes nombres; en el segundo, porque la oracién «una
funcién computable es recursiva» en (i*)
un nombre.

La propuesta sintactica permitiria tratar principios relativos a opera-
dores, ligados a los conceptos de creencia y conocimiento, como teorias
de primer orden. Sin embargo, esta propuesta, sugerida, por ejemplo,

2. Cf. Quesada, 1994.
3. Ibid.
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en Quine (1975), ha presentado varios problemas. Entre éstos, el funda-
mental, el cual se sigue de resultados expresados en Montague (1963)
y Thomason (1980), es que cualquier teoria de primer orden que con-
tenga niveles de aritmética suficientes para permitir expresar la sintaxis
de la teoria y ciertos principios epistémicos relativos a las relaciones Sabe
(8, «$») o Cree (8, «3») es inconsistente®. Estos principios, sin embargo,
son de amplia aceptacion.

Por los problemas apuntados, nuestro enfoque no se orientard den-
tro de la interpretacién sintdctica. Asumira, mas bien, que los operado-
res de la forma «& sabe que £$», y «8 cree que £8», asi como muchos otros
ligados a los conceptos de conocimientos y creencia, hacen inoperantes
algunos de los principios de la l6gica cléasica’. El estudio de las propie-
dades logicas de esos operadores o, en forma mds precisa, el analisis
logico-formal del razonamiento sobre conocimiento y creencia se deno-
mina «logica epistémica»®. La dimension del discurso epistémico en el
presente articulo se centrard en este andlisis. Sin embargo, no intentare-
mos hacer una compilacion de la literatura existente en logica epistémica.
Preferiremos referir al lector a ciertas obras que cumplen esta funcion,
tales como Lenzen (1978), y Baeuerle y Cresswell (1989). Aqui nos ocu-
paremos, mds bien, de describir, en forma general, los métodos que ha
tomado tal I6gica en su objetivo de establecer principios y condiciones
bajo las cuales se da la relacion de consecuencia logica en contextos epis-
témicos.

I. LENGUAJES FORMALES EPISTEMICOS

Como andlisis formal que es, la légica epistémica enuncia los principios
generales de consecuencia logica, en contextos epistémicos, en relacion
con lenguajes formales. Diversos niveles de complejidad con respecto a
estos lenguajes han sido explorados. Se han considerado lenguajes muy
simples como los proposicionales asi como mas complejos como los de
primer orden o de érdenes superiores, a los cuales se han agregado ope-
radores epistémicos’.

En el caso de lenguajes proposicionales, encontramos que contienen
un conjunto enumerable de proposiciones atomicas, P, P,... y un con-
junto de constantes légicas =, —, (, ). Estas constantes han de inter-
pretarse, intuitiva y respectivamente, como la implicacion, negacion,
paréntesis izquierdo y paréntesis derecho. El lenguaje ha de contener tam-
bién un conjunto finito de operadores proposicionales O,...0,, cuya

4. Sobre cdmo la aritmética puede expresar la sintaxis de una teoria, cf. Mosterin, 1994.

5. Sin embargo, para desarrollos ulteriores de la propuesta sintactica, cf. Hass, 1986; Asher y
Kamp, 1986; Koons, 1988; y Perlis, 1988.

6. La idea de una logica epistémica se remonta a von Wright.

7. DPara detalles sobre lenguajes y ldgicas de drdenes superiores, cf. Jané, 1994.
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interpretacion intuitiva los constituye en operadores epistémicos. Lo que
es una formula bien formada (fbf) es definida en estos lenguajes de la
siguiente manera: I) toda variable proposicional es una fbf; II) si o y
a son fbfs entonces — o, (6—a), O,,06 (m=<n) también lo son. Como
ejemplo, podemos citar el lenguaje que tiene como operadores S,...S,
(para algun numero natural n) y en donde «S,6» (i<n) es interpretado
intuitivamente como «el agente i sabe que 6». Otros operadores episté-
micos que han sido expresados en lenguajes proposicionales incluyen «a
cree que f3», «es cognoscible que £8», «es cognoscible en forma construc-
tiva que f$», «f puede ser probado» y «f3 es de conocimiento comun».
Noétese que no siempre un operador tiene que hacer explicito el agente,
como sucede en los dos ultimos operadores.

En el caso de lenguajes epistémicos de primer orden, encontramos
que contienen, ademds de las constantes logicas de lenguajes proposicio-
nales y operadores epistémicos, un conjunto enumerable de variables de
individuos x,, X,..., un conjunto enumerable de constantes de indivi-
duos a,, a,, a;..., asi como un conjunto enumerable de predicados y
otro de funciones de cualquier nimero de argumentos P,, P,, P;,... y f,,
f,...; y un operador V (llamado el cuantificador universal). Podemos
extendernos a lenguajes de drdenes superiores agregando, como es bien
conocido, un conjunto enumerable de variables por cada orden.

Como hemos de definir los que es una fbf dentro de lenguajes de pri-
mer o de drdenes superiores se vuelve problemadtico, fundamentalmente
por las objeciones expuestas en Quine (1971) respecto a la cuantifica-
cién dentro de contextos intensionales. Por razones de espacio no pro-
fundizaremos en estas objeciones y las respuestas a éstas. Preferimos referir
al lector a Lenzen (1978) para un resumen de la situacion. Si podemos
hacer notar que nuestra actitud ante estas objeciones determinara si hemos
de asumir, por ejemplo, en el caso de lenguajes de primer orden episté-
micos, la cladusula (IIla): si 6 es una fbf, entonces ( Vx)o es una fbf; la
clausula (IIIb): si 6 es una fbf no epistémica (esto es, sin operadores epis-
témicos), entonces ( Vx)o es una fbf; o la clausula (Illc): si 6 es una fbf
que no es a la vez abierta (esto es, con variables libres) y epistémica, enton-
ces (Vx)o es una fbf. En otros términos, de acuerdo con nuestras sensi-
bilidades, podriamos aceptar o no que se cuantifique dentro de contex-
tos epistémicos como podria ser (Vx)— S F, (para algin n€N), en el
caso de un lenguaje de primer orden con los operadores S,...S, antes
mencionados.

Designemos con LE-{O,...0,} un lenguaje (ya sea proposicional, de
primer o de orden superior) con operadores O,...O,. Como hicimos
notar anteriormente, se parte de una interpretacion intuitiva epistémica
de estos operadores, asi como en LE-{S,...S,}, por ejemplo, partimos
de la interpretacién intuitiva de S;0 (i=n) como el «agente i sabe que
o». La logica epistémica puede proceder en dos direcciones (no exclu-
yentes) de andlisis l6gico de operadores epistémicos: una, que llamare-
mos «sintactica», y la otra «semdntica-formal».
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En la direccién sintactica se contempla un subconjunto Ax de fbfs
del lenguaje (los axiomas) y un conjunto R de reglas de transformacion
(las reglas de inferencia). Obtenemos de este modo un sistema formal
axiomatico, esto es, un triple <L-{O,...0,}, Ax, R>. La idea general
es que el sistema formal capture los aspectos légicos esenciales de los ope-
radores.

A manera de ejemplo, consideremos el lenguaje proposicional
LE-{S,...S,}, para algun ndmero natural n. Relativo a este lenguaje,
podemos formular un sistema formal, el cual llamaremos «el sistema H».
Sean 6 y a fbfs del lenguaje e i=n. H est4 constituido por las siguientes
reglas y esquemas de axiomas®.

Axiomas

Al. Todas las tautologias proposicionales,
A2. (So & S(c—8))—S8,

A3. Sioc—o0,

A4. S.6—SSo,

AS. —S.06—-S5,— S04

Reglas de inferencia

R1. si 6, 6—a, entonces a
R2. si a, entonces S;a.

Al y R1 son elementos de la logica proposicional clasica. A2 afirma
que el conocimiento de un agente esta cerrado bajo la implicacién y R2
que estd cerrado bajo las deducciones del sistema. A3 expresa la idea cla-
sica de que se conocen sélo verdades. A4y AS son axiomas de introspec-
cion: el agente puede contemplar su conocimiento y sabra lo que él conoce
y no conoce. Es importante hacer notar que se ha discutido ampliamente,
dentro de circulos filoséficos, sobre lo apropiado de este sistema como
una formalizacién del concepto «a sabe que 3». El lector puede consul-
tar Lenzen (1978) para una guia completa sobre estas discusiones. Sin
embargo, queremos mencionar que A2 y R2 son los elementos que mas
controversia han causado, pues nos fuerzan a concebir el agente como
un cognoscente ideal: un agente que conoce todas las férmulas validas
asi como todas las consecuencias légicas de su conocimiento. Esto, obvia-
mente, no va de acuerdo con una interpretacién del agente como un ser
humano o como un computador limitado por tiempo y espacio en la
memoria que puede usar. Sin embargo, como mencionaremos mas ade-
lante, existen otros tipos de agentes para los cuales el sistema H si es apro-
piado.

8. H constituye uno de los sistemas formales mas importantes de l6gica epistémica. Fue enun-
ciado en Hintikka (1962) y ha servido de referencia a investigaciones y desarrollos posteriores.
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Aparte de la direccidn sintactica, podemos proceder a construir una
semantica que interpreta el lenguaje formal epistémico. Se persigue con
esto que la semantica constituya un modelo, en términos de conjuntos,
de nuestras intuiciones relativas a los operadores epistémicos. Con esto
obtenemos, a la vez, una caracterizacién de los aspectos logicos de los
operadores epistémicos. Dado esto, se explora la posibilidad de enun-
ciar un sistema formal F tal que toda fbf ¢ caracterizada como una ver-
dad logica en la semdantica sea un teorema en F y viceversa. Sin embargo,
no podemos esperar que esto ultimo sea 51empre posible. Podria ser el
caso que semanticas de segundo orden epistémicas siguieran la suerte de
las estandar de segundo orden.

II. SEMANTICA DE MUNDOS POSIBLES

Las primeras semanticas formales de logica epistémica fueron desarro-
lladas utilizando la nocién de mundo posible, esto es, la idea intuitiva
de que, ademas del presente mundo, existen otras formas o maneras en
que el mundo pudo haber sido’. De estas semdnticas iniciales, sélo
expondremos, por razones de espacio, la primera formulada para len-
guajes epistémicos proposicionales o de primer orden con operadores de
la forma «a sabe que {3»'°. La importancia de ésta radica en que ha ser-
vido de referencia para los desarrollos semdnticos posteriores. El lector
puede consultar, por ejemplo, Halpern y Moses (1984) asi como Baeuerle
y Cresswell (1989) para semanticas de otros operadores.

La semdntica parte de la idea de que la informaciéon que un agente
posee no le permite decidir cudl de los mundos (que él considera posi-
bles) describe el mundo como es actualmente. Sobre la base de esta ima-
gen, se interpreta intuitivamente el que un agente sepa que 6 como «G
es verdadera en todos los mundos que el agente considera posibles (dada
su informacién actual)». Por ejemplo, dada cierta informacion, el agente
puede considerar posibles dos tipos de mundos, unos en donde no hay
tuberculosis ni cancer y otros donde no hay tuberculosis, pero si hay can-
cer. Siguiendo la interpretacion intuitiva, se diria entonces que el agente
sabe que la tuberculosis es capaz de ser eliminada, pero su informacion
no le permite saber si el cancer puede ser prevenido.

9. Paradiversas concepciones sobre la naturaleza de los mundos posibles, cf. Loux, 1979. Alter-
nativo a la nociéon de mundo posible, también se utiliza la nocidn de situacion o escenario. Para esta
ultima, cf. Barwise y Perry, 1983.

10.  La primera exposicion de este tipo de semdntica se encuentra en Hintikka, 1962. Una for-
mulacién alternativa, histdricametne importante, constituye la de R. Montague y que difiere de la
expuesta en este apartado, entre otros aspectos, por la exclusion de la relacion de accesibilidad. Tam-
bién, esta semdntica, a diferencia de la de Hintikka, se ubica dentro de un proyecto ldgico-lingiiistico
mas amplio, cuyo propdsito, entre otros, es el desarrollo de una I6gica intencional general. Para deta-
lles, cf. Anderson, 1984 y Partee, 1976.
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Las ideas antes expresadas han sido formalizadas en términos de
estructuras de Kripke''. Entenderemos por una estructura E de Kripke
un tuplo <M, =, P,,...P,,>, en donde M es un conjunto de mundos
posibles, m es una asignacién de valores de verdad a las proposiciones
atémicas para cada mundo posible meM, de tal modo que m(m, p)e
{ Verdad, Falsedad} para cada meM y proposicién atomica p, P, es una
relacién sobre M (para i=1,..., m). P; es la relacion de posibilidad de
i (llamada, también, la relaciéon de accesibilidad de i). De este modo,
hemos de entender intuitivamente que (s, m)€P,, esto es, m es accesible
de acuerdo con la relacion P, desde s, como el agente i considera a m
posible dada la informaciéon que posee en s.

Caracterizamos ahora la verdad de una fbf en una estructura y mundo
m (en simbolos, E, mr o) como sigue:

E, mtp sii n(m, p)=V, para toda proposicién atomica.
E, m— — 06 sii no es el caso que E, mo.

E, m6—6sii E, m—060E, mr§

E, m+So sii E, ro para todo r tal que (m, r)€ePi.

Esta semdntica puede ser extendida para lenguajes de primer orden
epistémicos. En este caso agregamos un dominio de objetos D y una fun-
cion F que asigna diversas extensiones a los predicados en cada mundo
posible, esto es, para todo meéM y predicado P de n argumentos, F(P,
m) es un subconjunto de D".

De acuerdo con las propiedades de las relaciones de accesibilidad P;,
se obtienen nociones de verdad légica que formalizan diversas interpreta-
ciones intuitivas del operador «i sabe que 3». Por ejemplo, si se asume que
P, es reflexivo, simétrico y transitivo, entonces la nocion de verdad logica
que proporciona esta semdntica puede ser caracterizada por el sistema for-
mal H. Esto es, los axiomas de H se constituirian en esquemas de verda-
des logicas y las reglas nos llevarian de verdades logicas a verdades 16gi-
cas. Por otra parte, toda verdad l6gica en la semantica y regla que preservara
verdad logica podria ser demostrada en el sistema H. Si estipularamos,
por otra parte que P; no fuese necesariamente simétrico, entonces perde-
riamos a A5 como un esquema de verdad logica en la semantica resultante.

Independientemente de las propiedades que las relaciones de accesi-
bilidad pueden poseer, cualquier semdntica de este tipo siempre justifi-
card A2 y R2. Por lo tanto, esta semdntica nos obliga a concebir al agente
como una entidad capaz de conocer todas las consecuencias légicas de
su conocimiento, lo cual la hace inadecuada como un modelo de agentes
tales como seres humanos o computadores con limitaciones de espacio
y tiempo en su memoria'’. Este problema, denominado el problema de

11. DPara detalles sobre estas estructuras, cf. Orayen, 1994.

12.  Esimportante notar, sin embargo, que la semdntica es apropiada para representar sistemas
distribuidos, esto es, colecciones de procesadores conectados por una red de comunicacion. En este
caso, los agentes serian los procesadores. Para detalles, cf. Halpern y Moses, 1985.
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la omnisciencia ldgica, ha estimulado el desarrollo de semanticas alter-
nativas.

Dentro de la semantica misma de mundos posibles, se ha sugerido,
por ejemplo, en Cresswell (1973) y Rantala (1982) introducir mundos
no estandar, esto es, mundos que no cumplen, en forma general, con
las leyes de la lgica cldsica. Ejemplos de este tipo de mundos podrian
ser aquellos en donde ciertas proposiciones no son ni verdaderas ni fal-
sas 0 en donde determinadas proposiciones son verdaderas y falsas. El
problema con este enfoque radica en que ese tipo de mundos no ha sido
motivados en forma satisfactoria. Sin embargo, cf. Hintikka (1975) para
una posible motivacion. Es importante mencionar que mundos no estan-
dar han permitido, en Levesque (1984), desarrollar una semantica que
logra distinguir entre conocimiento implicito y explicito, lo cual ofrece
un escape al problema apuntado: se posee s6lo conocimiento implicito
de todas las consecuencias légicas de nuestro conocimiento, pero no asi
explicito.

Se han propuesto también enfoques alternativos al de los mundos posi-
bles. El mas prometedor de éstos ha sido el expuesto en Konolige (1985).
La idea intuitiva detrds de esta propuesta consiste en lo siguiente: sea
A un agente determinado, al cual asociamos un conjunto de oraciones
34, las cuales llamaremos las creencias basicas de A, y un conjunto de
reglas de inferencia R,. Ahora diremos que A sabe que o siy sélo si A
puede inferir ¢ a partir de $, y R,. Esta idea permitiria solucionar el
problema de la omnisciencia légica: el conjunto de reglas R, no ha de
coincidir necesariamente con un conjunto completo de reglas de deduc-
cién y esto posibilitaria el que A no conociera ciertas consecuencias logi-
cas de su conocimiento.

IV. CONSIDERACIONES FINALES

Existen varios temas de interés filoséfico relacionados con la légica epis-
témica que no hemos tratado hasta el momento. Por su desarrollo e impor-
tancia relativa, nos interesa mencionar ahora el de la matematica ' epis-
témica.

Partamos de la idea de que el agente posee ciertas capacidades o niveles
de informacién que le permiten adquirir un grado importante de conoci-
miento matemdtico. Por otra parte, asumamos que el agente no se encuen-
tra limitado por aspectos de factibilidad tales como tiempo, memoria y
desarrollo tecnoldgico. Podemos preguntarnos ahora cudles limitaciones
cognoscitivas tendria, en general, tal agente. La solucién a este problema
ha estimulado la construccién de diversos sistemas formales matemati-
cos, en los cuales la l6gica subyacente es epistémica. De acuerdo con la

13. Por razones de espacio no expondremos los otros temas. El lector encontrara varios de éstos
en las obras citadas.
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légica o la base matematica asumida, los sistemas varian. Esto es, rela-
tivo al tipo de agente que contemplemos, podemos admitir o rechazar
ciertas formas de razonamiento y teorias matematicas. Diversos agentes
contemplados han justificado la introduccion de operadores tales como
«puede ser probado en principio que p», «puede ser decidido en forma
algoritmica que p» y «es cognoscible en forma constructiva que p». Los
diferentes tipos de agentes asumidos han justificado la introduccién de
teorias matematicas como la aritmética de Peano, la teoria de conjuntos
finitos o diversas teorias logicas de conjuntos.

Lo interesante de los sistemas de matematica epistémica es que han
permitido establecer algunos teoremas limitativos relativos a ciertas for-
mas de conocimiento. Esto ha de tener una influencia futura en teorias
epistemoldgicas sobre la matemdtica y disciplinas afines. El lector puede
consultar Shapiro (1985), Freund (1991) y Reinhardt (1986) en donde
se exponen asi cOmo se justifican varios de esos sistemas y teoremas limi-
tativos.

Hemos descrito en forma muy general los aspectos importantes del
enfoque logico-formal del discurso epistémico. Hemos visto que la l6gica
epistémica primero construye lenguajes formales con operadores, cuya
interpretacidn intuitiva los constituye en operadores epistémicos. Luego,
busca la formulacién de sistemas y semanticas formales que capturen los
aspectos légicos de esa interpretacion. Gran parte de los trabajos en logica
epistémica se han concentrado en la formulacion de sistemas formales. Falta
desarrollar mas la direccién de semanticas formales. Dentro de esta direc-
cién creemos que surgiran los problemas y soluciones mds interesantes.
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LOGICA TEMPORAL

Margarita Vazquez Campos

I. INTRODUCCION

Los antecedentes de lo que hoy conocemos como «légica temporal» o
«légica del tiempo» son casi tan antiguos como la misma légica. Se suele
citar como primer antecedente a Aristoteles, quien en el «Peri Herme-
neias» escribe que el tiempo puede modificar el valor de verdad de las
proposiciones. Aristoteles no desarrolla esta idea. Es Diodoro de Cro-
nos, perteneciente a la Escuela Megarica, quien da los primeros pasos
en esta disciplina al tratar el tema de la definicion de las modalidades.
Las ideas de Diodoro tuvieron una gran difusion en toda la ldgica anti-
gua y medieval.

Ya en nuestro siglo, la figura fundamental dentro de este campo es
Arthur Prior. De hecho, Prior es el padre de la ldgica temporal como
una rama auténoma dentro de la l6gica. Su idea basica es que el tiempo
(el momento del tiempo) al que se refiere una proposicion es decisivo para
atribuir un valor de verdad a dicha proposicion. En sus multiples libros
y escritos, Prior, que parte de una logica temporal muy fuertemente vin-
culada a la modal, defiende la importancia de una légica temporal auté-
noma (frente a los opositores a esta idea, como Quine) y ofrece multitud
de axiomatizaciones de sistemas de l6gica temporal, dependientes de las
concepciones que se tengan en cada caso acerca del tiempo. Es decir, un
sistema que recoja una concepcion del tiempo circular sera diferente de
un sistema que, por ejemplo, recoja una concepcién del tiempo como
ramificado en el futuro.

A partir de los anos 50, que es de donde datan las primeras aporta-
ciones de Prior, el desarrollo de la l6gica temporal ha sido enorme, espe-
cialmente en las dos ultimas décadas. Esto es no sélo debido al interés
formal intrinseco de este tipo de sistemas, sino también a la amplia varie-
dad de campos a los que se puede aplicar. Burgess (1984) senala cinco
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tipos diferentes de motivos que justifican el desarrollo de la logica tem-
poral: filoséficos, exegéticos, lingiiisticos, informdticos y matematicos.
Desde el momento en que Burgess planteaba esto ha habido muchos desa-
rrollos, sobre todo en lingtiistica y en informatica.

En lingiiistica nos encontramos con la utilizacién de la logica tempo-
ral para el estudio de las estructuras l6gicas de las formas de razonamiento
asociadas con el lenguaje natural (Bras, 1990). Estos modos de razona-
miento pueden llevar, ademads, al desarrollo de importantes aplicaciones
précticas. En este campo, es especialmente destacable el calculo de even-
tos y el razonamiento por defecto (especialmente interesante es Kowalski
y Sergot, 1986).

En informatica, la I6gica temporal se ha manifestado como especial-
mente apta para ser aplicada a la teoria de la programacion, especial-
mente para el estudio del comportamiento tanto de programas secuen-
ciales como de programas paralelos (Pnueli, 1977; Audureau, Enjalbert
y Farinas del Cerro, 1989; Bahsoun, 1988). En este campo, los sistemas
pueden ser de ldgica temporal lineal o ramificada. Aqui, tras el estudio
de los formalismos, se pueden definir métodos de deduccién automatica
para ellos y realizar mdquinas de inferencia abstracta que los soporten.
En esta linea, cabe sefialar que la semdntica de mundos posibles, utili-
zada en l6gica modal y heredada con ciertas modificaciones en ldgica tem-
poral, puede ser sustituida por una semantica basada en autématas (por
ejemplo, Thayse, 1989).

El tipo de légica temporal que aqui se va a tratar se corresponde con
lo que se ha llamado l6gica del tiempo gramatical. Hay otro tipo de logica
del tiempo llamada légica cronolodgica, que en lugar de introducir nue-
vos operadores para el pasado y el futuro, esta basada en relaciones tem-
porales. Para una légica de este tipo, véase Pefia (1989).

II. AXIOMATIZACION DE LA LOGICA TEMPORAL

Como se ha dicho en el apartado anterior, la axiomatizacién de los siste-
mas de logica temporal va a depender de la concepcidon que se tenga del
tiempo. Una axiomatizacion constara de un conjunto de axiomas de la
l6gica proposicional clasica y de los axiomas necesarios para reflejar las
propiedades del tipo de tiempo. En algunos casos, sera necesario intro-
ducir axiomas de la l6gica modal (por ejemplo, en un sistema ramificado
en el futuro, pero cuya ramificacién provenga de la modalidad y no de
la temporalidad). Las principales propiedades que el tiempo puede tener,
quedarian recogidas en los siguientes axiomas:

Ax. 1. G(A-B)—(GA—-GB)
Ax. 2. H(A-B)—»(HA—HB)
Ax. 3. A-HFA
Ax. 4. A-GPA
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Ax. 5. GA, cuando A es una tautologia de la l6gica proposicional
clasica

Ax. 6. HA, cuando A es una tautologia de la légica proposicional
clasica

Ax. 7. FFA-FA

Ax. 8. (FA&FB)—(F(A&B)v(F(A&FB)VF(FA&B)))

Ax. 9. (PA&PB)—(P(A&B)V(P(A&PB)VP(PA&B)))

Ax. 10. GA—FA

Ax. 11. HA-PA

Ax. 12. FA-FFA

Ax. 13. GA—A

Ax. 14. GA—-HA

En estos axiomas,
& y v, encontramos nuevos operadores monarios: G, H, Fy P. Gy F
son los operadores relativos al futuro y H y P los del pasado. F puede
ser entendido como «ser4 el caso que»,
A partir de ellos,
H=,—P—. La similitud con los operadores M y L de légica modal
es evidente.

Entre las propiedades del tiempo que reflejarian estos axiomas,
mos ver que el Ax. 7 refleja la transitividad,
la derecha (futuro),
el Ax. 10 la infinitud en el futuro,
el Ax. 12 la densidad,
Estas propiedades habrdn de quedar igualmente expresadas en la
semadntica.

III. SEMANTICA DE LA LOGICA TEMPORAL

La semdntica de la l6gica temporal estd basada en la nocién de momento
historico (W es el conjunto de momentos). Entre estos momentos se da
una relacion de ulterioridad R (o relacion antes/después).

Asi,
del tipo <W,R,v> donde,

i) W0

ii) RcW?y es una relacién cuyas propiedades dependeran de la con-
cepcion del tiempo.

iii) Siendo F el conjunto de todas las férmulas bien formadas (f.b.f.),
v: FxW— {1,
w,,w,€W, A B€F y variable proposicional p:

I) v(p,w;)=16 v(p, w)=0

II) v(A—B,w,)=1 siy sélo si v(A,w,)=0 6 v(B,w,)=1
II) v(— A,w,)=1 siy sélo si v(A,w,)=0
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IV) v(PA,w;)=1 si y sélo si para algun w,, tal que wRw,,
vV(A,w;) =1
V) v(FA,w;)=1 si y solo si para algin w,, tal que w.Rw;,,
v(A,w;)=1
VI) v(HA,w;)=1 si y sélo si para todo w,, tal que wRw,,
V(A,w,)=1
VII) v(GA,w,) =1 si y solo si para todo w,, tal que w.Rw,,

V(A,wi) =1

Una fbf A es T-satisfacible si y s6lo si existe un modelo-T, <W ,R,v>,
y un momento w,€W, tales que v(A,w;)=1. Una fbf A es T-vélida si y
solo si para todo modelo-T, <W,R,v>, y todo w,eW, v(A,w;)=1.

Las propiedades de R, de las que se hablaba en ii), son las que van
a quedar recogidas en los axiomas del sistema. En los sistemas bésicos
de tiempo lineal, R es transitiva. Si el tiempo es, por ejemplo, circular,
R ha de ser reflexiva, simétrica y transitiva. Tal simetria no es habitual
en la légica temporal, puesto que la primera propiedad que se suele exi-
gir a la relacidn de ulterioridad es la antisimetria.

IV. EL SISTEMA MINIMO

El sistema minimo de l6gica temporal, kt (Lemmon, 19635), estd formado
por los siguientes axiomas:

Ax. 0. Un conjunto suficiente de axiomas para derivar todas las tau-
tologias de la logica proposicional clasica Ax. 1, Ax. 2, Ax. 3, Ax. 4,
Ax. S y Ax. 6.

Como regla de derivacion tenemos el modus ponens (MP).

El lenguaje formal de kt consta de:

i) un conjunto enumerable de variables proposicionales, p, q, r, etc.

1) = y — como conectivas primitivas,

iii) (, ) como signos auxiliares,

iv) A, B, etc. como variables metalingtiisticas, y

v) F, P, G y H como operadores temporales.

Una fbf en kt serd una concatenacién de signos primitivos de kt, de
alguno de los tipos siguientes:

1) Toda variable proposicional es fbf.
2) — A, donde A es fbf
3) A—B, (A—B), donde A y B son fbfs
4) FA, donde A es fbf
5) PA, donde A es fbf
6) GA, donde A es fbf
7) HA, donde A es fbf.
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V. OTROS SISTEMAS

El sistema para el tiempo lineal, en su primera formulacion debido a Coc-
chiarella en 1965, anadiria a kt:

* En el lenguaje formal,

i) -, —, & y v, como conectivas primitivas,
8) AvB, (AvB), donde A y B son fbfs, y
9) A&B, (A&B), donde A y B son fbfs.

* En la axiomdtica, Ax. 7, Ax. 8 y Ax. 9.

* Enla semantica, la relacion R ha de cumplir las propiedades rela-
tivas a los axiomas 7, 8 y 9. Estas son: transitividad (Ax. 7-P1),
linearidad a la derecha (Ax. 8-P2) y linearidad a la izquierda (Ax.
9-P3),

P1. (x)(y)(z)((xRy&yRz)—>xRz)
P2. (x)(y)(z)((xRy&XRz)~((x = y)vyRzvzRy))
P3. (x)(y)(2)((YRx&2Rx)~>((x = y vzRyvyRz))

El sistema para el tiempo ramificado tiene muchas formulaciones.
El sistema bdsico ramificado es también debido a Cocchiarella y diferira
de kt sélo en que incluiria el Ax. 7 y la P1. Si el sistema es ramificado
solo hacia el futuro, pero lineal en el pasado (como el presentado por
Rescher y Urquhart en 1971, llamado kb), anadiria el Ax. 10.

VI. EL SISTEMA OT

A partir de kb, se construyé un sistema llamado Ot (Okhamist Tense),
expuesto por primera vez por Prior, que, siendo lineal en el pasado, inter-
preta en el futuro la posibilidad y la necesidad como ramificadas, mien-
tras que F y G son lineales. Si se construye un modelo ramificado consi-
derdndolo como una coleccién de modelos lineales parciales desembocaria
en una concepcion lineal del tiempo. Pero el sistema Ot prevé esto, eli-
giendo arbitrariamente una ramificacion para ser el futuro prima-facie
del actual momento histérico. Esto permite hablar del futuro con pleno
sentido, pues se esta haciendo referencia a lo que hemos tomado como
futuro actual y, al mismo tiempo, las ramificaciones permiten seguir
hablando de posibilidades y necesidades. Para ello, en el lenguaje for-
mal, se anaden L y M como operadores modales.

Como axiomas, Ot, tal y como es presentado en McArthur (1976),
tiene Ax. 0, Ax. 1, Ax. 2, Ax. 3, Ax. 4, Ax. §, Ax. 6, Ax. 7, Ax. §,
Ax. 9, Ax. 10, Ax. 11 y:

Ax. 15. L(A—B)—(LA—LB)

Ax. 16. MMA->MA

Ax. 17. LA, cuando A es una tautologia de la l6gica proposicional
clasica

Ax. 18. LA—GA
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Ax. 19. A—LPA, donde A no tiene ninguna ocurrencia de F.

Como regla de derivacion tenemos el modus ponens (MP).

Esta axiomatizacion del sistema ockhamista no representa adecua-
damente un tiempo ramificado en el futuro. Para una axiomatizacion de
este tipo de tiempo puede verse Anderau, Enjalbert y Farifias (1989),
Zanardo (1985) y Gabbay (1994).

VII. CONSISTENCIA Y COMPLETUD

A continuacién vamos a demostrar la consistencia y la completud para
el sistema minimo kt, axiomatizado en el apartado IV, asi como algunas
otras propiedades semdnticas de interés.

El sistema kt serd consistente, para un conjunto de modelos, si toda
tesis de kt es T-vdlida en ese conjunto de modelos y kt serd completo,
para un conjunto de modelos, si toda férmula T-vélida es ese conjunto
de modelos es una tesis de kt o, de manera equivalente, si toda férmula
consistente con kt es T-satisfacible en ese conjunto de modelos.

Teorema 1 (teorema de consistencia): kt es consistente para el
conjunto de todos sus modelos

Prueba: Hay que mostrar que cada una de las tesis de kt es valida sobre
el conjunto de sus modelos. Para ello basta con mostrar que cada uno
de los axiomas de kt es vélido.

Para demostrar que el Ax. 1 es vélido, debemos mostrar que para todo
<W,R,v> vy para cualquier w;, si V(G(A—B),w;)=1y v(GA, w,)=1,
entonces V(GB, w;)=1. Por la hipdtesis tenemos que siempre que w,Rw;,
y V(A,w;)=1, entonces v(B,w;)=1 y que siempre que w,Rw,,
v(A,w,)=1. De aqui se sigue inmediatamente que siempre que w.Rw,,
v(B,w;)=1. La demostracion del Ax. 2 es similar.

Para demostrar el Ax. 4, debemos mostrar que para todo <W,R,v>
y para cualquier w;, si v(A,w,)=1, entonces v(GPA,w,) = 1. Puesto que
la conclusién es que para todo w;, tal que w,Rw;, hay un w,, tal que
w,.Rw,, y que v(A,w,)=1, basta con que w, =w,. De forma similar, se
demuestra el Ax. 3.

El Ax. § y el Ax. 6 se demuestran de manera inmediata. Puesto que
paratodo <W,R,v> y w tenemos que v(A,w) =1, entonces v(HA,w) =1
y V(GA,w)=1.

Para la prueba de completud, tipo Henkin, se seguird, fundamental-
mente, Burgess (1984). El concepto central es el de conjunto méxima-
mente consistente y, para llegar a él, necesitamos varias definiciones
previas.

Def. 1. T es un conjunto inconsistente sty solo si I' - A& — A para
alguna fbf A.
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Def. 2. T esun conjunto consistente si y solo si I' no es inconsistente.
Def. 3. T es un conjunto maximamente consistente, CMC, siy sélo si:
1) T' es consistente, y
i1) si TU{A} es consistente, A€l'.

Teorema 2 (lema de Lindenbaum): Si T es un conjunto consistente,
hay un conjunto maximamente consistente I' tal que TST'

Prueba:

Sea A,,..., A, una enumeracion de las fbfs. Definase la serie de con-
juntos I'y, T'y,...

1)) I'y=mn

ii) Para cadai=0,T;,, =T U{A;} si I"'U{A,} es consistente. Si no

es consistente I';, , =T"..

i) T=U,., I

Es claro que existe un I' tal que n<TI":

a) T es consistente. Por induccién, I';, es consistente y, por construc-
cion, cada T'; lo es. Por tanto, UI',=T" es consistente.

b) SiT'U{A} es consistente, A€I". Si'U{A} es consistente, hay un
I', tal que T', =T, _,U{A}.

Entonces A€l', y, por tanto, A€T'.

Teorema 3: Si T" es consistente y I'—=A, TU{A} es consistente

Prueba:

SiT'U{A}) fuera inconsistente, tendriamos que TU{A}—B& — B, y,
por légica de proposiciones, que I'~ — A, con lo cual THFA& — Ay
I' es inconsistente, lo que contradice la hipétesis.

Teorema 4: Si T' es CMC,

i) '-A siy soélo si Ael’

ii) A&BET siy solo si AeT" y Bel

iii) AvBeT siy s6lo si A€’ o Bel'

iv) A—BeI siy sélo si A¢l' o Bel
)

v) Ael’ 6 — Ael.

Pruebas:

1) a) A€T', entonces I'—A.
b) ' A, I' es consistente, 'U{ A} es consistente. Entonces, A€’
por def. 3.

i) a) A&Bel', 'A&B, I'A, I'B, Ael", Bel'.
b) AeI"''y BeI', '-A, I'-B, ' A&B, A&BeT'.

i) a) AUBeT,
st A¢T" y B¢I', TU{A]} es inconsistente, 'U{B} es inconsistente,
IN'v{A}—C&—C,TU{B}-D& —D, ' —A,T'+—B, '+
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— A& — B, I' — (AvVB). Pero como AUB€I', I'- AUB. Por
tanto, I' seria inconsistente.
b) A€el’ o BeI'. Por un lado, si AeI', '+ A, I'= AvB, AvBeI'. Por
otro lado, si BeI', ' B, I'—= AvB, AvBeTI'. Con lo cual AvBeT'.
iv) a) A—>Bel',si Ael'y B¢I', '=A—-B, ' A, ' B, BeI'. Enton-
ces BeI' y B¢T'.
b) A¢T’ o BeI'. Por un lado, si A¢T', TU{A}-C& —C, '+~
— A, I'+—A—-(A-B), '+ A—B, A—~Bel.
Por otro lado, si BeI', I'=B, I'-B—(A—B), ' A—B, A—>Bel'.
Por tanto, A—BeT.
v) Si A¢l' y — A¢l’, TU{A}-B&— B, TU{— A}-C&—C,
I'e A, T'+——A, I'— A& ——A. Pero T es CMC,
— A& — — A es inconsistente, luego A€’ o — Ael.

Teorema §: Sitenemos dos CMs T" y I, las cuatro clausulas siguientes
se cumplen, siendo equivalentes entre si:

1) si A€I', entonces PA€I”
1) st BeI”, entonces FBeI
i1) si GCeI', entonces CeI™

)
1v) si HD€I, entonces DeT".

Prueba: Para mostrar que i) implica iii), se asume i) y que GCeI'. Enton-
ces PGCeI” y, por logica de proposiciones y el Ax. 3, tenemos que
PGC—C, con lo que CeI". Se utilizan pruebas similares para los demas
casos (que iii) implica ii), que ii) implica iv) y que iv) implica i)).

Def. 4. Paralos CMCs T y IV, decimos que I es seguido en potencia
por I, y escribimos AP-B, si cumple las condiciones impuestas en las clau-
sulas del teorema 5. Intuitivamente, esto significaria que una situacion
del tipo descrito por I' podria ser seguida de una situacion del tipo des-
crito por I".

Teorema 6: Si T" es CMC,

1) y FA€TI', hay un CMC I" tal que I'™I” y Ael™,
ii) y PA€l’, hay un CMC I'” tal que I'">T" y Ael™.

Prueba: i) Elesquema de demostracién seria como sigue. Tenemos FA€T"
y tenemos que conseguir I’ tal que IT'™I” y A€I”. Por def. 4 y teorema
5 i), si '™I", entontes para cualquier BEI™, se dé que PB€I™ y tal que
A€I”, siendo I” un CMC. Por teorema 2, si demostramos que el con-
junto IV, = {PB, A} es consistente, habriamos demostrado que puede
conseguirse. I'” seria simplemente una extension suya. Tenemos ahora
que demostrar que I'’, es consistente. Habria que demostrar que para
cualquier BeT", PB& A es consistente. Para esto llega con demostrar que
F(PB& A) es consistente (puesto que si fuese verdad que — (PB&A) ten-
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driamos — F(PB&A), a partir de Ax. S y definicion de G), lo que es
cierto puesto que F(PB& A)€eT", ya que (B&FA)—F(PB&A) es una f6r-
mula demostrable y B&FA lo tenemos por hipdtesis. La prueba para ii)
seguiria un esquema similar.

Def. 5. Una crénica en un marco <W,R> (W y R entendidos de
la forma habitual) es una funciéon T que asigna a cada w,€W un CMC
T(w,). (Empleamos el concepto de marco en el sentido de Segerberg, tal
como es recogido por Hughes y Cresswell, 1984). Intuitivamente, si W
representa el con]unto de momentos y R Ia relacion de ulter1or1dad T
proporcionaria una descripcion completa de lo que pasa en Cada
momento. T es coberente si tenemos T(w,)T(w,) siempre que w,Rw,. Si
T es coherente y satisface la condicién 1) siguiente es profética, si satis-
face la ii) es historica:

1) Siempre que FA€T(w,) hay un w; tal que wRw, y A€T(w,).

ii) Siempre que PA€T(w,) hay un w, tal que wRw, y AeT(w,).
T es perfecta si es tanto histérica como profética.
Ademas, T serd coherente si y solo si satisface las dos condicio-
nes siguientes:

1) Siempre que GA€T(w,) y wRw,, entonces A€T(w;).

iv) Siempre que HA€T(w,) y w,Rw,, entonces A€T(w,).
Respecto a la evaluacion, si v es la evaluacién en <W,R> la cré-
nica inducida Tv, en W,, Tv(w,) estaria formada por todo A, tal
que v(A,w;)=1. Tv es siempre perfecta. Si T es una crénica per-
fecta en <W,R >, la evaluacién inducida Vt, en w;, Vt(A,w;) =1
si y solo si AeT(w,).

Para probar la completud de kt para un conjunto de modelos, debe-
mos mostrar que toda férmula consistente A, es satisfacible. El teorema
7 ofrecerd una estrategia para mostrar que A, es satisfacible. Esta estra-
tegia consiste en construir una cronica perfecta T, de acuerdo con la def. 5,
en algun marco <W,R> que contenga un w, tal que A€T(w,).

Teorema 7: Si T es una cronica perfecta en un marco <W,R> vy
v =Vt es la evaluacién inducida por T, entonces T=Tv es la
crénica inducida por v. En otras palabras tenemos que
v(A,w,)=1 si y sélo si A€T(w,). En particular, cualquier
miembro de cualquier T(w) es satisfacible en <W,R>

Prueba: Se demuestra por induccién sobre la complejidad de A. Por ejem-
plo para G, asumimos que v(A,w,)=1 si y sélo si A€T(w,) para Ay lo
probamos para GA. Por un lado, si GA€T(w,), entonces por def. 5 (iii)
siempre que haya un w; tal que w,Rw;, entonces A€T(w;) y, por la hipo-
tesis de la induccidn, v(A,w;)=1. Esto muestra que v(GA,w;)=1. Por
el otro lado, si GA¢T(w,), entonces, puesto que F— A= ,,— GA,
F— AeT(w,) y, por def. 5 (i), para algun w;, tal que w,Rw,, tenemos que
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— A€T(w;) y A¢T(w,). De donde, por hipédtesis de la induccion,
v(A,w;)=0. Esto muestra que v(GA,w,)=0.

Def. 6. Témese un conjunto infinito enumerable X. Sea M el con-
junto de todos los triples <W,R,T > tales que:

1) W0y WeX,
ii) REW?y es antisimétrica.
iii) T es una cronica coherente en <W,R>.
Parap=<W,R,T> yp=<W R T > en M, decimos que i’
es una extension de | si, estando las relaciones y funciones iden-
tificadas con conjuntos de pares ordenados, tenemos:
) WewW’,
ii’) R=R'N(WxW’),
i) TST.
Una condicién de la forma de la establecida por la def. 5 (i) o
(i) sera llamada no nacida para p = <W,R,T > si su antecedente
no se cumple, es decir, si w,¢W o si w,éW pero FA o PA,
dependiendo del caso, no pertenece a T(w,). Sera llamada viva
para | si su antecedente se cumple pero su consecuente no; en
otras palabras, no hay ningun w,éW tal que wRw; o wRw,,
segun el caso, y A€T(w,). Sera llamada muerta para p si el con-
secuente se cumple.

Teorema 8: Si p= <W,R,T>, para cualquier condicién de
forma de la def. 5 (i) o (ii) que esté viva para p, existe una
extension p’ = <W’,R’, T°> de n en la que esta condicion esté muerta

Prueba: Tomemos la condicion de la forma de la def. 5 (i). Si w,eW y
FA€T(w,), por el teorema 6 (i), hay un CMC Y, tal que T(w,»Y y
A€Y. Esto sirve para fijar un w;, tal que w,€X-W, y para construir los
conjuntos:

a) W=WU{w;},

b) R’=RU{<w, w;>} vy

¢) T'=TU{<w;, Y>}.

Teorema 9 (teorema de completud): kt es completo para un
conjunto de modelos X

Prueba: Dada una férmula consistente A,, deseamos construir un marco
<W,R> y una crénica perfecta T en él, con A,€T(w,) para algun w,.
Para este fin, fijamos una enumeracién w,, w,, w,,... de X y una enu-
meraciéon A,, A,, A,,... de todas las férmulas de kt. A la condicién de
la def. 5 (i) (o (ii)) se le asigna un numero de coédigo, dependiente de esta
enumeracion. Se fija un CMC T'y,, con A€l y sea po= <W,, Ry, T,>,
donde W,={w,}, R,=0y T,={<w,, I'y>}. Si u, esta definido, con-
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sidérese aquella condiciéon que, entre todas las que estén vivas para p,
tenga el numero de c6digo menor. Sea p,,,, segin el teorema 8, una
extensién de p, para la cual la condicién esté muerta. Sea <W,R, T> la
unién de los p,=<W,, R,, T,>; de manera mds precisa, sea W la
unioén de los W, R la unién de los R, y T la de los T,. Asi se verifica
que T es una cronica perfecta de <W,R>.
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LA LOGICA CUANTICA

Sergio F. Martinez Muisoz

I. INTRODUCCION

La mecanica cuantica constituye la teoria mds revolucionaria y funda-
mental de la fisica moderna. Si bien su adecuacién empirica (en tanto
que descripcion de procesos estadisticos) estd ampliamente confirmada,
su estructura conceptual nunca ha sido elucidada a cabalidad. Esta estruc-
tura conceptual es tan diferente de la estructura conceptual de las teo-
rias de la fisica clasica que desde los inicios de la teoria ha sugerido pro-
puestas radicales en los fundamentos de la teoria de la probabilidad, la
logica, y la filosofia en general. En este articulo veremos como el exa-
men de la estructura semantica de la teoria cudntica nos lleva al estudio
de una clase de ldgicas no clasicas genéricamente conocidas con el nom-
bre de légicas cuanticas. No asumiremos ningin conocimiento de la fisica
cudntica, pero si cierta familiaridad con el analisis semdntico de la logica
(ver el articulo 1 en este volumen). En la segunda seccién muestro cémo
surge la légica cudntica a partir de la consolidaciéon de una analogia entre
la estructura semantica de la teoria cudntica y la estructura semantico-
algebraica del célculo proposicional clasico. En la tercera seccion exa-
mino muy brevemente intentos, sobre todo interesantes desde un punto
de vista histérico, de entender la légica cudntica como una légica de
varios valores. En la cuarta seccién quiero dar una idea de cémo puede
entenderse la logica cudntica como ldgica formal, reconstruida sintacti-
camente. En la quinta seccion resumo algunos resultados sobresalientes
de los esfuerzos por encajar a la logica cuantica dentro de la semantica
de marcos de Kripke, y de su interpretacién como légica modal. En el
apéndice matematico se incluyen las definiciones basicas de la teoria de
reticulos necesarias para darle una precisién minima a nuestra presen-
tacion.
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II. LA LOGICA CUANTICA COMO ESTRUCTURA PROPOSICIONAL NO CLASICA

La légica cudntica fue propuesta inicialmente por Garett Birkhoff y John
von Neumann (1936), como un intento por dar una solucion radical al
problema de la interpretacidn de la teoria cudntica. Su objetivo explicito
era descubrir la estructura légica que yace debajo de las teorfas fisicas
que como la mecdnica cudntica no se conforman a la légica cldsica. Sugi-
rieron ellos en este trabajo seminal que la transicién de la mecénica cla-
sica a la mecdnica cudntica involucra el paso de un calculo proposicional
clasico a un calculo proposicional con una estructura no clasica. Sucin-
tamente, la tesis de Birkhoff y von Neumann era que deberiamos consi-
derar a una cierta estructura algebraica generada por la teoria cudntica
como el dlgebra de Lindebaum-Tarski de una nueva légica, la l6gica del
mundo empirico, asumiendo que la mecdnica cudntica es la teoria fisica
que describe m4s fielmente ese mundo empirico.

Intentos por clarificar y elaborar esta propuesta desde perspectivas
muy diferentes han generado una serie de investigaciones muy variadas.
Principio por clarificar el sentido en el que la transicion entre la fisica
cldsica y la fisica cuantica sugiere un cambio de logica. Esto requiere que
establezcamos una relacién entre la estructura semdntica de teorias fisi-
cas y un andlisis semdntico de la logica. Esto lo haremos partiendo de
la concepcién semantica de teorias fisicas que se origina con los trabajos
de Beth y que ha sido desarrollada posteriormente por Van Fraassen (y
otros). Llamaremos ldgica (proposicional) concreta a una légica (propo-
sicional) que describe las relaciones semdnticas entre las sentencias ele-
mentales en las que se ha fijado de antemano una intension fija para los
términos predicacionales (fija en el sentido que es respetada por todas
las valuaciones admisibles). En este caso hablamos de un lenguaje semi-
interpretado (Van Fraassen, 1970). Tradicionalmente la légica se con-
cibe como caracterizando la validez en virtud de la forma de los argu-
mentos #nicamente; a la logica asi entendida la llamaremos ldgica for-
mal. En légicas concretas, a diferencia de las 16gicas formales, se utilizan
criterios semanticos, ademds de los puramente formales, para juzgar la
validez de argumentos. Estos criterios semdnticos adicionales, en el caso
de la légica cudntica concreta, se consideran dados implicitamente por
la teoria cudntica. En esta seccion hablamos de logica cudntica concreta
siempre. Posteriormente diremos algo muy breve acerca de la l6gica cuan-
tica formal. Una ultima aclaracién previa es que hablaremos de la légica
cuantica haciendo referencia unicamente al calculo proposicional cudn-
tico. Esto no es una distorsion seria de nuestra presentacion ya que las
caracteristicas peculiares de la l6gica cudntica surgen al nivel del célculo
proposicional. El lector interesado en un compendio de la ldgica cuan-
tica de primer orden puede consultar Dalla Chiara (1986).

Segun Van Fraassen, una teoria fisica puede caracterizarse por medio
de un lenguaje semi-interpretado y un conjunto de leyes. El lenguaje semi-
interpretado L, el portador de la estructura logica (concreta) de la teo-
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ria, consiste en una terna <E,H,h>; E es un conjunto de «sentencias
elementales» '. Una sentencia elemental tiene la forma «La magnitud M
tiene un valor en el conjunto (de Borel) X». La idea intuitiva es que M
describe una propiedad fisica de un sistema dado. Por ejemplo, una mag-
nitud de los sistemas conocidos como «particulas clasicas» es la veloci-
dad V de una particula. Una sentencia elemental es la sentencia «V tiene
un valor en el intervalo [1,2]» (las unidades de la magnitud se dejan
implicitas)’. H es el conjunto de estados posibles del sistema en cuestion.
La funcién h es una funcién de satisfaccién que asigna a cada sentencia
elemental A en E el conjunto h(A) de estados que satisfacen A. A cada
sentencia elemental A (un objeto sintactico) corresponde la proposicién
h(A) (un objeto semdntico). El conjunto de proposiciones elementales es
la imagen h[E] de E bajo h.

Podemos ahora formular informalmente ciertas relaciones semadnti-
cas familiares en el contexto de la légica cudntica:

1. A es verdadera siy sélo si el estado de un sistema se representa
por un estado de h(A).

2. A es vilida si y sélo si h(A)=H.

3. A es una consecuencia semdantica de B si y s6lo si h(B)Sh(A).

El dlgebra proposicional de un lenguaje es el conjunto de proposicio-
nes elementales h(E) junto con las operaciones ldgicas asociadas con ese
lenguaje. Los lenguajes (semi-interpretados) cudnticos tienen una estruc-
tura sintdctica pobre. Las sentencias son todas atémicas. La estructura
légica de un lenguaje cuantico es mds bien una caracteristica de su estruc-
tura semadntica tal y como ésta se expresa a través de su dlgebra proposi-
cional. Esta estructura puede expresarse en términos de conectores defi-
nidos semdanticamente. Aqui no podemos adentrarnos en la presentacion
detallada que requeriria una discusién a fondo del problema de la intro-
duccién de los conectores en la légica cuantica. Daremos sin embargo
una idea de la problemadtica involucrada y de las razones de su interés
filoséfico. Seguiremos la convencién de identificar dos sentencias A y B
cuando h(A)=h(B), esto es, cuando las sentencias son semdnticamente
equivalentes.

En las definiciones siguientes A, B, C, D son sentencias en un len-
guaje L= <EHh>.

1. Hay una tendencia en la légica cudntica, empezando con el trabajo de Birkhoff y von Neu-
mann, a hablar indistintamente de propiedades de sistemas fisicos y de proposiciones. Esta ambigiiedad
reaparece en la manera como hemos definido el conjunto de sentencias elementales. Més correctamente
E es un conjunto de predicados monadicos elementales. Las sentencias elementales propiamente dichas
pueden construirse a partir de estos predicados elementales en el contexto de una teoria fisica particu-
lar. Este tipo de ambigiiedades las ignoraremos en pro de una mayor claridad expositiva.

2. Una magnitud puede definirse de manera abstracta como un conjunto de proposiciones (o
propiedades) mutuamente excluyentes (i.e. tal que a lo mds uno de los valores de la magnitud es el
caso en un momento dado). Esta es la definicién de magnitud apropiada en la formulacién de una teo-
ria de la mecdnica en el marco de una teoria de reticulos.
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Definicién: una sentencia C es la conjuncién de A y B precisamente
si h(C)=h(A)Nh(B).

Definicion: una sentencia D es la disyuncion exclusiva de A y B preci-
samente si h(D)=h(A)Uh(B).

Definicién: una sentencia A en un lenguaje L es una negacion exclu-
siva de la sentencia B precisamente cuando h(A)=H —h(B).

Las operaciones «M», «U», y « —» son las operaciones usuales de la
teoria de conjuntos (interseccién, unién y complementacién relativa).
Estas definiciones corresponden a los conectores cldsicos (por lo general
introducidos sintacticamente) si la estructura proposicional es clasica. Esto
es, si el conjunto de proposiciones es el conjunto P(H), el conjunto poten-
cia del conjunto de los estados posibles al que llamamos H, entonces
<P(H), N, U> es un algebra booleana de conjuntos isomérfica al alge-
bra de Lindebaum-Tarski del calculo proposicional clasico. Similarmente,
podriamos definir otros conectores modales e intensionales en este marco
conjuntista. Decimos que un lenguaje es cerrado con respecto a la con-
juncion o disyuncion (exclusiva) si cada par de sentencias tiene una con-
juncion o disyuncion (exclusiva). Decimos que un lenguaje es cerrado con
respecto a la negacion (exclusiva) si cada sentencia en L tiene una nega-
cién (exclusiva). Sila conjuncién corresponde a la operacion de intersec-
cién de conjuntos en P(H), y la disyuncién corresponde a la union de
conjuntos en P(H), entonces es claro que las operaciones légicas son cerra-
das en H (ya que por definicion de conjunto potencia, P(H) incluye todos
los conjuntos que puedan formarse por medio de las operaciones de con-
juntos). Sin embargo, si la estructura impuesta en H por la teoria es tal
que el algebra proposicional no corresponde al algebra de conjuntos gene-
rada por P(H), entonces no esta garantizado que las operaciones logicas,
correspondientes a los conectores exclusivos tal y como fueron definidas
arriba, sean cerradas en H. Por ejemplo, los lenguajes intuicionistas y las
logicas de varios valores no son cerrados con respecto a la negacion exclu-
siva. Son cerrados con respecto a otro tipo de negacion «selectiva» o de

«alcance restrmgldo», que es la negaaon semanticamente apropiada para
estos lenguajes’. Este tipo de negacion selectiva se caracteriza porque
una sentencia A y su negacion selectiva A* pueden ser ambas no verda-
deras simultaneamente (véase por ejemplo Rasiowa, 1974).

Algo similar sucede en la logica cuantica. El conjunto H, segun la
mecanica cuantica, tiene asociada una estructura proposicional que no
es cerrada con respecto a la negacion exclusiva; ademas, y esto es algo
peculiar de la logica cuantica, no es cerrada con respecto a la disyuncién
exclusiva.

En la mecdnica cuantica el conjunto de estados H tiene una estruc-
tura matematica significativamente diferente al conjunto de estados cla-

3. Van Fraassen le atribuye esta distincion entre «negacion exclusiva» y «negacion selectiva»
(choice negation) a Mannoury, en sus trabajos de fundamentacion del intuicionismo (ver Van Fraassen,
1974).
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sicos (es un espacio complejo separable de Hilbert). Las sentencias ele-
mentales corresponden en este caso a subespacios (cerrados) del espacio
, ¥ hay subconjuntos de H que no son subespacios. No es necesario
que el lector entienda esta terminologia matematica para captar la dife-
rencia bdsica entre un lenguaje cldsico y un lenguaje cuantico, ya que
la diferencia, como vemos a continuacion, se refleja en la semantica no-
clasica de un lenguaje cuantico. Para explicar esta afirmacién requerire-
mos el uso de algunos términos algebraicos que se definen en el apéndice.
El dlgebra proposicional cuantica es una estructura (reticular) cerrada
bajo la operacion de interseccion en H, pero no es cerrada ni bajo la unién
de conjuntos, ni bajo la operacién de complemento relativo (que corres-
ponde a la negacién exclusiva). No obstante, la l6gica cudntica tiene defi-
niciones alternativas de operaciones algebraicas cerradas que pueden pen-
sarse como las operaciones légicas correspondientes a la negacion y
disyuncion cudntica. Estas operaciones son la ortocomplementacion y la
operacion de junta (el resultado de la cual es el «extremo superior» de
un par de elementos) en el reticulo de los subespacios de H. No entrare-
mos a definiciones detalladas, en su lugar pasamos a ilustrar estas ope-
raciones en un ejemplo simple de un 4lgebra proposicional cuantica.
El conjunto de los subespacios de un espacio euclidiano de tres dimen-
siones, E, con las operaciones de intersecciéon de conjuntos, N, y la ope-
racion de suma lineal @, forma un reticulo cudntico, esto es, un reticulo
que puede interpretarse como una légica cuantica. Los subespacios de
este espacio son el origen del sistema de coordenadas que se identifica
con el cero del reticulo, los subespacios de una dimensién (que geométri-
camente corresponden a las lineas que atraviesan el origen), los subespa-
cios de dos dimensiones (que geométricamente corresponden a los pla-
nos que intersectan el origen en cualquier dngulo), y el espacio total, el
unico subespacio de tres dimensiones. La interseccion de dos lineas cua-
lesquiera es el origen, la suma lineal de dos lineas es el subespacio (plano)
generado por las lineas. La interseccién de dos planos es la linea en que
se intersectan, y la suma lineal de dos planos (diferentes) es el espacio
total H(S). Nétese que en este reticulo <E,N,® > podemos definir siem-
pre un orden parcial como sigue: A<B si A@B B. Este orden parcial
en nuestro ejemplo corresponde a la relacion de inclusion de conjuntos.
Una magnitud en este ejemplo es un conjunto de subespacios mutuamente
excluyentes (i.e. para todo par de subespacios en la magnitud su inter-
seccion es () y cuya union es el conjunto total. Una magnitud maxima
en general es un conjunto maximo de proposiciones mutuamente exclu-
yentes. En nuestro ejemplo una magnitud maxima es un conjunto de tres
lineas linealmente independientes (no paralelas entre si) que geométrica-
mente describen un sistema de coordenadas. Es facil ver con un ejemplo
que este reticulo no es distributivo. Consideremos una linea D que no
coincide con ninguna de las lineas (direcciones) A, B, C. Es claro que
DAA=0,DAB=0,DAC=0,y porlo tanto: (DAA)V(DAB)v(DAC) = 0. Sin
embargo, (AABAC)AD =D #0.
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Este ejemplo muestra que un reticulo proposicional cudntico no satis-
face la ley distributiva. Sin embargo, puede mostrarse que un reticulo cuan-
tico satisface la condicion de ortomodularidad: A<B=B=Av(BAA*).
A* es el orto-complemento de A, correspondiente a la negacidn selec-
tiva de A (ver apéndice). Una buena parte del desarrollo del programa
de l6gica cuantica posterior al trabajo de Birkhoff y von Neumann puede
verse como un intento por interpretar esta ley de orto-modularidad (ver
Jauch, 1968, por ejemplo), y de entender el sentido en que, supuesta-
mente, esta ley ortomodular podria jugar un papel similar al que juega
la distributividad en los calculos clasicos. En el trabajo original de Birk-
hoff y von Neumann, asi como en el ejemplo que dimos anteriormente,
la estructura proposicional satisfacia una condicién més fuerte que la orto-
modularidad, la modularidad. Un reticulo es modular si satisface la
siguiente ley: A<B=(A, B, X) es una tripleta distributiva, para cualquier
X en L. Puede mostrarse que un reticulo modular es la estructura mas
débil en la cual una teoria de las probabilidades clasica puede formu-
larse. Esto les sugirié a Birkhoff y von Neumann que la estructura pro-
posicional podia pensarse como una teoria generalizada de conjuntos en
la que la dimensionalidad jugaba el papel de la cardinalidad y las proba-
bilidades de transicién entre sucesos eran inducidas por automorfismos
del reticulo. Este programa sin embargo nunca llegé a desarrollarse mas
alla de algunas notas no publicadas de von Neumann, aunque si dio lugar
al desarrollo de una teoria matematica de envergadura (La teoria de las
geometrias continuas de von Neumann).

Hay una serie de trabajos que parten de la conviccidn de que la estruc-
tura reticular incluye estructura que no puede justificarse fisicamente, y
tratan de estudiar estructuras mds débiles. Trabajos significativos en esta
direccion son los de Kochen y Specker (1967), Strauss (1937). Nuestra
exposicidn, asi como estos trabajos recién mencionados, se enmarcan en
lo que se denomina el enfoque algebraico a la logica cuantica.

La logica cuantica es también otras cosas. Menciono a continuacion
algunas de las principales tradiciones alternativas.

1. LA LOGICA CUANTICA COMO LOGICA DE VARIOS VALORES

Una formulacién de la 16gica cudntica como una ldgica de varios valores
fue propuesta por Hans Reichenbach (basado en un formalismo de Luka-
siewicz) en su libro sobre los fundamentos filoséficos de la mecanica cuan-
tica (Reichenbach, 1944). Reichenbach proponia una légica de tres valores
como una manera de resolver los problemas de la interpretacion de las
descripciones mecanico-cudnticas del mundo. Sin embargo, a diferencia
de la manera como presentamos la logica cuantica en la seccidn ante-
rior, Reichenbach pretendia no una descripcion de la estructura logica
de los postulados descriptivos de la mecdnica cudntica, sino mas bien la
formulacidn de la base [6gico-lingiiistica para la formulacion de una teo-
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ria alternativa. La exposicién mas clara y detallada, asi como el analisis
mas a fondo, de la propuesta de Reichenbach se encuentra en una serie
de trabajos de Gary Hardegree (ver, por ejemplo, Hardegree, 1977). Har-
degree introduce una distincién entre lenguaje observacional y lenguaje
de la formulacién de la teoria y arguye convincentemente que no hay nece-
sidad de implementar una ldgica no clésica en el lenguaje de formula-
cién de la teoria, si bien reconoce que el lenguaje observacional tiene una
estructura no clasica. El programa de Reichenbach ha sido abandonado,
pero las intuiciones basicas de su enfoque se han retomado y desarro-
llado fértilmente en el enfoque modal del que hablaremos en la seccién V.

IV. LA LOGICA CUANTICA COMO LOGICA FORMAL

La légica cuantica concreta trata de la estructura légica de las proposi-
ciones generadas por la estructura semdntica de la mecénica cuantica.
La l6gica cuantica formal, como toda logica formal, requiere que haga-
mos explicita una sintaxis y que abandonemos los postulados semanti-
cos (y el lenguaje semi-interpretado) que en la légica cudntica concreta
nos limitan a un discurso de objetos. En la ldgica formal tanto los obje-
tos como los simbolos que utilizamos para referirnos a ellos son parte
de la teoria. No hay, sin embargo, una sola sintaxis que pueda recons-
truirse a partir de la estructura légico-algebraica de la teoria cudntica.
Los diferentes sistemas que se han propuesto y se siguen proponiendo
tienen diferencias logicas y metaldgicas importantes. Para varios siste-
mas de logica cudntica formal se ha demostrado su correccion 'y comple-
titud. Por lo general las pruebas de completitud proceden de la manera
usual, construyendo el dlgebra asociada de Lindenbaum-Tarski determi-
nada por la axiomatizacién propuesta (ver, por ejemplo, Stachow, 1976;
Dalla Chiara, 1986).

Con respecto a la decidibilidad de los diferentes sistemas de l6gica
cuantica hay una serie de resultados interesantes. La decidibilidad de la
légica clasica puede mostrarse utilizando tablas de verdad. Este método
no funciona para demostrar la decidibilidad de la légica intuicionista,
pero en este (y muchos otros casos) la decidibilidad puede demostrarse
a través del establecimiento de la propiedad del modelo finito (una téc-
nica muy desarrollada en l6gicas modales). Estas técnicas no pueden apli-
carse en el caso de muchas logicas cudnticas formales. Otras técnicas han
sido ensayadas, pero para una buena parte de las l6gicas cudnticas for-
males la decidibilidad no ha sido demostrada. En el caso de ldgicas cuan-
ticas débiles (orto-ldgicas por ejemplo) es posible demostrar la decibili-
dad por medio de la traduccién en légicas modales. Pero para ldgicas
cudnticas que incluyen la propiedad ortomodular, y que supuestamente
serian aquellas légicas sancionadas por la mecdnica cudntica como fisi-
camente significativas, esta técnica no es aplicable. Goldblatt (1984) ha
mostrado que la orto-modularidad del reticulo de subespacios de un espa-
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cio de Hilbert H no estd determinada por ninguna propiedad de primer
orden de la relacion de ortogonalidad. Este resultado sugiere que la légica
cuantica tiene limitaciones de capacidad de expresion serias, por lo menos
si se identifica como es usual con logicas ortomodulares. Quizas valga
la pena retomar la idea inicial de Birkhoff y von Neumann segun la cual
la 16gica cudntica obedece la condicién de modularidad, partiendo de la
hipdtesis de que la formulacidn de la mecdnica cudntica en términos de
espacios de Hilbert es s6lo aproximadamente correcta. Lo mas probable
es que este tipo de desarrollo tenga que esperar nuevos adelantos en la
manera de conceptualizar teorias fisicas.

V. SEMANTICA DE KRIPKE E INTERPRETACION MODAL
DE LA LOGICA CUANTICA

La semantica de Kripke desarrollada en los afios cincuenta y sesenta de
este siglo (por Kripke y otros) es una teoria unificada de la semantica
que permite una clasificacion bastante general de muchos sistemas 16gi-
cos (ver capitulo 12 en este volumen). Es posible extender esta teoria y
formular una semantica de marcos de Kripke para la légica cuantica. Una
caracteristica de los modelos de Kripke generalizados que resultan ser
adecuados para la légica cudntica es que la relacion de acceso es refle-
xiva y simétrica, pero no transitiva. En las légicas no-cldsicas mas comu-
nes (como la légica intuicionista y muchas logicas modales) la relacion
es por lo menos reflexiva y transitiva. Es posible también dar una seman-
tica algebraica para la logica cudntica y mostrar que esta semantica es
equivalente a la semantica de modelos de Kripke (Dalla Chiara, 1986).

No sélo es posible dar una semantica de Kripke para la logica cuan-
tica, sino que es también posible traducir la l6gica cudntica a una légica
modal de una manera paralela a la traducciéon de Mckinsey-Tarski de
la légica intuicionista en la l6gica modal S,. Goldblatt (1974) ha hecho
una traduccién de una logica cudntica débil, que él llama orto-logica (en
la que los marcos, llamados por él orto-marcos, son orto-reticulos) en
el sistema modal B. Posteriormente Dishkant (1977) ha construido una
traduccion de la légica orto-modular en un sistema que él llama B +, que
es intermedio entre B y S;.

VI. RESUMEN Y CONCLUSIONES

En la primera parte de este articulo hemos visto como surgio la logica
cuantica a partir del desarrollo de una analogia entre la estructura reti-
cular de la logica clasica concreta (generada por la fisica clasica) y la
estructura reticular de las proposiciones fisicas sancionadas por la meca-
nica cuantica. La mecdnica cudntica es supuestamente la teoria mas con-
fiable y general que tenemos. Esto sugiere que la ldgica cuantica es la
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légica del mundo empirico. Putnam, elaborando ideas de Finkelstein, ha
sugerido la analogia con el abandono de la geometria euclideana debido
al desarrollo de la teoria de la relatividad de Einstein (Putnam, 1969;
Finkelstein, 1969). Sin embargo, como hemos visto, no hay una sola
légica cuantica, sino una serie de sistemas logicos con diferencias logicas
y meta-logicas significativas. Ademds, en tanto que la relacidon de acceso
de la l6gica cudntica no reciba una interpretacion fisica y logica satisfac-
toria no es posible clarificar el sentido en que se propone la légica cuan-
tica como légica alternativa, o por lo menos no es clara la pertinencia
de la adecuacion empirica de la mecanica cuantica para tal proyecto.

VII. APENDICE

En este apéndice se incluyen algunas definiciones de la teoria de reticu-
los requeridas para clarificar la exposicion.

Un conjunto ordenado es un par ordenado L = <A, <>, donde A
es un conjunto no vacio y < es una relacién parcialmente ordenada. L
es un reticulo si ademds para cada par de elementos existen el extremo
superior y el extremo inferior. Un elemento z es el extremo inferior de
un par de elementos {x,y} si x=z, y=z, y ademds, si hay otro elemento
w con la misma propiedad, entonces z=w. De manera dual se define
la nocién de extremo superior. El extremo inferior de un par de elemen-
tos se designa por el simbolo xAy, y se lee «cuna de x, y». El extremo
superior de un par de elementos se designa por el simbolo xvy, y se lee
«junta de x, y». El ejemplo paradigmatico de un reticulo es el reticulo
formado por todos los subconjuntos de un conjunto (el conjunto poten-
cia) con las operaciones de intersecciéon y union.

Un reticulo ortocomplementado, o simplemente, un orto-reticulo, es
un reticulo con 0 y 1y con una ortocomplementacion. Una ortocomple-
mentacién es un mapeo de L en L que satisface:

1) ava*=1,ana* =0

ii) a<b=a*=b*

i) a**=a

Una tripleta de elementos es distributiva si

(D) aa(bvc) = (aab)v(aac)

Un reticulo es distributivo si para cada tripleta a, b, c en L se satis-
face (D). Un reticulo es modular si satisface la condicion

(M) a<b=(a,b,x)

es una tripleta distributiva para todo x€L. Un reticulo es orto-modular
si satisface la siguiente condicion:

(OM) asb=b=av(baa™") para cualquier par de elementos a y b.

Un reticulo booleano es un orto-reticulo distributivo. Para reticulos
distributivos la ortocomplementacién es un automorfismo dual, por lo
que el orto-complemento de un elemento es unico. El reticulo <P(A),
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N, U>, en donde P(A) es el conjunto potencia de cualquier conjunto A,
es un reticulo booleano. El dlgebra de Lindebaum-Tarski del calculo pro-
posicional clasico es un reticulo booleano. Una introduccién elemental
a la teoria de reticulos distributivos en espaiiol es Hermes, 1963.
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LA LOGICA DE LA RELEVANCIA

José M. Méndez

I. INTRODUCCION

El origen de la légica de la relevancia actual es, sin duda, el excelente
articulo de W. Ackermann «Begriindung einer strengen Implikation»'
(Hay traduccion espanola: cf. la bibliografia que cierra este trabajo; res-
pecto de los antecedentes historicos, cf. Sylvan, 1988), pero su sistema-
tizacion y desarrollo se deben a A. R. Anderson, N. D. Belnap y sus cola-
boradores. En «The pure calculus of entailment» (Anderson y Belnap,
1962), Anderson y Belnap establecen las bases filoséficas que validarian
el intento de construir una logica de la relevancia. En Entailment (vol.
I, Anderson y Belnap, 1975; vol. II, Anderson, Belnap y Dunn, 1992)
se incluyen todos los resultados sobre el tema hasta 1989 aproximada-
mente.

La motivacion fundamental tras la légica de la relevancia fue inicial-
mente filosofica: Anderson y Belnap querian definir una alternativa a la
Légica clésica en la formalizacion del discurso ordinario. El objetivo,
como se ve, no puede calificarse de modesto. Y, asi, la Logica de la rele-
vancia es, en la actualidad, un campo en continua expansion que, des-
bordando las (necesariamente desbordables) coordenadas iniciales, ha
dado, y esta dando lugar, a importantes desarrollos técnicos en algebra
intensional, teoria de sistemas formales, semdntica de los mundos posi-
bles no-estandar, teoria de la computacién, teoria de conjuntos no cla-
sica y filosofia de la logica.

El objetivo del presente articulo es introducir al lector a todas estas
cuestiones. Debido a limitaciones de espacio sobre las que no es preciso
insistir, y, por otra parte, a la amplitud del tema, hemos centrado nues-
tra exposicion en los puntos siguientes. En § 11 - § 1v hemos intentado
explicar la motivacidn subyacente a la Logica de la relevancia. Comen-
zamos planteando el problema de las llamadas «paradojas del condicio-
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nal clasico» que es el origen de la Logica de la relevancia (§ 11). Se exa-
mina a continuacioén la solucién al problema propuesta por C. I. Lewis,
el creador de la moderna légica modal, que es, en nuestra opinion, el
auténtico pionero en las investigaciones sobre la relevancia (§ m1). Por
ultimo, estudiamos el origen, fundamentacién y constitucion del sistema
R que es la solucidn al problema de las paradojas defendida por Ander-
son y Belnap.

En § v - § viI se expone con detalle este sistema, R, sin duda el mas
importante sistema de la logica de la relevancia. Estos tres apartados,
de caracter técnico, son, nos parece, un complemento imprescindible a
los tres anteriores. Nuestro propdsito al redactarlos, ha sido que el lec-
tor, ademas de conocer los fundamentos filosdficos de la Logica de la
relevancia, la maneje al menos en su parte proposicional o enunciativa,
y tanto sintactica (§ V) como semanticamente (§ Vi, § viI). Por esta razon,
s6lo presuponemos un cierto conocimiento sintactico de la légica propo-
sicional clasica y de la semantica estdndar de la logica modal (cfr. los
articulos «Légica cldsica de primer orden» y «Légica modal» en este
mismo volumen). Por esta razon, también, hemos explicitado con todo
detalle todas las pruebas salvo aquellas que proponemos al lector como
ejercicio una vez que le hemos proporcionado previamente las claves para
desarrollarlas.

En § vii - § 1X nos ocupamos de otros sistemas alternativos a R siem-
pre en la linea iniciada por Anderson y Belnap. El tratamiento de todos
ellos es como el empleado para el sistema R, pero, aun siguiendo las direc-
trices de § v - § viI, hemos intentado ser breves. Entendemos que estos
dos apartados son esenciales para un conocimiento cabal de la 1égica de
la relevancia en el sentido de Anderson y Belnap, pero, de todos modos,
han sido redactados para que pueda prescindirse de ellos al leer este arti-
culo. En tal caso, el presente trabajo seria una exposicion del origen, fun-
damentos y estructura del sistema R.

Finalizamos, en § X, mencionando algunos resultados capitales sobre
el tema no abordados en este articulo debido a su complejidad y, tam-
bién, con algunas conclusiones sobre lo expuesto.

1. EL PROBLEMA: LAS PARADOJAS DEL CONDICIONAL MATERIAL
1. Definicién de légica. Definicién de légica clasica

La légica se define tradicionalmente como la ciencia que se ocupa de for-
malizar vy sistematizar el concepto de inferencia (argumentacion) deduc-
tiva correcta. La tarea de la ldgica consiste, por tanto, en definir el con-
junto de todas las inferencias deductivas correctas que se corresponden
con un determinado concepto de validez. Asi, «inferencia correcta» e
«inferencia valida» pueden considerarse, si el objetivo de la l6gica se cul-
mina, conceptos sindnimos.
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Si nos circunscribimos al contexto de la légica proposicional o enun-
ciativa, la Logica clasica puede caracterizarse por (i) bivalencia y (ii) fun-
cionalidad de verdad. Es decir, la Logica cldsica se ocupa de definir el
conjunto de inferencias cuya validez es funcién de (depende exclusiva-
mente de) la verdad (entendida ésta en sentido bivalente) de los enuncia-
dos que las componen.

2. Las paradojas del condicional material clasico

La definicion clasica de validez determina la interpretacion de las conec-
tivas proposicionales. Y, asi, enunciados del tipo condicional A— B (Si
A, entonces B) son falsos syss (si y sdlo si) A (antecedente) es verdadero
y B (consecuente) es falso. O, dicho contraposicionalmente, A— B es ver-
dadero syss A es falso o bien B es verdadero. De esta interpretacion del
condicional se sigue que esquemas inferenciales tales como

1) A—>(B—A)
o 2) A>(—A—B)
son validos. Pero 1) y 2), interpretados extralégicamente, dan lugar, p.
ej., a inferencias como
3) Sila Luna es un queso de bola, entonces 2 +2 =4
y 4) Si 2+ 2#4, entonces la Luna es un queso de bola.

(Sustitiiyase «A» por «2+2=4»,y «B» por «L.a Luna es un queso
de bola». Entonces, 3) y 4) se siguen de 1) y 2) respectivamente, dado
que «2+2=4» es una afirmacién incuestionable).

Pues bien, 1) y 2) son dos ejemplos paradigmaticos de las denomina-
das, en sentido etimologico, «paradojas del condicional material (cla-
51co)». 1)y 2) apoyan la validez de, respectivamente, 3) y 4) que entran
en conflicto, obviamente, con la idea intuitiva (ordinaria) de argumenta-
cién o inferencia valida. Por esta razdn, el condicional clasico y, en con-
secuencia, la propia légica clasica han sido tachados de paraddjicos.

. LA LOGICA DE LA IMPLICACION ESTRICTA DE C. I. LEWIS
1. La lbgica de la implicacion de C. 1. Lewis

En la actualidad, C. I. Lewis es considerado con toda justicia el creador
de la moderna légica modal; es decir, la logica de la necesidad y la posi-
bilidad l6gicas (cf. el capitulo «Ldgica modal» de este volumen). Sin
embargo, el propdsito de Lewis fue, inicialmente, definir una logica libre
de paradojas como las comentadas mas arriba; una ldégica cuyo condi-
cional se ajustara de modo mas estricto al uso que hacemos en el len-
guaje ordinario de la locucién «Si ..., entonces ...».

Partiendo de una critica a la logica clasica semejante a la esbozada
en el apartado anterior, Lewis concluye que las meras relaciones veritativo-
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bivalentes entre el antecedente y el consecuente de un condicional son
insuficientes para dar razoén de su validez. Propone, por consiguiente,
que un condicional se considere valido syss (si y solo si) hay relacién de
necesidad entre antecedente y consecuente: syss es imposible (16gicamente)
que el antecedente sea verdadero y el consecuente falso.

Siguiendo estas directrices, Lewis define en Symbolic logic (Lewis y
Langford, 1932) cinco sistemas légicos de la implicacion estricta diferen-
tes (desde entonces denominados S1-S5) que son otras tantas formulacio-
nes del concepto «relacion de necesidad entre antecedente y consecuente»
de un condicional. Ha podido comprobarse posteriormente que las cinco
alternativas propuestas por Lewis delimitan, de hecho, el espectro en el
que en la actualidad cabe formalizar las nociones (esencialmente relati-
vas) de necesidad y posibilidad logicas mas interesantes. Ahora bien, ¢cud-
les fueron los resultados de Lewis respecto de la eliminacion de las para-
dojas del condicional?, ¢alguno de sus sistemas (S1-S5) es la representacion
formal de la nocién ordinaria reflejada en la locucidn «Si ..., entonces ...»?

2. Las paradojas de la implicacién estricta

En ninguno de los sistemas de Lewis son vélidos esquemas inferenciales
como 1)y 2) (cf. § 11.2), pero si lo son, por ejemplo, en un sistema tan
débil como S2:

S) LAR(BRLA)
o 6) — MAR(ARB)

De acuerdo con Lewis, 1) y 2) pueden interpretarse como sigue:

1’) Si A es un enunciado verdadero, A es implicado por cual-
quier otro enunciado B.

2’) Si A es un enunciado falso, A implica a cualquier otro
enunciado B.

Asi pues, 5) y 6) pueden interpretarse de modo paralelo:

5’) Si A es un enunciado necesariamente verdadero (LA), A
es implicado estrictamente (3) por cualquier otro enun-
ciado B.

6’) Si A es un enunciado necesariamente falso (imposible,
— MA) A implica estrictamente (-3) a cualquier otro enun-
ciado B.

Por tanto, a pesar de que ninguno de los sistemas de Lewis daria lugar
a consecuencias como las ejemplificadas en 3) y 4), si darfan lugar, p.
ej., a

7) Si la Luna es un queso de bola, entonces 2+2=4 6
2+ 2 #4.
y 8) Si2+2=4y 2+ 2+4, entonces la Luna es un queso de
bola.
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Pues bien, 5) y 6) son dos ejemplos paradigmaticos de las denomina-
das «paradojas de la implicacion estricta» porque 5) y 6), al igual que
1)y 2), originan condicionales extraldgicos en los que el consecuente no
tiene nada que ver con el antecedente, no se sigue, no estd implicado por
él. Es, entonces, obvio que la critica de Lewis a la Logica clasica es apli-
cable a sus propios sistemas: ya que todos contienen paradojas de la impli-
cacién, ninguno de ellos puede ser la representacion formal del concepto
de inferencia del lenguaje ordinario.

La conclusion del propio Lewis fue, sin embargo, distinta. Tras subra-
yar la diferencia entre las paradojas del condicional material y las de la
implicacidn estricta (claramente ejemplificadasen 1°) - 2°) y §°) - 6), res-
pectivamente), afirmé que estas ultimas eran ineliminables. En su opi-
nién, eliminarlas equivaldria a eliminar también algunos principios esen-
ciales (y no paraddjicos) sobre el concepto de implicacién, de modo que
el sistema légico resultante seria tan débil que, a la postre, careceria de
interés por ser pragmadticamente inaplicable. Comprobamos en lo que
sigue hasta qué punto esta opinién puede sostenerse.

IV. LA LOGICA DE LA RELEVANCIA R
1. La caracterizaciébn semdantica de la relevancia
1.1. Definicién de «paradoja de la relevancia»

A fin de definir una légica no paraddjica (una logica de la implicacion
estricta), Lewis tom6 como punto de referencia expresiones paraddjicas
como 1)y 2), pero no dispuso de una definicion precisa del término «para-
doja de la implicacién». Anderson y Belnap, en cambio, partieron de una
definicién precisa de dicho término que, en una primera aproximacion,
podria rezar como sigue:

C1) Una expresion de forma condicional (una implicaciéon) A—B
es una paradoja de la relevancia si el contenido semantico
de A y B es, eventualmente, disjunto.

De acuerdo con C1), 3), 4), 7) y 8) son, claramente, paradojas de
la relevancia pues se establece relacion de implicacién entre proposicio-
nes cuyo contenido semantico no estd relacionado de modo alguno. Es
decir, se establece relacion de implicacidn entre antecedente y consecuente
sin que aquel sea relevante (pertinente) para establecer éste: de la verdad
o falsedad de la proposicién «La Luna es un queso de bola» nada puede
seguirse sobre la verdad o falsedad de la proposicion «2 + 2 = 4». Asi pues,
la Légica clasica y la Légica de la implicacidn estricta son, para Ander-
son y Belnap, igualmente paraddjicas sin que sea en absoluto esencial
si ha de ser una verdad factual o bien una verdad necesaria el paradigma
de las proposiciones implicadas por cualquier proposicion. El hecho real-

241



JOSE M. MENDEZ

mente esencial es que de una y otra légica se sigue la posibilidad de esta-
blecer relaciones de implicacién entre proposiciones que, en realidad, no
mantienen tal relacién.

1.2. La caracterizacién semdntica de «relevancia»

Con C1) como criterio directriz, Anderson y Belnap inician la definicién
de una légica proposicional no paraddjica. El primer paso ha de ser,
entonces, traducir formalmente C1). Pues bien, puesto que en légica pro-
posicional el contenido no légico estd representado por las variables pro-
posicionales, la siguiente es la traduccion formal de C1):

C2) Una férmula de la forma A— B es una paradoja de la rele-
vancia, si A'y B no tienen en comun al menos una variable
proposicional.

De acuerdo con C2), 1), 2), 7) y 8) son, p. €j., paradojas de la rele-
vancia, pues es facil derivar a partir de ellas formulas que incumplen el
requisito impuesto en C2) (p. ej., B=>(A—A), —(A—>A)—>B, B>L(A—A),
— M(A—A)— B son derivables de 1), 2), 7) y 8) respectivamente, susti-
tuyendo A por A—A.

La definicién C2) sugiere la siguiente caracterizacién semdntica de
relevancia:

Y) L esuna ldgica de la relevancia si en todo teorema de L de
la forma A—B A y B tienen al menos una variable proposi-
cional en comun.

El criterio ) es, por tanto, una condicién necesaria de relevancia:
si un sistema de ldgica cuenta con la propiedad L), tenemos la garantia
de que el antecedente y el consecuente de todo condicional derivable com-
partiran contenido semdntico. Ahora bien, ¢cudl es la condicién de sufi-
ciencia?, ¢;como construir un sistema tal? Nos ocupamos de estas cues-
tiones en los apartados siguientes.

2. La caracterizacién sintictica de «relevancia»
2.1. La definicién de premisa «relevante»

Volvamos a férmulas como 1). El problema de 1) y, en general, de las
paradojas de la relevancia, es, desde un punto de vista semdntico, que
el antecedente nada tiene que ver con el consecuente. Desde el punto de
vista sintactico, esta deficiencia puede reformularse diciendo que el ante-
cedente es in#til para probar el consecuente: operando, razonando uni-
camente con el antecedente nada podemos establecer sobre la derivabili-
dad del consecuente. Pues bien, precisamente es éste el punto de partida
de Anderson y Belnap. A diferencia de Lewis, no exigen, para evitar las
paradojas, que entre antecedente y consecuente se dé relacidon de necesi-
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dad; exigen que el antecedente se use para probar el consecuente. No,
por supuesto, que el antecedente haya de usarse, sea imprescindible para
probar el consecuente (pues un mismo consecuente puede seguirse de
diversos antecedentes), pero si que pueda usarse, si que para afirmar
A—B, A haya sido usado para demostrar B.

2.2. La caracterizacién semdntica de «relevancia»

Esta nocion intuitiva de «uso» puede traducirse, formalmente, en los
siguientes términos:

C3) A se usa para probar B en una deduccién dada A syss A es
una premisa en una aplicacion de una regla de inferencia en A.

Tomando como criterio C3), es obvio que, p. €j., 1), 2), 7) y 8) no
pueden ser teoremas de ninguna légica de la relevancia L pues, p. €j.,
de 1) se sigue facilmente B—(A—A), y, en la demostracién de esta for-
mula es claro que el antecedente no juega ningin papel en la demostra-
cién del consecuente. La definicion C3) sugiere la siguiente caracteriza-
cidn sintactica de relevancia:

S) L es una ldgica de la relevancia si en todo teorema de L de
la forma A—B, A se usa para probar B.

3. La légica de la relevancia R

3.1. Insuficiencia de la caracterizacion sintactica y de la
caracterizacion semantica

Tenemos ya a nuestra disposicién caracterizaciones sintactica y se-
madntica de «relevancia», ¢como definir a partir de ellas el sistema de la
logica de la relevancia? Supongamos que tomamos la caracterizacién
semantica ) como directriz. El problema que se plantea es el siguiente:
el conjunto de todos los condicionales no paraddjicos en el sentido de
C2) no es axiomatizable en ninguna logica L. Comprobémoslo con un
sencillo ejemplo. Sea L una légica con los axiomas siguientes:

9) (AAB)—A
10) A—(B—(AAB))
11) (B~C)—((A—B)—=(A—C))

y con modus ponens (Si —A 'y +A—B, entonces +— B) como regla de deriva-

cion. Es obvio que 9), 10) y 11) son condicionales no paraddjicos en el sentido

de C2), v, sin embargo, es facil probar que de este sistema se sigue el teorema
1) A-(B—A)

cuyo cardcter paradojico ha sido pormenorizadamente discutido mds

arriba. La caracterizacién semantica L) es, por tanto, insuficiente para

definir la légica de la relevancia R.
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Tomemos, pues, como directriz la caracterizacion sintdctica S). Des-
graciadamente, nos topamos con un problema semejante: 9), 10) y 11)
son no paradojicos en el sentido de C3) y, sin embargo, dan lugar a 1)
que, evidentemente, si lo es. La caracterizacion sintéctica S) es, en con-
secuencia, también insuficiente. ¢Es, entonces, imposible como Lewis
sugeria la construccién de la Logica de la relevancia?

3.2. La lodgica de la relevancia R

Hemos comprobado en el apartado anterior la insuficiencia de las carac-
terizaciones intuitivas (sintactica y semantica) de «relevancia» propues-
tas por Anderson y Belnap. Es por esta razon por la que hemos hablado
de caracterizaciones, y no de definiciones. Parece, por tanto, inevitable
deducir la imposibilidad de definir una légica de la relevancia a no ser
que se propongan caracterizaciones sintactica y semantica alternativas
a las defendidas por Anderson y Belnap. Y, sin embargo, no es asi. Dada
la situacion descrita, la estrategia de estos autores consiste, en esencia,
en corregir la insuficiencia del requisito del uso de la premisa con la que
la exigencia de que las férmulas derivables sean no paraddjicas en el sen-
tido semantico. Con mayor precision, la solucién de Anderson y Belnap
podria reformularse como sigue. Sean R,...,R, el conjunto de reglas de
derivaciéon basadas en el criterio S). Pues bien, el sistema de la légica de
la relevancia R es el sistema légico con la propiedad T) que equivale al
maximo subconjunto posible de ese conjunto de reglas que no permitan
la derivacién de férmulas paraddjicas.

Anderson y Belnap demuestran que lo que hoy conocemos como sis-
tema de la l6gica de la relevancia R es un sistema equivalente a uno de
los maximos subconjuntos posibles antes mencionados. Muestran tam-
bién que el sistema R es, en contra de los augurios de Lewis, un sistema
muy potente y que, en particular, no estd incluido en ninguno de los sis-
temas definidos por el propio Lewis. Volveremos sobre estas afirmacio-
nes al final de este trabajo. Por el momento, finalizamos este apartado
describiendo con mads detalle la soluciéon propuesta por Anderson y
Belnap.

La estrategia consiste en generalizar la caracterizacion de «teorema
de la logica de la relevancia» implicita en S) a

C4) Si A,—(...~(A,—B)...) es teorema, entonces cada
A,(1=i=<n) se usa para probar B.

Demostraron entonces que el siguiente sistema implicativo R— (un
sistema es implicativo syss su unica conectiva es — )

Axiomas: Al. A—A
A2. A—((A—B)—B)
A3. (A~»(A—B))»(A—B)
A4. (A-»B)—=((B—~C)—(A—C))
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Reglas de derivacién: Modus ponens (Si —A 'y —A— B, entonces + B),
es deductivamente completo respecto de C4). Es decir, A,~(...~(A,—B)
...) es teorema de R— syss cada A,(1=<i=<n) se usa en la prueba de B.
Mostraron, ademds, que R— es un sistema relevante desde el punto de
vista semantico. Concluyeron, por tanto, que R— es el fragmento impli-
cativo de la Logica de la relevancia.

Posteriormente, demostraron que los axiomas siguientes (para la con-
juncién (A), disyuncién (v) y negacion (—)):

AS. (AAB)—>A/(AAB)—B

A6. ((A—>B)A(A—C))—(A—(BAC))

A7. A—(AvB)/B—(AvB)

A8. ((A—C)a(B—C)—((AvB)—C)

A9. (AA(BvC))—((AAB)vC)

A10. A-— —A

All. (A>—A)>—A

A12. (—mA—-B)~>(—B—A)
y la regla Adjunciéon (si - Ay + B, entonces — AAB) son compatibles con
R— en el sentido de que se preserva el concepto de relevancia en sus dos
sentidos, sintdctico y semantico. Anderson y Belnap concluyeron que el
sistema anterior (A1-A12, modus ponens y adjuncién), al que denomi-
naron R, es la Légica de la relevancia.

V. EL SISTEMA R DE LA LOGICA DE LA RELEVANCIA

El lenguaje proposicional estd compuesto por un conjunto enumerable
de variables P,,..., P,..., las conectivas =, A, v, —, < vy los signos
auxiliares (,). El conjunto de las fbf es el habitual. El bicondicional (¢)
se define también al modo habitual.

1. El sistema R

Axiomas:
Al. A—A
A2. A—-((A—B)—B)
A3. (A»(A—B))—»(A—B)
A4. (A-B)—>((B—,C)—»(A—Q))
AS5. (AAB)—A/(AAB)—B
A6. ((A=>B)A(A—C))—(A—(BAQ))
A7. A—(AvB)/A—(BvA)
A8. (A= C)A(B—C))—((AvB)—C)
A9. (AA(BvC))—((AAB)vC)
Al10. A-»— —A
All. (A->—A)>—A
Al12. (—mA—-B)—~>(— B—A)
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Reglas de derivacion:

Modus ponens: Si A y —A—B, entonces + B

y Adjuncién: Si —A y + B, entonces, — AAB.

A fin de que el lector pueda relacionar el sistema anterior con otros
mas conocidos, sefialamos

Nota 1. Si en R sustituimos Al y A2 por A=>(B—A), y eliminamos
A12 el resultado es una axiomatizacién de la ldgica proposicional intui-
cionista. (A9 no seria independiente.)

Nota 2. Si en R sustituimos Al y A2 por B—>(A—A) el resultado es
una axiomatizacion del sistema S4 de Lewis con — (implicacidn estricta)
coOmo conectiva primitiva.

Nota 3. Si en R sustituimos Al y A2 por A—>(B—A), el resultado
es una axiomatizacion de la légica proposicional clasica definida con —
A, V, —T1 COMO conectivas primitivas.

2. Algunos teoremas caracteristicos de R
Anotamos una serie de teoremas caracteristicos del sistema R con un

esquema de prueba de cada uno de ellos. Al final de la lista desarrolla-
mos con detalle alguna de estas pruebas.

T1. (A»A)=»B)=>B .............. Al, A2
T2. (A—=(B—C))=((A—B)=(A—C)).. A2, A3, A4
T3. (A=(B—C))=((B=(A—=C)) .. ... A2, A4

T4. (A»B)—>((A—(B—C))—=(A—=C)).. T2, T3

TS. (B=C)=((A—=B)=(A=C))...... A4, T3

T6. (AVB)>(BVA) ..o\ A7, A8

T7. (AV(BVC))©((AVBWC)) ... ... ... A7, A8

TS. A (AVA) ..o A7; Al, A8
T9. (AAB)<>(BAA) « oo AS, A6

T10. (AA(BAC))=((AABAC) .. .. .. ... AS, A6

T11. A(AAA) oo Al, A6; AS
T12. A(AV(AAB)) ..o A7; A1, AS, A6
T13. A(ANAVB)) ..o Al, A7, A8; AS
T14. (AV(BAC))© ((AVBA(AVC)) . . . . .. AS-A8; AS-A9
T1S. (AA(BVC))« ((AABNV(AAC)) . . . . .. AS-A9; AS-AS
T16. (A=(B—C))=((AAB)=C). ... ... AS, T4

T17. (A—(BAC))=((A=BAA—C)) ... AS, A6

T18. ((A—BW(A—C))~(A—(BvC)) ... A7, A8

T19. ((A—C)W(B—C))=((AAB)=C) ... AS, A8

T20. ((AvB)=C)—=((A=C)A(B—C)) ... A6, A7

T21. — — A=A .. Al, Al12

T22. (—A—>—B)=>(B=A) ......... A10, A12

T23. (A>B)=(—B—>—A) ......... A10, A12

T24. (A>—B)=(B—»—A) ......... A10, T23

T25. (mA—=A)>A. . A10, Al1, T21
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T26. (A—B)—((A—»—B)»—A)..... All, T23
T27. (—A——B)=((— A—B)—A) .. T22, T2§

T28. (A—B)=((— A—B)=B)........ T23, T25

T29. — (AvB)o(— AA—B) ........ A6, A7, T23; AS, A6, T24
T30. — (AAB)>(—Av—B) ........ A6, A7, A12; AS, A8, T23
T31. (AvB)o —(—AA—B) ........ A12, T24, T30

T32. (AAB)o—(—Av—B) ........ A12, T24, T30

T33. (—A—B)—>(AVB)............. A7, T23, T27

T34. (A=B)= —(AA—B).......... AS, T26

T3S. (A=B)=(—AVB)............. T21,T23

T36. (AAB)—» —(A—>—B).......... A6, A10, T24, T34

T37. AV—A oo A7, A12, T23, T27

T38. —(AA—1A) .o, AS, T26

La mayoria de las pruebas son como las que dariamos en un sistema
axiomatico de légica clasica formulado de modo igual o semejante al des-
crito en la Nota 3 (cfr. supra). Comprobémoslo con un par de ejemplos.

Observacion 1. «1», «2», etc., designan en las pruebas que siguen
los teoremas que aparecen en las lineas correspondientes. Las mismas con-
sideraciones se aplican al uso de T1, T2, etc.

Observacién 2. El uso de los teoremas implicativos T1 - TS (y, en
especial el de A4 - AS (—transitividad del condicional—) en las pruebas
subsiguientes no aparece reflejado, y asi sucede en general, en la justifi-
cacion esquemdtica que aparece a la derecha de cada teorema de la lista.

Ejemplo 1. T27. (—A—>—B)=>((— A—>B)—A)

Prueba.
1. (BRA) = ((—mA=B)=»(mA=2A) . . TS
2. (MA=>7B)=(B—A) ... T22
3. (2)=((1)=(A=>—B)=>(—A—=B)=>(—A—A))) .. A4
4, (mA->—B)=((—mA—=B)=»(—A—A)) ........ 2MP,1,2,3
S. (A=A A T22
6. (5)>((mA—-B)>(—A—A))=(A—B)—>A)).. A4
7. ((—mA->B)=>(—mA—>A)>(—mA->B)>A). ... ... MP, 5,6
8. (4)=((7)=T27) . .o A4
9. T 27 o MP, 4,7, 8
Ejemplo 2. T29. — (AvB)©(— AA— B)
Prueba. (De izquierda a derecha; en el otro sentido, la prueba es seme-
jante)
1. A>(AVB) . .o A7
2. Bo(AVB) .o A7
3. ()= (—(AVB)=>—/A) ... T23
4. (2)=(—(AVB)> =1 A) oo T23
5. m(AVB)= /A MP, 1, 3
6. T (AVB)= /B ... MP, 2, 4
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7o(SA6) oo AD]J., §, 6
8. (7)=T29 ... A6
9. T29 . MP, 7, 8

3. El Metateorema de Intercambio de los Equivalentes.
El Metateorema de Deduccion

Una formulacién habitual del Metateorema de Intercambio de los Equi-
valentes (M.I.) es la siguiente:

Si A< B, entonces —C(A)<~C(A/B)
Su significado vendria a ser éste:
si dos férmulas son sintdcticamente equivalentes, entonces son intercam-
biables dentro de cualquier contexto (fbf) en el que aparezcan. En Légica
cldsica, M.I. se prueba por induccién sobre la complejidad (grado 16gico)
de C(A). Para mostrar su validez basta con las siguientes reglas:

a) Si FA-B, —H(B—>C)—(A—C)
b) Si HA-B, —(C—A)—>(C—B)
¢) Si mFA-B, -—B->—A

Como a), b) y ¢) son, obviamente, reglas derivadas de R, M. 1. se
prueba para R exactamente igual que para la Logica clésica.

Por otro lado, el Metateorema de Deduccién clasico (M.D.) rezaria

(M.D.)Si A,,..., A,—B, entonces A,,..., A,_,+A,—B

En Logica de la Relevancia en general, y en el sistema R en particu-
lar, se modifica como sigue (Metateorema de Deduccién Relevante
(M.D.r.)):

(M.D.r.)Si A,,..., A,+B, ycada A(l1 <i<n) se usa en la demostra-
cién de B, entonces A,,..., A,_,+A,—B

Hemos explicado con detalle mds arriba (cf. §1v.2) las razones que
justifican esta modificaciéon. La prueba de M.D.r. es, en esencia, seme-
jante a la prueba de M.D., pero se requieren algunas especificaciones téc-
nicas en las que no podemos entrar aqui (cf. Dunn, 1986).

VI. SEMANTICA PARA R

Describimos a continuacion la semantica para R definida por Routley
y Meyer (cf. Routley y Meyer, 1973; Routley y otros, 1984). Semdnti-
cas esencialmente equivalentes son las propuestas por A. Urquhart y K.
Fine (cf. Urquhart, 1972; Fine, 1974). La semdntica de Routley y Meyer
para R es semejante a la semantica kripkeana para la 16gica modal (cf.
el capitulo «Légica Modal» de este mismo volumen).

Como se sabe, una «estructura kripkeana» es una estructura del tipo
<O, K, R> donde K es un conjunto, O€K, y R es una relacion binaria
definida en K. Desde un punto de vista intuitivo, K es el conjunto de los
mundos posibles, O es el «mundo actual» y R representa la relacién de
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accesibilidad entre mundos posibles. Para definir un «modelo kripkeano»
afiadimos a una estructura kripkeana una funcién de evaluacién con la
que se valora cada formula bien formada en cada mundo posible con-
forme a requisitos que respecto de las conectivas =, A, v, © y —/ son
exactamente igual a los clasicos.

Pues bien, las estructuras para R son estructuras del tipo <O, K, R,
*> donde O, Ky R son como antes y * es una operacion monaria defi-
nida en K. Las diferencias respecto de las estructuras kripkeanas estan-
dar pueden resumirse en lo siguiente:

i) El conjunto K de los mundos posibles puede contener elementos
inconsistentes o incompletos o inconsistentes e incompletos.

ii) R esuna relacion ternaria. Asi, si en los modelos estandar «Rab»
puede leerse «el mundo posible a tiene acceso al mundo posible
b», en los modelos para R, «Rabc» podria leerse «el mundo posi-
ble ¢ es accesible desde a y b». Naturalmente, el hecho de que
R sea una relacion ternaria, dificulta, a diferencia de lo que ocu-
rre en los modelos estandar, la eleccién de las propiedades que
cabe imponerle.

iii) La operacién * proporciona una, dirfamos, «imagen inversa» de
cada mundo posible. Para cada mundo posible a, a* contiene
todas las férmulas negativas cuyos argumentos estan en g; 0, dicho
de otro modo, a* carece de los argumentos de las férmulas nega-
tivas que estan en 4.

iv) Las diferencias respecto de la semantica estandar expresadas en
los dos puntos anteriores tienen como objetivo valorar el condi-
cional y la negacion de forma alternativa (cfr. infra) con vista a
falsar las paradojas de la relevancia.

A continuacién exponemos con detalle esta semantica, y probamos
el Teorema de Consistencia.

1. Estructuras modelo, modelos, validez

Def. 1. Una estructura modelo para R (EMR) es una estructura del tipo
<O, K, R, *> donde

1) K# (K es un conjunto no vacio)
ii) OSK (O es un subconjunto de K)

iii) REK’ (R es una relacién ternaria definida en K)

iv) *EK (* es una operaciéon monaria definida en K)
tales que las siguientes definiciones y postulados se cumplen para cuales-
quiera 4, b, ¢, d, €K (los cuantificadores tienen como dominio K; « = » puede
leerse «si ..., entonces ...»; es decir, como un condicional metalingiistico).

dl. a<b=,(x€O y Rxab)
d2. R?abcd= 4Hx(x€O y Rabx y Rxcd)
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Pl1. a<a

P2. a<by Rbcd=Racd

P3. Rabc=Rbac

P4. R’abcd= Hx(Racx y Rbxd)
P5. Raaa

P6. a*

P7. Rabc=Rab*c*

Def. 2. Un modelo para R (MR) es una estructura del tipo <O, K,
RJ :1*’

cién de verdad con la que asignamos 1 6 0 a cada fbf en cada mundo
posible de acuerdo con las restricciones siguientes (para cualesquiera varia-
ble proposicional p, fbf A, B y a€K):

1) asbyv(A, a)=1=v(B, b)=1
ii) V(AAB)=1 syss v(A, a)=1y v(B, a)=1
i) v(AvB)=1 syss v(A, a)=1 6 v(B, a)=1
iv) v(A—>B)=1 syss paratodo b, ¢, €K, Rabcy v(A ,b)=1=v(B,c)=1
v) v(— A, a)=1 syss v(A,a¥)=

Def. 3. A es valida (EA) syss para todo modelo M y a€K tal que
a€O, v(A, a)=1.

2. Teorema de consistencia

Para simplificar la prueba del Teorema de Consistencia, utilizamos la
siguiente definicion:

Def. 4. A implica semanticamente a B en R syss paratodo MR y a€K,
v(A, a)=1=v(B, a)=
y los siguientes Lemas:

Lema 1. A implica semanticamente a B syss =A—B.

Prueba. Considérese cualquier MR en el que a€O y b, c€K. Entonces,

i) Si A implica seméanticamente a B en R, entonces =A—B.
Suponemos, pues,

1. A implica semanticamente a Ben R ... .. Hip.

2. Rabcy v(A, b)=1 ................... Hip.

para demostrar, de acuerdo con DF2(iv) y DF3, (B, ¢)=1. Entonces,
oasb oo 2, d1, pues a€O
4. v(A, b)=1 ... .. 2, 3, Def. 2(i)
S.uB,b)=1....... .. 1, 4, Def. 4

i) SiEA—B, entonces A implica semanticamente a B en R.

1. EA=B .. Hip.

2. v(A, b)=1 . Hip.

De acuerdo con Def 4, hemos de demostrar ahora ¢(B, b)=1. Entonces,
3. Rxbb..... ... . . . . ... P1, d1

4. v(A-=B, x)=1...... ... ... ... ........ 1, Def. 3, pues x€O
S.uB, b)y=1......... . . .. 2, 3, 4, Def. 2(iv)
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0

Lema 2. (A, a)=1 syss v(— A, a™) =
=1 (por P6) syss v(— A, a*)=0

Prueba. v(A, a)=1 syss v(A, a**¥)
(por Def. 2 (v)).

Lema 3. Los postulados siguientes:
P5(a). R’abcd=R’acbd
P5(b). Rabc=R‘’abbc
P5(c). Raa*a

se cumplen en todas las EMR.
Prueba. (i) P5(a) R?abcd=R*acbd

1. R%abed ....... ... .. .. ... .. .. ... .. Hip.

2. Racx y Rbxc....... ... ... .. ... ... 1, P4
3. Racx y Rxbd . ..... .. ... ... ........ 2, P3
4. Reacbd . ... ... ... ... ... . ... 3,d2
ii) PS(b) Rabc=R?abbc

1. Rabe .. ... . . Hip

2. Rbac ... .. .. . . 1, P3
3.Rbbb .. PS

4. R?bbac . ....... ... .. ... 2,3,d2
5. R?babc ....... ... ... ... . ... ........ 4, P5(a)
6. Rbax y Rxbc ....................... 5,d2
7. Rabx y Rxbc ....... ... ... ........ 6, P3
8. Rabbc ....... ... ... .. .. . ... 7,d2
1) P5(c) Raa*a

1. Ra*a™a™ ... ... ... . ... ... . . . .. ... PS

2. Ra*a™*a™" .. ... ... 1, P8

3. Ra%aa ........ ... .. ... ... ... 2, P6
4. Raa*a ........ ... . . . .. . ... ... 3, P3

Podemos ahora probar el
Teorema de consistencia (semantica)

Si —A, entonces =A (si A es teorema, entonces A es valida)

Prueba. La prueba consiste, como es habitual, en demostrar que los
axiomas son vdlidos y que las reglas de derivacion preservan la validez.
Pues bien, como todos los axiomas son de la forma A— B, por el Lema
1 basta probar que en cualquier MR y para cualquier a€K, v(A,
a)=1=v(B, a)=1. Entonces, Al, AS, A6, A7, A8, A9, Modus ponens
y Adjuncion se siguen inmediatamente de Def. 2. Por otro lado, A2, A3,
A4, A10, A11 y A12 se siguen facilmente de, respectivamente, P3, P5(b),
P4, Lema 2, P5(c) y P8. Desarrollamos a continuacién algunas de estas
pruebas. Procederemos por reduccién al absurdo. Es decir, supondre-
mos que el axioma del caso no es valido. Como todos los axiomas son
de la forma A— B, esto significa por el Lema 1 que para algin a€O en
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algin MR, v(A, a)=1 y v(B, a)=0. Demostraremos que de tal suposi-
cién se sigue una contradiccion:

A4. (A-B)-((B—~C)—»(A—-C())

1. (i) (A—B, a)=1

(ii) v((B=C)=>(A—C), a)=0...... Hip.
2. (i) Rabc

(ii) v(B—C, b)=

(iii) v(A—=C, ¢)= O .............. 1(ii), Def. 2(iv)
3. (i) Rcde

(if) v(A,d) =

(i) v(C,e)=0 ... .. ... ... 2(iii), Def. 2(iv)
4. Réabde . ...................... 2(1), 3(1), d2
5. (i) Radx

(i) Rbxe . .................... 4, P4
6. UB, x)=1 ... .. ... 1(i), 3(ii), 5(i), Def. 2(iv)
7.0(Ce)=1 ... 2(ii), S(ii), 6

Pero 7 y 3(iii) se contradicen. Por tanto, A4 es valido.

A10. A»— —A.
1. (i) v(A, a)=1

(i) o(— —A)=0 .o Hip.
2. U/ A, a*
3o /A a)=1. 2, Def. 2) v)

Pero 3 y 1(ii) se contradicen. Por tanto, A10 es valido.
A12. (—mA—-B)>(—B—A)
1. (i) y(— A—=b, a)=1

(i) v(/mB=A)=0.............. Hip.
2. (i) Rabc
(ii) »(B, b)=
(iii) v(A, ¢)= O ................. 1(ii), Def. 2(iv)
3. Rac™b
4. (/A c*)=1. 2(iii), Lema 2
S. vuB, b¥)=1 ......... ... .. .... 1(i), 3, 4, Def. 2(iv)
6. /B, b)=0 .o 5. Def. 2(v)

Pero 6 y 2(ii) se contradicen. Por tanto, A12 es vlido.

Nota 1. La clausula (ii) de la Def. 2 se restringe normalmente al caso
de las variables proposicionales, y, entonces, rezaria:

Def. 2(ii). a<by v(p, a)=1=v(p, b)=1

El lector puede demostrar sin dificultad que Def. 2(ii)’ se extiende
a Def. 2(ii) por induccidn sobre el grado légico (la longitud, la compleji-
dad) de las fbf.

Nota 2. Hemos utilizado «modelos no-reducidos» para R en lugar
de los «modelos reducidos» (es decir, modelos sin un «mundo actual»)
(cfr. Routley y otros, 1982). La razén es que asi podemos exponer de
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modo unificado la semantica para otras ldgicas de la relevancia alterna-
tivas.

3. Algunos conocidos teoremas de la l6gica proposicional
clasica que no son teoremas de R

A—(B—A)
(A—»B)—=>C)—(B—C)
(A=B)—=B)—((B—A)—A)
((A=B)—A)—A
(A=C)=((B—C)—((AvB)—C)
(A= B)=((A—=C)—(A—(BAC))
A—(B—(AAB))
(AAB)—C)—>(A—(B—
B)—((AAC)—(Bn
(Bv

E Q)
10. (A—B)—((AvC)—

(

(

€))
C)
—-0))

)

32 EI NN S SIS

A—(BvC))~((A—B)v(A
(AAB)—C)—=((A—C)v(B

13. (A—B)v(B—A)

14. —mA—-(A—B)

15. —m(A—>—B)—(AAB)

16. (AVvB)—(— A—B)

17. (— AvB)—»(A—B)

18. (AA— B)—(A—B)

A pesar de la indecidibilidad de R (cfr. §X) sugerimos al lector como
ejercicio dos posibilidades de mostrar que las formulas anteriores no son
teoremas de R:

(I) Sintaxis.

i) No es dificil demostrar que si anadimos a R cualquiera de (1)-(4),
(7)-(8) 6 (14)-(18), entonces A— (B—A) es demostrable. Pero el resul-
tado de anadir A—»(B—A)aR s, evidentemente, la Logica clasica.

ii) R en unién de (5 ), (6), (9) 6 (10) da lugar a teoremas como
(A—>B)—>(A—A) 6 (B~A)>(A—A); R en unidn de (11), (12) 6
(13) da lugar a (A—B)v(B—A) como teorema. Como hemos dis-
cutido mds arriba, uno y otro resultado son indeseables.

(II) Semantica.

Siguiendo la estrategia utilizada en la demostracién de la validez de
los axiomas de R, no es dificil, en la mayoria de los casos, construir mode-
los que muestran la no-validez de (1)-(18). Por ejemplo:

i) (1) A—>(B—A) se falsa en un MR en el que (a) K= {a, b, ¢}, (b)
O =K, (c) Rabe, (d) v(A, a)=0, v(A, b)=1, v(C, ¢)=0.

ii) (14) — A—(A—B) se falsa en un MR en el que (a) K= {a, b,

}, (b) O=K, (c) Rabc, (d) v(A, a*

ii) (15) —m(A—»—B)— (AAB) se falsaenun MR en el que( )K {
b, ¢} (b) O=K, (c) Ra*bc, (d)v(A, b)=1,v(B, b*)=0,u(A, a)=

(
Cc
(
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Nota. En cada uno de los modelos anteriores se especifica lo estricta-
mente necesario para falsar las formulas del caso. Lo no especificado es
indiferente siempre que sea compatible con los requisitos que definen un
MR. Asi, p. ej., en i) es indiferente el valor de A en b 6 si se dan o0 no
entre a, b y ¢ otras relaciones que Rabc.

VII. COMPLETUD DE R

Damos a continuacién una prueba de completud de R respecto de la
semdntica descrita en § vI. La prueba es, en esencia, una prueba tipo
Henkin. Es decir, definiremos el «modelo candnico» (cf. Def. 2), y
probaremos que todas las fbf que no sean teoremas son falsas en algin
mundo posible del modelo canénico. En la construccion del modelo
canoénico, utilizaremos el método de las teorias «primas»; es decir,
interpretaremos candnicamente el conjunto K como el conjunto de
todas las teorias primas (cf. Def. 1). Comenzamos con algunas defi-
niciones.

1. Definiciones. Modelo canbnico

Def. 1

1) Conjunto de féormulas cerrado por la implicacién ().
a esta cerrado por la implicacion syss si —A—B 'y Aé€a, enton-
ces Bea.

ii) Conjunto de férmulas cerrado por la adjuncién (&).
a esta cerrado por la adjuncién syss si A€a y Be€a, entonces
AnBea.

1) Teoria.
a es una teoria syss a esta cerrada por b y por &.

iv) Teoria normal.
a es una teoria normal syss (a) a es una teoriay (b) si —A, enton-
ces A€a.

v) Teoria prima.
a es una teoria prima syss (a) a es una teoria y (b) si AvB€a, enton-
ces A€a 6 Bea.

Def. 2. Estructura modelo canénica para R.
Una estructura modelo canbnica para R (EMR) es cualquier estruc-
tura del tipo (O¢, K¢, R, *“) donde

i) K< es el conjunto de todas las teorias primas.

it) O¢ es el conjunto de todas las teorias primas normales.

iii) R se define en K¢ como sigue: para cualesquiera a, b, c€K",
Reabc syss si A—>B¢€a y A€b, entonces Béc.

iv) *< se define en K< como sigue: para cualquier a€K¢, a*“= (A
— A¢a} (Es decir, A€a** syss — A¢a).
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2. Lemas previos

Probamos a continuacion tres lemas esenciales para la demostracion, en
el apartado siguiente, de que el modelo canonico es, en efecto, un modelo.

Lema 1. Si #A, entonces hay una teoria T tal que TeK*y A¢T.

Prueba. En la demostracién que sigue utilizamos el Lema de Zorn
que reza: Todo conjunto no vacio en el que cada cadena (es decir, cada
subconjunto totalmente ordenado) tenga un limite superior tiene un ele-
mento maximo.

Hay pruebas alternativas (técnicamente mas complicadas) utilizando
el Lema de Lindenbaum (cfr. Routley y otros, 1982, cap. V).

Pasamos ya a la demostracion del Lema 1. Considérese la légica R
como el conjunto de sus teoremas. R es una teoria (la minima) normal
sin A. Ordénense todas las teorias normales sin A con la inclusién con-
juntista. Es evidente que el Lema de Zorn puede aplicarse, y, por tanto,
hay una teoria normal y mdxima T sin A (A¢T) (que T es una teoria
normal y maxima sin A significa: si T es una teoria y TC T’ como T’
es necesariamente normal, A€T’).

Demostraremos a continuacion que T es prima. Supongamos que no
lo es. Entonces, para algunas fbf B, C, tenemos BvCeT, B¢ T, CeT (cfr.
Def. 1 (iv)).

Definimos:

[T, B] = {(E|dD(D€T, +(BAD)—E)}
[T, C] ={E|AD(D€T, +(CAD)—E)}

Es decir, [T, B] es el conjunto de todas las férmulas E tales que
(BAD)—E es teorema de R, siendo D una férmula cualquiera de T; [T,
C] se puede interpretar de modo semejante. Pues bien, probamos ahora

i) [T, B] y [T, C] estan cerrados por la implicacién.
Prueba. Probamos que [T, B] esta cerrado por la implicacién; la
prueba de que [T, C] también lo estd es similar. Supongamos (cf. Def.
1 (1)), entonces,

1. mFD—>E .. Hip.

2. FDE[T, Bl oo Hip.

3. = (BAF)oD(FET) oo 2, Def. de [T, B]
4. b (BAF)>E(FET) . . oo 1, 3, A4

y, como habia que demostrar,

S EE[T, Bl o ovoeeee e 4, Def de [T, B]

ii) [T, B] y [T, C] estan cerrados por la adjuncion.

Prueba. Tomando como pauta la demostracién de (i), el lector puede
demostrar sin dificultad (dsense algunos teoremas elementales sobre la
conjuncion, cf. §v.2) que [T, B] esta cerrado por la adjuncion; la prueba
de que [T, C] también lo esta es semejante.

u) TCI[T, B], TCI[T, C]
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Prueba. Demostraremos que T esta incluida estrictamente en [T, B];
la prueba de que [T, C] también lo estd es semejante.

a) TS [T, B] (si DeT, entonces De[T, B])

Prueba.
1. =(BAD)=D ... ... .. AS
2. DE[T, B] ... 1, Def. de [T, B]

b) TC [T, B] (Hay, al menos, una fbf D tal que De [T, B], pero
De¢T).

Prueba. La fbf aludida es, evidentemente, B. Por hipotesis, B¢ T, pero
sea E€T (T es normal: no es vacia). Entonces,

1. H(BAE)=B ... AS

2. BE[T, B] ... i 1, Def. de [T, B]

iv) Ae[T, B], A€[T, C].

Prueba. T es la teoria normal maxima sin A. Como [T, B] y [T,
C] son teorias normales que incluyen estrictamente a T((i), (ii), (iii)),
entonces, A€ [T, B] y Ae[T, C].

v) AeT.

Prueba. Utilizando algunos teoremas elementales sobre la conjuncion,
la disyuncién y las relaciones entre ambas, el lector puede demostrar sin
dificultad que si A€[T, B] y A€[T, C] (iv), entonces, A€T.

La prueba del Lema 1 es ahora inmediata: Hemos construido una
teoria normal T tal que A¢T; hemos supuesto (hipdtesis de reduccién
al absurdo) que T no es prima. De esta suposicion se sigue, como hemos
comprobado en (v), que A€T. En consecuencia, T es una teoria normal
y prima tal que A¢T.

Lema 2. Para cualesquiera a, b€K*, a<°b syss aSb.

Prueba. Supdngase a<<b. Por dl y Def. 2 (iv), R“xab para algin
x€0O¢. Por Al, A— Aé€x. Por tanto, si A€a, entonces A€b (cf. Def. 2 (iv)).
En el otro sentido, supongase a<b. Como a es teoria, R‘Raa (a esta
cerrada por ;R es el sistema R, el conjunto de los teoremas de R); como
a< b, R°Rab, es decir, Hx(x es normal y Rxab) (R es normal). Queda
por demostrar que x puede extenderse a una teoria prima z tal que z€O°
y R<zab, pues asi, a< b, como hay que demostrar (cf. d1).

Considérese, por tanto, el conjunto de todas las teorias normales Y
tales que xSy y R¢ab. Por el Lema de Zorn, hay un elemento maximo
z en Y tal que xSz y Rzab. Demostraremos a continuacion que z es
prima. Supongamos que no lo es (reduccién al absurdo). Entonces, A
vBe€z, A€z, B¢z para algunas fbf A, B. Definanse los conjuntos [z, A]
y [z, B] de modo similar a como se definieron [T, B] y [T, C] en la
prueba del Lema 1. Siguiendo la estrategia de prueba de este Lema, el
lector no tendra dificultad en demostrar que [z, A] y [z, B] son teorias
normales que incluyen estrictamente a z. Como z es la teoria maxima
tal que xSz y Rzab, se concluye (cf. la introduccion al Lema 1)
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1. No-R<[z, A] ab
2. No-R¢[z, B] ab
y, entonces, tenemos, por 1 y Def. 2 (iv),
3. C—De€[z Al
4. Ceéa
5. D¢b
por 2 y Def. 2 (iv),
6. C-D’
7. Ce€a
8. D¢b
por 3 y Def. de [z, A],
9. —(AAF)—(C—D) (Fez)
por 6 y Def. de [z, B],

10. +(AAF)—=(C'—D’) (Fez).

Ahora, dado que ((A—C)A(B—D))—((AvB)—(CvD)) es teorema de
R, tenemos por 9 y 10,

11. ((AAF)V(AAF’))—=((C—D)v(C—=D’))

y, por las propiedades distributivas,

12. ((AvB)A(FAF’))—=((C—=D)v(C—=D")).

Pero como z estd cerrada por & (z es teoria) y Fé€z, F’€z, entonces
FAF’€z; por la misma razén, como AvBez,

13. ((AVB)A(FAF))éz.

Como z esta cerrada por b, por 12 y 13,

14. ((C->D)V(C>D’)ez

Pero el siguiente es teorema de R

15. m((C—=D)v(C’—>D’)—=((CAC’)—(DvD’))

y, entonces, por 14 y 15 (z estd cerrada por b ),

16. ((CAC’)—(DvD))éz.

Por ultimo,

17. (DvD’)ez
pues (CAC’)€eC (a y C’€a, y a esta cerrada por & pues es teoria) y R zab
(cfr. Def. 2 (iv)).

Pero dado que b es prima (b€K*), de (16) se sigue D€b 6 D’eéb que
contradice lo afirmado en las lineas 5y 8 (D¢b, D’¢b). En consecuencia,
z es una teoria prima. Como xSz y x es normal, entonces z€O° (z es
normal) y R<zab, i.e, a< ‘b, con lo que finaliza la demostracién (de la
segunda parte) del Lema 2.

Lema 3. *“es una operacion en K*; es decir, si @ es una teoria prima,
entonces @ también lo es.

Prueba. Tenemos que demostrar que si a esta cerrada por b, & y
es prima, entonces a*¢ también.

1) a* estd cerrada por .

Prueba. El lector lo demostrar4 sin dificultad siguiendo la estrategia
de reduccidn al absurdo y utilizando uno de los teoremas de contraposi-
cién (T23).
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i) a*< esta cerrada por &.

Prueba.

1. Aea®c. ... ... .. Hip.

2. Bea*<.......... Hip.

3. AABéa*c........ Hip. (red. ad abs.)

4. —(AAB)€éa .. ... 3, Def. 2(v)

5. —mAv —Béa ... 4, T30 (a estd cerrada por b, a es teoria)
6. — A€a 6/ B€a . S5, pues a es prima

7. —A¢ay —Béa. 1, 2, Def. 2(v)

c

pero (6) y (7) se contradicen. Por tanto, a*
cuando a es una teoria prima.

1) a*< es prima.

Prueba. Semejante a la de ii) utilizando ahora T29.

esta cerrada por &

3. Teorema de Completud

Probamos a continuacién que el modelo canénico es, en efecto, un modelo
de donde se sigue ya con facilidad el Teorema de Completud.

Lema 4. La estructura modelo candnica es, en efecto, una estructura
modelo.

Prueba. Tenemos que demostrar que la estructura establecida en Def.
2 cumple con los requisitos generales de toda estructura modelo para R
definidos en §vi.1. Pues bien, por el Lema 1 se cumplen los requisitos
(i), (i) y (iii). Ahora, dado que R* es, obviamente una relacién ternaria
definida en K¢ (requisito (iv)), y *¢, por el Lema 3, una operacién mona-
ria (requisito (vi)), solo resta por demostrar que los postulados P1-P7
se cumplen cuando se entienden canénicamente de acuerdo con Def. 2

(iv), (v).
Pl. a<<a ..... .. . . . . . Lema 2
P2. sia<<by R<bed, entonces R‘acd.
Prueba.
1. asb. Hip
2. Rebed oo Hip
Hay que demostrar R<acd. Supongamos (cf. Def. 2 (iv)), entonces,
3 ADBEd ot e Hip.
4. A€c . Hip.
hemos de demostrar Bcd. Pues bien,
S. A=Beb ... 1, 3, Lema 2.
6. BEd. . .\ 4, 5, Def. 2(iv)

1. Réabe. ..o Hip
2. A-BEb .. Hip
3.0A€a .. Hip
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4. FAD((A=B)>B) ..o A2
S. (AD2B)=B€a ... 3, 4 (a es teoria)
6. BEc ... 1, 2, 5, Def. 2(iv)

Pero (6) es lo que teniamos que demostrar a partir de (1), (2) y (3).

P4. R°abcd= Hx(R‘acx y Rbxd)

Prueba. Supuesto que hay a, b, ¢, d, yeK* tales que Raby R“ycd,
hemos de demostrar que hay una teoria z€K° tal que Racz y Rbzd.
Pues bien, dada la hipodtesis, definimos un conjunto de férmulas X como
sigue:

X={B|HA(A—B)ea y Aecc)}

Es decir, X es el conjunto de las formulas B tales que A—B es for-
mula de a y A es férmula de c¢. Entonces, se prueba

1) x es teoria.

Prueba. Como en la demostracién del Lema 1, el lector puede demos-
trar con facilidad que x estd cerrada por b y por &.

1) Reacx.

Prueba. Inmediata a partir de la definicion de x y Def. 2 (iv).

iii) R<bxd.

Prueba. (cf. Def. 2(iv)).

1. A»Beb ............ Hip.

2. Aex ool Hip.

3. C—oAe¢ea(Cec) ........ 2, Def. de x

4. H(C—A)»((A—-B)—

(C=B)............. A4

S. (A=>B)>(C—B)éa .... 3,4 (a es teoria)

6. CoBe€y............. 1, S y Def. 2(iv) (pues R<aby por
Hip.)

7.Bed. ... 3 (Cec), 6 (pues R ybd por Hip.)

Por (i), (ii) y (iii) tenemos una teoria x tal que R“acx y Rbxd. Indi-
camos cémo extenderla a una teoria prima z tal que Racz y R<bzd.
Considérense el conjunto de todas las teorias y tales que xSy y Rbyd.
Por el Lema de Zorn hay una teoria maxima z tal que R°bzd. Ahora,
R<acz es inmediato, y que z es prima se demuestra siguiendo una estra-
tegia semejante a la utilizada en la prueba del Lema 2.

PS. Raaa.

Prueba. Semejante a la de P2 (Utilicese el teorema de R
((AA(A—B))—B).

P6. a" " “=a.

Prueba. A€a* <" syss — Aéa”“ syss — — A€a syss A€a (A10, T21;
cf. Def. 2 (v), a es teoria).

P7. Si R<abc, entonces R<ac™b™.

Prueba. Suponemos (cf. Def. 2(iv))

1. Raabc ... ... . . . Hip
2. AoBea ... Hip
3. A€cT L Hip
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4. Beb* .. Hip. (red. ad abs.)

S = BED 4, Def. 2(v)

6. —(A=B)>(—B—>—/A) .......... T23

7. mB—->—/A€a....... ... ....... 2, 6 (a es teoria)

8., —/A€c ... 1, 5, 7 (cf. Def. 2(iv))
9. A€c™ ... 8, Def. 2(v)

Pero (9) contradice (3). En consecuencia, P7 se cumple y, por tanto,
finaliza la prueba del Lema 4: la estructura modelo candnica es, en efecto,
una estructura modelo.

Lema §. Sea (O¢, K¢, R¢, *<) la estructura modelo candnica. Enton-
ces, hay una funcién de evaluacién candnica v° tal que para cada fbf A
y a€K<, v¥(A, a)=1 syss A€a.

Prueba. Demostramos a continuacion que la funcién de evaluacién
canoénica es una funcién de evaluacién. Es decir, que v° cumple con las
condiciones (i)-(vi) de Def. 2 (cf. §vI.1). Pues bien, las cldusulas (i)-(iii)
son triviales (para (i) utilicese el Lema 2; para (ii) y (iii), los axiomas para
Ay v,y las propiedades respecto de estas conectivas de los miembros de
K¢). Por tanto, las cldusulas de interés son (iv) y (v).

Clausula (iv). Subcaso (1°). Si v(A—B, a)=1, entonces para cua-
lesquiera b, c€K*, si R‘abc y v(A, b)=1, entonces v(B, ¢)=1.

Prueba. La prueba, muy sencilla, se apoya en la definiciéon v y de
Rc.

Clausula (iv). Subcaso (2°). Si para cualesquiera b, c€K*, si Rabc
y v(A, b)=1, entonces v(B, ¢)=1, entonces v(A—B, a)=1. Probamos
el caso por contraposicién. Suponemos, por tanto, v(A—B, a)=0, y
hemos de demostrar que hay b’, c’éK* tales que Rab’c’, v<(A, b’)=1y
v¥B, ¢’)=0.

Pues bien, definimos los conjuntos de férmulas

b={C—A-C)}
y c=(C|gD(Deb y D—Cea))

Como en la prueba de los Lemas 1 y 3, el lector puede demostrar
facilmente que b y ¢ son teorias (son conjuntos de férmulas cerrados por
la implicacién y la adjuncion) y tales que R abce (cfr. la definicion de ¢),
Aeb (-A—A)y Béc (Si Béc, entonces v(A—B, a)=1, es decir, A—>Béa,
lo cual es imposible por hipdtesis).

Mostramos ahora cémo extender b y ¢ a teorias primas b’, ¢’ tales
que Rab’c’, Aeb’y Béc’. Considérese el conjunto Y de todas las teorias
y tales que ¢Sy y B¢y. Exactamente igual a como se demuestra en el
Lema 1, se prueba que hay una teoria prima ¢’ tal que yS ¢’y B¢c’. Dado
R<abc, es evidente R“abc’. Considérese ahora el conjunto Y de todas las
teorias y tales que by y Rayc’. Exactamente igual a como se demues-
tra en la prueba del postulado P4, se prueba que hay una teoria prima
b’tal que Rab’c’. Dado A¢€b, es evidente A€b’. De este modo, tenemos
b’, c’eK* tales que Rab’c’, Aeb’ y Bé¢c’ como se requeria.

Clausula (v). v(— A, a)=1 syss v(A, a*)=0
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Prueba. Ejercicio para el lector.

Por ultimo, demostramos el

Teorema de Completud: Si EA, entonces +A.

Prueba. Demostramos el teorema por contraposicién. Supdngase,
entonces, #A. Por el Lema 1, hay una teoria T normal y prima tal que
AgT. Por los Lemas 4y 5, v(A, T)=0; es decir, A no es verdadera en
el modelo canénico, y, por tanto, #A.

VIII. OTRAS LOGICAS DE LA RELEVANCIA. SINTAXIS

Disponemos actualmente de innumerables sistemas logicos de la relevan-
cia. En un trabajo reciente sobre la légica de la relevancia, L. Pefia (1993)
ha destacado algunos de ellos clasificaindolos en tres apartados: (a) Rele-
vantismo cldsico: los sistemas de Anderson y Belnap (cf. infra) (b) Rele-
vantismo profundo: los sistemas de la escuela australiana (cf. Routley,
Plumwood, Meyer y Brady, 1982) y (c) Relevantismo radical (cf. Avron,
1984; Méndez, 1987a, 1988a, 1988b).

De entre todos estos sistemas destaca, ademas de R, el sistema (cla-
sico) E (entailment) de la implicacion propuesto por Anderson y Bel-
nap como the true logic. Los sistemas encuadrables en los otros dos
apartados son, en el primer caso (relevantismo profundo) esencialmente
restricciones de los sistemas clasicos; en el segundo (relevantismo radi-
cal), extensiones del fragmento implicativo de R (cf. §1v) complemen-
tadas con restricciones del conjunto de axiomas funcionales de verdad
de R.

Pues bien, los sistemas pertenecientes al apartado (b) son facilmente
accesibles desde el conocimiento de la l6gica de la relevancia R. Por otro
lado, los interesantes sistemas de Avron presentan el inconveniente (desde
el punto de vista de la presente exposicion) de que su motivacion es dife-
rente a la que sustenta a los impulsados por Anderson y Belnap. Hemos
optado, pues, por exponer en lo que sigue la fundamentacion y estruc-
tura de los sistemas E, RMO, Rm y RMOm.

El sistema RMO (cf. Méndez, 1988b) es una alternativa, en la linea
de Anderson y Belnap, a R. Los sistemas Rm y RMOm (cf. Méndez,
1987b,1988b) son, intuitivamente, los fragmentos positivos de R y RMO
con negacion minima al estilo intuicionista, opcién ésta descartada habi-
tualmente por los autores relevantistas (pero cf. Tennant, 1987).

La légica de la implicacién E

Anderson y Belnap consideran el sistema R como la légica de la relevan-
cia, la légica del condicional relevante. Ahora bien, ¢es R la l6gica de la
implicacion en el sentido que Lewis daba al término? Para definir la légica
de la implicacién en dicho sentido, Anderson y Belnap, siguiendo preci-
samente a este autor, exigen que, ademds de relevancia entre antecedente
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y consecuente, se dé entre ellos relacién de necesidad. Y proponen como
traduccién formal de este requisito la siguiente:

Propiedad Ackermann. L es un sistema de la implicacion si A—(B—C)
no es demostrable cuando A no contiene a = entre sus simbolos.

Este requisito podria explicarse como sigue. En un sistema de logica
proposicional cuyas unicas conectivas sean =, A, v’y — es la primera
de éstas (—) la unica que representa, o podria representar, formulas «nece-
sitivas» («necessitive formulae») que, en un sistema estandar de logica
modal, estarian representadas por el operador de necesidad, L.

Pues bien, el sistema E (descrito en §viir 1 y §i1x 1) es exactamente
la restriccién de R con la propiedad Ackermann.

El sistema RMO de la l6gica de la relevancia

Comprobamos en § 1v.3.2. que el sistema R se construyé definiendo el
fragmento implicativo a partir de la siguiente caracterizacién sintactica
de relevancia:

C4) A,—(...~(A,—B)...) es teorema si cada A{1 <i<n) se usa en
la prueba de B.

Esta caracterizacion presenta el inconveniente de que en ella no se exige
meramente el uso de cada premisa, sino, eventualmente, el uso de cada apari-

cién de cada premisa. Por esta razén, algunas tesis como el axioma «mingle»
M. A—-(A—A)

no son teoremas de R. Este resultado parece, sin duda, contrario a cual-
quier nocioén plausible de relevancia entendida sintdcticamente como «uso
de las premisas en la derivacion de la conclusion».

Pues bien, esta dificultad se soluciona modificando C4) como sigue

C4) A,—(...~(A,—B)...) es teorema si cada A(1 <i<n) en el con-
junto {A,,...,A,} se usa en la prueba de B.

Ahora, RMO se construye a partir de C4’) como R se construyé a
partir de C4).

Los sistemas Rm y RMOm de la légica de la relevancia
Como hemos apuntado mads arriba, Rm y RMOm son el resultado de
afiadir a R y RMO, respectivamente, una «negaciéon minima» al estilo
de los calculos intuicionistas minimos de Kolmogoroff y Johannsson.
1. El sistema E de la légica de la implicacion

i) Lenguaje formal. Es el mismo que el del sistema R.

ii) Axiomas. Son los mismos que los de R salvo que la Ley de

Asercion
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A2. A-((A—B)—B)

se sustituye por la Ley de Asercién restringida

A2’. (A-B)~(((A—B)—C)—C)
Reglas de derivacion. Ademds de Modus ponens y Adjuncion, ana-
dimos Necesitacién: Si — A, entonces (A—>A)—A.
Teoremas. El mismo conjunto que el senalado para R salvo que
la Ley de Permutacion de Premisas

T3. (A—=(B—C))—~(B—(A—(C))
es, ahora, en E la Ley de Permutacion de Premisas restringida

T3. (A=>(B—>C)>D)~((B—C)>(A—>D))

que se demuestra con A2’y A4 como, en R, T3 se demostraba
con A2 y A4.

Observacion 1. Noétese que Necesitacion es una consecuencia inme-
diata de A2 de R; como, ademas, A2’ es una restriccion de A2, se sigue
que E es un sistema contenido en R. Carece, por tanto, de todos los teo-
remas cldsicos de los que carecia R, ademas de no contar ni con la Ley
de Asercion ni con la Ley de Permutacion ni con todas las consecuencias
de estas dos leyes.

Observacion 2. T4 y TS que en R se prueban con T3 pueden pro-
barse ahora en E del mismo modo con T3’.

2. El sistema RMO de la légica de la relevancia

1)
ii)

iii)

1v)

Lenguaje formal. El mismo que el de R.
Axiomas. Todos los de R salvo A12. Ademas anadimos

A13. A—(A—-A)
Reglas de derivacién. Las de R y, ademas, la regla Contraposi-
cién (Si —A— B, entonces — — B— — A) y Reductio ad absur-
dum (Si —A— B, entonces +(A— —B)—>—A).
Teoremas. T1-T20 de R son teoremas de RMO y se prueban
como en aquel sistema. De los teoremas de RMO en los que figura
la negacién, no son tesis de RMO, ademds de A12, T22, T23,
T24 (las leyes de Contraposicion) y T26, T27, T28 (las leyes de
Reductio). Precisamente, la diferencia entre R y RMO radicaria,
por un lado, en que Contraposicién y Reductio sélo valen en
RMO como reglas de derivacién; por otro lado, en la adicién
del axioma «mingle» A13. El resto de los teoremas de la lista se
prueban como en R utilizando ahora las reglas Contraposicion
y Reductio en lugar de los teoremas correspondientes como hacia-
mos en el caso de R.

Observacion 1. Tenemos como reglas derivadas todas las variantes
de Contraposicién y Reductio:

a) Si HA— — B, entonces B> — A

b) Si - — A—B, entonces - M B—A

¢) Si - —A—>— B, entonces HB—A
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d) Si A—B, entonces —(— A—B)—B

e) Si — A— — B, entonces —H(—™ A—B)—A

Todas ellas se prueban con las reglas primitivas y los teoremas de
la doble negacién (A10, T21).

Observacién 2. T21 se prueba ahora con Al y Contraposicién (b).
Por otro lado, A11 no es independiente: se demuestra con Al y Reductio.

3. El sistema Rm La lbgica de la relevancia con negacion minima

1) Lenguaje formal. El mismo que R.
ii) Axiomas. Los mismos que R salvo la Ley de Contraposicién fuerte
A12. (— A—B)—(— B—A)
no aceptable intuicionistamente, que se sustituye por la Ley de
Contraposiciéon débil
A12’. (A-B)—>(—B—>—A)
que si es admitida por los intuicionistas. Asi se derivan, p. €j.,
A->— —A, (A>—A)»— A, (A—>—B))=>(B—>—A),
(A—B)— (A>—B)—> A, etc.

iil) Reglas de derivacion. Modus ponens y Adjuncion como en R.

iv) Teoremas. T1-T20 (teoremas en los que no interviene la nega-
cién) son tesis de Rm y se prueban del mismo modo que en R.
T21-T38 son teoremas en los que interviene la negacion; asi pues,
no son tesis de Rm todos los que no son admitidos intuicionista-
mente. En particular, son teoremas T23, T24, T26, T29, T30,
T31, T32, T34, T36 y T38 que se prueban como en R (cfr.
Observacién 1). No son, por tanto, teoremas T21, T22, T2S5,
T27,T28,T30,T31,T32,T33, T35y T37. Por otro lado, tene-
mos, como en la Légica intuicionista,

T39. —m ——A—-A .... Al0, Al2
T40. — —(Av—A) .... T26, T29

Observacion 1. T30 designa T30 leido de derecha a izquierda; T31
designa T31 leido de izquierda a derecha.

Observacion 2. T23 es A12. T3] se prueba en Rm con AS, A8y T24;
T32 con AS, A8 y A12’. En la prueba de T40, derivese previamente
(A—>(BA—/B))»>— A con T16, T17 y T26. El resto de los teoremas se
prueba como en R.

4. El sistema RMOm: la légica de la relevancia RMO con
negacion minima

1) Lenguaje formal. E1 mismo que R.
ii) Axiomas. Todos los de R salvo A12 que se sustituye por
A12’. (A->B)=>(—B—>—A)
Ademis, anadimos
A13. A—(A—A)
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i) Reglas de derivacion. Modus ponens y Adjuncién como en R.
iv) Teoremas. Como se deduce por la descripcion anterior, RMOm
es el resultado de anadir A13 a Rm. Asi pues, el conjunto de teo-
remas de RMOm es el mismo que el de Rm mas todas las conse-
cuencias de Al3 entre las que se encuentra, p. €j., la Conversa de
la Ley de Contraccion (A—B)—(A—(A—B)) que, por cierto, es
intercambiable con A13 como axioma en este sistema y en RMO.

IX OTRAS LOGICAS DE LA RELEVANCIA. SEMANTICA
1. Semantica para E

1) Estructura modelo. Una Estructura modelo para E es una estruc-
tura del tipo (O, K, R, *) donde O, K, R, *ydl, d2, P1, P2,
P4, PS5, P6 y P7 son como en las estructuras modelo R. La unica
diferencia, por tanto, estriba en que P3 se sustituye por

P3’. Hx(x€O y Raxa)

ii) Modelos. Validez. Un modelo para E es una estructura del tipo
(O, K, R, *, v) donde (O, K, R, v) es una estructura modelo
y v cumple con las cldusulas (i)-(vi) como en los modelos para
R. La definicién de validez es la misma.

iii) Consistencia. Completud. Para probar los Teoremas de Consis-
tencia y Completud seguimos la misma estrategia que en el caso
de R. Dadas las diferencias entre ambos sistemas, para probar
la consistencia de E hay que demostrar que A2’ y Necesitacion
son validos: utilicese P3’ en ambos casos. Para probar la comple-
tud de E sélo hay que demostrar que P3’ se cumple cuando se
define candnicamente (cfr. Lema 4). Pues bien, esto puede hacerse
como sigue. Definase X = {A| (A—>A)—A}. Es, entonces, facil
demostrar que x es una teoria normal tal que R‘axa. Es decir,
Hx(xeO°y Reaxa). Después, x se extiende a una teoria prima
z tal que z€O°¢ y R¢aza siguiendo el procedimiento habitual.

2. Semantica para RMO

i) Estructuras modelo. Una estructura modelo para RMO es una
estructura del tipo (O, K, R, *) donde O, K, R, *ydl,d2, P1-P6
son como en las estructuras modelo para R. Se diferencian de ellas
en que P7 se sustituye por

P7’. Si a<b, entonces b*=<a*
y en que se anaden los postulados
P8. Si Rabc, entonces a<c 6 b=c
P9. Ra*aa*(o Raa*a)
ii) Modelos. Validez. Un modelo para RMO es una estructura del
tipo (O, K, R, *, v) donde (O, K, R, *) es una estructura modelo
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y v cumple con las cldusulas (i)-(vi) como en el caso de los mode-
los para R. La definicion de validez es la misma.
Consistencia. Completud. Para demostrar el Teorema de Con-
sistencia s6lo hace falta demostrar que A13, Contraposicién y
Reductio son validas: utilicense P8’, P7’ y P9, respectivamente.
Para probar que P7’, P8 y P9 se cumplen cuando se interpre-
tan candnicamente (cfr. Lema 4), utilicense, con la ayuda del
Lema 2, Contraposiciéon, A13 y Reductio, respectivamente.
Hecho esto, es evidente que entonces se sigue el Teorema de
Completud.

3. Semantica para Rm

i)

ii)

iii)

Estructuras modelo. Una estructura modelo para Rm es una

estructura del tipo <O, K, R) donde O, K, R, d1, d2, y P1-P5

son como en las estructuras modelo para R.

Modelos. Validez. Un modelo para Rm es una estructura del tipo

(O, K, R, v) donde <O, K, R) es una estructura modelo, v cum-

ple con las condiciones (i)-(v) de los modelos para R, y, final-

mente, la clausula (vi) se sustituye por

(vi’) u(— A, a) =1 syss para cualquier béK y c€eK—S, v(A, b)=0
6 no-Rabc.

(S es un subconjunto cualquiera de K).

La definicién de validez es la misma.

Consistencia. Completud. Dado que la clausula de interpretacion

de la negacion es nueva, para demostrar el Teorema de Consis-

tencia hay que probar que A10, A11 y A12’ son validos: utilizar

P4, P5(b) (cfr. §vi.2) y PS, respectivamente. Para demostrar el

Teorema de Completud hay que probar que la clausula (vi’) se

cumple canonicamente: sigase una estrategia semejante a la

empleada en la prueba de la clausula (v).

4. Semantica para RMOm

i)

ii)

iii)

Estructura modelo. En todo iguales a las definidas por Rm salvo
por el hecho de que se anade el postulado (cfr. §ix.2)

P8. Si Rabc, entonces a<c 6 b=c
Modelos. Validez. Se definen, con la salvedad anotada en el para-
grafo anterior, exactamente igual que los modelos para Rm.
Consistencia. Completud. Es evidente que para demostrar el Teo-
rema de Consistencia sélo hay que probar que A13 es valido.
Como en el caso de RMO, utilicese P8. Para probar el Teorema
de Completud so6lo hay que demostrar que P8 se cumple cuando
se interpreta canonicamente (el resto de la prueba es como la
correspondiente para Rm). Pues bien, al igual que hicimos en el
caso de RMO, utilicense el Lema 2 y A13.
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X. OTROS RESULTADOS. CONCLUSIONES

Mencionamos a continuacion algunos resultados capitales sobre el tema
que, debido a su complejidad, no hemos podido exponer en este arti-
culo. Finalizamos con algunas conclusiones sobre lo expuesto en este
trabajo.

Otros resultados

1. Indecidibilidad de toda légica comprendida entre T,-W y K.R.
A. Urquhart (1984) (cf. también Anderson, Belnap y Dunn, 1992)
ha demostrado que cualquier sistema de légica comprendido entre
T.-W y K.R. es indecidible. El sistema T ,-W es el fragmento posi-
tivo de R sin A3; K.R. es el sistema R mas el axioma (AA— A)—B.
Entre los sistemas encuadrables en el espectro definido por T,-W y
K.R. estan R y E. No estd, sin embargo, RMO.

2. Incompletud de la seméntica cuantificacional de dominio tnico o cons-

tante:
K. Fine (1989) (cf. también Anderson, Belnap y Dunn, 1992) ha pro-
bado que los sistemas estandar de ldgica de la relevancia cuantifica-
cionales son incompletos respecto de la semantica habitual cuando
el dominio en todos los mundos posibles es tnico o constante.

3. Completud de la légica de la relevancia respecto de modelos con domi-
nio variable:
K. Fine (cf. Fine, 1988; también Anderson, Belnap y Dunn, 1992)
ha demostrado la completud de los sistemas estandar de logica de la
relevancia (entre ellos, R y E) respecto de la semdantica operacional
(cf. Fine, 1974) cuantificacional con un dominio de individuos arbi-
trarios o genéricos (cf. también Fine, 1985).

4. Aplicaciones de la ldgica de la relevancia a la informadtica:
Cf. Anderson, Belnap y Dunn, 1992, §vi.3.

5. Resultados sobre logicas de la relevancia de orden superior y sobre
Aritmética relevante:

Cf. Anderson, Belnap y Dunn, 1992, cap. XI.

Conclusiones

1. En contra de lo aventurado por Lewis, la definicién de una ldgica
no paraddjica no es tarea imposible; mas aun, las légicas no paradé-
jicas son lo suficientemente potentes como para que sean dignas de
consideracion.

2. A pesar de que el sistema de la légica de la relevancia R (y los que
han tratado en §vinn y §ix) estan suficientemente definidos desde el
punto de vista formal, es preciso reconocer que su interpretacion intui-
tiva es menos clara como asi hemos comprobado al mostrar la insufi-
ciencia tanto de la caracterizacidn sintictica como de la semdntica.
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3. Precisamente este ultimo hecho explica que la logica de la relevancia
sea esencialmente relativa: hay muchas posibilidades de seleccionar
un subconjunto maximo posible de reglas que no den lugar a parado-
jas (cf. §1v.3). Algunas de estas posibilidades han sido comentadas
en §vil y §Ix.

4. La relatividad de la logica de la relevancia debe causar tan poco (o
tanto) escandalo como la relatividad de la l6gica modal.

5. Laldgica de la relevancia, cuyo origen estd en el articulo de W. Acker-
mann (1956) o quizd, como aqui hemos defendido, en los trabajos
de Lewis (Lewis y Langford, 1932) es, por todo lo expuesto, un campo
abierto. Falta, sobre todo, creemos, una explicacién convincente de
la relacidn entre los sistemas formales (y su semantica) y las nociones
intuitivas que los avalan; falta la definiciéon de un marco general en
el que todos los sistemas actuales sean encuadrables; falta desarrollar
en profundidad las aplicaciones informaticas, los resultados sobre las
correspondientes logicas de orden superior, y, asi, un largo etcétera.
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Jestts Mosterin

I. PROBLEMAS Y ALGORITMOS

La aparicién y desarrollo de los métodos recursivos (o algoritmos) es
quizas una manifestacién de la llamada ley del minimo esfuerzo. En
efecto, tras realizar un cierto esfuerzo intelectual para resolver un pro-
blema de un determinado tipo, y volver a realizar una y otra vez un nuevo
esfuerzo intelectual para resolver otros problemas del mismo tipo, se nos
puede ocurrir la idea de ahorrarnos en el futuro ese tipo de esfuerzos
mediante la invencién de un procedimiento de resolucion automadtica de
todos los problemas del tipo dado. Es cierto que para inventar tal pro-
cedimiento tendriamos que espabilarnos considerablemente y hacer un
esfuerzo intelectual notable, pero a partir de ese momento no volveria-
mos a preocuparnos por los problemas de esa clase: cada vez que se nos
plantease uno, podriamos resolverlo automaticamente, sin pensar ni rea-
lizar esfuerzo intelectual alguno, simplemente siguiendo las instruccio-
nes del procedimiento al pie de la letra. O, alternativamente, podria-
mos programar un computador con las instrucciones de nuestro método
y dejar que fuera el computador el que fuese resolviendo los problemas.
Claro que para ello seria necesario que la aplicacion del método no requi-
riese iniciativa, creatividad, imaginacién alguna, sino que bastase con
la ciega aplicacion de unas instrucciones univocas y «mecanicas». Preci-
samente son ese tipo de métodos los que reciben el nombre de métodos
recursivos o algoritmos.

Cuando hay un algoritmo para solucionar mecdnicamente todos los
problemas de una determinada clase, decimos que esa clase de proble-
mas es algoritmicamente dominable.

La tarea de la teoria de la recursién consiste en: 1) precisar el con-
cepto de algoritmo o método recursivo; 2) determinar qué clases de pro-
blemas son algoritmicamente dominables y cuales no lo son; y 3) ofrecer
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algoritmos (o métodos recursivos) para la resoluciéon automatica de los
problemas de cada clase algoritmicamente dominable de problemas.

Desde un punto de vista légico nos interesan especialmente los pro-
blemas que se plantean a nivel lingtistico (en el sentido mas amplio de
esta expresion), es decir, problemas relacionados con filas de signos o
expresiones sobre un alfabeto determinado. Estos problemas se dividen
en tres grupos principales: problemas de computacién, problemas de deci-
sion y problemas de generacién.

Problemas de computacion son aquéllos en que se nos pide hallar el
valor de una determinada funcién para un (o para varios, si la funcién
es de varios argumentos) determinado argumento. Asi, por ejemplo, los
problemas de «calculo» que se plantean en las escuelas —«calculese la
raiz cuadrada de 820, el triplo de 17, el maximo comun divisor de 10,
12 y 14, el minimo comun multiplo de 4, 7 y 132, el producto de 8 por
375», etc.— son todos problemas de computaciéon. También los proble-
mas de traduccidn son problemas de computacion, suponiendo una fun-
cién que a cada oracion de una lengua aplica univocamente otra oracién
de una segunda lengua, aquélla cuyo significado mds corresponde al de
la primera.

Problemas de decision son aquéllos en que se nos pide que averigtie-
mos si una determinada expresién tiene una cierta propiedad (o perte-
nece a un cierto conjunto) o si varias expresiones estan en una determi-
nada relacion. Asi, por ejemplo, el problema de averiguar si un
determinado nimero natural es primo o no, es un problema de decision.
También son problemas de decision el problema de averiguar (o decicir)
si una determinada férmula de la l6gica sentencial es una tautologia o
no, o si una determinada férmula de la 16gica de primer orden es (l6gica-
mente) valida o no, o si una determinada fila de signos del alfabeto de
nuestra lengua constituye una oracion castellana gramaticalmente correcta
0 no, etc.

Problemas de generacion son aquéllos en los que se nos pide que escri-
bamos o generemos sucesivamente todas las expresiones de un determi-
nado conjunto. Asi, por ejemplo, el problema de generar sucesivamente
todas las férmulas validas de la logica de primer orden (al que responde
la creacion de los calculos deductivos) es un problema de generacion. La
gramadtica generativa de una lengua natural trata —como su nombre
indica— de resolver un problema de generacién: el de generar sucesiva-
mente todas y solas las filas de signos que constituyen oraciones grama-
ticalmente correctas de esa lengua.

II. CONCEPTOS RECURSIVOS
Supongamos en lo sucesivo que hablamos siempre de las expresiones (o
filas de signos) formables con los signos de un determinado alfabeto finito.

En especial, cuando hablemos de numeros naturales nos referiremos a
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las expresiones sobre el alfabeto {1}: I, II, III, IIII, IIIII, etc. Cuando diga-
mos «conjunto» queremos decir «conjunto de »etc.

Una funcién es recursivamente computable si y sélo si hay un algo-
ritmo que para cada uno de sus argumentos x (o cada n de sus argumen-
tos X,...,X,, Si €s n-adica) nos permite obtener en un nimero finito de
pasos su correspondiente valor f(x) (o, si es n-adica, f(x,,...,x,)).

Un conjunto A es recursivamente decidible si y sé6lo si hay un algo-
ritmo que para cada expresiéon x nos permite averiguar en un numero
finito de pasos si x€A o x¢A. (Una relacidn n-adica R es recursivamente
decidible si y so6lo si hay un algoritmo que para cada n expresiones
X,,...,X, nos permite decidir en un numero finito de pasos si
(X,...X,,Y€R 0 no).

Dado un conjunto cualquiera A, llamamos funcién caracteristica de
A al funcién J, tal que:

Ja(x)=0 si x€A
Ja(x)=1 si x¢A.

Igualmente llamamos funcién caracteristica de una relaciéon R a la
funcién Ji tal que:

Jr(X15e.0%,) =0 si {x,,...,x,Y€ER
Jr(Xiyeeasxn) =1 s (xy,...,x, Y€R.

Ahora bien, esta claro que el conjunto A (o la relacién R) es decidi-
ble si y solo si su correspondiente funcidn caracteristica J , (o Jr) es com-
putable. Supongamos que A es decidible. Entonces ], serd computable.
En efecto, dado un argumento cualquiera x, el valor de J, para x sera
0 6 1 seguin que x€A o no, lo que hemos supuesto que es decidible. Supon-
gamos a la inversa que J, es computable. Entonces A sera decidible. En
efecto, dado un x cualquiera bastard computar (JA(x) y ver si el resul-
tado es O (en cuyo caso sabremos que x€A) o 1 (y entonces x¢A). Asi,
pues, vemos que la decibilidad de conjuntos (o relaciones) es reducible
a la computabilidad de funciones.

Un conjunto A es (recursivamente) generable si y sélo si hay un algo-
ritmo para producir sucesivamente todas y solas las expresiones de A.
Este concepto de generabilidad recursiva de un conjunto es también redu-
cible al de computabilidad de una funciéon. Como facilmente se ve, un
conjunto A es (recursivamente) generable si y sélo si hay una funcion
computable cuyo dominio es el conjunto ® de los nimeros naturales y
cuyo contradominio es A. Por eso en vez de hablar de conjuntos genera-
bles se habla a veces de conjuntos recursivamente numerables.

Vemos, pues, que los conceptos de conjunto o relacién decidible y
de conjunto generable son reducibles al de funcién computable. Y ya
hemos dicho que una funcién es computable si hay un algoritmo para
computar el valor de cada uno de sus argumentos. Pero ¢qué es un algo-
ritmo? Un conjunto de instrucciones completamente univocas cuyo segui-
miento y aplicacidn no requiere iniciativa alguna. A primera vista, podria
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pensarse que el concepto de algoritmo estd claro y no requiere mayores
precisiones. Podria pensarse que es facil decidir en cada caso si un con-
junto dado de instrucciones, si un texto determinado que se nos presenta
como algoritmo, es efectivamente un algoritmo o no. Pues bien, no es
ése el caso. La propiedad de ser un algoritmo (o, si se prefiere, el con-
junto de los algoritmos respecto al de los textos) es indecible. Incluso
el concepto —mas simple— de algoritmo de computacion es indecidible,
como a continuacion mostramos.

III. INDECIDIBILIDAD DEL CONCEPTO DE ALGORITMO

Supongamos que los algoritmos —series finitas de instrucciones— estén
formulados en castellano. Un algoritmo tendrd siempre una longitud
determinada (y finita). Supongamos que hemos ordenado los algoritmos
de computacién por su longitud, es decir, por el numero de letras (inclu-
yendo entre éstas los espacios en blanco, las cifras y los signos de pun-
tuacién) que contengan (primero los mas cortos, luego, los que tienen
un signo mds, etc.) y, dentro de la misma longitud, lexicograficamente
(es decir, primero los que empiezan por «a», luego los que empiezan por
«b», etc., como en un diccionario en el que un algoritmo entero se consi-
derase como una sola palabra). Sea A,, A,, A, A,... la sucesién asi
ordenada de todos los algoritmos de computacidn.

Una funcién es computable si y sélo si hay un algoritmo para compu-
tarla (es decir, para computar su valor para cada uno de sus argumentos).
A la funcién computable mediante el algoritmo A, la llamaremos f,.

Esta claro que una funcién cualquiera f es computable si y sélo si
hay algin numero natural n tal que A, computa f, es decir, tal que
f=f,. Toda funciéon computable es una f,.

Ahora definimos la funcion h para todos los numeros naturales n de
la siguiente manera:

h(n)=f,(n)+1.

Si h fuera una funciéon computable, coincidiria con alguna de las f;
para algin numero natural i. Pero, para cualquier i, h discrepa de f; en
el valor que aplica a i. En efecto,

h #f,, pues h(1)=£,(1)+ 1 #£,(1)

=f,(1
h#f,, pues h(2)=£,(2)+ 1 #{,(2)
h #f5, pues h(3) =f£,(3) + 1 #£5(3)

h #f,, pues h(i)=f(i) + 1 #£,(i).

Por tanto, h no es una funcién computable.
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Ahora bien, si el conjunto de los algoritmos de computacién fuese
efectivamente generable, h seria computable. En efecto, para cada nimero
natural n, para computar h(n) bastaria con generar A, A,, A;,... hasta
A, computar f,(n) con ayuda de A, y anadir 1 al resultado. Asi obten-
driamos h(n). Pero ya hemos visto que h no es computable. Por tanto,
el conjunto de los algoritmos de computacién no es generable.

Si la propiedad de ser un algoritmo (o, si se prefiere, si el conjunto
de los algoritmos) fuese decidible respecto al conjunto de los textos,
podriamos generar el conjunto de los algoritmos del siguiente modo:
Empezariamos por generar todos los posibles textos castellanos (con sen-
tido o sin él). Esto lo conseguiriamos generando sucesivamente todas las
combinaciones con repeticidn posibles de n signos del alfabeto castellano
extendido (que abarca letras, cifras, espacios de separacion y signos de
puntuacién); primero, las de un signo, luego, las de dos, las de tres, etc.
Segun fuéramos generando los textos, irfamos decidiendo para cada uno
de ellos si se trata de un algoritmo de computacién o no, e irlamos apun-
tando en lista aparte todos los textos que efectivamente fuesen algorit-
mos de computacién. Asi habriamos obtenido un procedimiento para
generar todos los algoritmos de computacién. Pero esto es imposible, pues
ya hemos visto que el conjunto de los algoritmos de computacién no es
generable. Por tanto, la propiedad de ser un algoritmo (de computacién)
no es decidible respecto al conjunto de los textos. Es decir, no hay (no
puede haber) un algoritmo con cuya ayuda podamos decidir de cada pre-
sunto algoritmo si es realmente un algoritmo o no. Con lo que queda
suficientemente probada la no-trivialidad y la necesidad de dilucidacion
del concepto de algoritmo (de computacidn).

IV. LA PRECISION DE TURING

Se llaman funciones recursivas (o recursivamente computables) aquellas
funciones para cuya computacidon hay un algoritmo. Se han propuesto
diversas dilucidaciones o precisiones de este concepto, pero todas han
resultado equivalentes. El primero que propuso identificar el concepto
intuitivo de algoritmo con un concepto precisado fue A. Church, en 1936
(«An unsolvable problem of elementary number theory»). De entre las
diversas precisiones equivalentes del concepto de algoritmo elegimos aqui
la de A. M. Turing, también de 1936 («On computable numbers with
an application to the Entscheidungsproblem»).

Turing introdujo el concepto de maquina de Turing. No se trata, claro
estd, de ninguna mdquina fisica, real, sino de un esquema abstracto para
representar conjuntos de instrucciones univocas; algo asi como el pro-
grama de un computador. La precisién de Turing consiste en proponer
que consideremos que una funcién es computable si y s6lo si hay una
madquina de Turing para computarla, que un conjunto o relacién es deci-
dible si y sélo si hay una maquina de Turing para decidirla, y que un
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conjunto es generable si y sélo si hay una mdquina de Turing para gene-
rarlo. Puesto que ya vimos que los conceptos de decidibilidad y genera-
bilidad son reducibles al de computabilidad, nos limitaremos aqui a este
ultimo. Y puesto que Godel mostré como los problemas de computa-
cién de funciones sobre expresiones de alfabetos finitos pueden tradu-
cirse a problemas de computacién de funciones numéricas, nos limitare-
mos también a estas ultimas.

Los numeros naturales son aqui identificados con las filas de palo-
tes: I, I1, II1, etc., es decir, con las expresiones sobre el alfabeto {I}. Una
funcién numérica f aplica a cada nimero natural n (que aqui representa-
remos mediante n+ 1 palotes, a fin de que el palote sélo represente al
0) otro nimero natural f(n) (que aqui representaremos mediante f(n) + 1
palotes). Un algoritmo de computacién para esa funcién nos indicara
cémo hemos de manipular la expresion de partida (el argumento) para
llegar, en un nimero finito de pasos y siguiendo al pie de la letra las ins-
trucciones, hasta la expresion de llegada (el valor). Las instrucciones son
tan precisas que hasta una maquina podria seguirlas. Pues bien, imagi-
némonos una maquina que trabaja una cinta compuesta de cuadros. En
cada cuadro sélo puede haber o un palote, I, 0o nada, *. En un momento
dado la maquina ve un solo cuadro de la cinta (cuadro de trabajo) y se
encuentra en un estado determinado. El estado de la mdquina y la ins-
cripcion del cuadro de trabajo determinan univocamente el siguiente paso
de la maquina, que consiste necesariamente en una de estas cinco cosas:
marcar un palote en el cuadro de trabajo (I), marcar el signo vacio (es
decir, borrar) en el cuadro de trabajo (*), pasar al cuadro de la derecha
(r), pasar al cuadro de la izquierda (1) o pararse (S). El programa de esa
maquina consistird en la indicacién de qué es lo que hard la maquina
en cada uno de sus estados, tanto si ve I como si ve * en el cuadro de
trabajo, y a qué estado pasara a continuaciéon. Y, como hemos dicho
antes, la maquina de Turing no es nada fisico, sino que se identifica con
su propio programa.

He aqui la definicién precisa:

Una maquina de Turing M (sobre el alfabeto {1}) es una tabla o matriz
de 4 columnas y 2m filas de la siguiente forma:

NN~ =
~
b3
P24

ml

-~ =
3
00,

m2
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donde para cada i, j(1<i=m, j=1 0 j=2):P;e{*,[,1,1,S}
donde para cada i, j(1<i=m, j=1 0 j=2):C,€{1, 2,..., m}

Fijémonos en una fila cualquiera de la tabla. El primer signo indica
un estado en que se puede encontrar la maquina. El segundo, una ins-
cripcion posible del cuadro de trabajo. El tercero, el paso que debera
dar la maquina cuando, encontrdndose en dicho estado, vea tal inscrip-
cién en el cuadro de trabajo. El cuarto, el estado en el que se encontrara
la maquina después de haber dado ese paso. Los nimeros, 1, 2,... hasta
m corresponden a los distintos estados «internos» de la maquina (recuér-
dese que todo esto es una metafora). El 1, al estado inicial.

A continuacion presentamos una serie de maquinas de Turing que
realizan determinadas tareas. En primer lugar, las mdquinas elementa-
les: I (que escribe un palote y se para), * (que borra y se para), r (que
da un paso a la derecha —es decir, el cuadro inmediato a la derecha se
convierte en nuevo cuadro de trabajo— y se para) y 1 (que da un paso
a la izquierda y se para). He aqui sus tablas:

I I I I

NN =
[\SI\SJ Sl )
NN ==
Lnunm=
[\ST NS N \S N\
NN ==
WLV N
[\ST NS I NS 8)

I I

NN = =
W U et et
NS NS SN S

&)
I I S

Veamos ahora la mdquina R (que va hasta el primer cuadro vacio
a la derecha de una expresién o fila de palotes dada, y alli se para) y
la maquina L (que hace lo propio, pero hacia la izquierda). Represen-
tando por W una expresién (fila de palotes) cualquiera, por * un cuadro
vacio y por ~ un cuadro cualquiera, poniendo encima de la raya la situa-
cién de partida de la cinta y debajo, la de llegada, y sefialando mediante
una flechita inferior el cuadro de trabajo, podemos describir la accién
de Ry L asi:

TW*...

R .
e~ W7F...
LWL

L. —————
AW~

Una méquina de Turing puede representarse mediante su tabla o
mediante su diagrama (que indica cémo puede componerse a partir de
madquinas m4és sencillas). He aqui, por ejemplo, tanto la tabla como el
diagrama de R y L:
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1 * r 2
R 112 I
2 S 2 | {r)
2 1 r 2
1 1 2
1 1 1 2 |
L o
2 %+ S 2 6>
2 1 1 2

En lo sucesivo, y siguiendo a Hermes, describiremos las maquinas
de Turing sélo mediante diagramas, que resultan mucho mads claros e
intuitivos que las tablas cuando se trata de maquinas complicadas. Las
maquinas que vamos a presentar son K (mdquina de copiar la expresién
anterior), R (maquina de ir a la derecha de una sucesion de palabras;
se para en el primer cuadro vacio del primer par de cuadros vacios segui-
dos a la derecha del cuadro inicial), K, (maquina de copiar la n-ava
expresion, por la izquierda; por tanto K, =K), T (maquina de trasladar
una expresion un cuadro a la izquierda), C (mdquina de correr una pala-
bra hasta el lugar que ahora ocupa otra palabra a su izquierda) y A
(maquina de acabar, borrando los resultados intermedios). He aqui las
descripciones esquematicas de su accién y sus diagramas correspondien-
tes (obsérvese que algunos signos de maquina llevan un exponente; éste
indica el nimero de veces seguidas que ha de funcionar la mdquina):

K. et WE L /]'R

*WWE ... L s RIIL I

. }’Wl;}wz::-.”::‘wn::- B3
=W W, WG (R r—*,
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1y % I
K - SWLEWL LW L Lrr——* R+ L+ [=
" W W LW "W, §
* Rn
‘f:’::-w::-
T:~\X/#“‘ rIRI1*
c TWSAWEL [[. . *‘T]

WL \_‘ -

L[.lLchJ
["'—-.TI.]T

Con esto tenemos aqui bastante. Designemos la fila de n + 1 palotes
que representa el nimero natural n mediante «n». Ahora nos encontra-
mos en posicion de dar la definicién precisada de computabilidad recursiva
en el sentido de Turing (o Turing-computabilidad) de una funcién numérica:

La funcién numérica f es Turing-computable si y s6lo si hay una
madquina de Turing M que cumple la siguiente condicion: para cualquier
numero natural n, si escribimos n en la cinta de tal manera que todos
los cuadros a su derecha estén vacios y elegimos como primer cuadro
de trabajo el primer cuadro vacio a la derecha de n, M se pone a funcio-
nar y, tras un numero finito de pasos (en los que nunca va mas hacia
la izquierda que el primer cuadro vacio a la izquierda de n), se para en
el primer cuadro vacio a la derecha de f(n), estando f(n) separada de n
por un cuadro vacio y encontrandose el resto derecho de la cinta vacio.
(Lo mismo, mutatis mutandis, en el caso de varios argumentos). Es decir:

.|t
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La mayoria de las funciones numéricas familiares (adiciéon, multipli-
cacion, exponenciacién, factorial, maximo, minimo, etc.) pertenecen a
una clase especialmente simple y rica a la vez de funciones computables:
la clase de las funciones recursivas primitivas.

Las funciones recursivas primitivas son las funciones numéricas obte-
nibles a partir de las funciones recursivas primitivas iniciales (la funcién
constante 0-adica C3=0, la funcién del siguiente, S(x)=x'=x+1, y
para cada dos numeros naturales n(n>1) e i (1 <i<n), las funciones n-
adicas de identificacién del i-avo miembro, I} (x,,...,x,) = x;) mediante
un numero finito de aplicaciones de los procesos de definicidon por subs-
titucién y de definicién por induccion.

Sea g una funcién r-ddica (r>1) y sean h,...h, funciones n-adicas
(n>0). Decimos que la funcién n-adica f esta definida por substitucion
con ayuda de g, h,,...,h, si y sélo si para cualesquiera nimeros natura-
les x,...,X, ocurre que:

f(X1yeesXn) = 8h1(Xp5eeyX0)se e hi(Xyen X))

Sea g una funcién n-4dica (n>0) y sea h una funcién (n + 2)-4dica.
Decimos que la funcién (n + 1)-ddica f estd definida por induccién con
ayuda de g y h si y sélo si para cualesquiera nimeros naturales x,,...,X,,
y ocurre que:

f(x15000,%,0,0) = 8(X15..,X,)
£(X 1505 X,y ) = (X sy X0, V(X 55X 0, Y))-

Hemos dicho que todas las funciones recursivas primitivas son com-
putables (aunque no a la inversa). Si la precision de Turing es adecuada,
tendremos que poder mostrar que efectivamente todas esas funciones son
Turing-computables. Es lo que hacemos a continuacién, procediendo heu-
risticamente, para facilitar la comprensién. El siguiente apartado esta,
pues, dedicado a probar el teorema de que todas las funciones recursivas
primitivas son Turing-computables.

Turing-computabilidad de las funciones recursivas primitivas

Las funciones recursivas primitivas son las funciones numéricas obteni-
bles a partir de las funciones recursivas primitivas iniciales mediante un
numero finito de aplicaciones de los procesos de definicién por substitu-
cion y de definicién por induccion. Por tanto, para probar que todas las
funciones recursivas primitivas son Turing- computables hemos de pro-
bar que: 1. Las funciones recursivas primitivas iniciales son Turing-com-
putables. 2. El proceso de definicién por substitucion lleva de funciones
Turing-computables a funciones Turing-computables. 3. El proceso de
definicién por induccién conduce de funciones Turing-computables a fun-
ciones Turing-computables.
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Lema 1: Las funciones recursivas primitivas iniciales
son Turing-computables

Las funciones recursivas primitivas iniciales son la funcién constante
Co=0, la funcién del siguiente, S(x)=x’, y para cada dos nimeros natu-
rales n(n>1) e i (1<i<n), la funcién de identificacién del i-avo miem-
bro de la sucesién, I7(x,,...,x,)=x;. Estas funciones son Turing-
computables por las siguientes maquinas:

Funcién mdquina para computarla
0 : rlr
S(x)=x’ : KIr

I (x15..00X,) = X Kocii
Lema 2: El proceso de definicion por substitucién lleva
de funciones Turing-computables a funciones

Turing-computables

Empecemos por considerar un ejemplo. Sea g una funcién 3-adica y sean
h,, h, y h; funciones 2-adicas. Las funciones g, h,, h, y h; sean Turing-
calculables por las maquinas M,, M, M,, y M, ,, respectivamente. La
funcion 2-4dica f esté definida por substitucion con ayuda de g, h,, h,
y h; del siguiente modo:

f(x,,x,) = g(hl(xl,xz), hy(x,,%,), hi(x,,x,))

Disefiemos una mdquina de Turing para computar esta funcién f. Al
comenzar, la situacién de la cinta sera

1) *"%X,*%,}

es decir, al principio estdn los dos argumentos y el resto de la cinta est4
vacio. Primeramente construiremos un «puente» con un palote y copia-
remos los argumentos

2) RN TR

A continuacién borraremos el palote intermedio (creando asi un inter-
valo de tres cuadros vacios que sefialara a la mdquina de acabar, A, dénde
habra de pararse, cuando hayamos obtenido el resultado final), volviendo
detras de los argumentos copiados

3) XXX X, T

Ahora computamos el valor de h, para x; y x,, h,(x,,x5):

4) ;;.il::-iz;;- ;;.;:.il

Volvemos a copiar los argumentos y computamos h,(x,,x,):

5) KRR ARG, X0 KK, X0
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De nuevo copiamos los argumentos y computamos h;(x,,x,):

6) *x,”

Ahora reunimos los valores h,(x;, X,), h,(x,, X,) y hs(x,, x,), a fin
de poder computar el valor de la funcién g para ellos, tomados como
argumentos:

7) ¢ MEE SEAEGE] F YR %) |
K. 5 (x,. 2 7h(x,, x2)*hy{x,, x,)*hy(x,, x5)**
Con esto estamos en posicion de computar g(h,(x,, x,), h,(x,, x,),
hy(x,, x,)), es decir, de f(x,, x,):

8) ¥ *‘xl"'"‘ X "h(x,.x} *X 5 h(x..x) X, 4%
hi(x,, x,)%h,(x,, x;)*h,(3 'Ti) *hilx,, x,)* f(X.

Ahora s6lo nos queda acabar, borrando los resultados intermedios
y llevando el resultado final, f(x,, x,), detrds de los argumentos.

9)

¢Cémo disefiar una mdquina para pasar de 1) a 7)? Claramente se
ve que

el paso de 1) a 2) lo realiza rlr K2

el paso de 2) a 3) lo realiza L 1"R
el paso de 3) a 4) lo realiza M,,

el paso de 4) a 5) lo realiza K3 M,,
el paso de 5) a 6) lo realiza K3 M,,
el paso de 6) a 7) lo realiza K, K, K,
el paso de 7) a 8) lo realiza M,

el paso de 8) a 9) lo realiza A

Uniendo estas maquinas parciales obtenemos una maquina M; para
computar la funcién f:

rlrK2L2 1 ®RM,, KiM,, K2 M,, K, K; K, M, A.

hy

Ahora bien, el lema 2 no se limita al caso considerado en nuestro
ejemplo en que f era una funcion 2-4dica definida por substitucion con
ayuda de 3 funciones 2-adicas, sino que abarca todos los casos de defini-
cioén por substitucién.

Sea g una funcién r-adica (r>1) y sean h,,...,h, funciones n-4di-
cas (n>0). Las funciones g, h,,...;h, sean Turing-computables por
las maquinas M, M, ,...,M, respectivamente. La funcién n-adica f
esté definida por substitucién con ayuda de g, hy,...,h, del siguiente
modo:

f(xl!""xn) :g(hl(xla‘-‘axn)s“-shr(xla"'axn))
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Hemos de probar ahora que f es Turing-computable. Y, en efecto,
la siguiente maquina M, sirve para computar f:

I'Ir K. L"1* (RMhl K|’\‘+] Mhz .r\‘+1 Mhr Kr+(r—1)n Kr+(r—2)n

n+ 1

LK, M, A

como facilmente se comprueba por consideraciones parecidas a las ante-
riormente expuestas. Obsérvese que, parar=3 y n=2, la maquina aqui
indicada es idéntica a la obtenida en el ejemplo antes considerado.

Lema 3: El proceso de definicion por induccion conduce
de funciones Turing-computables a funciones
Turing-computables

Empecemos también aqui por considerar un ejemplo. Sea g una funcion
1-adica y sea h una funcién 3-adica. Las funciones g y h sean Turing-
computables por las mdquinas M, y M,, respectivamente. La funcion
2-adica f esté definida por induccién con ayuda de g y h del siguiente
modo:

f(x, 0)=g(x)
f(x,y’) = h(x,y,f(x,y))
Disenemos una mdquina de Turing para computar esta funcion f.

Como siempre, al comenzar, los dos argumentos estdran al principio de
la cinta; el resto estard vacio:

]) :;(“YT r
Empecemos por construir un «puente» con un palote y COpiCmOS los
argumentos €n orden inverso:

2) )7(}}|§§T

Borremos ahora el palote intermedio (creando asi un intervalo de tres
cuadros vacios que senalard a la miaquina de acabar, A, dénde habra de
pararse, cuando hayamos obtenido el resultado final) y volvamos detras
de los argumentos copiados:

3) EXFyEEryEXTLL
¢Cémo proceder? Iremos computando sucesivamente f(x,0), f(x,1),
f(x,2), f(x,3), etc. hasta llegar a f(x,y), que serd nuestro resultado final.

Comencemos con f(x,0), que, como sabemos, es igual a g(x). Bastar4,
pues, con computar g(x):

4)  xryErAprG 005 L

Siy =0, ya hemos obtenido el resultado final. Si y #0, deberemos pro-
seguir. ¢Como saber si y =0 o no? Copiando y y quitdndole un palote.
Si no queda ninguno, es que y era 0 (representado por un solo palote).
Si aun quedan palotes, es que y era distinto de 0.
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Supongamos que y #0. Ahora debemos computar f(x,1) = h(x,0,{(x,0)).
Para ello copiaremos x, escribiremos 0 y copiaremos f(x,0), computando
a continuacion el valor de la funcién h, aplicada a x, 0 y f(x,0), con lo
que tendremos f(x,1):

5) XAy 01y = T 04 0) R, 1%

Si y=1, ya hemos obtenido el resultado final. Si y>1, deberemos
proseguir. ;Como saber si y=1 o no? Copiando y —1 (que es la quinta
palabra, contando de derecha a izquierda) y quitdndole un palote.

Si no queda ninguno, es que y—1 era 0 (representado por un solo
palote) y, por tanto, que y era 1. Si ain quedan palotes, es que y era
mayor que 1.

Supongamos que y#1. Ahora debemos computar f(x,2)=
h(x,1,f(x,1)). Para ello copiaremos X, escribiremos T (para lo que bas-
tara copiar 0, que en ese momento serd la quinta palabra, contando de
derecha a izquierda, y afiadirle un palote) y copiaremos i{x,1), compu-
tando a continuacion el valor de la funcién h, aplicada a x, 1 y f(x,1),
con lo que tendremos f(x,2):

6) *x* ? §inmm§n0m)nmnyﬂninT

Si y=2, ya hemos obtenido el resultado final. Si y>2, deberemos
proseguir. ¢Como saber si y =2 o no? Copiando y — 2 (que es la quinta
palabra, contando de derecha a izquierda) y quitdandole un palote. Si no
queda ninguno, es que y — 2 era 0 (representado por un solo palote) y,
por tanto, que y era 2. Si aun quedan palotes, es que y era mayor que 2.

Supongamos que y#2. Ahora debemos computar f(x,3)= h(x,2,f(x,2)).
Para ello copiaremos x, escribiremos 2 (para lo que bastara copiar
T, que en ese momento serd la quinta palabra, contando de derecha a
izquierda, y afiadirle un palote) y copiaremos f(x,2), computando a con-
tinuacion el valor de la funcién h, aplicada a x, 2 y f(x,2), con lo que
tendremos f(x,3):

7) ::-i —.? EE ::-?::—i ::-m "'?TI’:'F‘U ::-m m x—yjz’:-ix-T::-

Si y =3, ya hemos obtenido el resultado final. Si y>3, deberemos
proseguir. Estd claro que seguiremos el mismo proceso para computar
f(x,4), f(x,5),... hasta llegar a f(x,y). Entonces acabaremos, borrando
las anotaciones y resultados intermedios y llevando el resultado final hasta
el intervalo de tres cuadros vacios construidos al principio, de modo que
finalmente obtengamos

(fin) *x*y*f(x, y)§**

¢Cbémo disefiar una maquina de Turing para pasar de (1) a (fin)? Cla-
ramente se ve que
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el paso de (1) a (2) lo realiza rlr KK,
el paso de (2) a (3) lo realiza L*1*R
el paso de (3) a (4) lo realiza M,
el paso de (4) a (5) (o a (fin)) I
lo realiza K;1*1 —r K, r|r K, M,,
L* A
. A
el paso de 5) a 6) (o0 a (fin)) / 0
lo realiza K,1*17 2. r KirK, M,
el paso de 6) a 7) (o a (fin)) ’ﬁ"A
lo realiza Ka*174—",r KZrK, M,

A
el paso de (n) a(n+1) (o a %
. . " 2
(fin)) lo realiza Ks1#14 . r KZr K, M,
Vemos que, a partir del paso de 5) a 6), la misma maquina parcial
realiza todos los pasos a dar. Por tanto, uniendo las primeras maquinas

parciales y empalmando la cuarta con la quinta (que es la que se repite
hasta el final), obtenemos una maquina M, para computar la funcién f:

rlr K, K, L*1 * R M, K;1* 1_1.1-]( r
I——.

/'1l

K, 1712 4rK2 r K, M,

De todos modos, el Lema 3 no se limita al caso considerado en nues-
tro ejemplo en que f era una funcién 2-4dica definida por induccién con
ayuda de una funcioén l-4ddica y otra 3-4dica, sino que abarca todos los
casos de definicién por induccién.

Sea g una funcién n-ddica (n>0) y sea h una funciéon (n + 2)-adica.
Las funciones g y h sean Turing-computables por las maquinas M, y
M,, respectivamente. La funcién (n + 1)-adica f est4 definida por induc-
cién con ayuda de g y h del siguiente modo:

f(Xl,...,X,,, 0) = g(xl5'--,xn)

f(X15eesXn, V') =h(X5ee X0, ¥, f(Xiyee X0, 1))

Hemos de probar ahora que f es Turing-computable. Y, en efecto,
la siguiente maquina M; sirve para computar f:

I
rlr K, Ko ;L' 1 * RM,K,,, 1% l5—r K, ,r

VIA |

Kool 1—r K7 | rK,.; M~
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como facilmente se comprueba por consideraciones parecidas a las ante-
riormente expuestas. Obsérvese que, para n=1, la maquina aqui indi-
cada es idéntica a la obtenida en el ejemplo que acabamos de considerar.
De los Lemas 1, 2 y 3 y de la definicién de funcion recursiva primi-
tiva claramente se sigue lo que queriamos probar, a saber:
Teorema: Todas las funciones primitivas recursivas son Turing-
computables.

V. FUNCIONES RECURSIVAS

Aunque todas las funciones recursivas primitivas son computables, no
todas las funciones computables son recursivas primitivas. Por ejemplo,
la siguiente funcion f, definida por Ackermann en 1928, es computable
en sentido intuitivo (y Turing-computable), pero no recursiva primitiva
(recuérdese que s es la funcién del sucesor):

f(0, y) = s(y)

f(s(x), 0) = f(x, 1)

f(s(x). s(y)) = fix, f(s(x), y))

Una nocién més amplia es la de funcién recursiva, cuya definicion
requiere la previa introduccién del operador min (el minimo... tal que).
Hablando de numeros naturales, min x ¢(x) es el minimo numero x que
satisface la condicidn ¢. Si hay algiin nimero que satisface ¢, y para cada
numero natural x es decidible si ¢(x) 0 no, entonces min x ¢(x) es com-
putable. Decimos que una funcion n-aria h es definible por minimaliza-
cién a partir de una funcién n + 1-aria f en caso normal si y s6lo si para
cada x,...,x, existe al menos un w tal que f(x,,...,x,, w) =0, y ocurre
que para cada X,,...,X,:

h(x,,...,x,)=min w[f(x,,...,x,, w)=0]

Una funcién recursiva es una funcién definible a partir de las funcio-
nes recursivas primitivas iniciales por un numero finito de definiciones
por sustitucién, por induccién y por minimalizaciéon en caso normal.

La funcion de Ackermann es recursiva. De hecho toda funcion com-
putable conocida es recursiva. Y se puede probar el siguiente teorema:
Una funcién es recursiva si y solo si es Turing-computable.

El hecho de que las nociones de recursividad y computabilidad de
Turing coincidan (aun partiendo de ideas iniciales bien distintas), de que
todas las otras precisiones de la nociéon de computabilidad propuestas
por otros autores (como Post, Markov y Church) hayan resultado tam-
bién equivalentes, y de que toda funcién conocida y computable en sen-
tido intuitivo sea también Turing-computable, ha llevado a la conclu-
sion (conocida como tesis de Church) de que el concepto intuitivo de
computabilidad queda perfectamente precisado por la nocién de com-
putabilidad de Turing (o de recursividad).
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VI. ALGUNOS RESULTADOS SOBRE LA LOGICA

La teoria de la computabilidad sirve para establecer resultados sobre deci-
dibilidad y generabilidad (o numerabilidad recursiva) de diversas partes
de la légica. Aqui nos limitaremos a mencionar algunos, sin prueba ni
comentario:

La logica conectiva o proposicional es decidible (es decir, el conjunto
de sus férmulas validas es decidible respecto al conjunto de todas sus fér-
mulas).

El fragmento de la ldgica de primer orden que sélo usa predicados
monarios (y que incluye la silogistica) es decidible.

La légica de primer orden es indecidible.

La logica de segundo orden es indecidible.

Cualquier logica decidible (como la conectiva o la de predicados
monarios de primer orden) es recursivamente numerable.

La légica de primer orden (aunque no decidible) es recursivamente
numerable. Por eso hay cdlculos deductivos que generan todas sus for-
mulas validas.

Lalégica de segundo orden no es recursivamente numerable. Por eso
no puede haber célculos deductivos adecuados para ella.

Un conjunto de férmulas de la légica de primer orden constituye una
clase de reduccidn si y sélo si la decidibilidad de ese conjunto implicaria
la de la l6gica de primer orden. Por tanto, todas las clases de reduccion
son indecidibles. Por ejemplo, Kalmar prob6 en 1936 que el conjunto
de todas las férmulas validas con un solo predicado binario es una clase
de reduccién y, por tanto, indecidible. Desde entonces el problema de
la decisién de la logica de primer orden ha sido exhaustivamente anali-
zado a base de tipificar los subconjuntos de féormulas, clasificados por
su prefijo en forma normal, y descubrir cudles son decidibles y cudles
son clases de reduccion, indecidibles.

VII. ALGUNOS RESULTADOS SOBRE TEORIAS

Una teoria es un conjunto de férmulas clausurado respecto a la relacién
de consecuencia ldgica, es decir, un conjunto de férmulas que incluye
todas sus consecuencias.

Una teoria se llama axiomatizable si y sélo si es recursivamente nume-
rable.

Una teoria se llama completa si y sélo si da respuesta a todas las pre-
guntas que se pueden formular en su lenguaje, es decir, si para cada fér-
mula ¢ de su lenguaje, p€T o — p€T.

Una teoria se llama consistente si y sélo si no incluye todas las fér-
mulas de su lenguaje.

Claramente, la axiomatizabilidad, la completud y la consistencia son
propiedades deseables de una teoria. En 1931 probd Goédel su famoso
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teorema de incompletud, que (en una version generalizada) puede for-
mularse asi:

Una teoria matematica interesante (es decir, una en la que al menos
sean definibles las funciones recursivas primitivas) no puede ser a la vez
axiomatizable, completa y consistente. Puede ser completa y consistente,
pero no axiomatizable (como la aritmética intuitiva); puede ser axioma-
tizable y completa, pero no consistente (como cualquier aritmética con-
tradictoria); y, finalmente, puede ser axiomatizable y consistente, pero
no completa (como la aritmética de Peano de primer orden). Este teo-
rema nos dice que ciertos ideales son inalcanzables conjuntamente.

También se han obtenido numerosos resultados de decidibilidad e
indecidibilidad acerca de teorias (respecto a sus lenguajes). He aqui algu-
nos ejemplos, relativos a diversas teorias de primer orden:

La teoria pura de la igualdad es decidible.

La teoria de las algebras de Boole es decidible.

La teoria de grupos abelianos es decidible.

La teoria de grupos abelianos ordenados es decidible.

La geometria hiperbolica es decidible.

La teoria de grupos es indecidible.

La teoria de reticulos es indecidible.

La teoria de reticulos distributivos es indecidible.

La teoria de cuerpos ordenados es indecidible.

La teoria de conjuntos (de Zermelo-Fraenkel) es indecidible.
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Raul Orayen

En las dltimas décadas la investigacion sobre légica modal ha aumen-
tado y se ha diversificado de tal manera, que se ha vuelto dificil dar un
panorama de esta disciplina (para tener una idea de como cambi¢ la situa-
cién en solo dieciséis afios, compdrense los prefacios de Hughes y Cress-
well, 1968 y Hughes y Cresswell, 1984; véase también Bull y Segerberg,
1984, 2). En este articulo evitaré dos politicas extremas, la de dar un
panorama de todo sin detalles, y la de estudiar unos pocos temas de
manera minuciosa. Intentaré dar una visioén general historico-sistematica
de los aspectos mas importantes de la l6gica modal, pero agregaré a la
descripcidn panordmica un analisis algo m4s detallado de algunos siste-
mas y resultados formales de especial interés, o representativos de alguna
linea de investigacion mencionada en el texto. El objetivo del trabajo es
doble: por un lado, dar un perfil de la l6gica modal; por otro, suminis-
trar una introduccién a este campo a quienes deseen adquirir un conoci-
miento m4s profundo del mismo. S6lo presupondré conocimientos de la
l6gica elemental como los que proporciona Quesada (1991).

El plan del capitulo es el siguiente. La seccidn I se ocupa de prelimi-
nares conceptuales y en la II se hace un bosquejo del desarrollo histérico
de la l6gica modal. Siguen tres secciones sobre logica modal proposicio-
nal (aunque de caracter sistematico, corresponden a tres etapas histéri-
cas mencionadas antes). En un apéndice se mencionan lineas de investi-
gacién que no son tratadas en el cuerpo principal del articulo. La
bibliografia ha sido cuidadosamente seleccionada para facilitar investi-
gaciones o estudios ulteriores. Se citan especialmente dos tipos de obras:
trabajos clasicos en los cuales se expusieron por primera vez ideas o resul-
tados importantes conectados con la légica modal, y literatura exposi-
tiva valiosa por la presentacion clara y sistematica de desarrollos que estan
dispersos en articulos técnicos. Todas las obras de la bibliografia se han
mencionado en el texto y los comentarios que hago sobre ellas ayudaran
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al lector interesado en alguno de los temas tratados a elaborar su propio
plan de lecturas adicionales.

I. PRELIMINARES CONCEPTUALES

En la l6gica medieval se pensaba que habia diferentes modos en que una
proposicion podia ser verdadera o falsa. Considérense las proposiciones
expresadas por las oraciones ‘SOcrates conversaba mucho de filosofia’ y
‘Sécrates se interesaba por la filosofia o no es cierto que Sdcrates se inte-
resaba por la filosofia’. Ambas proposiciones son verdaderas, pero se pen-
saba que la primera lo es de un modo contingente y la segunda de un
modo necesario. Similarmente, una proposicién falsa puede serlo de diver-
sos modos. La proposicidén expresada por ‘Socrates murié por ingerir
estricnina’ es falsa pero posible, en tanto que la expresada por 2+2=15’
es falsa y ademas imposible (si los signos tienen sus significados usuales).
En la terminologia logica actual (que en este punto conserva reminiscen-
cias medievales) se dice que la necesidad, la posibilidad, la contingencia
y la imposibilidad son modalidades. La rama de la ldgica que se ocupa
de ellas es la l6gica modal. En el simbolismo 16gico, las modalidades suelen
representarse mediante operadores proposicionales. Veremos ahora los
operadores mds usados en logica modal.

Introduciremos cuatro operadores proposicionales monadicos [J, <,
C, I, que corresponden a las modalidades antes mencionadas, se llaman
por eso ‘operadores modales’, y pueden combinarse con las variables pro-
posicionales p, g, r, eventualmente usadas con subindices'. Tales com-
binaciones se leerdn asi:

Up:p es necesaria,

Op:p es posible,

Cp:p es contingente,

Ip:p es imposible.

En esta interpretacion intuitiva del simbolismo introducido, los valores
de la variable p son proposiciones y [Jp es verdadero si y sélo si p es
una proposicion necesaria (similarmente para los otros operadores). Antes
de comenzar con temas mds formales, haremos algunas reflexiones sobre
el significado de los operadores introducidos y mencionaremos algunas
discusiones filosoficas a que han dado lugar.

Si se entiende el operador [J de acuerdo con la explicacion del parrafo
anterior, su significado serd claro sélo si resulta clara la nociéon de pro-
posicién necesaria. Durante este siglo, los fil6sofos analiticos trataron de
aclarar esa nocion (y en general, las nociones modales bésicas). Surgie-
ron entonces dos complicaciones en la filosofia de la l6gica modal. En
primer lugar, resulté dificil explicar el significado de ‘proposicion nece-

1. Lossignosy expresiones logicas seran usados a menudo como nombres de si mismos, aunque
cuando parezca conveniente usaré también comillas simples del modo usual en légica.
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saria’ y algunos autores adoptaron una suerte de escepticismo intensional-
modal que niega la existencia de proposiciones y la significatividad de
la nocidén de necesidad. En segundo lugar, los logicos y filésofos que si
aceptaron la nocion de necesidad no dieron una sola explicacion de ella:
durante este siglo ha habido al menos dos posiciones muy diferentes acerca
de como debia interpretarse ese concepto en el contexto teorico de la ldgica
modal (las dos interpretaciones corresponden aproximadamente a la dis-
tincion tradicional entre modalidades de dicto y de re). Antes de ver estas
dos cuestiones filosoficas, sera conveniente hacer notar algunas relacio-
nes entre los operadores modales que simplifican un poco los problemas
conceptuales conectados con ellos.

Hemos dicho que no ha resultado fécil aclarar el significado de las
nociones modales. Pero un hecho muy importante es que resultan mucho
mas claras las relaciones entre ellas. Tomando como primitiva una cual-
quiera de las modalidades antes mencionadas, se pueden definir todas
las demas en términos de la escogida. Con respecto a los operadores moda-
les antes introducidos puede decirse entonces lo siguiente: si se toma uno
cualquiera de los cuatro, los restantes se pueden definir en términos del
operador elegido y los conectivos veritativo-funcionales de la 1égica pro-
posicional. Es habitual tomar como base el operador de necesidad. En
ese caso, los otros operadores pueden definirse asi:

(D1) Op: der.~ ~p

(D2) Ip = ger. L ~ p

(D3) Cp = yer. ~OpA~O~p

(Puede resultar un ejercicio divertido para el lector ir eligiendo como
béasico cada uno de los otros operadores y en cada caso definir los res-
tantes en términos del elegido. Es interesante la definicién de [J usando
C).

Los operadores que hemos introducido hasta ahora son mondadicos;
hay también operadores modales binarios, de los que nos ocuparemos
en futuras secciones. El hecho de que los operadores modales introduci-
dos sean interdefinibles (y de que haya mucho consenso sobre la adecua-
cién de las definiciones antes formuladas) simplifica enormemente la dis-
cusién de las dos «complicaciones» filoséficas mencionadas unos pérrafos
mds atrds (ademds del interés intrinseco de tal interdefinibilidad). No hay
que discutir con el escéptico «intensional-modal» operador por opera-
dor: si se logra convencerlo de que uno de los operadores monadicos tiene
una significatividad clara, aceptard que también los demas la tienen, por-
que se pueden introducir mediante definiciones sencillas a partir del ope-
rador aceptado. Similarmente, si se discute cual de dos concepciones de
la necesidad es adecuada para interpretar cierta teoria modal, ya no sera
necesario discutir lo mismo respecto de las otras modalidades monadi-
cas: debido a las intimas relaciones que se dan entre ellas, diferentes con-
cepciones de la necesidad serdn paralelas a distintas concepciones de la
contingencia, etc., y la eleccién de una concepcién de una de las modali-
dades llevara naturalmente a elegir la concepcion afin de otra de ellas.
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Debido a estas razones, al sintetizar en lo que sigue algunas discusiones
filosoficas, nos ocuparemos de una sola modalidad monadica (o de un
solo operador monadico). Tomaremos como basico el concepto de nece-
sidad —o el operador [J. Como hemos dicho, hay fil6sofos que han recha-
zado esta nocién y otros han dado explicaciones divergentes de ella.
Ampliaremos esta informacion.

En la interpretacién de la légica modal, ha habido dos concepciones
influyentes de la necesidad. La primera de ellas fue desarrollada por Car-
nap (1947) y refinada en Carnap (1956a). El nucleo de este enfoque es
la idea de que una proposicion es necesaria si cualquier oracién que la
exprese es analitica, y una oracion es analitica si las reglas semanticas
bastan para establecer su verdad. Si el operador de necesidad (‘N’, en
la notacion de Carnap) se prefija a una oracion, el resultado es verda-
dero si y sélo si la oracion es analitica. Esta explicacion encapsula una
concepcion de la necesidad que tuvo enorme influencia. Al formularla,
Carnap (1956a, 174) utiliza la expresién ‘L-verdadera’ en lugar de ‘ana-
litica’; pero en su libro, ‘L-verdadera’ se toma en un sentido amplio: se
aplica a lo que hoy llamamos ‘l6gicamente verdadero’, pero también a
oraciones como ‘ningun soltero es casado’. En otras palabras, ‘L-
verdadera’ se usa como ‘analitica’ (incluyendo lo l6gicamente verdadero
como un caso particular). De acuerdo con este enfoque, ‘N(ningun sol-
tero es casado)’ es verdadera, ya que ‘ningun soltero es casado’ es anali-
tica, y esto ultimo se cumple porque bastan las reglas semanticas para
establecer la verdad de esa oracion. Llamaremos ‘concepcion semdntica
de la necesidad’ a la propuesta por Carnap, en vista de que se explica
en términos de propiedades semdnticas de las oraciones. Es muy impor-
tante advertir que los logicos actuales usan una nocidén de necesidad que
es esencialmente idéntica a la de Carnap: es la llamada ‘necesidad légica’.
Se dice en los textos logicos que un razonamiento R es vdlido cuando
cumple con esta condicién: si las premisas de R son verdaderas, enton-
ces necesariamente la conclusién de R es verdadera. ‘Necesariamente’ se
usa aqui en el sentido de la necesidad l6gica. Otra definicion usual dice
que un razonamiento es valido cuando no es posible que sus premisas
sean verdaderas y su conclusidn falsa. También esta nocidn de posibili-
dad se usa en el sentido l6gico y se la define en términos de la necesidad
l6gica mediante (D1) (definiendo asi la posibilidad logica, las dos defini-
ciones de validez ofrecidas son equivalentes en los contextos ldgicos usua-
les; véase Orayen, 1989, seccién 4.1).

La concepcién de la necesidad propuesta por Carnap fue objeto de
numerosas criticas a lo largo de los afios. Quine, adalid del escepticismo
intensional-modal mencionado antes, le hizo dos objeciones clasicas. Una
de ellas, de caracter muy general, se basa en el conocido rechazo qui-
neano de la distincion analitico-sintético, formulado en el célebre Quine
(1951), y una de cuyas consecuencias es el rechazo de todo concepto defi-
nido sobre la base de la nocidn de analiticidad (como la necesidad carna-
piana). Como mencionamos antes, Carnap (1956a) es una versidén mejo-
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rada de Carnap (1947), y uno de los agregados que contiene es Carnap
(1956b), que constituye un intento de responder al ultimo articulo men-
cionado de Quine. Quine no se dejé convencer y profundizé sus criticas
contra el concepto de analiticidad (y nociones +? relacio-
nadas) mediante el llamado «argumento de la indeterminacién de la tra-
duccion», expuesto en Quine (1960, C.2) y numerosos trabajos poste-
riores. No hay consenso acerca del peso que se les deba dar a estas
objeciones anti-intensionalistas. En Orayen (1989) puede hallarse un ana-
lisis critico detenido de los argumentos de Quine contra los llamados «con-
ceptos intensionales» (véanse los capitulos 2 y 3, y el Apéndice I, que
es una respuesta de Quine a una versién previa del capitulo 2).

Otra célebre objeciéon de Quine a la nocidn de necesidad carnapiana
no depende en absoluto de la comentada en el parrafo anterior —de hecho,
fue formulada cuando Quine no habia roto atun con la nocién de analiti-
cidad. En efecto, en su trabajo (1943), Quine habia senalado que si en
la l6gica modal se combinaba una cuantificacién objetal (la usual en la
logica clasica de primer orden) con una nocién de necesidad basada en
la de analiticidad (como la carnapiana), se obtenian confusiones inextri-
cables. Por ejemplo, si se interpreta de manera objetal el cuantificador de

(Hx)O(x>7),
la férmula resultard verdadera si algun objeto del dominio de variabili-
dad (supongamos que es el conjunto de los numeros naturales) satisface
el alcance [J(x>7). Pero si [J se entiende de la manera carnapiana, no
puede decirse que un objeto (el nimero 9, por ejemplo) satisface [J(x>7),
porque eso parece depender de la expresion linglistica con la que nos
refiramos al objeto. En efecto, ‘[J(9>7)’ parece «carnapianamente» ver-
dadero porque {9 >7)’ puede considerarse analitico, pero ‘(J (el numero
de planetas >7) debe considerarse carnapianamente falso, porque la ver-
dad de ‘(el numero de planetas >7)’ no depende sélo del significado de
las palabras. Sin embargo, ‘9’ y ‘el numero de planetas’ denotan el mismo
objeto (el nimero 9). ¢Ese objeto satisface o no [J(x>7)? Parece que
la respuesta es afirmativa si nos referimos al objeto mediante ‘9’ y falsa
si nos referimos a ese mismo objeto mediante ‘el nimero de planetas’.
Pero si la respuesta depende de la manera en que nos refiramos al objeto,
parece que el objeto mismo no satisface ni deja de satisfacer [J(x>7).
Si el objeto mismo (el nimero 9) satisficiera [J(x>7), se podria obtener
una verdad de esa férmula reemplazando la %’ que figura en ella por cual-
quier término singular que denotara el nimero 9. Pero si un objeto del
dominio de variabilidad se comporta en esa forma indecisa respecto de
oraciones abiertas o funciones proposicionales del lenguaje modal car-
napiano, hay confusiones semdnticas serias en el tratamiento «carna-
piano» de la légica modal con cuantificadores.

2. Se trata de nociones estrechamente relacionadas con el significado (denominado ‘intension’
en la terminologia de Carnap y otros autores; el término se escribe con ‘s’ para diferenciarlo del término
psicoldgico similar).
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Antes de ver otra concepciédn de la necesidad, serd conveniente hacer
algunas precisiones sobre las dos criticas de Quine que hemos conside-
rado. Su primera objecion no esta dirigida especificamente contra una
nocion modal usada por Carnap: es muy general y pone en tela de juicio
cualquier nocién basada en la de analiticidad (la necesidad carnapiana
es objetada como un caso particular). Esta critica de Quine tiene tanta
fuerza como sus argumentos anti-intensionalistas, respecto de los cuales
difieren las opiniones. La segunda objecion es mucho mas especifica y
contundente: afecta a un tipo de logica modal en que se mezcla la cuanti-
ficacién objetal con una nocidn de necesidad basada en la analiticidad,
y Quine sefiala correctamente que se comete entonces una seria confu-
sion. Pero esto no es fatal para el desarrollo de la légica modal. Hay
muchas formas en que una teoria modal puede eludir este problema: dos
caminos posibles son usar otro tipo de cuantificacion u otro tipo de
necesidad’®. Quine no estaba interesado en sugerir el segundo camino:
sus criticas propiciaban el abandono de la necesidad, mas bien que el desa-
rrollo de una concepcidn alternativa de esa nocion. Pero en 1972 se
publicé un trabajo de Kripke (ahora disponible como Kripke, 1980) que
cambid totalmente el panorama tedrico en la filosofia de la l6gica modal,
porque en él se critica la vinculacidn entre necesidad y analiticidad que
se habia hecho hasta ese momento, pero se propone también otra con-
cepcion de la necesidad.

La idea bésica presentada en Kripke (1980) es que hay un tipo de
necesidad metafisica que no se reduce de ningiin modo a una necesidad
semantica: un estado de cosas puede ser necesario aunque una oracion
que lo exprese no sea analitica. Es una verdad necesaria que Héspero
es idéntico a Fdsforo, pero éste es un hecho acerca de objetos: ‘Héspero
= Fosforo’ no es analitica (los dos nombres propios alli usados no son
sinonimos). Kripke apoya sus ideas en un minucioso andlisis de ejem-
plos que resultaria dificil resumir. El meollo de uno de sus argumentos
puede presentarse de la manera siguiente. Kripke trata de hacer ver al
lector que tiene un sentido intuitivo preguntarse si un determinado objeto
x podria no haber tenido una propiedad P que de hecho tiene; aduce ade-
mds que una pregunta de este tipo no se ocupa de palabras ni de signifi-
cados. Pero si la pregunta tiene sentido y no es de tipo semdntico, parece
que una respuesta negativa también serd significativa y tampoco tendra
un caracter semantico. En ese caso tiene un sentido intuitivo una nocion
de necesidad ontoldgica, porque responder que un objeto 7o podria haber
carecido de cierta propiedad es atribuirsela necesariamente. Kripke
defiende la idea de que un objeto puede tener necesariamente algunas de

3. Durante un tiempo, Quine consider6 correcta una tercera linea de solucién, propuesta por
Church (1943) y Carnap (1947), y basada en una limitacion de los dominios de variabilidad a valores
intensionales. Sin embargo, en la segunda edicion de su Fromt a Logical Point of View (1961a) senald
nuevas dificultades de estas propuestas. Quine (1961b) sintetiza estupendamente esta discusion trian-
gular (en Quine, 1980, se atenua la critica a Church de manera no decisiva).
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sus propiedades y afirma que éste no es un hecho lingiiistico. Defiende
entonces la significatividad de las oraciones en las que se afirma lo que
en terminologia tradicional se llamaba ‘necesidad de re’. Esta posicion
se conoce ahora con el nombre de ‘esencialismo’ y contrasta fuertemente
con la filosofia modal prevaleciente desde el positivismo l6gico hasta
Kripke. Tal filosofia modal trataba de reducir toda necesidad a la de dicto:
la nocién de necesidad se aplicaba a proposiciones, o mejor aun, a ora-
ciones que las expresaran. El trabajo de Kripke antes mencionado tuvo
una influencia notable, y a partir de su difusién la filosofia analitica se
mostré mas suspicaz acerca de la asimilacion de toda necesidad a la de
dicto. Como consecuencia de la mayor aceptacion de la necesidad de re,
resurgio en las dos altimas décadas el interés por los problemas metafisi-
cos vinculados con las modalidades. Una obra interesante para ver estos
problemas es Forbes (1985), donde el autor desarrolla una teoria propia
acerca de la necesidad de re, pero proporcionando al lector la informa-
cién bésica que se requiere para poder seguir las discusiones filosoficas
recientes sobre esa tematica.

El lector puede preguntarse cual fue la actitud de Quine ante el esen-
cialismo. La situacion es algo paraddjica, porque Quine también rechazo
esta concepcion de la necesidad (aunque con argumentos menos contun-
dentes: véase Sainsbury 1991, 242-243) pero aparentemente contribuyé
a su desarrollo: como senala Kaplan en un penetrante trabajo sobre el
tratamiento quineano de la cuantificacion en contextos opacos, Quine
sugirio claramente que para dar sentido a férmulas modales como la que
antes analizamos, habia que interpretarlas de manera esencialista (véase
Kaplan, 1968). La necesidad de tal interpretacion era para Quine una
prueba de que tales férmulas eran defectuosas, pero curiosamente otros
autores pudieron extraer de la critica quineana una sugerencia positiva.

Las dos concepciones de la necesidad que he explicado aqui (la nece-
sidad semdntica o ldgica y la necesidad metafisica) no son las unicas que
se han propuesto (ni los autores mencionados son los unicos que las han
defendido), pero son las que han tenido mas repercusién en la historia
reciente de la 16gica modal y las especulaciones filosoficas sobre esa dis-
ciplina.

II. ESBOZO HISTORICO DE LA LOGICA MODAL

Dividiré la historia de la 16gica modal en cuatro periodos: la prehistoria,
la etapa sintéctica, la etapa semadntica y la época de la metaldgica modal
generalizada. La prehistoria abarca desde el tiempo de Aristételes
(384-322 a. C.) hasta 1912, afio en que C. I. Lewis inaugur6 la historia
moderna de la disciplina. La etapa sintactica, caracterizada por el surgi-
miento de sistemas axiomdticos modales que, en general, eran presenta-
dos sin una semantica sistematica, se extiende desde 1912 hasta 1959.
Ese ano Kripke comienza a publicar trabajos sobre la semantica de mun-
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dos posibles y comienza la etapa semantica, durante la cual se investiga
la aplicacion de los métodos de Kripke a varios sistemas particulares que
se habian estudiado de manera sintactica en el periodo anterior. La etapa
en la que pienso al hablar de «la época de la metaldgica modal generali-
zada» no tiene un comienzo muy nitido en el tiempo, pero lo podemos
situar hacia fines de la década del sesenta. El rasgo que enfatizo con el
rotulo elegido es la generalidad. En esta época, hasta la actualidad, el
interés por sistemas particulares es reemplazado en gran parte por el
intento de estudiar las propiedades de clases muy amplias de sistemas
modales. Daré alguna breve informacién de lo que ocurrié en las distin-
tas etapas mencionadas.

1. La prehistoria de la légica modal

La palabra ‘prehistoria’ del subtitulo se usa sin intenciones peyorativas.
Simplemente intento enfatizar con ella el hecho de que en este largo
periodo la reflexién sobre las modalidades no arroj6 como resultado nin-
gun sistema axiomatico descripto con claridad, y con una interpretacién
intuitiva de tipo modal. En la actualidad, estos rasgos son las condicio-
nes minimas que una teoria formal deberia reunir para ser considerada
un sistema de l6gica modal (obsérvese la modestia de la exigencia seman-
tica). Es natural, entonces, que desde nuestro punto de vista contempo-
raneo, consideremos que, estrictamente hablando, la historia de la l6gica
modal en un sentido moderno no habia comenzado aun en un periodo
sin logros del tipo mencionado dos oraciones atras. Esto no excluye que
hubiera trabajos e ideas légicas interesantes sobre las modalidades, y en
efecto las podemos encontrar, principalmente en Aristételes, los megari-
cos, los estoicos y los filésofos medievales.

Aristételes escribié mucho sobre modalidades. No dedic6 al tema un
libro o un trabajo largo, pero lo traté en muchos pasajes de su obra. Por
ejemplo, en Sobre la interpretacion, reflexion6 sobre las relaciones entre
las modalidades, en Analiticos Primeros, construyd una teoria sobre el
«silogismo modal» y en Tépicos uso6 las nociones modales en su teoria
de la predicacion, donde distingue, por ejemplo, entre rasgos que un hom-
bre tiene necesariamente y otros que puede o no tener; en el caso de que
efectivamente tenga rasgos del ultimo tipo, son sélo «propiedades acci-
dentales» del hombre en cuestion. Veamos mas de cerca ideas suyas conec-
tadas con preocupaciones actuales.

En Sobre la interpretacién y Analiticos Primeros, Arist6teles no intenta
dar un andlisis ni de la necesidad ni de la posibilidad pero observa que
cada una de ellas es definible en términos de la otra y la negacién [véase
(D1), de la seccién anterior]. También sefiala que lo contingente es lo
posible que no es necesario. Es consciente, pues, de la interdefinibilidad
de las nociones modales que ya hemos hecho notar. En Analiticos Prime-
ros hay una teoria sobre el silogismo modal. Suelen llamarse ahora ‘aser-
téricas’ las oraciones que no contienen expresiones con un contenido
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modal (expresiones modales, a partir de ahora). Aristoteles analiza las
oraciones que se obtienen insertando expresiones modales en oraciones
asertdricas. Un silogismo modal se obtiene de un silogismo asertérico
insertando expresiones modales en las premisas (en una o en las dos) y/o
en la conclusién. Dificulta el anélisis de un texto clasico sobre estas cues-
tiones el hecho de que la insercién de expresiones modales no produce
oraciones inambiguas; por ejemplo, a veces es dificil determinar si se
intent6é usar modalidades de dicto o de re. Como la distincion es rele-
vante para evaluar algunas tesis aristotélicas, daré un ejemplo en que se
construyen dos oraciones modales, una de dicto y otra de re, partiendo
de una misma oracidn asertérica, que serd de un tipo que aparece con
frecuencia en la silogistica cldsica: una oracién universal afirmativa. No
daré un significado preciso a las expresiones modales que use, porque
el objetivo del ejemplo es mostrar de modo intuitivo la diferencia de
dicto/de re, y esto puede lograrse aun usando las expresiones-clave de
un modo bastante vago (ademas, usar significados mas precisos podria
prejuiciar la lectura de Aristdteles).

La oracién ‘Todos los estudiantes que llegaron tarde a la clase llega-
ron temprano a la misma’ es absurda, si hacemos el supuesto de que las
palabras se usan de las maneras habituales y ‘la misma’ se refiere a la
clase mencionada primero. Prefijando a la oracién la expresidn ‘Posible-
mente’, con la intencidn de hacer una afirmacién modal de dicto, obte-
nemos algo como: ‘Posiblemente, todos los estudiantes que llegaron tarde
a la clase llegaron temprano a la misma’. Para que la frase total sea ver-
dadera, la oracion que sigue al ‘Posiblemente’, debe ser posible, debe exis-
tir la posibilidad de que sea verdadera. Pero no existe tal posibilidad,
bajo el supuesto hecho acerca del uso de las palabras en la oracién (para
simplificar, supongo que las proposiciones universales afirmativas se usan
de un modo que escapa a la critica moderna al cuadrado clésico de opo-
sicion). La frase total que construimos es, pues, falsa. Tomemos ahora
la oracién (universal afirmativa) “Todos los estudiantes que llegaron tarde
a la clase hubieran podido llegar temprano a la misma’. La expresion
subrayada se comporta como una expresién modal usada de re: no se
afirma ahora que cierta oracién p es posible; se afirma algo de ciertas
personas, no de ciertas palabras. Se dice que ciertos estudiantes hubie-
ran tenido la posibilidad de comportarse de otra manera distinta de como
se comportaron: llegaron tarde pero podrian haber llegado temprano.
Esta afirmaciéon es mds plausible que la afirmacién modal de dicto que
analizamos antes. Prosigamos ahora con las ideas aristotélicas sobre las
modalidades.

Desgraciadamente, la teoria aristotélica del silogismo modal es muy
confusa, y los autores que la han estudiado en detalle suelen afirmar que
contiene errores importantes. Al analizar el silogismo modal que responde
a la forma del Barbara de primera figura, solo que con las premisas y
la conclusién afectadas por expresiones modales conectadas con la idea
de posibilidad, Aristételes lo considera vdalido (si se me permite seguir
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usando terminologia posterior). Kneale y Kneale (1962, 83) interpretan
que las expresiones modales se usan de dicto en Sobre la interpretacion
y Analiticos Primeros®. Si esto es asi, es facil encontrar contraejemplos
a la validez del silogismo modal mencionado unas lineas atras: uno de
ellos se construye afectando con palabras que expresan posibilidad de
dicto las premisas ‘Todo triangulo es azul’ y ‘Toda cosa roja es un tridan-
gulo’, asi como la conclusion que se sigue de ellas segun la forma del Bar-
bara ya mencionado (adapto un ejemplo de Kneale y Kneale, 1962, 88,
donde pueden encontrarse otras ilustraciones; la afirmacion aristotélica
sobre la validez del caso de silogismo modal analizado puede encontrarse
en Aristoteles, 1984, 53 o Aristoteles, 1988, v.2, 140-141)°. Llama la
atencion el contraste entre el estudio del silogismo modal y la teoria del
silogismo comun, primera teoria ldgica que vio el mundo y que Aristéte-
les desarrollé con gran virtuosismo (los errores son en este caso de poca
monta comparados con los hallazgos). Se han dado diversas explicacio-
nes de este hecho extrano, entre ellas la hipétesis de que la teoria del silo-
gismo modal es un agregado tardio y apresurado que hizo Aristoteles a
una version ya acabada de los Analiticos Primeros. Para terminar con los
ejemplos de ideas aristotélicas acerca de las modalidades, observemos que
su teoria de la predicaciéon (que mencionamos antes) es claramente un
ejemplo de lo que hoy se entiende por ‘esencialismo’ (véase seccion I).
Las modalidades usadas en esta teoria son, pues, de re.

Varios autores que han tratado de formular una teoria aristotélica
coherente sobre las modalidades (reuniendo sus textos acerca del tema,
extrayendo sus consecuencias, etc.), han llegado a la conclusién de que
es una misién imposible (van Rijen, 1989, es un libro mds optimista al
respecto).

Entre los megdricos contemporaneos de Aristdteles se negaba la dife-
rencia entre acto y potencia, y aparentemente esa posicion conducia a
un rechazo de las distinciones modales. Una generacién después, sin
embargo, la discusion de las modalidades atrajo a los megdricos y Dio-
doro Cronos propuso una interesante definicion de ellas. No se dispone
de sus textos, pero de acuerdo con el testimonio de Boecio, Diodoro defi-
nia lo posible como lo que es o va a ser, lo imposible como lo que, siendo
falso, no sera verdadero, lo necesario como lo que, siendo verdadero,
no sera falso y lo no-necesario como lo que o bien ya es falso, o lo serd
(posiblemente Boecio no recogi6 una referencia a la verdad que figuraba
en la definicidn de lo posible; un texto de Cicerdn y el hecho de que los
valores de verdad son mencionados en las otras definiciones sugieren esto).

4. Los autores mencionados hacen andlisis de expresiones griegas (aunque en general usan la
traduccidn clasica de Ross); lidiando sélo con traducciones, yo no he podido formarme una opinién
firme acerca de la interpretacion que menciono en el texto.

5. Es un ejercicio instructivo analizar el ejemplo propuesto aplicando primero a las premisas y
la conclusion palabras modales que expresan posibilidad de dicto y hacer luego lo mismo con palabras
que expresan posibilidad de re.
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Entre otras cosas, llama la atencién que Diodoro mezcle las nociones
modales con distinciones temporales, como se hace hoy en dia en ciertas
logicas; también es curioso que, como en la ldgica temporal actual, se
conciba que los valores de verdad® pueden cambiar con el tiempo. Dio-
doro sostenia su definicion de lo posible con un argumento de cierta com-
plejidad (véase Kneale y Kneale, 1962, 119). Filén de Megara se opuso
a Diodoro vy, al parecer, defendié una nocién de posibilidad equivalente
a la auto-consistencia (mas similar, entonces, a la posibilidad carnapiana).
Se conocen menos las ideas de los estoicos, pero al parecer eran mas simi-
lares a las de Filon que a las de Diodoro, aunque hacian algunas criticas
al primero (véase Kneale y Kneale, 1962, 123).

El pensamiento medieval fue muy rico en discusiones filosoficas sobre
las modalidades. En el siglo xi1, el influyente logico Abelardo distinguié
entre proposiciones que atribuyen modi (i.e., modos: necesidad, posibi-
lidad o imposibilidad) a dicta (i.e., proposiciones) y proposiciones en las
que se atribuyen modalmente ciertas caracteristicas a sujetos que no son
dicta. Esto sugiere inmediatamente la distincién entre modalidades de
dicto y de re; pero Abelardo cree que las proposiciones modales genui-
nas son las ultimas mencionadas, en las cuales una palabra modal cali-
fica el vinculo entre un sujeto y cierta caracteristica que se le atribuye.
‘Es posible que Sdcrates esté corriendo’ no expresa una genuina proposi-
cién modal, como si lo hace ‘Sécrates posiblemente esta corriendo’. Las
opiniones de Abelardo sobre las modalidades influyeron mucho sobre
Guillermo de Shyreswood y fueron tomadas en cuenta por Tomas de
Aquino. Pero a diferencia de aquellos autores, Tomds de Aquino otorga
un status modal genuino a las dos proposiciones sobre Sécrates que nos
sirvieron antes de ejemplos. Para este fildsofo cristiano, las proposicio-
nes modales genuinas pueden ser de dicto o de re. En su Summa contra
gentiles, Tomds de Aquino, como muchos otros filsofos durante el siglo
siguiente, vinculd esta distincién con el problema de la batalla naval de
Aristoteles y algunas objeciones al conocimiento divino de «futuros con-
tingentes». Dada la influencia de Tomds de Aquino en la filosofia poste-
rior, la distincion entre las modalidades de dicto y de re fue adoptada
después por muchos autores.

Los filosofos modernos se han ocupado de las modalidades, pero mas
en conexion con cuestiones teologicas y metafisicas que en relacion con
la légica. Knuuttila (comp., 1988) es una antologia util para tener alguna
informacién de las ideas sobre las modalidades en la filosofia moderna
(incluye un articulo sobre el positivismo 16gico).

Los temas de la «prehistoria modal» no seran retomados en el resto
del trabajo, de modo que serd oportuno dar aqui alguna orientacion
bibliogréfica sobre el periodo. El clasico Kneale y Kneale (1962) es una
obra de consulta ideal para comenzar: tiene mucha informacién histo-

6. ¢De qué entidades? Los documentos no permiten decir con certeza a qué entidades atribuia
Diodoro valores de verdad.
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rica sobre la légica modal tomada de las fuentes mas directas asequibles
y también comentarios interesantes desde un punto de vista logico
moderno (para ubicar las partes relevantes, véanse en el indice tematico
de la obra las entradas que comienzan con modal o modality). Natural-
mente, por su fecha de publicacién no menciona ediciones de autores clé-
sicos posteriores a 1962 ni literatura secundaria que haya aparecido des-
pués de esa fecha; pero ahora daré informaciéon complementaria.
Aristoteles (1984) y Aristoteles (1988) son ediciones recientes de obras
aristotélicas (la primera en inglés, la segunda en espanol) que contienen
los tratados logicos de ese autor a los que nos hemos referido (y en el
segundo caso, abundante informacién sobre ediciones anteriores). Hay
una traduccion espanola reciente (y fiable, segiin me dicen) de la obra
de Tomas de Aquino que mencioné en el texto: Tomds de Aquino (1991).
El primer intento de formalizar la l16gica modal aristotélica se encuentra
en el libro de McCall (1963). Dos libros recientes interesantes son van
Rijen (1989), sobre la légica modal de Aristételes, y Knuuttila (1993),
acerca de las modalidades en la filosofia medieval, pero con un capitulo
inicial sobre Aristételes. La profusa bibliografia de esta ultima obra es
muy adecuada para actualizar la informacién sobre fuentes secundarias
posteriores a Kneale y Kneale (1962).

2. La etapa sintactica

La figura mdas importante de este periodo fue C. I. Lewis. Su trabajo en
l6gica modal marco el comienzo, no sélo de la etapa sintctica, sino de
la historia de esta disciplina en su forma moderna. La publicacién del
primer volumen de Principia Mathematica, de Whitehead y Russell, en
1910, influyé mucho sobre su obra. En la logica proposicional de los
Principia se usa el condicional material, también llamado por los autores
‘implicaciéon material’. Son derivables en esa logica, entonces, las llama-
das ‘paradojas de la implicacidén material’, de las cuales las mas conoci-
das son:

(1) g>(p>q)

(2) ~p>(pDq)

Puede decirse que (1) expresa la idea de que una proposicién verda-
dera es implicada (materialmente) por cualquier proposicién y que (2)
afirma que una proposicion falsa implica (materialmente) cualquier pro-
posicion. Otra paradoja interesante es:

(3) (»24q) V (gDp),
segun la cual, dadas dos proposiciones cualesquiera, siempre estan «conec-
tadas» por la implicacién material: o bien la primera implica (material-
mente) la segunda, o la segunda tiene esa relaciéon con la primera.

Lewis no discrepaba con (1)-(3); pensaba que eran auténticas leyes
logicas, dado el significado con que se usaba D en Principia. Pero el punto
de partida de sus investigaciones en logica modal (en Lewis, 1912), fue
la observacion de que hay una implicacién distinta de la material, mas
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fuerte que ella, y con diferentes leyes formales (por ejemplo, no tiene las
propiedades formales que (1)-(3) asignan a D). Lewis la llamé ‘implica-
cién estricta’ y le asigné un simbolo que nosotros reemplazaremos con
‘>’ Puede leerse ‘p—¢’ de varias maneras alternativas: p implica estricta,
0 necesariamente, ¢, o también: g se sigue de p. La ultima lectura sugiere
que la implicacién estricta de Lewis es la implicacién logica, y en efecto,
p— ¢ puede definirse como ~ O (pA ~gq), si O se entiende con el sentido
de la posibilidad 16gica (de modo que para definir ‘=’ —en el sentido
de Lewis— con los operadores modales monadicos, éstos ultimos deben
usarse como Carnap mas bien que como Kripke; esto se debe a que la
implicacién l6gica se define en términos de posibilidad l6gica, no metafi-
sica: p implica légicamente g si y sélo si no es logicamente posible que
p sea verdadero y g falso, de acuerdo con las definiciones usuales). Como
‘>’ puede definirse usando un operador modal, lo consideraremos tam-
bién un operador modal (binario); como se aplica a enunciados enteros
y no a sus partes, expresa una modalidad de dicto: la implicacién légica
es una relacion entre proposiciones, desde el punto de vista usual entre
los logicos.

La implicacién estricta permite introducir la equivalencia estricta. Sim-
bolizando ésta dltima mediante ‘<’ (apartindonos otra vez de la nota-
cién de Lewis), podemos definirla asi:

(D4) (p=q) = ar(p—>q)Ng—p)

Es obvio que si en las formulas (1)-(3) se reemplaza D por —, no
se obtienen leyes l6gicas aceptables (por ejemplo, no es cierto que dadas
dos proposiciones p y g cualesquiera, se cumpla que p implique estricta-
mente a g o viceversa). Pero entonces se requeriria un sistema formal dis-
tinto del usual para expresar las leyes ldgicas de la implicacién estricta.
Lewis emprendié la tarea y después de una serie de articulos (el primero
de los cuales fue Lewis, 1912), public6 un sistema axiomadtico para la
implicacion estricta en su libro A Survey of Symbolic Logic (Lewis, 1918;
la teoria axiomdtica mencionada se conoce en la literatura como ‘el sis-
tema del Survey’). Otros autores habian observado ya que habia una impli-
cacién mas fuerte que la material —del tipo de la implicacién estricta
de Lewis— e incluso habian expresado algunas propiedades de ella
mediante un lenguaje simbdlico; pero no habian usado el método axio-
matico para estudiarla y es por eso que no se les reconoce la paternidad
de la l6gica modal moderna (pienso en Hugh MacColl; no he podido
consultar MacColl, 1880, pero por lo que dicen légicos que conocen este
trabajo, su autor estuvo muy cerca de formular por primera vez un sis-
tema de l6gica modal). Lewis quiso llenar una laguna de Principia; pero
lo hizo empleando el método axiomatico de esa obra y por eso logré el
lugar que tiene en la disciplina que nos ocupa.

Dos sistemas axiomadticos que comparten el mismo lenguaje formal
pueden diferir en los conjuntos de axiomas y reglas de inferencia de los
cuales parten y tener sin embargo exactamente el mismo conjunto de teo-
remas. Facilitard mucho mi exposicion llamar a veces con el mismo nom-
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bre a sistemas asi relacionados. Similarmente, dos sistemas pueden dife-
rir porque adoptan distintos simbolos primitivos (en cuyo caso puede con-
siderarse que no comparten el mismo lenguaje formal, si se adopta la
idea de que las definiciones introducen abreviaturas en el metalenguaje)
y sin embargo puede ocurrir que haciendo caso omiso de cudl es la nota-
cién primitiva y cudl la definida no haya diferencia en el conjunto de teo-
remas. También en casos como éste disimularé a veces las diferencias y
emplearé un mismo nombre para sistemas asi relacionados’. En lo que
sigue daré alguna informacion histérica acerca de los sistemas axiomati-
cos mas conocidos en logica modal proposicional (en la seccion III estu-
diaremos algunos de ellos en forma sistematica).

En Lewis (1918) se analiza un solo sistema de l6gica modal, el ya
mencionado sistema del Survey. Pero Lewis advirtié en seguida que habia
cuestiones sobre las cudles el sistema del Survey no tomaba partido: por
ejemplo, en el sistema no se establece si [J p y JOp son equivalentes
o no (algunos autores parecen creer que el sistema mencionado se pro-
nuncia negativamente sobre la equivalencia aludida, pero eso no es exacto:
si asi fuera, S4 no podria ser una extension consistente del sistema del
Survey; en este ultimo sistema no es teorema que las fébrmulas menciona-
das sean equivalentes pero tampoco es teorema la negacion de esa afir-
macion). Lewis advirtié también que nuestras intuiciones sobre las nocio-
nes modales no se pronuncian claramente sobre cuestiones como la
mencionada, y otras similares. En otras palabras, comprendié que habia
mads de un sistema modal plausible. En Lewis y Langford (1932) se ana-
lizan cinco sistemas modales y se les da el nombre por el cual se los conoce
desde entonces: S1, S2, S3, S4 y S5. S1 y S2 se desarrollan en detalle
en el libro; en un apéndice se analizan mas brevemente los tres restantes.
S3 coincide con el sistema del Survey (haciendo caso omiso de diferen-
cias como las mencionadas en el parrafo anterior). Daré alguna infor-
macion sobre caracteristicas importantes de los cinco sistemas.

Los cinco sistemas carecen de una semdntica sistematica; sus primiti-
vos se aclaran informalmente, mas o menos de la manera en que lo hemos
hecho aqui. Los cinco sistemas son extensiones de la légica proposicio-
nal veritativo-funcional clasica (LPC, en lo que sigue); pero en la formu-
lacién de Lewis ninguno es una extension de LPC de manera explicita,
i. e., ninguno es el resultado de agregar axiomas a un sistema formal que
expresa de manera completa LPC. Después del primero, cada sistema es
una extension propia del sistema anterior (propia en el sentido de que
hay un auténtico agregado de nuevos teoremas). Si llamamos ‘leyes reduc-
tivas’ a teoremas que muestran la equivalencia de concatenaciones de ope-
radores modales de distinta longitud (por ejemplo, [l y [J[J; en la sec-
cién III veremos con mds detalle qué es una ley reductiva), S1 y S2 carecen

7. Enlos textos de logica modal es bastante habitual que los autores se comporten como si siguie-
ran esta convencion (por ejemplo, llamando ‘S4” a mas de un sistema, todos ellos difiriendo en las for-
mas descriptas en el texto), pero sin hacerla explicita.
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de leyes reductivas, S3 las tiene (como se probd en Parry, 1939) y tam-
bién S4 y SS. De hecho, S4 y S5 se obtienen agregando axiomas sugeri-
dos por Becker (1930) y que tienen leyes reductivas como consecuencias
inmediatas.

S4 y S5 son dos de los tres sistemas modales mds estudiados. El ter-
cero es T, cuya historia resumimos a continuacién. Godel (1933) fue el
primer trabajo en que un sistema modal se obtuvo mediante una exten-
sion explicita de LPC. Quitando un axioma de la formulacién godeliana
de ese sistema, Feys (1937) obtuvo el sistema que ahora llamamos ‘T".
S1y S2 son mds débiles que T, que a su vez es mas débil que S4 y SS.
T y S3 son incomparables (ninguno de los dos sistemas es una extension
del otro).

La segunda figura mas importante en la etapa sintdctica de la légica
modal es von Wright. Von Wright (1951) introdujo los sistemas moda-
les M, M’y M”. Sobocinski (1953) mostré que estos sistemas son res-
pectivamente equivalentes a T, S4 y S5 (sistemas que analizaremos en
la seccion II1).

3. La etapa semantica

La presente sub-seccion y la siguiente serdn muy breves porque los temas
se prestan mds a un tratamiento sistematico que historico, y seran objeto
de las secciones IV y V. Sélo indicaré algunos datos que permitan ubicar
los desarrollos y los protagonistas en el tiempo.

Hemos fijado el comienzo de la etapa semdntica en 1959. Sin
embargo, ya en Carnap (1947) se habia construido una semdntica para
la l6gica modal, inspirada en la idea de Leibniz segtin la cual algo es nece-
sariamente verdadero cuando es verdadero en todo mundo posible. Car-
nap introducia ciertos conjuntos de férmulas que llamaba ‘descripciones
de estado’ y que cumplian el papel de los mundos posibles en su seman-
tica (véase Carnap, 1947, 9). También definia la nocién de ‘valer (hold)
en una descripcion de estado dada’, que era en la teoria el analogo de
. ‘ser verdadero en un mundo posible’ (Carnap, 1947, 9). Con estos ele-
mentos, Carnap pudo definir las condiciones de verdad de formulas de
la estructura [p, traduciendo a su lenguaje de descripciones de estado
la idea de Leibniz (para eso deben combinarse las definiciones 2-2 de Car-
nap, 1947, 10 y 39-1 de Carnap, 1947, 174). En términos modernos,
esto significa que Carnap disponia de una definicién de verdad para el
lenguaje de LPC enriquecido con [J. Contando con tal definicion, se
puede definir también la nocidn de férmula valida para tal lenguaje, cuan-
tificando sobre descripciones de estado (véase Bull y Segerberg, 1984,
13, para ver con mas detalle como se puede introducir de esta manera
la nocidn de validez). Las férmulas que resultan validas de acuerdo con
la definicién son exactamente los teoremas de S5. En otras palabras, y
empleando nuevamente terminologia actual: Carnap construyd una
semdntica adecuada para SS. ¢Por qué no pensar entonces que la etapa
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semantica comenzo6 en 1947? La respuesta estd vinculada con rasgos de
la semantica modal posterior. A partir de Kripke (y otros autores que
mencionaremos), se pudo disponer de métodos con los cuales pueden
construirse semdnticas adecuadas para una gran diversidad de sistemas
modales (por ejemplo, para T, S4 y S§). La semantica de Carnap no tenia
esa flexibilidad. Desde la 6ptica contemporanea, se piensa que propor-
ciono una semdntica para un sistema modal aislado, y no para la légica
modal.

Alrededor de doce anos mas tarde, tres 1dgicos descubrieron (al pare-
cer de manera independiente) los métodos semanticos mencionados hacia
el final del parrafo anterior. Los histéricos trabajos en que expusieron
sus resultados son Kanger (1957), Kripke (1959), Kripke (1963a), Kripke
(1963b), Hintikka (1961) y Hintikka (1963). Con estos trabajos nacid
la moderna semdntica de los mundos posibles. Los métodos de los tres
autores tienen una semejanza muy profunda, aunque los detalles de pre-
sentacion difieran. Los trabajos de Kripke fueron los que alcanzaron
mayor difusién y por eso adoptamos el ario 1959 (cuando publicé su pri-
mer articulo sobre estos temas) como sefial del comienzo de la etapa
semdntica. Un rasgo de las investigaciones que tuvieron lugar en esta etapa
fue el interés por estudiar propiedades metaldgicas (particularmente la
completitud) de sistemas que se habian desarrollado antes de manera sin-
tactica. En la seccién IV veremos cémo se aplican los métodos semdnti-
cos de Kripke a los sistemas T, S4 y SS.

4. La época de la metalégica modal generalizada

Si uno compara superficialmente un manual como Hughes y Cresswell
(1968) con Hughes y Cresswell (1984), o Jansana (1990), la primera
diferencia que salta a la vista es que el interés tedrico se ha desplazado
del analisis de sistemas modales particulares al estudio de grandes fami-
lias de tales sistemas. Es dificil asignar una fecha al comienzo de este
periodo, porque el interés por problemas y resultados mas generales
fue creciendo gradualmente (hasta que el perfil de las investigaciones
cambié por completo). Como en el caso de los dos periodos anterio-
res, adoptaremos un trabajo importante como sefnal del comienzo de
una etapa: Lemmon y Scott (1977). Pero esta publicacién tuvo lugar
una década después de la muerte de Lemmon, y en realidad la obra
habia tenido influencia desde ocho o nueve anos antes de ser impresa
(los l6gicos modales usaban copias de las notas de Lemmon en que se
baso el libro). Consideraremos pues, que hacia fines de la década de
los afios 60 comenzé nuestro periodo. Lemmon y Scott (1977) mues-
tra un claro interés por alcanzar resultados generales sobre sistemas
modales, particularmente acerca de completitud. Otros trabajos muy
importantes de este periodo son Segerberg (1971), Goldblatt (1976) y
Van Benthem (1982). Daré m4s informacion sobre estas investigacio-
nes en la seccion V.
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. T,S4Y SS: ESTUDIO SINTACTICO

T, S4 y S5 son los sistemas modales proposicionales mdas conocidos. Los
analizaremos después de introducir ciertas nociones generales.

1. El lenguaje modal L. Modalidades normales vy leyes reductivas

En nuestra formulacién, T, S4 y S5 compartirdn un mismo lenguaje, que
llamaré ‘L’. El vocabulario primitivo de L estd formado por los parénte-
sis (, ), las variables proposicionales p, g, r, eventualmente usadas con
subindices, los operadores monadicos ~, [J y el operador binario D;
los operadores &, A, V, =, =, < (monadico el primero, binarios los
restantes) se definirdn en términos del vocabulario primitivo. Las reglas
de formacion son las usuales en logica proposicional veritativo-funcional,
solo que ahora enriquecidas por la presencia de los operadores modales.
Letras mayusculas como A, B, etc., seran usadas como variables metal4-
gicas de formulas. Los conectivos A, V, = se introducen con cualquiera
de las definiciones usuales. En nuestra formulacién de T, S4y S§, <,
— y © se definen asi:

(DL1) OA=,4.~0O~A

(DL2) (A= B) =4« LJ(ADB)

(DL3) (A< B) = 4((A=>B)A(B—A))

Cualquier sistema axiomatico cuyo lenguaje sea L serd considerado
un sistema modal. Llamaré modalidad a cualquier secuencia finita O,
0., ..., O,, de operadores monadicos de L, donde cada O, es, enton-
ces, 0 ~, 0 [J o O; 7 es la longitud de la modalidad. Por cuestiones
de simetria, también se llamara modalidad a la secuencia nula, que es
una serie de operadores monadicos que tiene longitud 0. Llamaremos
modalidad normal a una modalidad que no contiene ningin ~ o bien
contiene uno solo y al comienzo de la secuencia. Una modalidad normal
se dice iterada si no es nula y mas de un lugar de la secuencia es ocupado
por un operador distinto de ~. Por ejemplo, [(J~, ~[y ~[< son
modalidades, pero la primera no es normal, como si lo son la segunda
y la tercera; sélo la ultima es iterada. Una ley reductiva de un sistema
modal S es un teorema de S que tiene la forma (Mp=Np), donde M y
N son modalidades normales de distinta longitud; si S posee tal teorema,
se dird que M y N son modalidades equivalentes en S (y diremos también
que la de mayor longitud se reduce a la otra). Si M es una modalidad
normal y en S no hay ninguna modalidad equivalente a M y de longitud
menor, diremos que M es una modalidad irreducible de S.

2. Elsistema T
Seguiré de cerca la presentacion de Hughes y Cresswell (1968), aunque
con algunos cambios. Uno de ellos es el reemplazo del subsistema PM,

con el que ellos expresan la logica proposicional veritativo-funcional, por
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el sistema axiomatico con que Mendelson (1987) formaliza esa parte de
la l6gica (aunque usaré una regla de substitucién en lugar de los axiomas-
esquema de Mendelson).

Ya vimos el lenguaje y las definiciones que se usan en T. Los axio-
mas son los siguientes:

(A1) (g>(pDq))
(A2) [(pD(gD1)D((pDg)D(pD7))]
EA3; [(~4>~p)D((~9Dp)Dq)]

(A5) O(p>g)>(0p>0y)

Los tres primeros axiomas son tautologias de la 1égica proposicional
veritativo-funcional clasica (LPC). El cuarto axioma expresa la idea de
que si una proposicidon es necesaria, es verdadera. Obsérvese que de
acuerdo con (DL2), la implicacion estricta se puede definir con el ante-
cedente de (AS). En ese caso, se podria traducir la idea formalizada por
(AS) asi: si una proposicion p implica una proposicién g, se cumple que
si p es necesaria, g también lo es. (AS) transmitiria entonces la vieja idea
de que las proposiciones necesarias solo implican légicamente proposi-
ciones necesarias.

T tiene tres reglas de inferencia:

(RS) Regla de substitucién uniforme: Si en un teorema® se substituye
una variable proposicional por una férmula bien formada, de manera
uniforme (i.e., todas las ocurrencias de la variable se reemplazan siem-
pre por la misma férmula), el resultado también es un teorema.

(MP) Modus ponens: De un condicional material y su antecedente,
se puede derivar su consecuente.

(RN) Regla de necesidad: Si una férmula es teorema, el resultado de
prefijarle el operador de necesidad también es un teorema. Si + A signi-
fica que A es teorema (del sistema del cual se esté hablando; en caso de
ambigliedad, se aclarard cudl es el sistema al que se desea hacer referen-
cia), y - A=+ Bse usa para indicar que si A es teorema, puede derivarse
sintacticamente que B también lo es, (RN) puede formularse asi:

FA=s LA

Los tres primeros axiomas, junto con las dos primeras reglas, for-
man el sistema que Mendelson llama ‘L3, si se quitan del lenguaje los
operadores modales. Puede mostrarse facilmente que L; tiene los mis-
mos teoremas que el sistema que Mendelson llama ‘L’ (Mendelson, 1987,
39, ejercicio 1.55), para el cual se ha demostrado que su conjunto de
teoremas coincide con el de las tautologias (Mendelson, 1987, 33-35).
En ese caso, T contiene como teoremas todas las tautologias y los ejem-
plos de ellas en que las variables proposicionales son reemplazadas (uni-
formemente) por férmulas de nuestro lenguaje L.

Es facil establecer que la siguiente es una regla derivada:
(R4) ~ADB=+ JADOB

8. Usamos la palabra ‘teorema’ en el sentido en que abarca también a los axiomas.
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Formularemos algunos teoremas importantes para ver qué contiene T.
Para que se advierta el estilo en que pueden demostrarse teoremas en nues-
tra formulacion del sistema, haremos algunas demostraciones explicitas;
luego las abreviaremos o suprimiremos, pero un lector con alguna préc-
tica en LPC podrd completarlas, si comprendié los primeros ejemplos.
Una enunciacién del teorema precedera a su demostracion (cuando se
acomparne una demostracién). La notacién p/A indicara que la variable
p se debe substituir por la férmula A (de manera uniforme)®.

Tl:pD

(1) O~pD~p (RS en A4, p/~p)

(2) ~=pD~0L=~p ((1), Transp051c1on)

(3) pDOp (Doble Negacién, (2), Silo-

gismo Hipotético y DL1)

2: O(pAq)=(0OpAQgq)

(1) (p/\ )Dp (Tautologia)

(2) (pNg)Dg (Tautologla)

(3) O(pAq)>Op ((1), R4)

(4) O(pAq)>Ogq ((2), R4)

($) O(pAq)2(OpAUq)

(S) se sigue de (3) y (4) aplicando la tautologia (pD¢g)D [(pD

(pD(gAn)].

Obsérvese que (5) es la «mitad» de T2. Probemos la otra mitad.
(6) pD(q2(pA\g)) (TaUtolOgla>
(7) Bp>0(g>(phg) ((6), R4)
(8) O(g2(pAq))>(0gD>D(pAq)) (RS en AS)
(9) Op>(Lg>U(pAg)) (7 y 8, por Silogismo Hipo-
tetlco)
(10) (DpALOgq)D O(pAg) ((9), Exportacién y MP)

Obsérvese que ésta es la mitad que nos faltaba del T2. Poniendo en
conjuncion (5) y (10) y aplicando la definicion usual de = se obtiene:

(11) O(pAq)=(OpAUq)

Para LPC vale el metateorema de la equivalencia: si B se obtiene de
A reemplazando una o mds ocurrencias de C por D y resulta que —C=D,
entonces B es un teorema, si A lo era.

Es facil demostrar que

H(A=B)=+(OA=0B)
es una regla derivada de T. También es ficil probar entonces que el meta-
teorema de la equivalencia puede extenderse a T. Usaremos este resul-

9. Presupongo el conocimiento de varias tautologias y reglas de LPC, asi como de sus nombres
habituales. Si se desea explicitar completamente una prueba, debe evitarse el reemplazo de equivalentes
(salvo que lo sean por definiciéon) antes del T; (por ejemplo, en el paso 3 de la prueba de T, debe usarse
(pD ~ ~p) y no la equivalencia correspondiente y un reemplazo permitido por ella).
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tado en las préoximas demostraciones, indicando el uso del metateorema
mediante ‘MRE’ (metateorema del reemplazo de equivalentes).

T3:C$E ~<Q ~—£

(N~Q~p=~C~p (ejemplo de tautologia)
2) ~~0O~~p=~"~p (DL1)

3) Up=~C~p (Doble Negaciéon, MRE)

Son obvios corolarios de T3:
T4: ~Op=C~p
TS: ~Op=0~p

Usando MRE vy los ultimos corolarios puede demostrarse que en T
toda modalidad puede «normalizarse»: dada una modalidad M cual-
quiera, existe una modalidad normal M’, de igual o menor longitud que
M, y tal que es teorema de T la féormula (Mp= M’p). Este resultado es
obvio para la modalidad nula y las de longitud 1. Por induccién mate-
matica se generaliza facilmente para modalidades de longitud 7 + 1, para
cualquier # positivo (dada una modalidad de longitud » + 1, separe su
primer componente y aplique la hipotesis inductiva a la cadena de los
n restantes; luego divida en cuatro casos las combinaciones posibles que
se pueden dar entre el componente que habia quedado aislado vy el pri-
mer componente de la modalidad ya normalizada: negacién/negacion,
operador modal/negacion, etc.).

Otro teorema importante de T (facilmente demostrable usando MRE
y los resultados ya establecidos), es:

Te: O(pVa)=(OpVOq)

El teorema 2 y el 6 muestran, respectivamente, que la necesidad es
distributiva respecto de la conjuncién y la posibilidad respecto de la dis-
yuncién. En cambio, la necesidad no es distributiva respecto de la dis-
yuncién ni la posibilidad respecto de la conjuncién. En los dos dltimos
casos, solo es teorema una «mitad» de lo que seria la ley distributiva.
Son los teoremas:

T7: (OpVOgq)D O(pVg)

T8: O(pNg)D(OpAOg)

Un rasgo interesante de T es que en el sistema se pueden demostrar
unas «paradojas de la implicacién estricta». No se puede demostrar que
una verdad es implicada por cualquier proposicién, ni que una falsedad
implique légicamente cualquier proposicion, pero si cambiamos verdad

por verdad necesaria 'y falsedad por imposibilidad obtenemos leyes vali-
das de la implicacién estricta. Formalmente, tenemos:

T9: UgD(p—q)
T10: ~OpD(p—q)
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Hay algunos rasgos metaldgicos de T que es importante destacar.

T es consistente. T es una extension propia y conservativa de LPC
(i.e., agrega teoremas a los de LPC, pero no hay teoremas nuevos for-
mulados tinicamente con simbolos de LPC).

T no contiene leyes reductivas. Dada una modalidad iterada cual-
quiera, no es posible encontrar otra mds corta y equivalente a la primera
en el sistema T (recuérdese que las modalidades iteradas son una sub-
clase de las normales). Hay en T infinitas modalidades normales no equi-
valentes entre si. (Estos hechos acerca de T no se pueden demostrar de
manera muy sencilla.)

Para terminar con las observaciones acerca de T, podemos hacer notar
que se trata de un sistema bastante intuitivo. En general, los puntos de
partida de T no violentan nuestras intuiciones y entre los autores que
no tienen objeciones de principio en contra de la empresa misma de cons-
truir una légica modal, no suele haber resistencia ante los axiomas, reglas
y definiciones de T. Una excepcion es la logica relevante. Muchos 16gi-
cos relevantes piensan que si — representa la implicacion logica, la defi-
nicién que dimos de este operador binario es incorrecta: el definiens s6lo
proporciona condiciones necesarias, pero no suficientes, para una carac-
terizacion del definiendum (véase Anderson y Belnap, 1975).

3. El sistema S4

Una manera sencilla de obtener S4 a partir de nuestra formulacion de
T es agregar el siguiente axioma:

(A6) Op>O0Op

Salta a la vista que (A6) permite derivar infinitas leyes reductivas.
En efecto, como el condicional inverso del axioma introducido es un ejem-
plo de substitucion de (A4), se deriva rapidamente:

T1: Op=00p,

que es una ley reductiva de la cual pueden obtenerse infinitas leyes reduc-
tivas adicionales. Por ejemplo, (T1) permite obtener por substitucién todas
las equivalencias de la forma Mp=M’p, donde M y M’ son secuencias
finitas de [J y M’ tiene la longitud de M mds 1. Como es obvio, en S4
sigue valiendo (MRE) que, combinado reiteradamente con ejemplos de
substitucion de (T1), permite reemplazar en una férmula cualquiera una
secuencia de n+ 1J por un solo (1.

También se infiere rapidamente que la reiteraciéon de & se comporta
como la repeticion de (J. En efecto, negando ambos lados del = del (T1)
y substituyendo p por su negacién obtenemos una férmula que por apli-
cacidén de teoremas y definiciones de T arroja otra ley reductiva importante:

T2: Op=0Cp
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Un poco menos previsibles son los teoremas:
T3: OCp=00C00p
T4: OG0Op=<000CUp,

aunque su demostracién no es mucho mas complicada que la de los pre-
cedentes. Obsérvese que T3 y T4 muestran que la repeticion de cualquiera
de los bloques (< y & se comporta como la reiteraciéon de (J o &
También puede observarse que estos cuatro teoremas de $S4 hacen inne-
cesario usar secuencias de operadores monadicos diferentes de ~ y de
longitud mayor que 3 (el lector puede tomar una secuencia de tres ope-
radores distintos de ~ y observar si es irreductible el resultado de ante-
ponerle (1 o ©). Estas observaciones muestran que toda modalidad nor-
mal es reducible en S4, o bien a una de las modalidades de la lista

modalidad nula, 0,0,00,00, 000,000,

o bien a la negacidn de una de tales modalidades. Las catorce modalida-
des mencionadas (las de la lista mds sus negaciones) son irreducibles en
el sistema que estamos analizando (aunque mostrar esto es mds traba-
joso que probar que toda otra modalidad normal es equivalente a una
de ellas en S4).

S4 es consistente y es una extension propia y conservativa de LPC.
Es también una extension de T, propia pero no conservativa, ya que en
S4 se agregan teoremas que no estaban en T pero son formulables en
su lenguaje.

El agregado que se hace en S4 a T no es trivial, en el sentido de que
no es intuitivamente obvia la verdad del axioma 6. Si abandonamos el
plano intuitivo y construimos una semantica sistemadtica para los opera-
dores modales, el axioma 6 puede resultar vélido o invalido, segun la
semantica elegida.

4. El sistema S5

SS es una extension de S4, pero no lo formularemos como una extension
explicita de ese sistema, sino como una extensiéon de T obtenida por el
agregado del axioma:

(A7) OpDOOp

Este agregado es menos intuitivo ain que el axioma (6) de S4: lo que
afirma es que si una proposicién es posible, es necesario que sea posible.
Analizaremos las consecuencias de esta adicién a T. En las pruebas que
siguen usaremos teoremas ya demostrados de T, pero no teoremas de
S4, porque aun no se ha mostrado que el presente sistema sea una exten-
sion de aquél.

T1: Cp=0Cp
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(Este teorema es obvio porque el condicional de izquierda a derecha
es (A7) y el condicional de derecha a izquierda es un ejemplo de substitu-
cion del axioma 4 de T).

T2: OOp>0p

(O ~p2 OO ~p (RS en (A7), p/~p)

(2)~0p>~C0Op

(Se obtiene del paso anterior por MRE, aplicando dos veces T4 y
una vez T35, del sistema T)

(3) G0Op>0Op (Uso de Transposicién en (2))

T3: Op=<C0p

Este teorema se demuestra mediante dos condicionales: el primero
es un ejemplo de substitucién de T1 del sistema T (reemplacense las dos
ocurrencias de p por [p) y el segundo es el teorema 2 de S5 que demos-
tramos antes.

T4: OpD>O0p

(1) Op> <O Op (ejemplo del T1 de T)

(2) Op> OO 0Op

(Se obtiene de (1) reemplazando el < del lado derecho por una com-
binacién equivalente segun T1).

(3) Op2O0p

(Se obtiene de (2) reemplazando el © [J del lado derecho por [J, como
permiten MRE y T3).

De acuerdo con este teorema, el agregado que hicimos a T para obte-
ner S5 implica el axioma 6 de S4. Se sigue, pues, que S5 contiene todos
los teoremas de S4 (recuérdese cobmo se obtuvo S4 a partir de T). En par-
ticular contiene

T5: Op=00p

T6: Cp=0Op

Los teoremas 1, 3, 5 y 6 son leyes reductivas que en conjunto son
mucho mas poderosas que las de S4. Obsérvese que, dada una secuencia
cualquiera de dos operadores monadicos distintos de ~ , las leyes demos-

tradas permiten suprimir el primero de ellos. Este resultado implica que
en S5 todas las modalidades normales pueden reducirse a seis: la nula,
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O, © vy las negaciones de ellas (y las seis son irreductibles, aunque no
lo probaremos aqui). Es un poco sorprendente que todas estas reduccio-
nes son consecuencias del agregado de un solo axioma, el 7 de SS. Se
puede demostrar un resultado ain mds fuerte acerca de SS5: en este sis-
tema toda formula es equivalente a alguna férmula en la cual no hay ope-
radores modales aplicados a férmulas que ya tengan operadores modales.

SS es consistente. Es una extension propia y conservativa de LPC y
también es una extension (propia pero no conservativa) de T y S4.

(Si se desea profundizar en los aspectos sintacticos de T, S4 y S§, se
pueden consultar las fuentes originales mencionadas en la seccién II [la
parte sobre «la etapa sintdctica»] o el manual de Hughes y Cresswell,
1968).

IV. T, S4Y SS: ESTUDIO SEMANTICO

En esta seccidn explicaremos cémo se aplican los métodos de Kripke a
los sistemas T, S4 y SS. Pero antes presentaremos una semdntica mas
sencilla, cuyo analisis nos permitird advertir las motivaciones que tuvo
Kripke (o los otros dos pioneros mencionados antes) para introducir algu-
nos elementos que no se habian utilizado hasta entonces en la semantica
de sistemas légicos.

1. Necesidad leibniziana

Se atribuye a Leibniz una concepcion de la necesidad que fue un punto
de partida muy fructifero para la semantica modal de nuestros dias. Leib-
niz suponia que habia una infinidad de mundos posibles (entre los cuales
habia elegido Dios el mundo real). Hay proposiciones que son verdade-
ras en algunos mundos posibles y falsas en otros, pero también hay pro-
posiciones que son verdaderas en todos los mundos posibles: son las pro-
posiciones necesarias. Por ejemplo, hay mundos posibles (entre ellos el
real) en que existen gatos, y mundos posibles en que no existen tales ani-
males; pero en todo mundo posible es verdad que existen gatos o no existen
gatos, y esa proposicion es, entonces, necesaria.

La concepcion leibniziana de la necesidad se puede elaborar mate-
maticamente para definir una nocién de validez aplicable a las férmulas
de la légica modal. Cuando se construye una semdntica para un célculo
l6gico es usual definir las féormulas validas como aquellas que son verda-
deras en todas las estructuras de cierta familia (véase en Quesada, 1991,
cuales son las estructuras relevantes para la légica proposicional y cuan-
tificacional de primer orden). Se empieza por definir cuales son las estruc-
turas de la semdntica para ese calculo (son, esencialmente, ciertas asig-
naciones de entidades a simbolos del calculo). Se define luego la nocién
de verdad respecto de una estructura (una especificaciéon —usualmente
recursiva— del conjunto de férmulas que resultan verdaderas dadas las
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asignaciones hechas en la estructura). Finalmente, se define férmula valida
como aquella que es verdadera en toda estructura. Podemos construir una
semantica de este tipo sobre la base de la concepcion leibniziana. Una
complicacion que se presenta es que la nocion de verdad deja de ser una
relacion binaria que conecta férmulas con estructuras. La razon es que
segun la idea de Leibniz una proposicion puede ser verdadera en un mundo
posible y falsa en otro. Cuando tratamos de expresar esta idea en una
semadntica inspirada en Leibniz, debemos contemplar la posibilidad de
que, aun dentro de la misma estructura, una férmula pueda ser verda-
dera en un mundo posible y falsa en otro. Construiremos una semantica
de este tipo a continuacién. Un objetivo de nuestras construcciones serd
elaborar semanticas adecuadas para distintos sistemas légicos. Conside-
raremos que una semantica es adecuada para un sistema cuando las f6r-
mulas que resultan vélidas de acuerdo con esa semantica coinciden con
los teoremas del sistema en cuestion.

Simplificara la exposicion trabajar con un conjunto fijo de mundos
posibles. Supondremos que hay una cantidad infinita denumerable de
mundos posibles (i.e., tantos mundos como enteros positivos), que lla-
maremos m,, m,, Ms,... etc. Nuestro lenguaje L consta de infinitas
variables proposicionales (p, ¢, 7, y las mismas letras con cualquier subin-
dice entero positivo). Serdn estructuras de nuestra semdntica aquellas asig-
naciones que den un valor de verdad univoco (la verdad o la falsedad)
a cada par ordenado de una variable proposicional y un mundo posible
(i.e., una estructura se comporta como una funcién binaria f que a cada
par de una variable proposicional v y un mundo posible 7 le da un inico
valor de verdad).

Definiremos recursivamente la nocion de verdad en un mundo en una
estructura. La afirmacién de que la férmula A es verdadera en el mundo
m y la estructura E se abreviard con la expresiéon ’E (A, m) =V’ (lo cual
sugiere —como realmente ocurre— que la definicion de verdad da lugar
a una extension de la funcién binaria en que consiste una estructura).

(i) Si v es una variable proposicional, 7 un mundo posible y E una
estructura, E(v,m) =V siy sélo si (syss, en adelante) E le asigna la ver-
dad a v en m.

Si m es un mundo posible y A, B son férmulas,

(1) E(~A,m)=V syss E(A,m)#V

(1) E(ADB,m)=V syss E(A,m)#V o E(B, m)=V

(A partir de (i)-(iii) y las definiciones de los otros conectivos veritativo-
funcionales se deducen las cldusulas de la definicién de verdad para ellos).

(iv) E(OJA,m) =YV syss para todo mundo n, E(A,n)=V

La ultima clausula recoge la idea central de la semantica leibniziana.
De ella y las definiciones de los otros operadores modales se deducen las
cldusulas para ellos. En particular, se infiere que

(v) E(OA,m)=V syss para algin mundo »n, E(A,n)=V

Como es usual, decir que A es falsa (en m, en E) es afirmar que no
es verdadera (en m, en E).
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Por dltimo, A es vdlida syss es verdadera en todo mundo de toda
estructura.

Veamos cémo se comportan distintas férmulas respecto de esta tltima
definicion. Consideremos

(1) p20p
2) Upop
) O(pD4q)D(0p>Ugq)

) Opo00p
) Cp20Cp

(1) es intuitivamente no-valida. También lo es de acuerdo con nues-
tra semantica: basta considerar una estructura E que asigne la verdad
a p en un mundo m y la falsedad en un mundo #; E le asigna la verdad
al antecedente de (1) en 2 y la falsedad al consecuente de (1) en ese mismo
mundo (apliquense las cldusulas (i), (iv) y (iii)).

(2) es intuitivamente valida y también lo es de acuerdo con nuestra
semantica, lo cual se puede probar por el absurdo. Suponer que (2) no
es véalida implica que hay un mundo » y una estructura E en que (2)
es falsa. En tal caso, su antecedente es verdadero y su consecuente falso
en tal mundo. Pero si el antecedente es verdadero en m1, de acuerdo con
(iv), p debe ser verdadero en todo mundo, incluido 1, lo cual contradice
la conclusién a la que se habia llegado acerca del consecuente. De manera
muy similar, se puede probar que (3) es valida.

Es mas interesante el caso de (4) porque se trata de una férmula que
no es teorema de T pero si de S4 y S5. (Por qué sistema(s) se decidira
nuestra semantica? Por los dos ultimos. Supongamos que el antecedente
de (4) es verdadero y su consecuente falso en algun mundo m y estruc-
tura E. Si el antecedente es verdadero en m, p es verdadero en todo mundo
en E. Pero en ese caso, [1p no solamente es verdadero en m sino en todo
mundo (en E). Si ése es el caso, [J[Jp también sera verdadero en todo
mundo en E y en particular en 7, contradiciendo lo supuesto acerca del
consecuente. También (5) es valida y la demostracién de este hecho es
completamente similar a la del anterior.

Nuestra semantica se ha inclinado hacia S5: ha declarado validas cinco
férmulas que son teoremas de este sistema y entre ellas hay férmulas que
no son teoremas de uno, o dos, de los sistemas anteriores. Se puede pro-
bar un metateorema que muestra la adecuacién de nuestra semadntica al
sistema S5: una formula es teorema de ese sistema syss es véalida de acuerdo
con nuestra semantica. Pero entonces nuestra semdntica no es adecuada
para los sistemas mas débiles T y $4. :Como podria disefiarse una seman-
tica que sélo validara los teoremas de T, o sélo los de $4? Kripke y otros
autores ya mencionados introdujeron ideas que permitieron llevar a cabo
la empresa y que explicaremos a continuacidn.

Supongamos que la idea de mundo posible es relativa a mundos: un
mundo puede ser posible para algunos mundos y no para otros. Emplea-
remos la siguiente terminologia técnica: diremos que el mundo 7 es acce-
sible al mundo m cuando # es posible para m. Abreviaremos mediante

(

(3
(4
(5
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«mRn» la afirmacién de que # es accesible a m. Supongamos que la ver-
dad de [JA en m no requiere la verdad de A en todo mundo posible,
sino s6lo en aquellos mundos posibles accesibles a m. (iv) y (v) queda-
rian entonces reformuladas de la siguiente manera:

(iv’) E(LJA,m)=V syss para cualquier # tal que mRn, E(A,n)=V

(v’) EQ(A,m)=V syss para algun n tal que mRn, E(A,n)=V.

Hemos introducido una relaciéon entre mundos posibles y hemos rede-
finido las condiciones de verdad de [1A y < A usando esa relacién. Pero
s6lo sabemos de R que es una relacién entre mundos. Si no anadimos
algo mas, no obtendremos una semdntica util. Podriamos agregar pos-
tulados acerca de esa relacién: que R es reflexiva, que es una relacion
de equivalencia, etc. Lo que descubrié Kripke es que si trabajamos con
(iv’) y (V') y agregamos postulados respecto de R, podremos obtener
semanticas adecuadas para distintos sistemas si elegimos postulados apro-
piados para cada uno. Mostraremos como se hace esto para T, $4 y SS.

2. Una semantica para T

Para dar forma matemdtica a las ideas de Kripke debemos reparar en
algo importante: en nuestras consideraciones acerca de la semdntica leib-
niziana nunca usamos ningun supuesto acerca de la estructura interna
de los mundos posibles; sélo los usamos como «soportes» de distintos
valores de verdad para la misma variable. Entonces podemos usar como
«mundos» objetos cualesquiera. Lo importante es introducir todas las
funciones f que se comporten de esta manera: f, aplicada a una variable
proposicional y uno de los objetos elegidos, da como resultado un valor
de verdad univoco. Para asegurarnos de que se den todas las combina-
ciones entre mundos y valores de verdad de las infinitas letras proposi-
cionales, debemos trabajar con un conjunto infinito fijo de «mundos»
o con infinitos conjuntos diferentes de objetos. Eligiendo la ultima via,
podemos introducir la importante nocion de modelo de Kripke. Un
modelo de Kripke es una terna ordenada tal que su primer componente
es un conjunto no vacio M, su segundo componente es una relacion R
entre miembros de M (i.e., un subconjunto de M x M) y su tercer com-
ponente una funcién V que a cada par ordenado de una variable propo-
sicional y un miembro de M le asigna un valor de verdad univoco. Repre-
sentaremos un modelo de Kripke arbitrario mediante la notacion <M,
R, V>. El par ordenado de los dos primeros componentes de un modelo
de Kripke es un marco de Kripke. En las semanticas que estudiaremos
a continuacion, los modelos de Kripke cumplirdn el rol de estructuras.
Por razones similares a las que se adujeron en el caso de la semdntica
leibniziana, no se puede definir verdad para un modelo sino verdad para
un mundo en un modelo. Las clausulas recursivas de esta definicion son
como las de la semantica leibniziana, solo que reemplazando (iv) y (v)
por (iv’) y (v’) y la idea de estructura por la de modelo de Kripke. Tene-
mos entonces:
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(i) Si v es una variable proposicional, <M, R, V> un modelo de
Kripke y 7 un miembro de M, v es verdadera en m en ese modelo syss
V(v,m)=la verdad.

(i1) ~ A es verdadera en un mundo 7 en un modelo de Kripke K syss
A no es verdadera en m en K.

(iii) (ADB) es verdadera en un mundo 7 en un modelo de Kripke
K syss A no es verdadera en m en K o B es verdadera en m en K.

(iv) JA es verdadera en m en un modelo de Kripke <M, R, V>
syss para todo mundo 7 de ese modelo, tal que mR#n, A es verdadera
en 7 en ese modelo.

(v) ©A esverdadera en un mundo 7 en un modelo de Kripke <M,
R, V> syss para algin mundo # de ese modelo tal que mRn, A es verda-
dera en 7 en ese modelo.

A es falsa en un mundo m en un modelo de Kripke K syss A no es
verdadera en m en K.

A es valida en un modelo de Kripke K syss es verdadera en todo mundo
m en K. Finalmente, llegamos a la definicion de validez de una férmula
en una clase de modelos de Kripke (estanocidn es importante porque cum-
plird la misma funcion que en otras semanticas tiene la nocién de verdad
para una familia de estructuras). A es vdlida en una clase de modelos de
Kripke syss es valida en todo modelo de la clase (i.e., es verdadera para
todo mundo en todo modelo de la clase).

Se puede construir una semantica adecuada para T de la siguiente
manera. Las estructuras de nuestra semdntica seran modelos de Kripke.
Pero para que la semantica sea adecuada para T, deberemos escoger una
familia determinada de tales modelos. Elegiremos la clase de modelos
de Kripke cuya relacion R (el segundo componente del modelo) es refle-
xiva, en el sentido de que todo mundo del modelo (todo elemento de
M) tiene la relaciéon R consigo mismo. Llamaremos modelo de Kripke
reflexivo a los modelos de Kripke que satisfagan esta condicion.

Puede observarse en ejemplos algo que se puede demostrar en gene-
ral: los teoremas de T son vélidos en la clase de todos los modelos refle-
xivos. Consideremos otra vez la férmula (2) de la tltima serie de cinco
antes analizada. Sabemos que es un teorema de T. Es obvio también que
es valida en todo modelo de Kripke reflexivo: si el antecedente de (2)
es verdadero en un mundo m de un modelo reflexivo K, p sera verdadera
en todo mundo accesible a #1; pero m mismo es uno de esos mundos y
se desprende entonces que p es verdadera en m. Como dijimos, y el lec-
tor puede comprobar como ejercicio en algunosejemplos, lo mismo ocurre
para todo teorema de T. Pero lo interesante es que la clase de modelos
de Kripke elegida no es omni-acogedora. Si se toman teoremas de S4 o
S5 que no son teoremas de T, resulta que no son vélidos en la clase de
modelos escogida. Considérese (4). Témese un modelo de Kripke refle-
xivo donde hay tres mundos m,, m, y m;, tales que m,Rm, y m,Rm;,
pero m, no tiene la relacién con m; (por supuesto, cada mundo tiene
la relacién consigo mismoj; no se dan mas conexiones que las enumera-
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das). Supongamos que p es verdadero en los dos primeros mundos pero
no en el tercero. [Ip es verdadero en m,, porque p es verdadero en
todos los mundos accesibles a 72, (él mismo y m1,); pero [1[p no es ver-
dadero en el primer mundo, porque [Ip no es verdadero en el segundo
(ya que en un mundo accesible a él, m;, no es verdadera p). Se des-
prende que el antecedente de (4) es verdadero pero su consecuente falso
en m;. (4) no es vélida para la clase de modelos de Kripke reflexivos.

En general, puede probarse que A es teorema de T syss es valida en
la clase de modelos de Kripke reflexivos. Esta clase permite entonces defi-
nir una semdntica adecuada para T.

3. Semanticas para S4 y 8S

Se puede construir una semdntica adecuada para S4 si se toma una clase
de modelos de Kripke cuya relacion R satisface otras condiciones: es refle-
xiva, pero también transitiva. Llamemos modelos de Kripke reflexivo-
transitivos a los que cumplen con esta doble condiciéon. Estos modelos
determinan un conjunto de férmulas: las que son validas respecto de esta
clase. Puede observarse que el modelo que usamos antes para mostrar
la no-validez de (4) ya no servira para probar la no-validez de esa f6r-
mula en la nueva semdntica: en aquel ejemplo R no era transitiva. De
hecho, (4) es valida en la semantica que acabamos de construir (el lector
puede intentar probar por el absurdo esta afirmacién). La nueva clase
de modelos se comporta respecto de $4 como la clase de modelos reflexi-
vos respecto de T: A es teorema de S4 syss es valida en la clase de los
modelos de Kripke reflexivo-transitivos.

La semantica leibniziana que describimos antes era adecuada para
S§, pero se crearia una discontinuidad inelegante si usiramos esa seman-
tica para SS y otras basadas en modelos de Kripke para T y S4. Los méto-
dos de Kripke también son aplicables a S5. Esto es trivialmente verda-
dero si se piensa que la clase de modelos de Kripke cuya relacién es
universal (i.e., que cualquier par ordenado de mundos del modelo perte-
nece a la relacion) se comporta exactamente como las estructuras de nues-
tra semantica leibniziana. Otra manera de construir una clase de mode-
los de Kripke que proporciona una semdntica adecuada para SS es exigir
que la relacién del modelo sea una relacion de equivalencia (reflexiva,
simétrica y transitiva). Llamemos modelos de Kripke R-equivalentes a
los que cumplen esta condicidon. Puede probarse respecto de ellos que A
es valida en esa clase de modelos syss es teorema de SS5.

En la literatura sobre l6gica modal se dice que un sistema modal S
es correcto respecto de una clase C de modelos de Kripke syss todo teo-
rema de S es valido en la clase C. Se dice también que S es completo res-
pecto de C syss toda féormula de S que sea valida en C es teorema de S.
Si un sistema modal S es correcto y completo respecto de una clase C
de modelos de Kripke, se dice también que la clase C caracteriza el sis-
tema S. En esta seccién hemos introducido varias semanticas basadas en
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clases de modelos de Kripke. Afirmar que una de ellas es adecuada para
un sistema modal equivale a decir que la clase de modelos en que estd
basada caracteriza el sistema en cuestion. Para probar esto ultimo se deben
demostrar dos teoremas, uno de correccion y otro de completitud. Debido
al bagaje de conocimientos que hemos presupuesto en el lector y el espa-
cio disponible, no podemos probar aqui la adecuacion de las semanticas
que hemos introducido para T, S4 y S5. Los trabajos de Kripke que hemos
mencionado en la seccién II (en la parte sobre «la etapa semantica») pro-
porcionan todos los elementos para construir las pruebas correspondien-
tes. Una presentacién didactica de los teoremas relevantes y sus demos-
traciones puede encontrarse en Hughes y Cresswell (1968) y Hughes y
Cresswell (1984). Un libro muy util para profundizar en la semantica
de la logica modal es Chellas (1980).

V. INVESTIGACIONES ACTUALES SOBRE METALOGICA MODAL

En las investigaciones recientes sobre l6gica modal ha predominado una
tendencia a estudiar las propiedades de sistemas modales de diferentes
clases o las relaciones del lenguaje modal con ciertasestructuras. En lineas
generales puede decirse que el interés tedrico se ha desplazado hacia lo
que describi hacia el final de la seccion Il como «la metaldgica modal
generalizada». Muchos de los trabajos caen en dos areas que se denomi-
nan «teoria de la completitud» y «teoria de la correspondencia».

En la teoria de la completitud se clasifican los conjuntos de férmulas
modales (de un lenguaje modal especificado). En la presentacion de Jan-
sana (1990), se llama /6gica a todo conjunto de férmulas modales que
contenga todas las tautologias y esté cerrado para las reglas de modus
ponens y substitucion (i.e., si ciertas férmulas pertenecen al conjunto,
también pertenecen a él las formulas que pueden inferirse de las prime-
ras mediante las reglas mencionadas —que son las reglas MP y RS de
mi formulaciéon de T). Hay varios grupos importantes de logicas. El grupo
mas estudiado es el de las l6gicas normales. Una logica es normal si con-
tiene todos los ejemplos de substitucidon del axioma 5 de T, en la formu-
lacion de la seccion 111, y esta cerrado para la regla de necesidad que apa-
rece en esa misma formulacion. Las férmulas que pertenecen a una légica
normal se dicen teoremas de esa logica.

Recordemos que un marco de Kripke es el par ordenado de los dos
primeros componentes de un modelo de Kripke. Un modelo de Kripke
<M, R, V> es un modelo del marco <M, R>. Una férmula es valida
respecto de un marco de Kripke cuando es valida respecto de todos los
modelos de ese marco. La validez, correccién y completitud respecto de
clases de marcos de Kripke se define de manera analoga a las nociones
de validez, correcciéon y completitud respecto de clases de modelos de
Kripke. Una clase de marcos de Kripke C caracteriza una ldgica syss tal
logica es correcta y completa respecto de C. Algunas preguntas tipicas
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de la teoria de la completitud son: ¢Existe para cada logica normal una
clase de modelos que la caracterice? ¢Existe para cada légica normal una
clase de marcos que la caracterice? ¢Plantean el mismo problema las dos
preguntas anteriores? ¢Existe alguna légica normal caracterizada por la
clase de los marcos irreflexivos (aquéllos en que la relacion R es irrefle-
xiva)? Estas y otras preguntas mas técnicas han originado una buena can-
tidad de resultados interesantes de la teoria de la completitud.

La teoria de la correspondencia surgio6 a partir de la observacion de
ciertas conexiones entre sistemas modales y propiedades de la relacion
R de la clase de marcos que los caracterizaban. Por ejemplo, S4 es carac-
terizada por la clase de los marcos cuya relacidn R es reflexiva y transi-
tiva. También férmulas aisladas estan conectadas con propiedades de la
relaciéon R de determinadas clases de marcos. Por ejemplo, el axioma 4
de nuestra formulaciéon de T es valido en un marco de Kripke syss la rela-
cién R de tal marco es reflexiva. El axioma 6 de S4 (en nuestra presenta-
cién) es vélido en un marco syss la relaciéon de tal marco es transitiva.
En las tres conexiones citadas, hay correspondencias entre sistemas o fér-
mulas modales y clases de marcos cada una de las cuales tiene como carac-
teristica distintiva tener una relacién R que cumple cierta condicién expre-
sable mediante una férmula de primer orden (reflexividad y transitividad,
reflexividad, o transitividad, en nuestros ejemplos). Estas corresponden-
cias suscitan algunos interrogantes: ¢ Toda formula modal est4 conectada
con una propiedad de R expresable en la l6gica de primer orden? En caso
de que no sea asi, ¢qué tipo de férmulas modales determinan condicio-
nes de primer orden? Estas y otras preguntas mas técnicas originaron
muchos hallazgos de la teoria de la correspondencia. Dos resultados par-
ciales pueden ser de interés para el lector. Toda férmula modal A en la
que no hay operadores modales aplicados a formulas que ya tienen ope-
radores modales, estd conectada con una clase de marcos de Kripke deter-
minada por una condicién acerca de R expresable en la légica de orden
uno (la conexidn es, naturalmente, que la formula es valida en un marco
syss pertenece a la clase de marcos en cuestion). Hay férmulas modales
que no estdn conectadas con ninguna clase de marcos caracterizada por
una propiedad de su relacion R expresable en la logica de orden uno.
Un ejemplo es el llamado axioma de Lob:

O(Up—p)—>Up

Se considera que la obra fundamental en la teoria de la completitud
es Segerberg (1971). Goldblatt (1976) y Van Benthem (1982) contienen
lo esencial de la teoria de la correspondencia. Van Benthem (1984) sin-
tetiza muchos resultados. Jansana (1990) es una excelente introduccién
a la teoria de la completitud y la teoria de la correspondencia (en la que
se tratan también otros temas de lo que he llamado «metalégica modal
generalizada»; la obra no presupone ningin conocimiento de logica
modal, aunque quizds algun conocimiento de sistemas modales particu-
lares pueda requerirse para que un lector se interese por los resultados
mds abstractos y generales de este libro).

319



RAUL ORAYEN
APENDICE

Las limitaciones de espacio han hecho que me restringiera en este tra-
bajo a logica modal proposicional. La parte II de Hughes y Cresswell
(1968) contiene una introduccion basica a la 1égica modal cuantificacio-
nal. Garson (1984) da informacién sobre investigaciones y resultados mas
recientes en este campo.

También se han omitido en este articulo enfoques algebraicos de la
légica modal, dado que en este volumen no se suministran elementos basi-
cos de enfoques de tal tipo. Jansana (1990) también proporciona infor-
macioén sobre investigaciones en este terreno. Por tltimo, han sido exclui-
das aqui las teorias que son ldgicas modales s6lo en un sentido amplio
de la expresion (por ejemplo, l6gicas dednticas, temporales, condiciona-
les, etc.). Se puede encontrar informacién sobre ellas en otros articulos
de este volumen y en Gabbay y Guenthner (1984).
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LOGICAS MULTIVALENTES

Lorenzo Pefia

I INTRODUCCION HISTORICA

La idea central subyacente a la construccién de 16gicas multivalentes es la de
que hay un cierto campo fronterizo entre la verdad total y la completa fal-
sedad. Esa idea no es ningin invento de algunos légicos contemporaneos,
sino que tiene hondas y remotas raices en el pensamiento humano, y cabe ale-
gar a su favor muchas consideraciones de muy diversa indole, desde las pura-
mente filos6ficas hasta las referidas a dificultades surgidas en no pocas disci-
plinas cientificas por la pretensién de encasillar cada situaciéon en uno de los
dos polos, o «valores de verdad», de la légica clésica.

Sin remontarnos a pensadores a quienes, como a Heraclito y a Platén,
cabe fundadamente atribuir la propuesta de situaciones intermedias entre esos
dos polos o extremos —en el caso de Platén con su tesis de grados de verdad
o de realidad—, hay algiin indicio a cuyo tenor no pareciera descaminado ver
en Raimundo Lulio y en Nicolds de Cusa,. entre otros, esbozos, todo lo rudi-
mentarios que se quiera, de algo asi como l6gicas multivalentes. Sin embar-
go, fue uno de los fundadores de la l6gica contemporanea, Charles S. Peirce,
quien, junto con muchos otros logros, esbozd claramente, por vez primera,
un sistema de légica trivalente y ademas elaboré argumentos filoséficos con-
vincentes a su favor. Sus apuntes al respecto recorren un largo lapso, mas en
cualquier caso se sabe que en 1909 desarroll6 esas ideas y alcanzé resultados
rigurosos. Su plan de una matematica triddica o tricotdmica concebia la inclu-
si6n del dominio limitrofe entre la afirmacién y la negacién «positivas» como
un ensanchamiento mas que como un debilitamiento de la légica clésica (el
principio de tercio excluso no habia de venir omitido, pero si reinterpretado
de tal forma que no fuera enteramente verdadero). Peirce no publicé esos es-
bozos, desgraciaaamente, y su obra no influyé en el ulterior [re]nacimiento
de las logicas multivalentes. (Sobre el aporte de Peirce, vid. Rescher, 1969,
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4-5; ese mismo libro es la mejor fuente bibliogrifica y de referencia para
buena parte de las someras indicaciones de esta seccidn.)

El primer sistema estricto de 16gica multivalente en ser dado a conocer
en publico fue el sistema trivalente del 16gico polaco Jan Lukasiewicz en
1920 (ver Lukasiewicz, 1967). Durante los afios 20 el propio Lukasiewicz y
otros lgicos polacos desarrollaron ese sistema y fueron inventando otros con
mas de tres valores de verdad. Uno de esos légicos, M. Wajsberg, brindé en
1932 una axiomatizaciéon completa para la ldgica trivalente de Lukasiewicz:
éste, por su parte, ya en 1930 expres6 su preferencia filos6fica por la 16gica
infinivalente. Siguieron en afios sucesivos numerosos trabajos de estudio sin-
tactico y semdntico de esos y otros sistemas multivalentes por diversos 16gi-
cos polacos, como J. Stupecki, Boleslaw Sobocinski, St. Jaskowski, etc.

Independientemente, el 16gico norteamericano E. Post inventé en 1921
otro sistema diferente de ldgica trivalente. Luego generalizé su tratamiento
a m valores (para m finito). Desde el punto de vista 16gico, suscita una
dificultad el tratamiento de Post, y es que lo que él propuso fue una légica,
no de enunciados, sino de conjuntos de enunciados, por lo cual no resulta
facil entender sus sistemas como calculos sentenciales. Pero dieron lugar a
estudios algebraicos que luego se han revelado fructiferos. En ese orden del
estudio algebraico han abundado cada vez mas las contribuciones destacadas,
entre las que cabe citar las de Gregor Moisil ya antes de la II guerra mundial
(en Moisil, 1972), y luego Balbes & Dwinger (1974), Varlet (1975), Rasiowa
(1974), el matematico portugués Antonio Monteiro y su colaborador y disci-
pulo argentino —radicado durante un tiempo en el Brasil— R. Cignoli (1980).

Otro aporte muy original fue el de S.C. Kleene, cuyo sistema l6gico
trivalente, de 1938, presentaba rasgos que lo separaban, interesantemente, de
los de Lukasiewicz. Igualmente original era el sistema trivalente del 16gico
ruso Bochvar (propuesto en 1939), que postulaba 3 valores, V, F e I, y que
atribuia I a cada férmula no atémica que tuviera entre sus componentes una
férmula con valor I. Ese sistema no tiene tautologias, pero recientemente
Urquhart (1986) ha probado su interés desde el punto de vista de la teoria de
pruebas.

Urquhart aborda ese estudio y el de otros calculos multivalentes —inclui-
do uno que €l propone y que ha sido desarrollado en Méndez (199?)— uti-
lizando un nuevo y mas fecundo enfoque, que es el matricial, un cruce entre
teoria de pruebas y ldgica algebraica, y que consiste en dilucidar qué
relaciones de consecuencia vienen determinadas por la asignacién de ciertas
algebras como modelos para los cilculos 16gicos que se trate de estudiar. Ese
tratamiento matricial —dentro del cual se ubica el presente estudio también—
ha sido desarrollado, entre otros, por Malinowski (1979), Rautenberg (1979)
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y sobre todo el ya citado Urquhart.

No sin conexién conlos desarrollos ya mencionados, tuvieron lugar otros
que no pueden dejar de considerarse dentro del dmbito de las légicas mul-
tivalentes: la axiomatizacién de la légica intuicionista por Heyting en 1930
(desde el punto de vista algebraico ese cilculo se caracteriza por algebras
pseudocomplementadas, en el sentido indicado en el §2 de este trabajo) y mds
alin los calculos propuestos por Kurt Gédel en 1932 (cuya contraparte al-
gebraica son algebras de Stone; ver §2, infra); sobre esos aportes, ver Res-
cher (1969). Otra exploracién de las 16gicas multivalentes se efectué con vis-
tas al tratamiento de anomalias en la fisica cuantica; fue iniciada en 1937 por
P. Détouches-Février y desarrollada por Reichenbach en 1944 (ver Haack,
1974, 148 ss, 172-4).

Una auténtica explosion de estudios y de aplicaciones de 16gicas multiva-
lentes ha tenido lugar desde que en 1965 el trabajo pionero del ingeniero
electrénico californiano Lofti Zadeh (ver Zadeh y ot. (1975)) inaugurd el tra-
tamiento de las ldgicas de lo difuso, y de las teorias de conjuntos difusos. La
idea central (que ya antes habia sido propuesta, entre otros por Rescher) es
tomar como funcién caracteristica de un conjunto una que tome sus valores
o imagenes en un conjunto de mas de dos valores de verdad —preferiblemen-
te en un dominio de infinitos valores. Aunque enfoques de ese género no han
suscitado ni mucho menos unanimidad y siguen siendo dsperamente contro-
vertidos, numerosisimos cientificos de las mas variadas disciplinas han abra-
zado con ardor ese tipo de tratamientos, habiéndoles encontrado, o creido en-
contrar, multiples aplicaciones en sus respectivos campos. Més que nada des-
cuella en esa porfia la informética, donde, curiosamente, el binarismo que pa-
recia subyacente de manera definitiva se ha visto asi contrarrestado o acaso
completado por los tratamientos multivalentes. El hecho es que quienes mas
han contribuido a propagar el uso y cultivo de las viejas y nuevas ldgicas
multivalentes han sido los ingenieros electrénicos. Desde esa perspectiva han
surgido un sinfin de nuevos tratamientos algebraicos, p.ej. (destaca aqui el
grupo barcelonés de Enrique Trillas, L. Valverde y otros; ver, a titulo de
ejemplo no mds, Trillas & Valverde (1982)). No sin parentesco con esa linea
de estudios estan los nuevos tratamientos de inteligencia artificial y temas
conexos utilizando 16gicas paraconsistentes multivalentes, como las ldgicas
anotadas (en las que una formula «dice» de algiin modo qué valor o grado de
verdad posee: ver da Costa, Subrahmanian & Vago (1989); ello guarda afini-
dad con lo esbozado en el §2, hacia el final). Entre las 16gicas multivalentes
que son a la vez paraconsistentes cabe asimismo mencionar una ldgica triva-
lente que ha sido separada e independientemente descubierta e investigada por
varios autores; entre ellos el autor de estas paginas, por un lado, y por otro
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da Costa e [tala d’Ottaviano, conjuntamente; ésta ultima la ha estudiado a
fondo en su tesis d’Ottaviano (1982).

Otra drea donde ha prosperado la 16gica multivalente es la del tratamiento
semantico de las ldgicas relevantes, desarrolladas desde los afios 70; ver
Anderson & Belnap (1975). La relacion entre 16gicas multivalentes y 16gicas
de la relevancia ha sido investigada, p.ej., por Urquhart, en su trabajo ya
citado, y por Sylvan & Urbas (1989). Alguna de las légicas estudiadas en
este ultimo trabajo guardan estrechisimo parentesco con las que mds centraran
nuestra atencion en la segunda mitad o asi del §2. (Sobre ese parentesco, vol-
veré justamente al final del §2.)

Hasta que se empezo a trabajar en teorias de conjuntos difusos prevalecia
en el estudio de 16gicas multivalentes la preferencia por l6gicas con un ni-
mero finito de valores. Pero para su aplicacion a la teoria de conjuntos, se
han visto las ventajas de la infinivalencia. Desgraciadamente, sin embargo,
resultaba muy dificil dar un tratamiento axiomatico adecuado a calculos cuan-
tificacionales infinivalentes (la extensibilidad cuantificacional de las l6gicas
multivalentes en general se venia investigando desde hacia tiempo, sobresa-
liendo el aporte de Rosser & Turquette (1952), c. V, 62 ss; mas la prueba
de la inaxiomatizabilidad del sistema L,Q de l6gica cuantificacional basado
en el calculo infinivalente de FLukasiewicz fue proporcionada por B. Scarpelli-
ni en 1962; ver la referencia en Urquhart, 1986, 99). Ello ha alejado a una
parte de los estudiosos y cultivadores de esas teorias de conjuntos del trata-
miento axiomdtico. Recientemente se ha puesto en pie una nueva familia de
l6gicas infinivalentes (y paraconsistentes) en la cual se obtiene la extendibili-
dad axiomdtica al célculo cuantificacional, y ademds se prueba que uno al
menos de los sistemas de esa familia, A, es, para cada légica L caracterizada
por m valores de verdad, una extensién cuasi-conservativa de la misma, en
el sentido de que hay en el sistema algin functor de afirmacién generalizada,
¢, tal que, para cualquier formula Tp7, rtp7 es un teorema de A sys (si,
y s6lo si) Tp7 es un teorema de L (ver Pefia, 1991, 139 ss); como casos par-
ticulares se tiene una extensién del mismo resultado para la 16gica G, (el sis-
tema infinivalente de Gddel) y otro incluso mas fuerte, y es que A es una ex-
tension conservativa de la l6gica bivalente clasica (naturalmente, slo para
cierta traduccion de la negacién clasica).

Si la investigacién de 16gicas multivalentes ha suscitado entusiasmo, no
han faltado sus detractores, quienes han tendido a ver en esos calculos inven-
ciones artificiales y sin base «intuitiva», o incluso exentos de interés mate-
matico. Como qué tautologias se den en un sistema multivalente y también
qué relacion de consecuencia haya en él dependen de qué valores sean
tomados como designados (o verdaderos), unos cuantos autores han concluido
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que se trata de algo meramente arbitrario, y por ende que todo el tratamiento
ofrecido por tales lgicas es un juego. Cae naturalmente fuera del 4mbito del
presente trabajo discutir las motivaciones filoséficas, pero el hecho es que
éstas existen, y a favor de ellas abonan muchos argumentos propuestos por
diversos autores. Sobre ese y otros puntos que han de quedar fuera del pre-
sente estudio, ver Pefia (1994).

Hoy se suele estar de acuerdo —mads alld de tantisimas discrepancias en
tantas cosas— al menos en esto: que el tratamiento de 16gicas 1lamadas mul-
tivalentes forma parte del estudio algebraico de la 16gica. En verdad hay una
prueba trivial (generalizacion de un resultado célebre de Lindenbaum) a cuyo
tenor cualquier sistema tiene una matriz caracteristica multivalente: basta con
tomar como 4lgebra una cuyo portador sea el conjunto de las formulas, y
cuyos elementos designados sean los teoremas. En ese sentido no hay légica
que no sea multivalente. Ese resultado no banaliza el estudio de las 16gicas
multivalentes porque, precisamente, el tratamiento algebraico permite ver qué
reducibilidades ulteriores se dan (por via de congruencias, nocién que sera
explicada en el §2).

II LAS LOGICAS MULTIVALENTES COMO LOGICAS ALGEBRAICAS

Las convenciones notacionales usadas aqui son, esencialmente, las de Church:
un punto indica un paréntesis de abrir cuyo correspondiente paréntesis de
cerrar estaria tan a la derecha como quepa; las restantes ambigiiedades se
disipan asociando hacia la izquierda

Por dlgebra universal cabe entender un conjunto dotado de ciertas opera-
ciones, siendo una operacién una funcién n-aria, para n=0 (n puede ser
infinito, pero aqui excluiremos tal posibilidad). E.d., una operacién n-aria,
q{, definida sobre un conjunto A, es algo tal que, para cualesquiera n
miembros de A, a!, a2, ..., af, §(al...a”) € A: lo cual significa que para
al,...,a" € A hay un solo miembro de A que es §(al,...,a). Cuando se trate
de una operacion binaria, en vez de §(a',a?)" escribimos ma'§a?" . General-
mente un algebra se representa como una secuencia <A, I'>, donde I' es
una secuencia de operaciones, o bien, alternativamente, como una secuencia
<A, 1.,....¥>, donde {',...,¥ son operaciones ordenadas por su ariedad,
o sea por el nimero de sus argumentos. El conjunto A sera el portador de
dicha algebra. A veces, por comodidad, se llama al dlgebra igual que a su
portador.

Una matriz es un un trio <A, D, A>, donde <A, A> es un algebra
—siendo A, A, segln se acaba de indicar—, al paso que D es un subconjunto
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de A, subconjunto que viene llamado el conjunto de elementos designados.

El procedimiento general para establecer la correspondencia entre un
calculo 16gico y una matriz es éste. Dos dlgebras se llaman similares [entre
si], o de de similaridad igual, si son, respectivamente, <A, I'> y <B, A>,
yI' = <%, 73, ..., 7,> mientras que A = <§,, §,, ..., §,> y, para cada
indice, i (1 <i<n) v, es una operacién de la misma ariedad que §;, o sea son
operaciones con el mismo nimero de argumentos. Un morfismo de un élgebra
<A, A> enotra a ella similar <B, I'> es una funcién f tal que, para cada
indice i, si 6; es una operacion m-aria, entonces para cualesquiera m elemen-
tos de A, g, ..., ay, f(5;(a;,...,ay)) = 6,(fa,,....fa,). Si el morfismo m es
una inyeccién (mx=mz sélo si x=z), serd llamado un monomorfismo; si es
una sobreyeccion (para cada b€ B hay un a€ A tal que ma=b), serd un epi-
morfismo; si es ambas cosas a la vez, un isomorfismo. Un morfismo de un
dlgebra en si misma es un endomorfismo; un endomorfismo isomorfico es un
automorfismo.

Un célculo 1dgico [sentencial] viene definido como sigue. Un lenguaje
sentencial es un dlgebra de indole particular, a saber: una en la que el
portador es un conjunto de férmulas y las operaciones son simplemente las
operaciones n-arias (para n=0) que envian a n férmulas, tomadas como argu-
mentos, sobre la féormula resultante de unir a las dadas mediante un functor
n-ddico determinado; pueden ser, p.ej., las de negacién, disyunciéon y
conyuncién. Si <A, I'> es un lenguaje sentencial, <A, I', ®#> es un cdl-
culo [sentencial] sys ;R es una operacién de consecuencia en A, donde una
operacion de consecuencia viene definida como una funcién ¢ que toma
como argumentos subconjuntos de A y que cumple estas condiciones: 12)
odX = ¢X 2 X; 2?) ¢Z ¢ ¢X s6lo si Z ¢ X; 3?) ninglin endomorfismo
m es tal que m¢pX ¢ ¢mX. Llamamos regla de inferencia de un célculo cuyo
portador (conjunto de férmulas) sea A a una relacién R entre dos subcon-
juntos de A que cumpla estas tres condiciones: 1?) R se mantiene para cual-
quier endomorfismo —o sea: si X guarda R con Z, y m es un endomorfismo,
siendo m(X) = {q: Ir€X(mr=q)}, entonces m(X) guarda R con m(Z); 2?)
si ;i es la operacion de consecuencia definitoria del cilculo C, entonces X
guarda R con {z} sélo si z € RX; 3?) un conjunto X guarda con otro Z la
relacion R sdlo si para cierto z Z={z}; a efectos practicos podemos repre-
sentar el que X guarde la relacién R con { *q7 } como el que se dé esa re-
lacién R entre X y la formula "q? . Que Tq? € RX lo escribimos: X hq.
Si X = {rp", ..., /p™ }, podemos expresar lo mismo asi: p!,...,p" |- q.
Decimos que una operacién o es la extension ancestral de una familia de re-
laciones {R;};¢ sys oX es el menor superconjunto de X cerrado con respecto
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a cada relacién R;. Una operacién de consecuencia R serd llamada regular
sys hay un nimero finito de reglas de inferencia, R,,...,R,, tales que & es
la extensién ancestral de {R,,...,R,}. En tal caso diremos que R es la ope-
racion de consecuencia engendrada por R,...R,. S6lo nos interesaremos aqui
por operaciones de consecuencia regulares, lo cual nos permitira, de hecho,
pensar, mas que en la operacién en si, en las reglas de inferencia que la en-
gendran.

Aquellos elementos del portador de un célculo con los cuales el sub-
conjunto vacio de férmulas, &, guarde alguna regla de inferencia de ese
calculo son sus axiomas. Los teoremas de ese célculo son los miembros del
menor superconjunto del conjunto de sus axiomas cerrado para la operacién
de consecuencia R. A un célculo sentencial lo llamaremos también una /6-
gica. (Notese que estd lejos de ser baladi la estipulacion de este parrafo
—aparentemente s6lo definicional—: de hecho el concebir asi a los axiomas
equivale a adoptar automaticamente la concepcién cléasica de la operaciéon de
consecuencia, a tenor de la cual, para cualquier conjunto de férmulas X y
cualquier teorema del célculo sentencial considerado, ™p7, se tendrd que
p? ERX —donde R es la operacidn de consecuencia definitoria de ese cél-
culo sentencial).

Llamaremos valuaciones a los morfismos de un calculo en una matriz,
y sustituciones a los endomorfismos de un célculo. Para que haya una
valuacion de un calculo dado, C, en una matriz dada, M, a cada functor n-
adico, &, de C le habra de corresponder una operaciéon n-aria, 4, en M tal
que, para cualquier valuacién v del lenguaje en el que se formule Cen M y
cualesquiera férmulas rp!7, ..., rp™1 del lenguaje de dicho célculo, se
tendra: v( rA(pl,...,p™")7) = S p),...,w( 7p™1)). Por comodidad —y no
prestandose ello a ninglin equivoco— cabe escribir igual el signo ‘4’ de Cy
el que nombra a la operacién 4§ de M.

Diremos que una matriz A = <A,D,{6,,...,6,,} > es un modelo de un
cilculo C = <C,{y{,...,Ym},R> sys cada valuacién de C en A, v, es tal que
—definiendo w(X) como {z: Ju(vu = z)}, paraun X € C— rp? € T [sien-
do T el conjunto de teoremas de C] sélo si v(rp7) € D. Llamaremos a un
modelo recio si cumple esta condicién adicional: cada valuacién v y cada
férmula rp7 son tales que V(p7) € DsivX) € Dy mp? € RX. Para
que una matriz sea un modelo de un célculo basta con que las valuaciones les
den a los teoremas, como imigenes suyas, elementos designados; para que
sea recio es, ademads, menester que la operacion de consecuencia del cilculo
sea volcada por cada valuacién en una relacidn, dentro de la matriz dada
como modelo, que preserve el estatuto de designaciéon. En adelante tan sélo

329



LORENZO PENA

nos interesaran los modelos recios, por lo cual omitiremos el adjetivo. (Un
modelo puede no ser caracteristico —esta nocioén se va a definir unas pocas
lineas més abajo—; y lo propio le sucede a una clase entera de modelos. Mas
cuando se define un calculo con relacién a un modelo o clase de modelos,
éste o0 éstos son entonces, por definicién, caracteristicos.)

En general un cilculo € del lenguaje & puede venir [semanticamente]
caracterizado (definido) con relaciéon a una clase M de matrices asi: la
operacion [regular] de consecuencia R vendra definida asi: vA €M, dado un
conjunto de férmulas cualquiera, XS ¥, RX = {xEZL: vhEVal(£,A):
hx €D o h(X)¢eD}, donde Val(¥,4) es el conjunto de valuaciones de £ en
A. (Como caso particular, los teoremas de C serdn las férmulas ™p de su
lenguaje, &, que sean vdlidas respecto a M, o sea tales que VAEM
vvE Val(£,4) ocurra que v( p™ ) €D, siendo D el conjunto de elementos de-
signados de A.) Para una R definida semanticamente con respecto a la clase
M de matrices, el que "p? ERX viene expresado asi: X |5,p.

Cuando se cumplen las condiciones recién indicadas, decimos que esa
clase M de matrices es caracteristica del cilculo en cuestiéon. Pero también
es caracteristica de un cdlculo una clase de matrices, aunque el cilculo no
venga definido asi, siempre que pueda serlo (o sea siempre que otra defini-
cion tenga la misma extensién). Cuando una cierta clase unitaria de matrices
sea caracteristica de un calculo sentencial dado, se dird que la Unica matriz
perteneciente a esa clase unitaria es caracteristica de dicho calculo. Si el
portador de la matriz tiene exactamente n miembros se llama n-valente a
dicho célculo. (Dicho de otro modo: la matriz M es caracteristica del calculo
C sys se cumple en general esta condicién: X |={ mP sys P ERX, donde
R sea la operacién de consecuencia definitoria de C.)

De hecho no cualquier algebra ofrece interés como modelo para los pro-
positos recién indicados. Practicamente se consideran pertinentes aquellas
algebras que son reticulos, o sea algebras <A, +, ®> donde para cua-
lesquiera x, z, u € A se tienen estas ecuaciones:
idempotencia: x+x = X = x®x; conmutatividad: Xx+z = z+X; X0z =z@x
asociatividad: x+z+u = x+(z+u); x®z0u = x0(z0u);
absorcion: x+2®x = X = x0z+Xx

Es mads, para nuestros propositos, sélo se aceptan como modelos reticulos
distributivos, o sea que cumplan la condicion de distributividad, a saber:
x+(u®z) = (x+u)®(x+z) asi como x®(u+z) = (x®u)+(x+z). La
operacion + es llamada la juncion y corresponderd a la disyuncion, mientras
que ® viene llamado el cruce y corresponde a la conyuncién. En un reticulo
el que x=x®z se expresa asi también: x <z.
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Si la correspondencia entre esos signos 16gicos y esas operaciones alge-
braicas suele sustraerse a la controversia, no sucede lo propio con respecto
a la negacién. Es bastante comiin, sin embargo, el postular que ésta cores-

ponda a una operacién algebraica unaria, ~, tal que se cumplan tres ecua-
ciones adicionales: De Morgan (o sea ~(x®z) = ~x+ ~z, asi como
~(x+z) = ~x® ~z) e involutividad: ~(~x) = x. No obstante, para algu-

nos calculos, como veremos, se atendan estas dos condiciones o se reem-
plazan por otras menos estrictas.

Un algebra con las operaciones ®, + y ~ que cumplan esas condiciones
serd llamada un dlgebra de De Morgan. Supongamos ahora un algebra de De
Morgan que retina esta condicién adicional: hay en ella dos elementos, 1 y
0, tales que, en general, x®1 = x mientras que x®0 = 0, ~0 = 1; un
algebra tal serd un dlgebra cuasibooleana. De entre las dalgebras cua-
sibooleanas se llaman digebras de Kleene a las que cumplen en general esta
condicioén: z+ ~z > x® ~x.

Un reticulo distributivo con 0 y 1 se llama pseudocomplementado si en
€l se da una operacién unaria, 7, tal que para cada x se tiene que —x es el
mayor elemento disjunto de x (o sea uno tal que para cualquier z z®x = 0
sys 7x=z). Un reticulo pseudocomplementado es un algebra de Stone sys
cumple esta condicion: para todo x, 7x+ 1 —x = 1. (En un reticulo pseudo-
complementado —omitense aqui las pruebas— valen estas ecuaciones: x® —1x
= 1Xx®@x; T xX=x; x0z>0 sys 7 x@z>0; x> 1z sélo si z>x;
A(x+z) = x@z; Nx@1 1z = 17(x@z); (0 Tx+T1Tz) =
2 (x+2z); " (0x+x) = 0.)

Un algebra de Kleene es un digebra booleana si cumple esta condicion:
x® ~x = 0y x+~x = 1. También cabe definir a las 4lgebras booleanas
como reticulos pseudocomplementados en los que para cada x: x+ x = 1;
y como algebras de Stone en las cuales x=""x

Para nuestro propdsito requeriremos que D —el conjunto de elementos
designados— sea un filtro propio, o sea un subconjunto propio del portador
del algebra tal que, en general, se cumplan estas dos condiciones: 12) si x®z
= X, siendo x € D, entonces z € D; y 2?)six,z € D, x®z € D.

Sea B la clase de todas las matrices booleanas. Demuéstrase este
resultado: sea C un célculo semédnticamente definido como uno que tenga por
axiomas a las férmulas de cierto lenguaje (con conyuncién, disyuncién y
negacion) vélidas en cualquier matriz de B y cuya operacion de consecuencia
semanticamente definida (del modo més arriba indicado) sea |=y; ese cilculo
es idéntico a otro definido igual pero en el cual, en vez de M, se tome el
algebra con sélo dos elementos, 0 y 1, siendo D={1}. El célculo caracteri-
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zado por las dlgebras booleanas es LC (la légica clasica). Por ello pre-
cisamente se da en llamar a LC la légica bivalente.

Una légica multivalente serd un calculo sentencial semdanticamente
definido cuyos modelos sean ciertas matrices no booleanas (aunque esto ha
de entenderse, en general, como que no todas las matrices de la clase en
cuestion serdn booleanas). Un ejemplo serd K ,, a saber: el célculo sentencial
en el que son teoremdticas sélo todas las férmulas vilidas respecto a
cualquier matriz de Kleene, donde una matriz de Kleene viene definida como
un élgebra de Kleene con un conjunto cualquiera de elementos designados que
sea un filtro propio y cuyas reglas de inferencia sean las preservadoras de la
designacion en esa clase de algebras.

Pasemos ahora de K, a otras l6gicas construibles como extensiones de
K . En primer lugar, puede extenderse el cimulo de reglas de inferencia del
siguiente modo. Formamos el sistema K , a saber la 16gica semanticamente
definida como teniendo sus modelos en una clase unitaria de matrices, {K},
donde K = <R, {1}, A> siendo R = [0,1] (o sea el intervalo de los
nimeros reales r tales que 1 =r>0), y siendo A = {+,®, ~}, donde x®z =
min(x,z), mientras que x+z = max (x,z) (el signo ‘+’ no hace aqui las veces
de la adicién); la operacion unaria ~ viene definida asi: ~1=0; ~0=1;
para 1>x>0 el logaritmo en base 2 de ~x es igual al logaritmo en base x
de 2. Como signos del calculo 16gico usemos ‘N’ en vez de ‘~’, ‘V’ en vez
de ‘+’,y ‘A’ en vez de ‘®’. Son teoremas de K , los mismos que de K ,,,
pero en K , no estdn ciertas reglas de inferencia que si estdn en cambio en
K ., como ésta (la regla de Cornubia, [mal]llamada de Escoto): p, Np [ q.
Tomemos ahora, en vez de K, A, definida como <R, D, A>, con A igual
y D = ]0,1], o sea el conjunto de reales r tales que 1 =r>0. Al cilculo sen-
tencial semdnticamente definido como tomando sus modelos en {4} lo lla-
mamos l6gica A . Hay una serie de esquemas que son teorematicos en A, sin
serlo en K ,, como éstos: "N(pANp)?, ™pV Np' —respectivamente no
contradiccion y tercio excluso. Por otra parte, la regla de Cornubia no estd
en el nuevo sistema; éste es, pues, una légica paraconsistente.

(Qué pasa si, en vez de [0,1], tomamos {0,%,1}, siendo D = {V2,1}?
Es obvio, por la definicion dada, que N'2=". Llamemos A; a la légica se-
manticamente caracterizada con respecto a la clase unitaria cuyo inico miem-
bro es esta matriz de tres elementos. Salta a la vista que A; = A,. Es mas,
cabe demostrar que se trata de la légica seménticamente definible con res-
pecto a la clase de matrices que son algebras de Kleene en las cuales para
todo x x+ ~x € D.

Un problema que surge con las logicas multivalentes hasta aqui con-
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sideradas es que no tenemos en ellas ningtin functor que exprese una relacion
condicional o de implicacién. Ese problema no surge en LC, porque en ella
podemos definir (p>q? como "~pVq", y similarmente con las operacio-
nes booleanas correspondientes, obteniéndose los dos rasgos apetecibles para
un condicional, a saber: (r°1°) el functor ‘D’ asi definido preserva la
designacion, e.d. posee la condicién del modus ponens (para cualquier valua-
cién v, si v("pDq) y v(rp?) son designados, también lo es v(™q"); ¥y
(r°2°) tiene la propiedad de la deduccion: si p!, ..., p?, r [ q, entonces
pL,....p» ErDq.

Hay dos procedimientos comunes para introducir functores condicionales
en légicas multivalentes. Uno consiste en introducirlos como primitivos. El
otro estriba en introducir primero una negacién fuerte, y luego definir, por
medio de ella, el condicional, igual que se hace en LC. Voy a centrarme aqui
en este segundo procedimiento.

Si <A,A> es un algebra de Stone, <A, D, A> serad una matriz de
Cragg, donde D es el conjunto de miembros densos de A, o sea de aquellos
elementos x tales que —x=0. Una operacién que nos sirve entonces para
definir el condicional es la que define xDz como —xV z.

Llamemos légica pétrea al cilculo sentencial cuyo vocabulario abarca
signos sentenciales y las constantes de conyuncién (‘ A’), disyuncién (‘ V),
y negacién fuerte (‘ ), cuyos teoremas son las férmulas validas en cualquier
matriz de Cragg y cuya unica regla de inferencia es el modus ponens
(pV q, q } p). Definiendo en una légica pétrea el condicional del modo
clasico (rpDq abrevia a rpVvq?), ese functor posee los dos deseados
rasgos ya enumerados, (r°1°) y (r°2°). Es mas: la logica pétrea es idéntica
a LC, a pesar de la diversa definicién semantica de ambas. Un ejemplo de
matriz de Cragg es €, a saber: la que tiene como portador el intervalo [0,1],
siendo ® y + como vinieron definidos para X ,, y siendo —x = 0 si x>0,
—0=1. Aunque esta ilgebra no es booleana, es también un modelo de LC:
una férmula es un teorema del calculo sentencial clasico sys es valida con
respecto a la matriz €. Como se ve, faltan a € para ser booleana dos
condiciones: en general no se tiene 7 x = Xx; ni X+ x = 1.

El vinculo entre € y un 4lgebra de Boole puede hacerse més claro como
sigue. Llamamos congruencia en un algebra a una relacién [diddica] © que
tenga, para toda operacion n-aria, §, la propiedad de sustitucion, a saber: si
x19z!, ..., x"OzD", entonces Y(x!,...x") O (z!,...,z"). Una congruencia es
una relacion de equivalencia. Si © es una congruencia de un algebra A cuyo
portador es J, podemos obtener el dlgebra cociente de A por O, a saber una
cuyo portador es el conjunto de las clases de equivalencia [X]g (0 [X] a secas,
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si el contexto desambigiia), siendo x un elemento cualquiera de J y teniéndose
que en general z € [x] sys xOz. En el dlgebra € hay una congruencia © tal
que x0Oz si x>0<z o x=0=z. El algebra cociente de € por O es un édlgebra
booleana: es el dlgebra cuyo portador es {0,1}. La idea principal en el paso
de € a esa élgebra booleana es que en ésta se toman como si fueran indiscri-
minables o indiscernibles todos los infinitos elementos densos (designados).

SeaM = <M,D,A> una matriz de Cragg, y para los mismos M y D
sea <M,D,®> una matriz de Kleene. Sea & = AU®. Entonces
<M,D,=> serd una &-matriz. Las {-matrices son los modelos que
caracterizan a la logica A;. O sea, A; es aquel célculo sentencial cuyos
teoremas son las formulas, de un lenguaje sentencial dado, que vienen envia-
das por cualquier valuacién sobre elementos designados de una ¢-matriz, y
cuyas reglas de inferencia son las que preservan la designacioén. (Por ser M
una matriz de Cragg, D serd el conjunto de todos los elementos densos.) N6-
tese que en una £-matriz ya no puede establecerse una congruencia como la
considerada en el parrafo anterior. Sea % la £-matriz cuyo portador es [0,1].
Aunque en esta £-matriz 102, no sucede empero que N1 © N2, puesto que
N1=0, N¥2=%, y sin embargo no ocurre que 00'2 (hay infinidad de ele-
mentos z congruentes con 1 y tales que Nz no es congruente con N1; el caso
del elemento Y2 se aduce s6lo por ser un caso «extremo»). La logica A, es
una légica paraconsistente (con respecto a la negacion simple ‘N’) y también
multivalente; no es paraconsistente con respecto a la negacién fuerte, . En
la l6gica A, se tiene la regla de inferencia: p, 7p | q; pero no: p, Np [ q.
Sin embargo, los principios de no contradiccién y de tercio excluso son
validos para ambas negaciones: son teoremdticos todos los esquemas:
TPVNp?, ™pV p7, "N(pANp)?, " (pA —p)?. Definiendo p=q”
como "pDgA.qDpT, setendrd "p=—1-—p7, version atenuada de la involu-
tividad. (También se tiene, claro "p=NNp™.) Asimismo valen en la l6gica
A; los cuatro principios condicionales de abduccion, a saber: "/pDNpONp™,
D pDp?, "NpDpDp', "TpDpOp? . Aun siendo paraconsistente,
A; es una logica de talante muy conservador: su negacion simple posee la
mayor parte de los rasgos de la negacidn clésica, al paso que, gracias a su
negacién fuerte, AE es una extension conservativa recia de LC, en el sentido
técnico usual (una férmula de A, que sdlo contenga vocabulario clasico es
teoremdtica en A, sys también lo es en LC; y cada regla de inferencia clasica
vale también en A;).

Demostrablemente la 16gica A, se caracteriza por la clase unitaria que
s6lo abarca a una matriz con tres elementos, dos de ellos designados.

Esa es una razén para no estar satisfechos con A;. El fondo del problema
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estriba en que no podemos con el limitadisimo vocabulario de A, expresar
ninguna relacién mds estrecha entre dos enunciados consistente en que uno
de ellos sea mas verdadero que el otro. Vamos ahora a partir de una ¢é-matriz
y vamos a afiadir una operacién binaria, I, como sigue. En primer lugar sélo
tomamos £-matrices que tengan un elemento '2 tal que “2=N'%. La
operacion I serd tal que: xIz = % sys x=z; en caso contrario, xlz = 0. A
una matriz asi la llamaremos una ¢£I-matriz. (Podriamos generalizar ese trata-
miento, exigiendo, en vez de igualdad, una congruencia plenamente inva-
riante, o sea una que venga preservada por todos los endomorfismos.) El
rasgo importante que afiaden las ¢I-dlgebras y matrices es poder expresar la
mismidad de grado de verdad. La légica semanticamente definida como
aquella cuyos modelos son £I-matrices serd la logica A;I. A diferencia de la
logica A;, A.I no es ni trivalente ni siquiera finivalente. Con respecto a una
£I-algebra de n valores (n finito) se tendrd un esquema teorematico que no
lo sea en A.I; p.¢j. en una ldgica definida respecto a la clase unitaria de £I-
matrices cuyo portador es {0,'2,1} se tendrd (definiendo "p—>q? como
pAqlp?): Tp>(@ANQ)V 7qV 7 NqV Np™; y en general, para n valores
se tendra que, dadas n letras sentenciales, Tp!7, ..., rp%7, y definiendo
p\q® como p—~>qA 7 (q—p)", serd teoremdtica la férmula:
PNPZA (PAPA) A ... (p™\p?) D. NP A —ip!7 . (Dicho en plata: para cual-
quier cadena de n enunciados cada uno de los cuales sea més verdadero que
los que lo precedan, el primero sera totalmente falso y el dltimo totalmente
verdadero; ello excluye la utilizacion de légicas finivalentes para el tra-
tamiento 16gico de los comparativos, segiin vino propuesto en Pefia, 1987.)
Igualmente, cada l6gica finivalente contendrd como esquema teorematico una
de las llamadas ‘férmulas de Dugundji’: para n variables sentenciales, p!, p2,
..., p1, la formula de Dugundji correspondiente es: rp'lp2Vv .plIp3v....V.
p'IptVv....v .p™ip™ | La férmula de Dugundji en n variables sentenciales
dice que hay un maximo de n-1 valores veritativos o grados de verdad. (La
LC viene caracterizada por la férmula de Dugundji en 3 variables:
rpIqVv .pIrv .qlrn.) Ningin esquema asi es teoremdtico en la ldgica
infinivalente AI.

La razén por la cual hemos tomado uniformemente xIz = %2 cuando x=z
es la de poder asi tener como teoreméticos fodos los esquemas siguientes:
rplg=>.pArl.qAT ; Tp=>qAp—>q"; Tplg—>.riql.rlp7; mplg=».pVrl.qVr;
rplp~>.qlq™;  Tp=>(p—>q)—>.p~>q7; p>Np—>Np?; rNp—p—p7;
rp>q~>.Ng—>Np7 ; 'p~>q>N(p ANq)" ; rp~>q~>.p~>Ng>Np™ ; 'p>(q ANgq)~
Np?; rp=>q>.p>r>.p>.qAr; mp>(@>n=>.p>q>.p=>r'; p>q>.r1>p—>.
1=>q7; p>q>.q=r=>.p=>r" ; "N(p=>p)—>.p~>p7 ; "N(p~>p>N(p~p))—>.p~p7;
Fp—»q—>r—>(p—>q)—>p—>q1 ; rp—>q->1—>.q—>p—r-r’ ; r‘p—»q—»(q—»p)—»q—»p‘l ;
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rp—>qV .q—p" ; evitando, en cambio, la teorematicidad de los esquemas:
~>.q»p" ; PANgG>r=pANr—>q'; rp>q>n—>.q=>.p~>r'; M.
P~q~>q"; "p>(q>.p>n)—>.q=r; Tp>.p=pT; Pp>q>.p>.p>qT; TP>q.
q—.p—~>q"; P A q->r—>.p~>.q—>r"; ninguno de los cuales es compatible con la
idea de que rplq™ sea una férmula verdadera sys es tan verdadero que p
como lo sea que q. (Es mds: cada uno de esos esquemas no teorematicos es
tal que, escribiendo, para hacer las veces de su respectiva prétasis implica-
cional, Tp™, y, para hacer las veces de su apédosis, Tq7, no se cumple la
condicién: p [q.) Los functores ‘I’ y ‘=’ son interdefinibles: si ‘=’ es pri-
mitivo, rplq7 es definible como "p—>qA.q—>p” . De paso pruébanse otros
esquemas caracteristicos de otros sistemas 16gicos, como el conexivismo: el
llamado principio de Boecio (p—>q—=N(p—>Nq)7) y el de Aristételes
("™N(p—~Np)7). Y finalmente estos dos: "p—>Npl.p—~N(plp)™ y el principio
de Heraclito: "N(plp)™.

La logica A;I no es s6lo paraconsistente sino contradictorial, ya que hay
un cierto esquema tal que contiene como teoremas ese esquema y su negacién
simple: TpIp? y rN(plp)" . También tenemos: rpIpIN(plp)™ .

Hay una razén importante para no estar todavia satisfechos con el resul-

tado, y es que, si bien la légica que hemos obtenido es genuinamente
infinivalente (no es caracterizable por ninguna clase unitaria de matrices con
un numero finito de elementos), su vocabulario 16gico es tan pobre que no
podemos en ella expresar mas que tres matices veritativos: o decir que
r=pl, oque "Np? oque "pANpT. De ')pANp™ y " Nq? podemos
deducir p\q™, pero nunca "p\Np7 ni "Np\p™ ni rpINp7 . En general esta
l6gica no nos sirve como légica de lo difuso porque no podemos establecer
ninguna relacion inferencial entre los matices de los asertos y la mayor o
menor verdad de unos u otros. La légica en cuestién no contiene ningin
vocablo que exprese algo asi como ‘mds bien’, ‘bastante’, ‘un tanto’, ‘muy’,
etc., ni, por lo tanto, teorema alguno que diga que, en la medida [al menos]
en que algo sea muy verdadero, es verdadero [a secas]. (Eso de ren la
medida [al menos] en que p, 7 serd nuestra lectura de Tp—~>q7.)

No es ése el unico motivo, como vamos a ver, para dar un paso mas,
introduciendo un nuevo functor primitivo. Otra razén es que hay ocurrencias
de la conyuncién ‘y’, o quizd mas bien de otras conyunciones copulativas que
no son semanticamente reducibles a ella, que no vienen adecuadamente cap-
turadas por ‘A’. P.ej. hay un ‘y’ de insistencia —quizd mejor representado
por la particula discontinua ‘no sélo ... sino [que] también’— en la cual
parece que los conyuntos interactian en el sentido de que el grado de fal-
sedad resultante podra ser mayor que los grados de falsedad de sendos con-
yuntos. Asi, supongamos que una cierta oracién, "p7, es verdadera en un
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33% aproximadamente, mientras que 17 lo es en un 66%: segin el trata-
miento hasta aqui propuesto mp y 17 sera tan verdadera como p7, ni mas
ni menos; y lo propio sucedera para cualquier conyuncién copulativa en vez
de ‘y’. Sin embargo cabe sospechar que al decirse ™ y 7 (o ™o sélo p,
sino que ademds r), se estd diciendo algo menos verdadero que al decirse
simplemente Tp? : porque 17 dista de ser del todo verdad, el aserto copula-
tivo en cuestion ha de afiadir algo mas de falsedad al grado de falsedad que
ya tenia rp7 . Representemos esa conyuncién copulativa mds fuerte como
‘®’: aseverando p'ep2ep3e. epnh1 donde para cada i<n rp tiene un
valor de verdad infinitamente inferior al maximo, se estara haciendo un aser-
to cuyo grado de falsedad sera, ceeteris paribus, tanto mayor cuantos mas
conyuntos haya (y no sélo cuanto menos verdaderos sean). La introduccién
de esa superconyuncién nos va a permitir obtener, como definidos, muchos
functores de matiz alético.

Otra razén mas por la cual es conveniente afiadir una conectiva que nos
permita definir infinitos functores monadicos de matiz alético es ésta. El
functor condicional ‘D’ cumple los dos requisitos enumerados mas arriba
(r°1°) y (r°2°) para los condicionales, de suerte que podemos justificar la
presencia de ese functor definido por su conexién con la deduccién. En cam-
bio nada similar justifica la presencia del functor implicativo ‘-’: entendiendo
la operaciéon de consecuencia del modo cladsico —que es el que ha venido
adoptado en este trabajo (recuérdese la observacién parentética del final del
parrafo sexto de este mismo §2)—, no hay ningin nexo de inferencia entre
{p',....p"} y {r} suficiente para que sea teoremdtica la férmula
p!'A...Ap">r7. Dicho con otras palabras: el menor superconjunto de
{p!,...,p"} cerrado con respecto a todas las reglas de inferencia de las l6gicas
que estamos examinando puede abarcar a ™7 sin que por ello abarque a
p!'A...Ap"->17. (El fundamento de ese desempate entre la inferibilidad y
el functor implicativo ‘-’ estriba en que el sentido de "p—~>q? es que q”
sea a lo sumo tan falso como lo sea rp7, al paso que ™q" se infiere de
{p!,...,p"} sys o bien uno [al menos] de entre Tp'7,..., "p™7 es del todo fal-
so, 0 bien Tq es [en uno u otro grado] verdadero.) Esa falla puede corre-
girse con ayuda de la superconyuncién y de los functores de matiz veritativo
que mediante ella nos serd dado introducir.

En el intervalo [0,1] podemos tomar x®z como el producto multiplicativo
xXxz. Esta operacién tiene los rasgos siguientes: conmutatividad, asocia-
tividad, elemento neutro (el elemento maximo del algebra en cuestion);
ademds, ® es distributiva con respecto a las operaciones V y A: x®(zAu)
= x®zA (x®u); x®(zVu) = x®zV (x®u). (Eso significa que ® es una opera-
cién isétona, o sea que, si x<z, entonces x®u < z®u.) Con respecto a N,
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® tiene una caracteristica especialmente importante, definiendo en general
rKy? como "N(Ny®Ny)1: si x = z®z, Kx = z; mas en general: si x®x
= z, u®u = v, entonces K(z®v) = x®u. Otra caracteristica de ® es el
principio de cancelacion: x®z < x®u sys u>z.

Aunque hemos tomado como ejemplo un caso muy particular (esa matriz
cuyo portador sea [0,1] y cuyo ciimulo de valores designados sea el filtro de
elementos densos ]0,1]), cabe sefialar que hay muchas que son isomérficas
con ésa. Pueden tomarse como ejemplos: primero el algebra que llamaremos
A, a saber: una cuyo portador sea R = [—oo,+ ] donde A sea la
operacion max, V seamin, N sea —, 7X=0o0 si X4=00, y Moo=—00; y ®
serd asi: o ®x=00 =x®00; —0O®X=X=X®—00; 5] -0 <Xx<z< 0, XOZ =
z®x = log,(2*+2%) (+ aqui si es la adici6én). Otra igual es un algebra cuyo
portador sea [0,o], Nx sea 1/x, x®z sea x+z (+ también aqui es la adi-
cién), V seamin'y A sea max: en estas algebras oo es el elemento nulo o
cero algebraico, y el orden algebraico es inverso al orden numérico usual. En
la ultima algebra considerada el %2 algebraico es el 1 numérico: en la ante-
rior, el O numérico.

Como todas esas dlgebras son isomoérficas entre si, tienen una serie de
rasgos ademas de los que nos interesan. Vedmoslo con un simple ejemplo:
tomemos el intervalo de los nimeros racionales [0, o] con las operaciones
definidas igual que sobre el intervalo de los reales con los mismos extremos.
Se ve en seguida que no son isomdrficas ambas algebras.

Mientras que hay muchas l6gicas que tienen matrices caracteristicas fini-
tas, hay pocas que tengan matrices caracteristicas infinitas. Generalmente,
cuando se transciende la finitud hay que caracterizar a un célculo légico por
una clase entera de matrices —con multiples, en verdad infinitos, miembros—
y ya no por una matriz en particular (salvo las matrices de Lindenbaum, que
son matrices cuyos respectivos portadores son clases de férmulas).

Hay un importantisimo rasgo de la clase de aquellas £I-matrices a las que
se haya enriquecido con la operacién ®: ninguna de tales matrices tiene un
nimero finito de elementos; y ello por el postulado de cancelacién.

Hay todavia una razén para pensar que esta incompleta nuestra busca de

operaciones: llamemos matrices  a las que estdn algebraicamente caracte-
rizadas por las operaciones (V, A, ® I, Ny =)y por los postulados que
acabamos de proponer, siendo en cada caso D el filtro de los elementos
densos, o sea de los elementos x tales que —x = 0. Salta a la vista que en
muchas de estas matrices O es el infimo de D (el elemento infimo de un sub-
conjunto X de un conjunto Z —notado como /\X— es la mayor cota inferior
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de X, donde x es cota inferior de X sys cada zEX es tal que z=>x;
dualmente, el elemento supremo de X, VX, es su menor cota superior, donde
x es cota superior de X sys no hay z€X tal que z£x). Eso es muy grave,
porque para extender un célculo sentencial a uno cuantificacional habrd que
dar al cuantificador un tratamiento mas o menos asi: una valuacion, v,
enviard a la férmula "vxp7 sobre una imagen suya, u, sys u es el infimo del
conjunto de elementos z tales que z = v’( "p™ ) para alguna x-variante v’ de
v, donde una valuacién es una x-variante de otra sys a cualquier argumento
que no contenga la variable ‘x’ le hacen corresponder la misma imagen (el
mismo valor). Entonces puede suceder que para cierta férmula mp™ se tenga
que sea valida cada formula mp[x/a]™ (cada resultado de reemplazar unifor-
memente en Tp las ocurrencias libres de ‘x’ por sendas ocurrencias de un
término ‘a’), pero en cambio "vxp? seria invélida. Basta para ello con tomar
como p~ el principio fuerte de tercio excluso, Vv —r7, siendo "7 una
férmula con alguna ocurrencia libre de la variable ‘x’, pero por lo demas in-
determinada por los postulados que hemos sentado. Es obvio que para cada
valuacién v que envie a 17 sobre un elemento denso, u, habra otra que lo
envie sobre otro z < u. Entonces, si bien sera una formula valida rrv —r,
no lo serd rvx(rv —r)7. (Es mas: | Tvx(rVv )7 serd valida!) La regla
de generalizacion universal (p | Vxp) no serd preservadora de la validez, ni
siquiera del estatuto de designacion (no se tendria, pues, p EVXp).

Un remedio contra ese mal seria redefinir nuestras matrices de suerte que
el filtro de los elementos designados no abarcara a todos los elementos
densos, siendo el infimo de dicho filtro miembro del filtro. Pero entonces
perderiamos el principio fuerte de tercio excluso y la definibilidad clasica del
condicional, ‘D’
a que habriamos perdido también la regla del silogismo disyuntivo para la
negacion fuerte, a saber: pV —q, q [ p.) También perderiamos el principio
fuerte de no-contradiccion, a saber: "N(Lp ANp)7, donde rLp™ abrevia a
"N -p7 . Al tener que abandonar el condicional ‘D’ definible del modo indi-

, TpDsT como abreviaciéon de "pV s . (Eso se deberia

cado, perderiamos muchas propiedades del condicional clasico, que es lo que
les pasa a todas las l6gicas multivalentes en las que se toma como filtro de
los elementos designados a un subconjunto propio del cimulo de los ele-
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mentos densos de un algebra de Stone. Perderiamos asimismo lo que cabe
llamar regla de apencamiento, a saber: Lp Fp. En suma, caeriamos en una
légica mas pobre, en vez de tener una que sea mas rica que LC. (Lo que si
es cierto es que las primeras construcciones, histdricamente, de l6gicas multi-
valentes, resefiadas mas arriba —en el §1— siguieron ese camino; ninguna
de aquellas ldgicas era, pues, una extension conservativa de LC.) Por otra
parte, aun estando dispuestos a imos al extremo de la parsimonia o austeridad
y a no tomar como elemento designado més que al 1 algebraico o elemento
méximo (que es lo que efectivamente hicieron las primeras légicas multi-
valentes), no se habrian acabado las dificultades de esta indole: de hecho
—segun vino ya indicado en el §1— el célculo cuantificacional infinivalente
de Lukasiewicz es inaxiomatizable.

En lugar de seguir ese camino trillado de achicamiento del conjunto de
elementos designados, vamos a explorar otro, consistente en transformar a
las algebras que nos interesan en reticulos fuertemente algebraicos, definidos
como sigue. Un reticulo es completo sys en €l cada subconjunto de su
portador (jaun uno vacio!) tiene un infimo y un supremo. Obviamente para
poder extender el cédlculo sentencial a un cilculo cuantificacional hace falta
que los modelos algebraicos que consideremos sean reticulos completos. Pero
no basta, ya lo hemos visto. (Si tomamos un algebra cuyo portador sea un in-
tervalo de nimeros racionales, seria incompleta, pero si es de nimeros reales
serd completa.) Hace falta que el filtro de los valores de verdad designados
sea un filtro completo, o sea uno F tal que, si G S F, /\G € F. Vamos a
ver que una condicién que asegura eso es que se trate de un reticulo fuer-
temente algebraico.

Dicese que en un reticulo z cubre a x, x=z 0 z2-x, sys z > x y no hay
ningin elemento u tal que z > u > x. Un reticulo sera llamado arémico sys
para cada par de intervalos contiguos [a,b] y ]b,c] (o sea cada par de
subconjuntos {v: a<v<b} y {v: b<v<c}) hay un elemento v == b tal que
v—=b 0 b—v; o0 sea: o v es el infimo del segundo intervalo, o es el supremo
del intervalo [a,b[. Un elemento x es compacto sys todo subconjunto S de su
portador es tal que: si /\S < X, entonces x = /\S’, siendo S’ un subconjunto
finito de S. Un reticulo es fuertemente algebraico (o, con otra palabra, engen-
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drado de modo fuertemente compacto) sys es completo y cada par de interva-
los cuasicontiguos [a,b[ y ]b,c] es tal que o bien el infimo del segundo es
compacto, o bien lo es el supremo del primero.

Aunque esas nociones pueden parecer abstrusas, su utilidad estriba en
este importantisimo Teorema: todo reticulo fuertemente algebraico es
atémico. Prueba: sean en el reticulo fuertemente algebraico L tres elementos,
a < e < b, sin que se tenga ni a—ce ni e—<b (de tenerse eso, tendriamos de
entrada lo que buscamos). Tomemos los dos intervalos cuasicontiguos [a,e[
y Je,b]. Supongamos que es compacto el supremo del primer intervalo, d.
Tenemos que d < /\]d,b]. Supongamos que no sélo es < sino que es tam-
bién =, oseaqued = /\]d,b], lo cual implica que d=e. Por ser compacto,
habra un subconjunto finito G de ]d,b] tal que d = /\G, cosa imposible (G
es finito, luego su infimo ha de ser miembro de G). Por el lema de Zorn se
concluye que ]d,b] tiene un elemento minimal. (El lema de Zorn reza: si cada
cadena de un conjunto [parcialmente] ordenado no vacio, E, tiene una cota
inferior, entonces E posee un elemento x minimal, e.d. uno z € E tal que
para todo x € E x¢z.) Si ese elemento minimal es e, la hipdtesis era falsa:
d= /\]d,b], o sea d—e, pues evidentemente no puede haber ningiin elemento
entre d y e. Mas, si ese elemento minimal no es e, entonces tenemos lo que
buscabamos: H/\]eb]. Supongamos entonces la otra alternativa, o sea que
/\]e,b] = h es compacto. Pruébase exactamente igual entonces que h <
/\]h,b], 0 sea que existe un elemento k que es /\]h,b] y tal que h—=k. Si h=e,
ya tenemos lo que anddbamos buscando. Mas si no también, porque si h 5=
e, e<h. Q.E.D.

Otro teorema dice que todo reticulo fuertemente algebraico es algebraico,
siendo un reticulo algebraico uno en el que cada miembro es el infimo de un
determinado conjunto de elementos compactos. He aqui la prueba: sea en un
reticulo fuertemente algebraico R un elemento e que no cumpla la condicién.
e estard en una linea divisoria entre intervalos cuasicontiguos [a,e[ y ]e,b],
para ciertos a y b. Tomemos el intervalo ]e,b]; cada miembro de ese inter-
valo tendra «al lado» (por arriba o por abajo) un elemento compacto; sea G
el conjunto de esos infinitos elementos compactos pertenecientes al intervalo
Je,b]. La hipdtesis que tratamos de reducir al absurdo nos fuerza a afirmar
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que /\G > e. Mas eso no es posible, porque entonces habra s6lo un niimero
finito de elementos entre e y /\G, y entonces el propio e seria compacto (y
por ende seria /\{e}). Q.E.D.

Suele llamarse noetherio a un reticulo que no contenga ninguna serie in-
finita de elementos, a!, ..., a®, a®*!, ... tales que ... > a" > a1 > ... >
a? > al. (Por el axioma de eleccién se prueba que tal condicién equivale a
que todo subconjunto no vacio del portador del reticulo tenga un elemento
minimal.) Pruébase con facilidad que todo reticulo noetherio es algebraico.
De ahi que se hayan buscado como modelos para la mayor parte de las 16gi-
cas multivalentes reticulos noetherios, y por lo tanto que sean o finitos o
productos de reticulos finitos. Y es que, para su aplicacion a los cuantificado-
res, la caracteristica de que sea algebraico el reticulo de los valores de verdad
parece mas que un mero desideratum. Ademads de la razén ya considerada (y
decisiva), referida a la regla de generalizacion universal, existe otra, y es que
hay un teorema del dlgebra universal que reza asi: todo reticulo algebraico
es continuo, entendiendo por tal uno con esta condicion: para cada elemento
b y cada cadena C, bvAc = /\{sz: z€C}. Para el tratamiento de los
cuantificadores esa condicién de continuidad significa la aplicabilidad de lo
que se llama ley de paso: si "p7 no contiene ninguna ocurrencia libre de la
variable ‘x’, mpV vxqlvx(pV q)7 es teorematico; esa condicion y la dual res-
pectiva permiten aplicar procedimientos de prenexacidn, desprenexacion, con-
version a forma normal, etc.

Ya hemos visto empero los inconvenientes de la finitud. Es arbitrario
postular que se tengan que dar exactamente n grados de verdad en vez de
n+1. No hay nimeros finitos légicamente privilegiados. Afortunadamente
hay cémo obtener que un reticulo sea fuertemente algebraico (y por lo tanto
atémico y continuo, en sendos sentidos mas arriba apuntados) sin incurrir en
la finitud. Es lo que voy a exponer a continuacidn.

Partimos del dlgebra A, segin vino definida mas arriba (usando aqui los
signos ‘<’ y ‘<’ para referirmos al orden numérico, inverso del algebraico),
pero ensanchando su portador a un conjunto S = RU{<r,a>: r€ER &
r>—oo}jU{<rb>: rER & r<o}, donde a, b son entes cualesquiera.
Postulamos: <r,a> < r < <r,b>. Y definimos (dejando correr a las
variables ‘r’, ‘r!’, ‘r2’ sobre miembros de R [incluidos o y —oo]):
<rl,a>e<rrb> = <r'errb> sir'fa;,a>0x = <o®,a> si xF=o;
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<rl,a>®r2 = <rla>e<r2a> = <r'@r2a> sir==w; 0O®X=00;
<rl,b>er2 = <r'b>e<r2b> = <rlor2b> sir=gw; —owwOx=X;
y siempre x®z = z®x (lo cual termina de definir recursivamente la opera-
cién). Las definiciones de las operaciones V, A, — son las mismas que en
A ; la operacién N viene extendida asi: N<r,a> = <Nr,b> y N<r,b>
= <Nr,a>. A esta algebra la llamaremos A ,; al elemento <—o0,b> lo
llamaremos w; a < o0,a> llamarémoslo «.

En esta algebra, el filtro de los elementos designados es {x: x=>a},
donde ‘>’ es el orden algebraico (inverso al numérico). Podemos también
introducir el ideal de los elementos antidesignados (un ideal es un conjunto
C tal que, si x<z, zEC entrana xEC, y xvVz & C sélo si o bien x&C o
bien z& C); sera tal ideal {x: x<w}. Todos esos signos encuentran lecturas
naturales en la lengua vernicula: ‘=’ : ‘No...en absoluto’; ‘N’: ‘no’; ‘Vv’:
‘0’; ‘A’ 'y’; ‘@’ ‘no sblo... sino que también’; ‘D’: ‘sélo si’; ‘=’: ‘sélo
en la medida en que’ o ‘sélo en tanto en cuanto’; ‘I’: ‘en la misma medida
en que’; —o es lo totalmente verdadero; o la falsedad completa; « la
verdad infinitesimal; w el grado infinitesimal de falsedad (que es un grado
infinito, aunque no total, de verdad).

Tomemos un lenguaje cuyas valuaciones tomaran sus valores en A .
Definiendo ™p? como ™p®w? y ™mp? como T"NnNp7, la primera
férmula cabe leer como «Es supercierto que p», o algo asi, y la segunda
como «viene a ser cierto que p». Definiendo "Pp? como m——(Np—>p) Ap”
(que cabe leer como «Es mds bien cierto que p»: ‘P’ por ‘potius’), seran
validos los esquemas "Pp vV PNp?, "p—>q—.Pp—Pq™ . Valdran las inferencias
p4 Fa—p, Npd kp~w, —pq4 Fp—>.qA~q y —pq Fp\a. Definiendo
rYp? como "plaAp7, cabe leerlo como «Es infinitesimalmente verdad que
p», y se tiene: Ypg EpA ' (a\p).

En A, no vale ya el principio de cancelacién que valia en A, salvo con
una modificacién, a saber: si x®z=u®z, entonces o bien z= o (el cero al-

gebraico), o bien x =u, donde ‘ =’ expresa una diferencia a lo sumo infinite-
simal de grado (o sea: <r,b> = r = <r,a>, pero en ninglin otro caso x
= Z). = no es una congruencia. Pero cabe generalizar la nocién de congru-

encia asi: para el conjunto de operaciones {4;} (¢, se tendrd que una re-
laci6n de equivalencia, O, es una {4} ,-congruencia sys tiene la propiedad
de sustitucion para cada 4, (i€ ). Pues bien, = esuna { A,V ,N,® m}-con-
gruencia. (No tiene la propiedad de sustitucion ni para I ni para —.)

En la semadntica aqui esbozada p9 kq no serd una congruencia en el
calculo semanticamente definido (de pH [q no se sigue Npg ENg, ni
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Ypd EYq ni Ppq [EPq, etc.). Mas si serd una { A, V, ™, ®}-congruencia.
En verdad se trata de la relacion de equivalencia entre ™p7 y rq7 sys [
- pl— g, la cual «corresponde» a su vez a la congruencia de Glivenko
para un algebra de Stone, a saber: xO5z sys - 7 x= "z, El fragmento de
este cdlculo que tiene como constantes logicas ‘A’, ‘V’ y ‘7’ es exacta-
mente LC. (El cilculo, como se indic6 en el §1, es ademas una extension
cuasiconservativa de cada légica finivalente.)

Podemos afiadir a las operaciones de esta dlgebra un conjunto infinito de
operaciones unarias §, s€ S—{ o}, donde se tendra: 0 X=X si s=X;y, si no,
6x=o0. Entonces tendremos en el cilculo semanticamente definido con
relacién a esta dlgebra sendos functores &;; ~6;p” dice que es verdad que p
en grado s. Resultado: sys 6p5 |d,q para todo s, [plq. Y, més en general,
sys para todo s X E5p sys X 6., X [ plq. Tritase, naturalmente, de
secuentes infinitarios.

Ya hablamos mds arriba de la relacién entre las 16gicas multivalentes y
las relevantes. Precisamente una légica que admite una bonita definicién
semantica como légica infinivalente es el sistema (de la familia relevante)
RM. (Cuando se trata de sistemas relevantes, es a menudo dificil saber quién
es el originador de uno de ellos en particular; mas lo que es seguro es que
quien mas se ha destacado en el estudio de RM es Robert K. Meyer; v. su
seccion sobre ese sistema, §29.3, de Anderson y Belnap, 1975, 393 ss.) He
aqui la matriz caracteristica de dicho sistema: <I, D, N, A, Vv, =>, donde
I es el conjunto de los enteros; D es el conjunto de los enteros no positivos;
inj = max(i,j); iVj = min(i,j); Ni = —i; y j=>i =: NjVvisij=i, y NjAi
si j <i. Este sistema tiene una axiomatizacion finita muy elegante que resulta
de afiadir al sistema «relevante» R el célebre axioma «Mingle»: "p—.p—p~.
Sin embargo, RM, aunque de esa familia, ya no es un sistema que cumpla
los constrefiimientos relevantes.

Pues bien, recientemente se ha estudiado una serie de sistemas inter-
medios entre las légicas de la familia A —la que se ha venido exponiendo
someramente en parrafos precedentes de este §— y el sistema relevante E,
que resulta de R al suprimir el axioma de permutacién: rp—>(q—r)—>.
g—>.p—1" . He aqui cémo es uno de ellos, P5. Puede axiomatizarse con estos
10 esquemas axiomaticos:

pP~qr A (qQ2>p—1)—-1 p~qA(g—1)—=>.p—r
PAQAT=TADPAQ p—~q—>.r>s~>.p—~>qA.r>s
p=>q—>1>s A (@ (p~p)>(p—~>q)—>s)—>s pAQ-p
p~q—>.p~>.pAq Np—~>q—>N(p—~>q)
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p~Ng—.q>Np NNp-p

Los functores primitivos son ‘A’, ‘', ‘N’. ‘@’ es definido asi: "¢ p"
abr. "N(p—»Np)'; rpvq' abr. "N(NpANq)". Una sola regla de
inferencia: para n=>1: rp'-qV .p2>qV....V.pt">q', p!7, ..., " |}
q. (Cuando n=1, tratase del modus ponens normal y corriente.) Este sistema
tiene como caracteristica una clase de matrices infinitas, parecidas a la de
RM (y de hecho varias similitudes con RM): el portador serd /U {—oo, o };
las mismas asignaciones para los functores excepto para ‘—=’: j—i =: oo si
j<i; 0sij=i; el conjunto de elementos designados, D, variard de una matriz
a otra, si bien siempre [—o,0] < D. Esa clase de matrices se llamara P,
siendo P; aquella matriz de la clase P cuyo conjunto de elementos designados
sea {x: x<j};y P, j aquella en que sean designados todos los elementos <
j. Las discrepancias entre RM y P5 son tan significativas como las
convergencias. P.ej. en RM, mas no en P5 vale este teorema: "pANpA
qANg—.plq” (donde, claro, rplq abr. 'p>qA.q—»p"). P5 y RM son
paraconsistentes, mas sé6lo el primero es contradictorial.

;Tiene P5 una matriz caracteristica? No puede ser P, porque en ella
para cualesquiera férmulas, Tp7, Tq", se tendra la validez (con relacion a
P, tomada como caracteristica) de la formula "p—>qV p™, que no es teore-
madtica en P5. Por otro lado, hay una diferencia entre P5 y una logica de-
finida como caracterizada por la matriz P,: en esa logica la operacion de
consecuencia | seré tal que {p, Np, q, Nq} |5 plq (igual que en en RM).
Y esa regla de inferencia no es derivable en P5. Sin embargo, los teoremas
de una légica asi definida si son exactamente los de P5.

El mis fuerte de los sistemas de esa cadena es P10, un sistema que el
lector va a reconocer inmediatamente como de la familia A, que hemos
venido examinando; P10 afiade a P5 dos nuevos functores, ‘H’ monadico
(‘Es totalmente cierto que’) y ‘e’, 0-ddico, o sea una constante sentencial,
que denota la conyuncién de todas las verdades (lo infinitesimalmente
verdadero). Los esquemas axiomaticos adicionales son cuatro:
p—~q—~.NHNHp—Hq Hp—»qV .Np—r o—>pV.p>q a

P10 si tiene una matriz caracteristica, que es como una para P5 sélo que
el portador ha sido aumentado con dos elementos, « (siendo cualquier entero
e < a < ™)y Na, tal que cualquier entero € > Na > —oo. Todos los
elementos son designados salvo o . Cualquier valuacién, v ser tal que v(Hp)
= —o0 si W(p) = —oo, y, si no, v(p) = . Wa)=a (para cualquier v).
Todo eso es como el lector ya lo esperaba, a estas alturas.
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Quedan todavia por resolver muchisimos problemas con respecto al gé-
nero de légicas infinivalentes cuyo estudio viene posibilitado por las 4lgebras
del tipo recién considerado. P.ej.: ;jcudl es la axiomdtica mas simple y
elegante para el dlgebra A, y las a ella isomoérficas? Una vez dados ciertos
postulados que recojan las propiedades légicamente interesantes de esas
algebras (y se han propuesto varios conjuntos de tales postulados, recogidos
en las obras ya citadas, que figuran en la bibliografia), ;cudl es la menor
algebra —que no sea simplemente un dlgebra de Lindenbaum o de Tarski—
que los satisfaga todos (y que, por lo tanto, sea un retracto de A, donde un
algebra A es un retracto de otra B sys hay un automorfismo idéntico de A
[uno, m, tal que mx=x siempre] que es la composicién o producto relativo
de un monomorfismo de A en B con un epimorfismo de B en A)?

III CONCLUSIONES

Estan aln por investigar las cuestiones con que ha finalizado el § precedente
—asi como muchas otras—, pero lo que ya parece probado es que ese género
de tratamiento abre perspectivas que incrementan la aplicabilidad y el grado
de motivacioén filos6fica de las 16gicas multivalentes. De hecho, ese manido
aserto de que las ldgicas multivalentes son meros juegos matematicos ha sido
siempre desacertado (ya Lukasiewicz puso en pie su sistema movido por una
idea filoséfica, equivocada o no, que es el rechazo del determinismo), pero
nunca ha sido tan falso como con relacién a las l6gicas algebraicas infiniva-
lentes que acabamos de esbozar.

La idea de que hay s6lo dos valores de verdad es tan respetable como
cualquier otra tesis metafisica, afieja 0 no, pero frente a ella abonan razones
de peso que no cabe dejar de escuchar atentamente; algunas de esas razones
llevaron a una parte de la tradicién filoséfica —aunque minoritaria— a la
afirmacién de grados de realidad y de verdad; otras de tales razones tienen
que ver con problemas epistemoldgicos debatidos actualmente; y muchas de
ellas guardan conexién con aplicaciones de la l6gica a diversos campos del
saber y de la investigacion.

Teniendo en cuenta que generalmente el mundo se nos acaba presentando
como mds complicado de lo que nos lo soliamos imaginar, cabe conjeturar
que es infinitamente complicado, y que una parte de esa complejidad viene
dada por la infinivalencia veritativa, por los infinitos grados de verdad y de
falsedad. También habria que tener en cuenta otra faceta, que multiplica al
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infinito la infinitud misma: en este trabajo s6lo hemos considerado logicas
escalares, salvo una breve alusién a las dlgebras producto. Hay razones —en
las que ya no cabe entrar aqui— para pensar que la realidad es mas complica-
da, y que incurren en simplificacion burda las légicas escalares (aquellas en
las que, para cualesquiera dos valores, x, z, X<z 0 z<X): seria, en tal caso,
mas correcto representar a los valores de verdad como tensores o matrices
infinitas (en el sentido del calculo matricial). Entre otras cosas, asi se podria
dar un tratamiento mas adecuado a problemas como algunos de la fisica cudn-
tica o los del realismo modal de David Lewis y temas afines.

Una repercusidon de la adopcién de una légica asi seria que habria teorias
aceptables no primas, o sea tales que ™pV(q? podria ser afirmable con
verdad sin que lo fueran ni Tp™ ni Tq" . Naturalmente eso acarrea ciertas
complicaciones para el tratamiento semantico de la disyuncion.

Lo que parece mas all4 de la controversia es que las 16gicas multivalentes
no son ni matematica ni filos6ficamente anodinas.
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