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Introducciéon
Juan Pablo Pinasco

La geometria es una de las ramas mds antiguas de la matemadtica. Fue la primera en
desarrollarse como un cuerpo teérico ordenado, con axiomas, teoremas, y demostra-
ciones; este desarrollo fue imitado luego por el resto de las matemidticas. La propia
geometria desarrollé sus propias ramas, y por ese motivo es dificil hablar hoy de una
unica geometria. Cada vez que las herramientas teéricas se demostraban insuficien-
tes para resolver nuevos desafios, distintos problemas prdcticos motivaron el
desarrollo de estas nuevas geometrias.

Por otra parte, muchas de estas ramas de la geometria fueron quedando obsoletas para
las aplicaciones practicas (aunque no como herramientas tedricas) ante el avance tecno-
l6gico. Para citar un ejemplo de gran importancia atin hoy dia, pensemos en cémo
determinar la ubicacién de un barco en el océano. Después del descubrimiento de
América este problema se transformé en el principal problema tecnolégico relacionado
con la navegacién. Los barcos de la época eran capaces de atravesar el Atldntico, y por
primera vez tenfan necesidad de alejarse de la costa al navegar.

El primer obstdculo para ubicarse en mar abierto es la falta de puntos de referen-
cia: sélo las estrellas estdn disponibles para intentar hacerlo. Las estrellas fueron
utilizadas ya en la antigiiedad, junto con argumentos de semejanza de tridngulos
y trigonometria, para resolver parcialmente el problema. Sin embargo, no son
suficientes, también se hace necesario medir muy bien el tiempo, con mucha pre-
cisién. Los cldsicos relojes de la Edad Antigua y la Edad Media (principalmente
clepsidras y relojes de arena, que median el tiempo en que tardaba en vaciarse un
recipiente) no sirven en un barco debido al movimiento de las aguas; tampoco los
relojes de péndulo posteriores, cuyo balanceo también se ve alterado. Por este
motivo, para resolver el problema, durante los siglos XVI, XVII y XVIII se traba-
j6 en mejorar los mapas y las cartas de navegacion, los calendarios solares y lunares
(para saber a qué hora debe aparecer un astro en determinado lugar, lo que permi-
te ubicarse), y en el desarrollo de nuevos relojes.

Cada uno de estos problemas involucré nuevas herramientas matemadticas. En esa
época surgieron la geometria proyectiva (impulsada por los pintores y arquitectos
renacentistas), la geometria analitica (principalmente desarrollada por Fermat y
Descartes), el andlisis matemdtico (que permitié el estudio de curvas de manera
analitica), y la geometria diferencial (si bien aparecié a fines del siglo XVIII, fue-
ron Cauchy, Gauss y Riemann en el XIX quienes la transformaron en una rama en
si misma).



Hoy dia, el GPS (sistema de posicionamiento global) se encarga de resolver este proble-
ma de manera automdtica: una computadora calcula las distancias triangulando las
senales intercambiadas entre el barco y distintos satélites. El funcionamiento del GPS
se basa en los mismos principios de la geometria cldsica utilizados al triangular posicio-
nes basdndonos en las estrellas u otros puntos de referencia; la principal diferencia es la
precisién en los cdlculos y la rapidez con que se los hace al estar automatizada la tarea,
y si bien no necesitamos saber mucha geometria para utilizarlo, si la necesitamos si que-
remos saber como funciona.

¢ Qué escribir, entonces, en un libro de geometria como éste? ;Como mostrar su
potencial para las aplicaciones y, a la vez, su importancia tedrica? Hemos tratado
de equilibrar ambos aspectos, proponiendo que resolvamos el siguiente problema:

Estimar las distancias al Sol y a la Luna, y sus tamaios.

Vamos a hacer una serie de suposiciones para aclarar qué pretendemos medir.
Supongamos que la Tierra gira en torno al Sol en una érbita circular, y que la Luna
también se mueve en circulos en torno a la Tierra (sabemos, gracias a los avan-
ces astronomicos, que en realidad sus orbitas son elipticas, pero en una primera
aproximacion no lo vamos a tener en cuenta). Nos interesa calcular, aproxima-
damente, el radio de estas orbitas, que son las distancias a la Tierra:

e R distancia entre el Sol y la Tierra (radio de la érbita terrestre en torno al Sol)
o r distancia entre la Lunay la Tierra (radio de la érbita lunar en torno a la Tierra)

Ademas, vamos a suponer que el Sol, la Luna y la Tierra son esferas perfec- | planteo del
tas, y para conocer su tamaiio necesitamos conocer el radio de estas | Problema
esferas, o el diametro (que es igual al doble del radio). Seran nuestras incog-

nitas, entonces,

D, diametro del Sol
d, diametro de la Luna

Seiialemos también que estos cuerpos celestes no son esferas perfectas, aunque
para nuestros objetivos no es importante. Por ejemplo, en el caso de la Tierra, el
radio ecuatorial (la distancia medida desde el centro de la Tierra hasta un punto
en el Ecuador) es de 6.378,1 km, mientras que el radio polar (la distancia entre el
centro de la Tierra y uno de los polos) es de 6.356,8 km; la Tierra esta achatada
entre los polos unos 22 kilometros, que pueden despreciarse sin ningin proble-
ma si nuestro objetivo es hacernos una idea aproximada del tamaiio de la Tierra.

Muchas veces puede medirse el tamaiio de un objeto o la distancia a la que
esta sin necesidad de recurrir a la geometria. En este caso, no podemos ir con
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Planteo del

Problema

una cinta métrica o una regla tratando de medir el diametro lunar... mucho
menos el del Sol. Sin embargo, veremos que es un problema que puede resol-
verse con muy pocas herramientas si empleamos distintos conceptos
geométricos. Las primeras estimaciones de estos tamaiios y de estas distan-
cias se hicieron hace ya mas de dos mil aios, sin necesidad de telescopios,
satélites, ni fotografias: simplemente observando con sus ojos, y utilizando
modestos instrumentos como una regla y una plomada. Los calculos se hacen
hoy dia de la misma forma para calcular la distancia a otras estrellas y a dife-
rentes galaxias, sélo que se utilizan computadoras en vez de hacer las cuentas
a mano, y se trabaja con seiiales de radiotelescopios y sobre fotografias sate-
litales. Pero los conceptos geométricos que se emplean no han variado.

Vamos a hacer una recorrida por distintas geometrias, recolectando estos conceptos que
nos serdn necesarios para la solucién del mismo. Pero este problema no serd la tnica
motivacién del libro: en cada capitulo veremos las ideas claves de distintas ramas de la
geometria, junto con los teoremas y resultados centrales de cada una, sin descuidar sus
demostraciones. Presentaremos también ejercicios y problemas particulares, que no
siempre estardn conectados directamente con nuestro problema principal, pero que sir-
van para extender o verificar que se han comprendido los resultados del texto.

La estructura del libro es la siguiente. En el primer capitulo haremos un breve recorri-
do por la historia de la geometria antes de Euclides, buscando su origen y los rastros de
la misma en las primeras civilizaciones. El segundo capitulo presenta el sistema axioma-
tico de la geometria euclidiana cldsica, y los resultados de semejanza de tridngulos. En
el capitulo tres veremos los rudimentos de la trigonometria, y en el cuatro (escrito por
Santiago Laplagne) diferentes aplicaciones teéricas y précticas. El quinto capitulo
(escrito por Nicolds Saintier) estd dedicado a la geometria esférica, haciendo hincapié
en la diferencia de trabajar sobre una superficie plana o una superficie curvada. En el
sexto capitulo (escrito por Inés Saltiva) presentaremos la geometria proyectiva critica
para entender la perspectiva y cémo vemos las cosas. En el séptimo (escrito por Pablo
Amster) introduciremos algunos conceptos topoldgicos y, finalmente, en el octavo capi-
tulo resolveremos nuestro problema principal.



Capitulo 1

[Los comienzos
de la geometria

Juan Pablo Pinasco

1.1. Prehistoria

;Cudndo comienza la geometria? ;Dénde? ;Cémo? Estas preguntas son dificiles de res-
ponder, tal vez sea imposible hacerlo. No importa cudnto nos remontemos en el
tiempo, siempre vamos a hallar rastros de conocimientos geométricos en las civilizacio-
nes mds antiguas, incluso en las primeras tribus némades.

Para obtener alimentos necesitaban moverse constantemente, ya sea siguiendo las
migraciones animales, huyendo cuando en las temporadas de frio o lluvias la caza dis-
minufa, o buscando nuevas fuentes de alimento cuando crecia la poblacién. La
necesidad de orientarse era primordial. ;Hacia dénde ir para buscar agua? ;De dénde
vienen ciertas tormentas? ;Cémo volver a una regién donde la caza o la recoleccién de
frutos fue favorable?

La regularidad del Sol en cada amanecer da una direccién privilegiada, un cierto eje a
partir del cual sefialar otras direcciones. Y para indicar estas otras direcciones, la nocién
de dngulo se vuelve completamente natural. Miles de anos después el dngulo serd defi-
nido como una medida de desviacién respecto de una linea recta; pero el concepto en
si de dngulo, en aquel momento, tiene que haber estado presente.

La direccién sola no es suficiente para determinar posiciones, también es necesario
conocer las distancias, y poseer instrumentos de medida. Sin dudas, nuestros antepasa-
dos comenzaron utilizando aquello que tenfan mds préximo: su propio cuerpo.  Es
cierto que no tenemos pruebas directas de esto, pero en la mayoria de las civilizaciones
posteriores encontramos unidades de medida tales como la pulgada, la cuarta o palmo,
el pie, el codo, la braza, entre otras. Las unidades de medida mencionadas no coinci-
den cuando se consideran distintos lugares (o épocas). Sin embargo, las diferencias son
minimas y, como en muchas actividades se las sigue utilizando (carpinterfa, mecdnica,
ndutica), es bueno tener una idea aproximada de las mismas:

pulgada cuarta pie codo braza
254 cm 20,87 cm | 30,48 cm 45 cm 1,65 m

Para distancias grandes, apelaron a un recurso que también se utiliza en nuestra época:
indicar el zempo (en dias, o en meses -lunas-) de marcha necesarios para recorrerlas.



Ejercicio 1 | ;Qué quiere decir que la distancia entre dos estrellas es cuatro afios-luz?

La punta de una flecha o el filo de un hacha contienen mds conocimiento geomé-
trico del que nos imaginamos. ;Qué idea mds primitiva de punto o de recta se nos
ocurre? Tampoco es casual que las flechas y las lanzas sean rectas en lugar de curvas,
o que los anzuelos y arpones mds antiguos presenten dificultades para retirarlos una
vez que la presa se enganché en ellos.

Pero si nos parece que no estuvieron involucradas aqui nociones geométricas, y
que estamos forzando a ver matemdticas en algo que por fuerza debia tener esa
forma, mencionemos entonces un arma mds “avanzada”, el bumerang, conocido
desde hace mds de veinte mil afios. El objetivo de un bumerang no es golpear a la
presa, pues en este caso el arma caerfa junto con el animal en lugar de retornar a
quien la lanzd; si quisiéramos golpearla serfa mds efectivo tirarle una lanza, flecha,
o piedra. La idea es que el bumerang le llegue al animal cuando estd haciendo su
trayectoria hacia el lanzador, y que lo espante hacia él, para que pierda la nocién
de la direccién desde la que lo estdn atacando. Ademds, el ruido que produce al
desplazarse es un factor importante de confusidn, y sirve, por ejemplo, para des-
orientar a las aves de una bandada, forzdndolas a bajar.

Disenar las armas primitivas de esta manera significé una gran ventaja para nues-
tros antepasados, que les permitié alimentarse y sobrevivir. Desde ya, casi con
toda seguridad, estos disefios fueron obtenidos por prueba y error, corregidos
quién sabe cudntas veces antes de tomar una forma definitiva, que hoy nos parece
casi Unica, ya que se repite en la mayoria de las civilizaciones conocidas.

Por otra parte, observamos también patrones geométricos en las piezas de alfa-
rerfa, en la construccién de carpas y de chozas, y en sus adornos y motivos
decorativos. Podemos afirmar que estos primeros grupos de seres humanos no
habian tomado cursos de matemdticas ni nada que se le pareciera, y que todas
estas nociones se transmitian oralmente en forma indirecta, ligadas a su utilidad
inmediata, sin una reflexién sobre las ideas geométricas subyacentes. Pero este
conocimiento de la geometria -impreciso, intuitivo, imperfecto- era el que
introducia cambios y mejoras en las técnicas y herramientas que necesitaban
para sobrevivir.

1.2. Egipto y Mesopotamia

Hace diez mil afios distintas zonas del norte de Africa y Asia se volvieron desérticas. Las
tribus que cazaban en estos territorios tuvieron problemas para conseguir agua y comi-
da, y se vieron obligadas a mantenerse cerca de los grandes rios. El Nilo en Egipto, el
Tigris y el Fufrates en Babilonia, fueron los testigos de uno de los mayores cambios en
la historia de la humanidad: las tribus se vuelven sedentarias, construyen ciudades,
domestican animales, y nace la agricultura.

12



Si bien esto resolvia el problema de la alimentacién, aparecieron nuevos problemas. No
se podian esquivar los cambios de estacidon o las inundaciones emigrando; habia que
predecir las temporadas apropiadas para la siembra; habia que redefinir los roles de cada
uno en las nuevas sociedades, repartir bienes y tierras (ya sea para su posesion, o para
el trabajo). El hombre necesitaria mayor precisién en la medicién del tiempo, de las dis-
tancias, de las dreas, y de los volimenes.

Asi como en el periodo anterior las nociones geométricas aparecen en forma vaga o
imprecisa, en éste la geometria toma un aspecto mds familiar. Estas civilizaciones utili-
zaron férmulas para el cdlculo de dreas de figuras rectangulares y triangulares,
aparecieron aproximaciones para el drea de un circulo, en Egipto se obtuvo la férmula
que da el volumen del tronco de una pirdmide.

Para la medicién del tiempo durante el dia, construyeron relojes de sol, que utilizaban
para anticipar la llegada de las estaciones del afio y conocer su duracién. Estudiaron las
constelaciones y trazaron el recorrido aparente del Sol a través del zodiaco (desde ya,
que hoy sabemos que no es el Sol quien se mueve, pero desde nuestra perspectiva terres-
tre, es mas sencillo describirlo asi).

La divisién del circulo en 360 grados se relaciona con los primeros calendarios, si bien
pronto notaron que el afio debia tener poco mds de 365 dias.

En Egipto aparecen los arpedonaptas o “tiradores de cuerdas”, primeros agrimen-
sores que utilizaban cuerdas como reglas, compds y escuadra. Con ellas podian
medir distancias, trazar rectas perpendiculares, y dibujar circulos. Esto sefiala un
doble progreso de la geometria: primero, la introduccién de instrumentos (la uti-
lizacién tanto de la regla como del compds se derivan directamente del uso de las
cuerdas), segundo, el reconocimiento de su importancia, al punto de justificar la
existencia de una nueva profesién basada en ella.

Los conocimientos matemdticos de estas culturas nos han llegado por caminos
muy diferentes. En el caso de los egipcios, se conservaron papiros en buen estado
en las pirdmides. Los mds famosos son los papiros de Mosct y Rhind. El prime-
ro contiene la férmula para el volumen del tronco de una pirdmide, y el segundo
se sabe que fue escrito aproximadamente en el ano 1650 a.C., si bien el escriba
(llamado Ahmes) aclara que estd copiando un texto escrito doscientos afos antes.
Los textos babilénicos que se conservaron y conocemos se encuentran escritos en
tabletas de arcilla entre los afios 1900 y 1600 a.C.

1.3. Thales

El siguiente gran avance en la geometria se lo debemos a los griegos. Con ellos, deja de
ser una actividad empirica, y desarrolla un sistema de reglas propias, muchas veces inne-
cesariamente restrictivas desde el punto de vista de las aplicaciones. Son muchos los
nombres involucrados en esta construccién, y la coleccién de procedimientos y resulta-
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dos précticos utilizados para calcular dreas y longitudes se transforma en un edificio ted-
rico organizado deductivamente. Los cimientos son unos pocos axiomas asumidos
como vélidos, junto con algunas definiciones.

Los griegos construyen una nueva forma de hacer matemadticas, sin estar pendientes de
las aplicaciones inmediatas. Pero no vayamos a creer que éste fue un mero juego tedri-
co sin consecuencias reales: Thales, alrededor del ano 600 a.C., calcula la altura de las
pirdmides egipcias y también predice eclipses; Eratdstenes (276-194 a.C.) calcula el
radio terrestre con gran precisién, e incluso estima la distancia al Sol y a la Luna; podri-
amos dedicar un libro completo a los inventos de Arquimedes (287-212 a.C.) y al papel
que jugaron en la guerra entre Roma y Cirtago, cuando trabajé en la defensa de
Siracusa, la isla donde vivia.

Podemos ver un ejemplo particular del valor de esta abstraccién en la obra de Apolonio
(262-190 a.C.), que estudid las secciones conicas. Las curvas -que bautizé elipses, pard-
bolas e hipérbolas- no parecian tener ninguna utilidad especial, pero en 1609 Kepler
encontré que el movimiento de los planetas no era circular, sino que recorrian elipses
en torno al Sol. Veinte afios después, Galileo afirmarfa que un objeto arrojado por el
aire describfa una pardbola. A fines del siglo XVII Newton postula la Ley de
Gravitacién Universal, y deduce que las tnicas 6rbitas posibles para el movimiento de
los objetos celestes eran, precisamente, estas tres curvas (que la misma ley de gravita-
cién sea vélida para la caida de objetos en la superficie terrestre explica el tiro parabélico
hallado por Galileo; las hipérbolas son mds raras de observar, pero se sabe de cometas
que siguieron 6rbitas de esa clase). Hoy en dia se siguen utilizando las pardbolas en el
diseno de antenas satelitales, o en la éptica de un automévil o una linterna.

Thales es el primer matemdtico a quien se le atribuye una serie de resultados teéricos
generales, es decir, de teoremas. Si bien no se sabe cémo los demostré originalmente,
hoy son parte de la geometria bdsica:

Volveremos mds adelante a estos teoremas, pero hagamos rdpidamente algunos comen-
tarios sobre los dos primeros.



En el caso del teorema de los dngu-
los opuestos por el vértice, podemos
pensar que tenemos dibujada una
letra X, como en la figura, y el teore-
ma afirma que los dngulos A y B son
congruentes entre si (y también son
congruentes entre si C'y D).

\_‘ Angulos opuestos por el vértice

La demostracién de este teorema no es muy complicada:

Los angulos opuestos por el vértice son congruentes. [En la figura anterior, los Teorema

angulos A y B son congruentes.]

Veamos ahora el segundo. Cuando
cortamos dos paralelas con una trans-
versal, se forman en total ocho
dngulos, pero sélo hay dos que son
esencialmente distintos. El teorema
anterior nos dice que en la intersec-
cién de la transversal con la primera
paralela hay dos pares de dngulos que
son iguales entre si, este teorema nos
dice que ademds estos dngulos se repi-
ten en la interseccion de la transversal

/

\—‘Angulos alternos internos entre paralelas

con la segunda paralela. En la imagen, estd marcado un par de dngulos alternos internos.

Si deslizdramos una paralela sobre la otra, desplazdndola a lo largo de la transver-
sal hasta hacer coincidir los dos cruces, vemos que los dngulos marcados se
transformarfan en dngulos opuestos por el vértice, y el primer teorema nos garan-

tizarfa la congruencia.

Los comienzos de la geometria
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No es la tinica forma de razonar sobre este teorema. Por ejemplo, vemos una letra zeta, y no
importa de qué lado de la hoja estemos, nos parece idéntica. También, si la podemos girar,
coincide con si misma, y no queda otra opcién: los dngulos deben ser iguales. Este tipo de
argumentos aprovecha la simetria de la figura.

Lamentablemente, éstas no serfan demostraciones del teorema, y para obtener una
demostracién rigurosa necesitaremos acudir al famoso quinto postulado de Euclides:

Como vemos, no es un postulado sencillo. Necesitamos también una definicién de rec-
tas paralelas, y vamos a recurrir también a la que Euclides darfa en su libro unos
trescientos afios después:

Con estas definiciones, estamos en condiciones de enunciar y demostrar el teorema:

Teorema | Los angulos internos entre paralalelas son congruentes.
e —

Notemos que, antes de la demostracion rigurosa del Teorema vimos argumentos basa-
dos en la idea de simetria, que no estin autorizados en el marco de la geometria
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euclidiana clésica. Por ejemplo, deslizar una paralela a lo largo de la transversal sobre la
otra es una operacion que no estd permitida. Tampoco lo estdn la rotacion, o el despla-
zamiento, que consideramos al pensar los dngulos alternos internos como los dngulos
de una letra zeta. No es posible levantar una figura y superponerla sobre otra, o trasla-
darla. Este tipo de operaciones, que hariamos en la prictica (rotar una figura, moverla),
estd excluido y es reemplazado por construcciones. Si queremos una figura igual a una
dada, en otro lugar o en otra posicién, debemos ser capaces de construirla. No pode-
mos levantarla y colocarla donde deseemos. Ademds, las construcciones estdn
severamente limitadas al uso de la regla y el compds. La regla no se debe entender como
una herramienta para medir distancias, ya que no estd numerada como las reglas habi-
tuales, ni tampoco podemos hacer marcas en ella.

Por suerte, esta clase de argumentos basados en ideas de simetria y en movimientos no han
sido descartados, sino que forman parte de desarrollos matemdticos mds modernos. A fines
del siglo XIX, los matemdticos Lie y Klein propusieron construir diferentes geometrias que
respetaran determinadas propiedades de invariancia, o que tuviesen ciertos grupos de sime-
trfas. No vamos a entrar en detalles al respecto en este libro, porque requiere de matemdticas
muy avanzadas, pero veremos ejemplos sencillos de estas ideas fundamentales.

Podriamos hacer una representacion de los angulos alternos internos entre Ejercicio 2
paralelas dibujando una letra Z. ;Qué otra letra nos serviria?

Supongamos que en la base de un triangulo se tienen dos angulos cuya suma Ejercicio 3
es mayor a dos rectos. ;Como contradice esto al Postulado V?

1.4. Pitagoras

El siguiente matemidtico que ocupa un lugar destacado en la historia es Pitdgoras. Naci6
en la isla de Samos aproximadamente en el afo 570 a.C. Su padre era mercader, y viajé
con él por distintos lugares. A los veinte afios conocié a Thales en Mileto, quien le
habria recomendado estudiar en Egipto. Se encontraba en este pais cuando fue invadi-
do por los persas, quienes lo tomaron prisionero y lo llevaron a Babilonia, pero alli
continué sus estudios y se cree que incluso viajé a la India. Alrededor del afio 520 a.C.
regres6 a Grecia, y se instal6 posteriormente en Crotona, al sur de Italia.

Al margen de sus resultados matemdticos, Pitdgoras fue el fundador de una de las pri-
meras escuelas filoséficas de las que se tiene noticia. Se la ha denominado “hermandad”,
e incluso “secta”, por el fuerte componente mistico que tenfa, sus miembros estaban
obligados a seguir distintas reglas. Sus descubrimientos eran comunes, con lo cual se
hace dificil determinar cudles debemos al propio Pitdgoras y cudles a sus seguidores,
pero si podemos atribuirle a ¢l la idea de pensar en los conceptos matemdticos en si mis-
mos: la nocién abstracta de demostracién, o el significado de conceptos matemdticos
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aparentemente tan sencillos como el de tridngulo o el de ndmero.

La figura de Pitdgoras en los comienzos de la matematica es central por haber relacio-
nado, en cierto modo, los problemas aritméticos que dependen de nimeros con los
problemas geométricos relacionados con figuras. Si hasta ese momento los niimeros
eran un instrumento para contar o para medir, después de Pitdgoras el concepto de
ndimero se verd ampliado al introducir los ntimeros irracionales, aquellos que no podi-
an describirse como el cociente (o razén) de dos niimeros enteros.

Ademis de la existencia de estos nimeros (un resultado fuertemente geométrico,
como veremos), hay otros dos resultados importantes que debemos a Pitdgoras o
a su escuela: el valor de la suma de los dngulos interiores de un poligono, y el
famoso Teorema de Pitdgoras. Veamos estos resultados en detalle.

1.4.1. Angulos interiores de un poligono

Tomemos un tridngulo cualquiera. En principio, es poco lo que podemos decir de sus
tres dngulos: cada uno de ellos puede variar desde unos pocos grados hasta casi dos rec-
tos. Sin embargo, si lo pensamos un poco, nos podemos convencer de que no puede
tener dos dngulos que midan mds de 90° cada uno. Esto es una consecuencia directa del
quinto postulado que mencionamos anteriormente.

Si ordenamos lo anterior, tenemos que en un tridngulo: a) un tnico dngulo no puede supe-
rar los 180°% b) dos dngulos cualesquiera, sumados, tampoco pueden superar los 180°.
sQué podemos decir de los tres dngulos? Sorprendentemente, el teorema es muy preciso:

Teorema | En todo tridngulo, la suma de los angulos interiores es igual a dos rectos..
e —

B C

Angulos internos
de un triangulo
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Sabemos ahora cudnto suman los dngulos interiores de un tridngulo. ;Qué podemos
decir de una figura con mds lados, es decir, de un poligono? Vamos a poner algunas res-
tricciones, si bien existen resultados mds generales.

Un poligono de 7 lados tendrd n
vértices, y pediremos que los dngu-

los interiores sean todos menores a
dos rectos, es decir, 180°. Esta clase
de poligonos son convexos, pues
cumplen una propiedad geométrica
muy sencilla e importante: todo par
de puntos de su interior (o del

borde) pueden conectarse con un
segmento que cae totalmente den-

tro dCIPOhgono' \ El poligono de la derecha es convexo,
el de la izquierda no lo es.

Si pensamos en el mds simple que
se nos ocurre después del tridngulo, un cuadrado, pode-
mos ver que sus dngulos suman 360°, ya que tiene cuatro
dngulos rectos. Luego, si hay un valor para la suma de los
dngulos de un cuadrildtero, tenemos un candidato: debe

Esta es una forma habitual de obtener
generalizaciones en matematicas: si
deseamos una formula que se aplique a

ser 360°, pues es lo que vale en un cuadrado. distintos casos, la calculamos en algu-
nos casos particulares sencillos dado
Ahora estamos en condiciones de enunciar y demostrar el = ULEUEEELAEILERE TR ELC R[S
teorema.
En todo cuadrilatero convexo, la suma de los angulos interiores es igual a 360°. | Teorema
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Ejercicio 4 El siguiente cuadrilatero no es convexo.
¢(Como se demuestra que sus angulos inte-
riores también suman 360°?

1.4.2. El teorema de Pitdgoras.

y . Hemos visto que la suma de los dngulos interiores de un
tridngulo es igual a 180°. Nada impide, entonces, que
uno de sus dngulos sea recto y mida exactamente 90°. Se
llama sridngulos rectangulos precisamente a aquellos que
poseen un dngulo recto. También sus lados reciben
nombres especiales.

Los lados que forman el dngulo recto son llamados caze-
b tos, y el lado opuesto al dngulo recto se llama hipotenusa.

h J
El teorema de Pitdgoras enuncia una relacion entre las
longitudes de los lados de un tridngulo rectdngulo. Si llamamos « y & a las longitudes
de los catetos, y ¢ a la longitud de la hipotenusa, tenemos

24 b=

que se suele enunciar como: “la suma de los cuadrados de los catetos es igual al cuadra-
do de la hipotenusa”, sobreentendiendo que en realidad hablamos de sus longitudes.

Existen miles (no, jno estamos exageran- N
do!) de demostraciones diferentes del
teorema de Pitdgoras, e incluso en Los
Elementos de Euclides aparecen dos ¢
demostraciones distintas. Uno podria
pensar que con una demostracién es sufi- b
ciente para convencernos de su validez, y
asi es, pero esta busqueda revela la fasci-
nacién que ¢jerce el teorema, al conectar
una propiedad geométrica con otra de
tipo aritmética.

La demostracién que veremos a conti-
nuacién es una de las mds sencillas, una | 4
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verdadera demostracion visual, fécil de recordar, y que

nos convencera de la validez del teorema.

En el grafico de la pdgina anterior vemos un cuadrado
de lado  + &, donde hay cuatro tridngulos de catetos
y b, e hipotenusa ¢. Sacando estos tridngulos, quedan
dos cuadrados mds pequenos (uno de lado 4, el otro de

lado 4).

En el segundo grifico, vemos los mismos cuatro tridn-
gulos, en el mismo cuadrado de lado # + 4, pero
acomodados de otra manera.

El drea de ambos cuadrados es (2 + 6)?, y en ellos
vamos a restar las dreas de los cuatro tridngulos de
catetos 2y b. En el primer cuadrado nos quedan dos cuadraditos, uno de drea 2
y el otro de drea 2. La suma de estas dreas debe coincidir con el drea de la geome-
tria de la figura central en el segundo gréfico, que parece ser un cuadrado de lado
¢. Si lo es, como su drea serfa ¢2, habriamos demostrado el teorema de Pitdgoras,
pues nos queda

21 b=

Sin embargo, no es evidente que esa figura sea un cuadrado, y es un hecho que deberiamos
demostrar. Tenemos dos formas de proceder que vamos a detallar porque las ideas involu-
cradas en cada demostracién son muy diferentes.

ler Método. La idea es utilizar la simetria de la figura, observamos que la figura perma-
nece igual si la giramos 90°, 180°, 6 270°. Ya que no cambia y que su aspecto es el
mismo, debe ser un cuadrildtero con sus cuatro dngulos iguales. Ahora, como la suma
de los dngulos de un cuadrildtero es 360°, cada uno de ellos mide 90°.

Observemos también que los cuatro
< | lados son iguales, ya que estdn for-
mados por las hipotenusas de los
tridngulos, cuya longitud es c.

Luego, la figura es un cuadrado de
lado ¢, y su drea es 2.

2do Método. Demostremos, utilizan-
do los teoremas anteriores, que sus
dngulos interiores miden 90°. Para
esto, observemos con cuidado un
dngulo interior A y los dngulos x, ,
z del tridngulo:
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Observacion

Este Gltimo método
se basa en los
resultados que
demostramos
antes, y no requie-
re movimientos de
la figura -tal vez no
permitidos- ni
argumentos extra-
fios. Esta es la
esencia del méto-
do axiomaético,
partimos de unos
pocos supuestos
que consideramos
verdaderos, y
demostramos nue-
vos resultados sin
apelar a argumen-
tos que no hayan
sido enunciados o
justificados antes.
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Sabemos que
x+y+z=180°

porque son los dngulos interiores de un tridngulo, y ademds z = 90° ya que es un dngu-
lo recténgulo. Por otra parte,

x+y+A=180°

porque forman un dngulo llano. Por lo tanto, tenemos que
A=180°-x-y

pero también
z=180°-x—y

con lo cual tenemos que A = z, y por lo tanto A es un dngulo recto.

El mismo razonamiento muestra que los otros dngulos de la figura central son rec-
tos, y como sus lados son todos iguales, tenemos un cuadrado de lado c.

1.4.3. NUmeros irracionales

Si bien el teorema de Pitdgoras es una herramienta fundamental en la geometria, al
introducir una nueva clase de nimeros produjo un impacto atin mayor en relacién a la
aritmética. Se atribuye a los pitagéricos haber descubierto los nimeros irracionales,
aquellos que no son cocientes de niimeros enteros (aunque también es posible que
hayan llegado a este concepto por otro camino, a través de los pentdgonos regulares).

El problema, aparentemente simple, de hallar un cuadrado de drea igual a 2 nos enfrenta
al problema de calcular su lado, que debe ser . Geométricamente es sencillo de resolver,
ya que es un caso particular del teorema de Pitdgoras: dibujemos un tridngulo rectdngulo
con sus catetos de longitudes iguales a 1 e hipotenusa ¢; ahora, por Pitdgoras, tenemos:

12+ 12= ¢2,

es decir, ¢ = 2. Hemos resuelto ficilmente el problema, la hipotenusa de este tridngulo rec-
tangulo es el lado del nuevo cuadrado que buscamos, y resulta ser ¢ =

Podemos plantearlo de otra manera: la diagonal del cuadrado unitario mide . En la
cldsica obra de Platén, el Mendn, se puede hallar una demostracién geométrica
sencilla, conocida ya en el siglo V a. C. En este libro, Sécrates dialoga con Menén,
y al discutir sobre la ensenanza, sostiene que los conocimientos estdn en nuestro
interior. Para demostrarlo, interroga a un esclavo de Menén, sin formacién mate-



mdtica previa, sobre distintas cuestiones geométricas, y el esclavo realiza la
siguiente construccion.

Consideremos un cuadrado cuyos lados midan 2, y dividé-

moslo en cuatro cuadrados unitarios. El cuadrado mds
grande tiene un drea igual a 4, mientras que cada uno de
los cuadrados pequefios tiene drea igual a 1.

Tracemos ahora una diagonal en cada cuadrado pequeno, y
observemos que nos queda un dibujo similar al que utiliza-
mos en la demostracién de Pitdgoras:

Igual que antes, podemos demostrar que la figura central es
un cuadrado, cuyo lado es la diagonal de un cuadrado unita-
rio. Ahora, ;cudnto mide esta diagonal, el lado de ese

cuadrado? Una forma rdpida de deducirlo, sin aplicar el teo-
rema de Pitdgoras (aunque para reconocer que esa figura es
un cuadrado estamos repitiendo una parte de la demostra-
cién que hicimos), es ver que cada diagonal divide a los cuadrados pequenos en dos partes
iguales, y por lo tanto, el drea del cuadrado central es la mitad del drea del cuadrado total,
es decir, su drea es igual a 2; con lo cual obtenemos entonces que esta diagonal mide ¢ =

Sin embargo, hemos hecho una afirmacién que tomamos como evidente: cada diagonal
divide a los cuadrados pequenios en dos tridngulos de igual drea; ;corresponderia demostrar este
hecho, o podemos aceptarlo sin muchas mds preguntas?

Hasta el momento, hemos visto la aparicién de de una forma bastante natural.
Nada nos hace sospechar que este niimero no estd dentro del conjunto de nimeros
conocidos en esa época (los naturales 1, 2, 3,... y los cocientes obtenidos dividiendo dos
de ellos). Para esto, vamos a suponer que existen dos niimeros naturales 7 y 7 tales que

y vamos a demostrar que eso nos lleva a un absurdo. Es decir, veremos que no pueden
existir tales 7 y m, o de lo contrario caemos en una contradiccién. Pero, suponiendo
que existan, tenemos que estos nimeros se descomponen de manera tnica como pro-
ductos de primos, esto es,

n=p, Py pPo M=y g

Ahora, como suponemos que

elevando al cuadrado nos queda



Observacion:

Esta es una
demostracion muy
poco geométrica, y
esté basada en el
teorema funda-
mental de la
aritmética, que
afirma que existe
una Gnica descom-
posicion de un
namero natural
como producto de
primos.

y despejando,

2m? = n?.

Utilizamos ahora la descomposicion anterior, y debe ser

pero observemos que el producto del lado izquierdo tiene 27 + 1 factores, mientras que el del
lado derecho tiene 2. Como 2; + 1 es impar, no puede ser igual a 24 (que es un ndmero par,
por ser multiplo de 2), y hemos obtenido una contradiccién.

Es posible dar una demostracion geométrica, la siguiente se debe al matemdtico Tom
Apostol, quien la publicé en el American Mathematical Monthly en el ano 2000.
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Esta demostracién estd basada en la reduccién al absur-
do, como ya vimos antes. Supongamos que existen
distintos valores de 7 y m rales que su cociente es  ,y
que 7 es el menor niimero natural que podemos poner
en el denominador de la fraccién

Observemos que esto siempre es posible, puessi = a/ 6
para algin par de niimeros naturales 2 y &, basta revi-
sar si los posibles valores 1, 2, ..., & — 1 sirven como
denominadores.

u i u u
Suponiendo entonces que 72 es el menor nimero natural
que podemos poner en el denominador, construimos un

tridngulo rectdngulo cuyos catetos midan 7 y su hipotenusa mida 7. Esto es posible por el

Teorema de Pitdgoras, ya que

es decir,

n* = m? + m* = 2m?,

El paso siguiente es construir un tridngulo mds chico, y que sus lados también midan
un nimero natural. Si podemos hacer esto, llegamos a una contradiccién, pues m era



el menor ndimero natural que podiamos utilizar como longitud de los catetos del tridn-
gulo recténgulo. Veamos, entonces, que podemos hallar otro tridngulo mds chico a
partir de uno dado.

Ahora, marquemos el punto C sobre la hipotenusa, tal que AC mida también .
Entonces, el segmento OC mide 7 - 7, un ndmero natural, y también mide lo mismo
el segmento CD (lo construimos perpendicular al lado OA).

El arco de circulo BC es tangente en C al segmento CD, es decir, toca al segmento sélo en
este punto, y también es tangente en B al segmento DB, por ese motivo, CD y DB miden
lo mismo, es decir 7 — m (en principio, este punto no es evidente, y habrfa que demostrar-
lo, pero omitiremos los detalles técnicos que garantizan la igualdad de los segmentos). Por
lo tanto, el segmento OD mide 27 — n, que resulta ser otro nimero natural.

Entonces, obtuvimos un nuevo tridngulo rectdngulo, cuyos catetos miden ahora 7 — m y
su hipotenusa mide 27 — n. Aplicando Pitdgoras, deducimos que

Podemos ver en la figura que 72 > 7 — m, con lo que consegui-
mos una nueva fraccién para con denominador menor,
esto contradice nuestra suposicion.

Esta demostracién no es sencilla, aunque no utiliza argumentos
complicados. El punto més delicado en esta demostracién es con-
vencernos de que CD y DB miden lo mismo. Hay una
observacion genial de los matemdticos J.H. Conway y R.K. Guy:
pliegue el tridngulo a lo largo del segmento DA, ahora deberia ser
evidente, por simetria, que CD es perpendicular a O4, y que CD
y DB tienen la misma longitud

iUna demostracion que puede hacerse con una servilleta de papel,
y sin necesidad de escribir en ella!
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Capitulo 2

La geometria euclidea
Juan Pablo Pinasco

2.1. Introduccién

En el capitulo anterior vimos algunos resultados clé-
sicos, como la congruencia de dngulos opuestos por el
vértice, el teorema de Pitdgoras, o la suma de los D

dngulos interiores de un tridngulo. En cada caso, para C
demostrarlos, utilizamos argumentos que considera-

mos verdaderos, pero sobre los que no habiamos B

dicho nada. Repasemos una de las demostraciones:

Angulos opuestos por el vértice

Los angulos opuestos por el vértice son congruentes. En la figura anterior, los Teorema
angulos A y B son congruentes.

Puede parecernos que no hay ningtin paso dudoso en este razonamiento, pero eso es
porque aceptamos intuitivamente el siguiente supuesto:

“Si a una misma cosa le sumamos cosas distintas, obtenemos resultados distintos.”

Es decir, si al dngulo C le sumamos el dngulo A por un lado, y el dngulo B por otro, si
Ay C fuesen distintos, el resultado deberia ser diferente.

Otra forma de plantearlo es la siguiente:
“Si a dos cosas iguales les restamos una misma cosa, los resultacos son iguales.”

En el teorema, si al dngulo llano formado por Ay C, le restamos el dngulo C, debe dar-
nos lo mismo que si al dngulo llano formado por By C'le restamos C.
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Esto no es lo tinico que hemos asumido en las demostraciones anteriores. Por ejemplo,
en el capitulo anterior:

e Cuando demostramos que los dngulos internos entre paralelas son congruen-
tes, fuimos mds directos: invocamos explicitamente el Quinto Postulado como
un ingrediente inevitable de nuestra demostracién, que debiamos asumir
como verdadero.

¢ Cuando demostramos que en todo tridngulo la suma de los dngulos interio-
res es igual a dos rectos, trazamos por un vértice del tridngulo una paralela
al lado opuesto.

e Cuando demostramos que en todo cuadrildtero convexo la suma de los dngulos
interiores es igual a 360°, comenzamos trazando una recta entre dos vértices.

Llegados a este punto, y una vez que tomamos conciencia de esto, cuando uno se
enfrenta a estas demostraciones suele sentir cierta inseguridad: ;Qué argumentos se
pueden utilizar? ;Qué cosas estén permitidas? ;Cudles se pueden tomar como ciertas sin
necesidad de demostrarlas? Esta es una sensacién normal, y debemos tomarla muy en
cuenta, cuando trabajemos con demostraciones matematicas.

Una frase tan sencilla como “trazamos una recta entre A y C” parece no necesitar nin-
guna demostracién, seguramente esté permitido hacerlo, podemos trazarla... pero,
;Quién y dénde lo permitié? ;Cé6mo sabemos que puede hacerse?

Mis complicada es la afirmacién: “podemos trazar una recta por el punto A paralela a
p »
otra recta dada”, v lo comprobamos rdpidamente si nos piden que indiquemos cémo
y P P P q q
trazar tal recta.

La geometria euclidea estd repleta de afirmaciones similares, cuya validez parece obvia
! Ve

pero deberfa cuestionarse. Uno deberfa intentar demostrar todas estas afirmaciones, por

mds evidentes que nos resulten.

Sin embargo, es imposible demostrar absolutamente todo. Habrd un conjunto de afir-
maciones iniciales que debemos aceptar sin demostracién, y que serdn la base de las
siguientes demostraciones. Por ejemplo, “podemos trazar una recta entre A y C” serd una
afirmacién de esta clase. Vamos a asumir que es cierta, y que dados dos puntos siempre
podemos trazar la recta que los une. También vamos a aceptar como cierto que “si a dos
cosas iguales les restamos una misma cosa, los resultados son iguales.”

Este tipo de afirmaciones que se acepta sin mayor discusion es un axioma, y se constru-
ye el resto de la teoria (ya sea la geometria, u otra teoria matemdtica) apoyindose en
ellos. Los axiomas son la solucién a las preguntas planteadas antes:



;Qué argumentos se pueden utilizar? ;Qué cosas estdn permitidas? ;Cudles se pue-
den tomar como ciertas sin necesidad de demostrarlas? Todo teorema o
proposicién que deseemos demostrar debe poder reducirse finalmente a los axio-
mas iniciales, que deben estar claros de entrada. El conjunto de estos axiomas
forma un sistema axiomdtico, y constituye la materia prima y la herramienta con
las cuales se construird el resto de la geometria euclidea.

Por supuesto, para acortar las demostraciones podemos apelar a otros resultados que
se hayan obtenido a partir de los axiomas. Cada vez que demostramos un teorema
0 una proposicién, podemos agregarlo a nuestro arsenal de afirmaciones con las cua-
les demostrar otras.

En general, los resultados que demostraremos se llaman lemas, proposiciones, teore-
mas, y corolarios. Todos ellos son afirmaciones que hemos demostrado que son
verdaderas a partir de los axiomas (o de otros resultados ya demostrados). Hay
cierta arbitrariedad al otorgarle a un resultado uno de estos nombres, si bien las
siguientes pautas pueden ayudarnos a la hora de distinguir porqué a un resultado
lo llamamos Zeorema y a otro Proposicién.

e Un Lema suele ser un resultado auxiliar, un paso en la demostracién de un
Teorema pero que conviene aislar porque se repite en las demostraciones de
distintos teoremas.

o Una Proposicion es un resultado intermedio, con cierta importancia por si mismo.
Puede ser una consecuencia directa de una definicion, que conviene escribir para
referirnos a ella cuando la necesitemos aunque no sea muy relevante.

e Un 7eorema es en general un resultado importante, una afirmacién verdadera
pero no tan inmediata como una Proposicién.

e Un Corolario, en cambio, es un resultado que se demuestra de inmediato a partir de
un Teorema. Suele ser un caso particular de una situacién mucho mds amplia, que
si bien estd contenido en el resultado del Teorema, conviene aislar.

Una observacién importante: no todo conjunto de afirmaciones sirve como un
sistema axiomdtico. El principio mds importante que deben cumplir nuestros
posibles axiomas es que no lleven a contradiccidn, es decir, que al utilizarlos no
se deduzcan resultados contradictorios. Hay un cierto grado de arbitrariedad al
armar un sistema axiomdtico. Uno puede elegir distintos axiomas, o enunciar-
los de distintas maneras, pero si generan contradicciones, no sirven como
axiomas. Un segundo requisito, no muy grave en caso de no cumplirse, es que
no deberia agregarse como axioma un resultado que se deduce de los axiomas
que ya se tienen.
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2.2. Los axiomas de la geometria euclidea

El mérito principal de los Elementos de Euclides es haber llevado a cabo este procedimien-
to, eligiendo unos pocos axiomas, como base para desarrollar la geometria. El sistema
axiomdtico de la geometria euclidea se divide en dos grupos de afirmaciones: unas son de
cardcter mds general, y las otras se refieren especificamente a los objetos geométricos. Suele
llamarse nociones comunes a los del primer grupo, y postulados a los del segundo.

Comencemos por las nociones comunes:

Cosas iguales a una misma, son iguales entre si.

Si a iguales se agregan iguales, los todos son iguales.

Si de cosas iguales se restan cosas iguales, las restas son iguales.
Cosas coincidentes son iguales entre si.

El todo es mayor que la parte.

Esta lista de afirmaciones nos permite comparar “cosas’: pueden ser nimeros,
figuras, etc. El término iguales hay que tomarlo en un sentido muy general, por-
que tendrd distintos significados segin el contexto. Euclides utiliza
indistintamente iguales, congruentes, o equivalentes, si bien hoy dia, se utiliza cada
uno de estos términos en determinados contextos. Por ejemplo, hablamos por un
lado de igualdad de nimeros, y por otro de congruencia de dngulos o de segmen-
tos. No debemos olvidar que esta es una convencién arbitraria que no constituye
una cuestién clave o fundamental de la matemadtica.

Los postulados son los siguientes:

Las Geometrias



Observemos que estos postulados se refieren a entes geométricos: puntos, rectas, circu-
los, dngulos. Las definiciones de estos términos se dan antes de la lista de postulados,
pero son definiciones bastante imprecisas. Por ejemplo:

Dificilmente estas definiciones nos digan qué es un punto o una recta si no lo sabemos de
antes. Los conceptos de punto o de recta son conceptos primitivos y, en cierto sentido, impo-
sibles de definir. En cualquier definicién que intentemos, tendremos que utilizar conceptos
que no hemos definido previamente, de lo contrario, entrarfamos en una espiral de definicio-
nes de nunca acabar. La postura moderna es dejar estos conceptos sin definir.

Por otra parte, la definicién de dngulo es muy interesante:

Observando con cuidado esta definicién, vemos que lo define para lineas que no son nece-
sariamente lineas rectas. Sin embargo, Euclides utilizard esta nocién de dngulos entre
curvas y rectas una tnica vez en los Elementos. De hecho, en la definicién siguiente se acla-
ra: “cuando las lineas que contienen el dngulo son rectas, se lo llama rectilineo”.

Hay muchas definiciones que introducen nociones importantes, y propiedades de dis-
tintas figuras. No vamos a listarlas a todas, pero algunas de las definiciones mis
importantes son las siguientes:

A partir del dngulo recto se define como dngulo agudo (respectivamente, obtuso) al que
es menor (respectivamente, mayor) que un recto.

Se definen también distintos poligonos, y en el caso de tridngulos, se los clasifica en acu-
tangulos (tienen los tres dngulos menores a un recto), reczdngulos (tienen un dngulo
recto) y obrusdngulos (tienen un dngulo obtuso). Se los clasifica también segtin las lon-
gitudes de sus lados: equildtero es aquel que tiene todos sus lados iguales; isdsceles es el
que tiene dos lados iguales; y escaleno aquel que tiene todos sus lados distintos.

La geometria euclidea
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En el caso del circulo, es la figura cuyos puntos estin todos a la misma distancia de un
punto fijo, su centro. Un didmetro es el segmento de recta que une dos puntos del cir-
culo pasando por el centro, y Euclides afirma que un didmetro divide a un circulo en
dos partes iguales. Recordemos que éste era uno de los resultados de Thales, pero
Euclides va a aceptarlo sin demostracidn.

Finalmente, una definicién interesante es la de rectas paralelas:

Rectas paralelas: son aquéllas que (estando en un mismo plano) no se intersecan
si son prolongadas indefinidamente en uno u otro sentido

Observemos que esta definicién es muy especial: ;cémo verificarla sin prolongar inde-
finidamente las rectas? Junto con el quinto postulado son la parte mds complicada del
sistema axiomdtico de la geometria euclidea. Miles de matemdticos y de aficionados han
buscado formulaciones mds sencillas para la nocién de paralelismo y para reemplazar el
quinto postulado, y se tienen formas equivalentes, a veces mds sencillas. También se
pretendié demostrarlo a partir de la definicién de paralelas y los cuatro primeros pos-
tulados, pero ésta resultd ser una tarea imposible, ya que no se deducia de estos.

2.2.1. Independencia y consistencia

Terminamos la seccion anterior destacando dos propiedades importantes que debian
cumplir los sistemas axiomdticos:

o [ndependencia: no debian agregarse axiomas redundantes, que se dedujeran de
los anteriores.

o Consistencia: los axiomas no debfan generar contradicciones.

Lamentablemente, no estamos en condiciones de justificar que el sistema axiomdti-
co de la geometria euclidea cumple estas propiedades. Las demostraciones de
independencia y consistencia estin mds alld de nuestro alcance. Pero tampoco debe-
mos preocuparnos mucho, porque distintos matemdticos ya se encargaron de
estudiar este problema. En especial, destaquemos el papel de David Hilbert quien a
fines del siglo XIX hizo un profundo estudio de los fundamentos de la geometria.

Tampoco vamos a desarrollar aqui en detalle el sistema axiomdtico de la geome-
tria euclidea. Los axiomas anteriores no son suficientes para desarrollarla
completamente, pero es mucho lo que podemos hacer con ellos. Por ejemplo, un
postulado que falta es el que nos garantiza que hay interseccidn entre dos circulos
(si sus centros estdn a menor distancia que la suma de sus radios), o que una recta



se interseca con un circulo si la distancia de la recta al centro del circulo es menor
que el radio del mismo. Asumamos estas dos condiciones extras, y comencemos
con la geometria propiamente dicha.

2.3. Construcciones geométricas

2.3.1. La regla y el compds

Los instrumentos por excelencia de la geometria euclidiana cldsica son la regla y el com-
pas. Sin embargo, jno son mencionados en los Elementos de Euclides!

Ambos son instrumentos de tipo ideal, derivados de la geometria hecha con cuer-
das de los egipcios:

e la recta nos permite unir dos puntos (operacién permitida por el primer pos-
tulado), tal como los conectamos al tender una cuerda de un punto al otro;

e ¢l compds nos permite trazar un circulo centrado en un punto dado y con un
radio dado, tal como se lo obtiene fijando un extremo de una cuerda en el
punto que corresponde al centro, y haciendo girar la cuerda extendida.

Con estos instrumentos se pueden realizar distintas construcciones, y estas a su
vez reemplazan la nocién de movimiento en el plano euclideo: uno no “cambia de
lugar” una figura, sino que la construye en otra parte. A continuacién veamos
algunas construcciones tipicas.

2.3.2. Construcciones bdsicas

Vamos a repasar las primeras construcciones de los Elementos de Euclides, que tienen
un gran valor formativo en el uso de la regla y el compis.

Construir un tridngulo equildtero con un segmento AB dado como lado.

Esta es una construccién sencilla, que se realiza
€n apenas tres pasos:

1 Dado el segmento AB, comenzamos colocando
el compis en el punto 4, y trazamos un circulo
utilizando como radio este segmento.
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2 ) Ahora, trazamos otro circulo con centro en B'y el segmento AB como radio.

3 ) Unimos uno de los puntos donde se intersecan ambos circulos (llamémoslo C)
con Ay B:

El tridngulo ABC es equildtero, pues los lados AB y AC son iguales al ser radios de un
mismo circulo; pero también AB es igual a CB, ya que son radios del otro circulo.
Entonces, por la primera nocién comun (“cosas iguales a una misma son iguales entre

si”), los lados AC'y CB son iguales.

Antes de pasar a otra construccién, observemos que los dos primeros pasos se
basan en el tercer postulado (“dado un centro y un radio puede trazarse un circu-
l0”), mientras que el tercer paso se basa en el primer postulado (“por dos puntos
puede trazarse una recta’). No vamos a hacer este andlisis en cada construccidn,
pues alargaria indtilmente las demostraciones.

Dibujar desde un punto determinado, un segmento congruente a otro segmento dado.
Queremos dibujar en el punto C'un segmento congruente al

segmento AB. B \
1 El primer paso consiste en construir un tridngulo "

equildtero de lado AC, lo cual puede hacerse como en A ¢
la construccién anterior.

2 ) A continuacidn, se traza un circulo con centro en A4 y radio AB.
3 ) Luego se prolonga el segmento DA hasta que interseca al circulo en el punto E.
Finalmente, con centro D y radio DE se traza un nuevo circulo, y prolongando DC

hasta que se interseca con el circulo en el punto £ se obtiene el segmento CF que es
congruente al segmento AB que nos dieron originalmente.



esta construccion es importante porque
reemplaza el movimiento de figuras geométricas. Por
otra parte, ilustra el uso del compas: podriamos pen-
sar que, para hacer esta construccion, es suficiente
con abrir el compas apoyando un extremo en A, el otro
en B, y luego -manteniendo la abertura- levantarlo de la hoja y llevarlo hasta el punto C. Sin
embargo, no hay nada en los axiomas que nos permita hacer esto.

Verificar que el segmento CF es congruente al segmento AB. | Ejercicio1

Dado un segmento AB, y una semirrecta Ejercicio 2
CD, construir un segmento sobre la
misma congruente al segmento AB S
desde el punto C.

C

Terminemos esta seccién con otras dos construcciones, la bisectriz de un dngulo, y la
bisectriz de un segmento.

La geometria euclidea
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Bisecar un dngulo.

Dado el dngulo BAC, hallar una recta AD tal que los dngulos BAD y DAC sean igua-

les. Esta recta se llama bisectriz del dngulo.
. Dado el dngulo BAC, trazamos un circulo centrado en A (de cualquier radio).

Llamamos £ a la interseccién del circulo con el segmento AB, y F a la intersec-
cién con AC.

. Construimos un tridngulo equildtero DEF de lado EF, lo cual puede hacerse por la

primer construccion.

‘ Unimos los puntos Ay D, y la recta AD biseca el dngulo.

h
® o

A\ A

A

Biseccién de un segmento.

Dado un segmento AB, hallar su punto medio.

@ A R . Dado el segmento AB, construimos el tridngulo equildtero

ABC.

. Ahora, por la construccién anterior, podemos bisecar el dngulo
C con una recta CE.

‘ El punto £ es el punto medio de AB.

en comparacion con las dos primeras construcciones, en
estas dos puede quedarnos la sensacion de que falta algo. Asi es: no hemos

verificado que los angulos BAD y DAC sean congruentes (al bisecar el angulo), ni que los seg-
mentos AE y EB sean congruentes en esta ultima. El motivo es que para hacerlo necesitamos los
criterios de semejanza de triangulos, que seran el objetivo de nuestra proxima seccion.
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2.4. Congruencia y semejanza de tridngulos

Diremos que dos tridngulos ABC'y A’B’C” son congruentes cuando sus lados son con-
gruentes (AB con AB’, BC con B'C’, y AC con AC’), y también son congruentes sus
dngulos (A4 con A, B con B,y Ccon C) En otras palabras, si pudiéramos levantar uno
de los tridngulos y colocarlo sobre el otro, coincidirfan.

La semejanza de tridngulos es un concepto ligeramente distinto: diremos que dos tridn-
gulos ABC'y AB’C’ son semejantes cuando sus dngulos son congruentes (A con A’, B con
B,y Ccon C), y sus lados son proporcionales, es decir, si dividimos las longitudes de
los lados correspondientes, obtenemos un mismo valor

AB BC  AC

A'B’  B'C! A'C’
(en general, indicaremos la longitud de un segmento AB como AB).

Dados dos tridngulos semejantes, no podemos moverlos para que coincida uno con el
otro, pero podemos pensar que uno es un modelo a diferente escala del otro, como la
maqueta de un edificio respecto del edificio verdadero.

La semejanza de triangulos es uno de los conceptos clave en la resolucion
de nuestro problema. No podemos medir directamente los lados del trian-

gulo que forman la Tierra, la Luna y el Sol, pero si encontraramos un
triangulo semejante estariamos en condiciones de medirlo y deducir cua-
les son las distancias que buscamos.

2.4.1. Ciriterios de congruencia de tridngulos

El primer criterio de congruencia de tridngulos es el siguiente:

Si los triangulos ABC y A'B'C’ tienen dos lados congruentes (AB con A'B’, AC
con A'C’), y el &ngulo comprendido por un par de lados es congruente al angu-
lo comprendido por el otro par (A y A’), entonces los triangulos son
congruentes.

Brevemente, dados dos tridngulos, para ver si son iguales nos basta con comparar las
longitudes de dos de sus lados y el dngulo comprendido entre ellos. Si estos valores
coinciden con los del otro tridngulo, entonces el tercer lado debe medir lo mismo
en cada tridngulo.

La geometria euclidea

Para tener
en cuenta al
resolver el
problema

Criterio LAL

(lado-angulo-lado)
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Criterio ALA

(dngulo-lado-angulo)

Criterio LLL
(lado-lado-lado)

Ejercicio 3

Ejercicio 4

Ejercicio 5
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El siguiente criterio nos dice que alcanza con conocer dos dngulos y el lado entre ellos:

Silos triangulos ABC y AB’C’ tienen un par de angulos congruentes (Ay A', By B’)
y los lados comprendidos entre cada par de angulos son congruentes (AB con
A'B’), los tridngulos son congruentes.

Finalmente, el tercero nos dice que basta conocer las longitudes de los tres lados:

Si los triangulos ABC y A'B’C" tienen sus tres lados congruentes (AB con A'B’, AC
con A'C’, BC con B’C’), entonces los tridngulos son congruentes.

Es interesante pensar este criterio de forma mecdnica: tenemos tres varillas unidas que
forman un tridngulo. El teorema nos dice que no podemos deformar el tridngulo sin
acortarlas o alargarlas, tenemos una sola forma de ubicarlas.

Observemos el parecido entre los dos primeros criterios: dos lados y el dngulo que forman; dos
dngulos y el lado entre ellos. ;Valdrd un criterio basado en la congruencia de los tres dngulos?

Determinar si son congruentes dos trian-
gulos ABC y AB’C’ cuyos angulos son
congruentes (Acon A, BconB’,yCcon C’).

Si cambiamos el criterio LAL, y pedimos dos lados congruentes y un angulo
que no sea el comprendido entre ellos, ;se puede garantizar la congruencia?

Si cambiamos el criterio ALA, y pedimos dos angulos congruentes y un lado que
no sea el comprendido entre ellos, jse puede garantizar la congruencia?

2.4.1.2. Aplicaciones de los criterios de congruencia
Como aplicacién de los criterios de congruencia de tridngulos vamos a demostrar un teore-

ma cldsico, conocido como el Pons Asinorum, o puente de los burros. Luego, verificaremos
que la biseccién del dngulo y del segmento que hicimos en la seccién anterior, son correctas.
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Recordemos brevemente que un zridngulo isdsceles es aquel que tiene dos lados con-
gruentes; llamaremos base al tercer lado.

(Pons Asinorum) En un tridngulo isdsceles, los angulos de la base son congruentes. | Teorema
—

Bisecar un dngulo.

La recta AD biseca el dngulo A; recordemos la construccién que p
habfamos hecho:

Habiamos trazado un circulo con centro en 4, y su radio era AE;
y sobre el segmento EF construimos un tridngulo equildtero DEF.

Ahora, los tridngulos AED y AFD son congruentes, por el criterio
LLL, ya que:

e AF congruente a AF, por ser radios de un mismo circulo.

e AD es congruente a si mismo.

e ED es congruente a FD, por ser lados del tridngulo equildtero DEF.

39
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Por lo tanto, ambos tridngulos son congruentes, y los dngulos respectivos deben ser
congruentes, con lo cual AD biseca el dngulo A.
Bisecar un segmento.

La recta CE biseca el segmento AB. Recordemos la construccién que habiamos hecho,
e indiquemos un par de dngulos en la figura:

Construimos el tridngulo equildtero ABC, y biseca-

c
mos el dngulo C.
Ahora, los tridngulos ACE y CEB son congruentes “1"
por el criterio LAL:
e AC congruente a BC, por ser lados del tridngu-
lo equildtero ABC, A
E

e (CFE es congruente a si mismo.

e Los dngulos 2 y 4’ son congruentes (pues CE bisecaba el dngulo).

Veamos otras dos aplicaciones del teorema anterior, que utilizan también los resultados
de biseccién de un segmento.

Trazar una perpendicular a una recta dada desde un punto que no pertenece a la recta.

1. Dada una recta AB y el punto C,
trazamos un circulo de centro C
que corte a la recta en dos puntos
(para esto basta tomar un punto
separado de C por la recta, y utili-
zar esa distancia como radio).
Sean E y F los puntos donde se
cortan la circunferencia y la recta.

EF, con la construccién que vimos
antes, y obtenemos el punto G.
Finalmente, por los puntos Cy G
trazamos una recta, y veremos que es
perpendicular a la recta AB.
Sefalemos también en la figura los
dngulos @ y 4’ que hace CG con AB.

A i i B
E\/F
2. Ahora, podemos bisecar el segmento
a a
A B
E\:/:
D



3. Para demostrar que la recta CG es perpendicular a AB necesitamos ver que los dngu-
los @'y a’son congruentes. Pero si observamos los tridngulos ECG y CGF vemos que
son congruentes por el criterio LLL:

e Ellado E£C es congruente a CF por ser radios de un mismo circulo.

e Ellado CG es comtn a ambos tridngulos.

e Ellado £G es congruente al lado GF pues G divide a EF en dos partes iguales.
Por lo tanto, ambos tridngulos son congruentes, y los dngulos respectivos lo son.
Entonces, el dngulo @ es congruente al dngulo 4. Como ambos dngulos forman un
dngulo llano,

a+a =180°

y resulta entonces 2 = 4’ = 90°.

Sea AB un diametro de un circulo dado, y C un punto arbitrario en la circunferen-
cia. Entonces, ABC es un triangulo rectangulo y AB es su hipotenusa.

1. Dado el didmetro AB, podemos bisecarlo y su punto medio D es el centro del cir-
culo. Unimos el punto C con D, y hemos obtenido dos tridngulos.

2. Los tridngulos ACD y BCD son isésceles, ya que AD, CD 'y DB son radios del
circulo. Entonces, los dngulos de la base de cada tridngulo son congruentes,
entre s, y tenemos:

a=a,b=0b

3. Como la suma de los dngulos interiores de un tridngulo es igual a 180°, tenemos:
a+dad+b+b=180°

y usando la relacién entre 2y @) by &, queda

d+ad+ b+ b=180°

Teorema

24+ 2b'= 180°
a+ b =90°

con lo cual, ABC es un tridngulo rectdngulo.
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2.4.2. Criterios de semejanza de tridngulos.

Para tener Veamos el concepto de semejanza. Este concepto resulta mas util que el de
en cuenta al | congruencia, en especial en nuestro problema, donde no es posible construir

resolver el un triangulo congruente al que forman la Tierra, el Sol y la Luna, mientras que
problema es mucho mas sencillo construir un triangulo semejante a escala mas pequeiia.

Hemos dicho que dos tridngulos son semejantes si tienen sus tres dngulos congruentes
y sus lados son proporcionales. Si recordamos del primer capitulo el resultado de
Pitdgoras de la suma de los dngulos interiores de un tridngulo, vemos que no es nece-
sario pedir que los tres dngulos sean congruentes, y basta sélo con dos: por fuerza, el
tercero debe ser congruente, ya que debe completar los 180°. Ese serd nuestro primer
criterio de semejanza:

Criterio AA Si los triangulos ABC y A'B’C’ tienen dos angulos congruentes (A con A, B con B),
(angulo-angulo) entonces los tridngulos son semejantes.

Los dos criterios siguientes involucran las longitudes de los lados y son similares a los
de congruencia de tridngulos; en ambos se reemplaza la condicién de congruencia de
los lados por la de proporcionalidad:

Criterio LLL Silos lados de los triangulos ABCy A’B'C’son proporcionales, es decir
(lado-lado-lado) _ _ _
AB BC AC
A'B'  B'C' A'C
entonces los tridngulos son semejantes.

Criterio LAL Si dos lados de los tridngulos ABCy A'B'C” son proporcionales, es decir
(lado-&ngulo-lado) _ _
AB A
A'B'  A'C

y los angulos Ay A" comprendidos entre ellos son congruentes, entonces los trian-
gulos son semejantes.

La aplicacién mds importante de los criterios de semejanza es la trigonometria, de la
que hablaremos en el préximo capitulo. Ahora, veremos algunos ejemplos de aplicacio-
nes précticas de los criterios.

Ejemplo: Sean los tridngulos ABC'y AB’C”. Sabiendo que:
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AB =4cm, A'B’=6cm,
AC =6 cm, A'C’=9cm,
CB =8cm, C’B’=12cm,

:Son semejantes?

Solucién: en este caso no sabemos nada de los dngulos, con lo cual no podemos apli-
car los criterios AA o LAL. Nos queda la opcién de ver si los lados son proporcionales.

Dividiendo, tenemos

4 ~ 6 8 2
6 9 12 3
y por lo tanto, son semejantes.
Ejemplo: En la figura 4.2.1, sabemos que B

AB = AB', y AC = AC'.;Son semejantes?
¢Son congruentes?

Solucién: Sabemos que un par de lados de cada ¢ C
tridngulo son congruentes (y por lo tanto, también
son proporcionales). Si supiéramos que los dngu-
los comprendidos por cada par son congruentes,
los tridngulos serfan semejantes y también con-
gruentes. Pero como son opuestos por el vértice,
los dngulos son congruentes.

Problema: Un barco se encuentra en el mar, vigilando una ciudad.

Si los habitantes de la ciudad conocieran la distancia al barco, podri- B’
an atacarlo con sus catapultas. ;Es posible calcularla? (Plinio y

Plutarco le atribuyen esta idea a Thales, dicen que fue el primero en

calcular la distancia de una flota enemiga a la costa, y sabiendo la

distancia, le arrojaron proyectiles incendiarios y la hundieron.)

Solucién: La figura 4.2.2 nos ayudari a resolverlo. P L —y

Supongamos que estamos parados en el punto 4, y el barco estd en
el punto B’. El problema es conocer la distancia AB’.

Ahora caminamos por la costa desde A4 hasta A’, en forma perpendicu-
lar a AB’, y clavamos un bastén en el punto C. Cuando llegamos a A B
caminamos alejdndonos de la costa, hasta un punto B a determinar.
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¢Cémo elegimos este punto? Queremos que queden alineados el barco y el bastén cla-
vado en C, y determinamos B de esa manera.

Veamos que los tridngulos AB'C'y CA’B son semejantes. Lamentablemente, sélo cono-
cemos un lado del tridngulo ABC, el lado AC que estd sobre la costa y podemos medir
su longitud, no conocemos los otros lados porque deberfamos internarnos en el mar
para medirlos. Pero todavia podemos utilizar el criterio AA: observemos que los dngu-
los Ay A’son rectos, y por lo tanto son congruentes; por otro lado, los dngulos sobre
el vértice C son opuestos por el vértice, asi que también son congruentes.

Sabiendo que los tridngulos AB'C'y CA’B son semejantes, podemos determinar la lon-
gitud del lado AB* podemos medir AC, CA’, y A’B. De la relacién

kS

B’ A'B

AC  CA’

Podemos despejar la distancia desconocida en funcién de los otros tres valores:

S

B ___

AB ' =

kS

Q

las tres longitudes del lado derecho de la formula anterior se pueden calcular sin
necesidad de acercarse al barco, ya que se hacen en tierra firme. El método funciona en muchas

otras situaciones similares, donde sélo podemos medir una longitud del triangulo que nos inte-
resa, pero podemos construir un triangulo semejante al cual si podemos medirle todos sus lados.

Terminamos este capitulo con un resultado importante que utilizaremos mds adelante.




Si observamos la demostracién que hicimos cuando bisecamos un segmento, veremos
que la recta utilizada era perpendicular a éste. Conviene asignarle un nombre, pues es
una recta que nos serd Gtil. Definiremos también la cuerda de una circunferencia

Nuestro objetivo es ver ahora que las mediatrices de las cuerdas son prolongaciones del
radio del circulo correspondiente.

Con los ultimos resultados estamos en condiciones de hallar el centro de un circulo
dado un arco de su circunferencia. Vamos a resolver el problema si conocemos toda la
circunferencia, y dejaremos planteado como ejercicio el otro caso.
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Problema | Hallar el centro de un circulo dado.

Para determinar el circulo, comenzamos trazando una cuerda arbitraria AB. Trazamos
su mediatriz, que sabemos que pasa por el centro.

Ahora, por el punto B trazamos una perpendicular al segmento AB, que corta al circu-
lo en un punto C (ver figura 1).

Si podemos demostrar ahora que el segmento AC es un didmetro del circulo, como
todo didmetro pasa por el centro, y por otra parte el centro estd sobre la mediatriz de
AB, la interseccién de AC con la mediatriz serd el punto buscado.

Demostremos entonces que AC es un didmetro. Vamos a suponer que no, y llegaremos
a un absurdo.

Supongamos que AC no es un didmetro, con lo cual podemos trazar el didmetro que
pasa por Ay por el origen, y sea D el punto donde se interseca con la circunferencia. Si
trazamos el tridngulo ABD (ver figura 2), sabemos que éste es un tridngulo rectingulo,
como vimos antes.

Pero entonces, tanto la recta BC como la recta BD forman un dngulo recto con la cuer-
da AB, y silos puntos C'y D fuesen distintos tendriamos dos perpendiculares diferentes

por un mismo punto, lo cual es un absurdo.

Entonces, C = D, y AC es un didmetro del circulo dado.

<

Existe una construccién mds sencilla, que sélo requiere una parte de la circunferencia,
apenas un arco, como veremos en el siguiente ejercicio.

Ejercicio 6 | Dado un arco de circulo, determinar su centro.
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Capitulo 3
Trigonometria

3.1. Razones trigonométricas

Los resultados anteriores de congruencia y semejan-
za de tridngulos tienen numerosas aplicaciones
tebricas y pricticas. Veremos en este capitulo las
nociones bdsicas, tal vez las mds importantes, de la
trigonometria.

Consideremos el tridngulo rectingulo de la Figura 3.1

Hemos sehalado en él un dngulo, que denotamos 4, y

hemos puesto como nombre de los lados las letras H, por hipotenusa; CA, por cateto

adyacente; y CO, por cateto opuesto.

Dado cualquier otro tridngulo rectingulo, sélo debe-
mos preguntarnos si tiene algiin dngulo congruente a
a. Si lo tiene, por el criterio AA, serdn semejantes.
Consideremos, entonces, el tridngulo de la figura 3.2
que es semejante al inicial de la figura 3.1.

Sabemos que sus lados son proporcionales, es decir, las
longitudes satisfacen

cA _ co H

CAx  COx Hx’

pero podemos escribir estas relaciones entre los lados de otra forma. Igualando de a

pares y despejando obtenemos

Juan Pablo Pinasco

CA

H*

CA €O CO  COx _
CAx  COx CA ~ CAx
CA H CA  CAx
CAx Hx ‘H  Hx
coO H CO  COx
W_E ‘H  Hx

CA*

Cco*

co
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En definitiva, dado cualquier tridngulo rectdngulo con un dngulo 4 fijo, quedan deter-
minados los cocientes de dos de sus lados. Los cocientes son los mismos siempre, y s6lo
dependen del dngulo 4, no del tridngulo utilizado para calcularlos.

Los cocientes anteriores son las llamadas razones trigonométricas, y nos permiten
introducir las funciones trigonométricas bdsicas: el seno, el coseno, y la tangente del
dngulo a.

sen(a) = ?O
A

cos(a) = %
cO

tgla) = 74

Supongamos, por un instante, que conocemos el valor de las razones trigonométricas
para todos los valores del dngulo 4. Entonces, si nos dan un tridngulo rectdngulo y la
longitud de uno solo de sus lados, podemos averiguar sin dificultad las restantes longi-
tudes. Sélo debemos dividir entre si las longitudes del lado que conocemos y del que
queremos averiguar, y lo igualamos a la razén correspondiente.

Ejemplo: Supongamos que = 30°, con lo cual se2(30°) = 0,5. Si el cateto opuesto mide
2, ;cudnto mide la hipotenusa? ;Se puede averiguar cudnto mide el cateto adyacente?

Solucién: sabemos que

co
sen(a) = Nl

con lo cual, reemplazando los datos que tenemos,

Despejando, H = 4.
Para averiguar el cateto adyacente, utilizamos el Teorema de Pitdgoras:
H?=CA?+CO?
42 =22+ Co?

despejamos y CO = /16 — 4
=12,



¢ Cuanto vale cos(30°)? | Ejercicio1

Existen distintos problemas donde se puede medir un dngulo y una distancia. Conocer
las funciones trigonométricas permite averiguar el resto de las longitudes. Por ese moti-
vo, se tabularon con mucha precisién. A continuacidn, veremos las unidades utilizadas
en la medicién de dngulos.

3.2. Unidades de medicién de dngulos

La unidad de medida tradicional de los dngulos es el grado, que hemos utilizado ya a
lo largo del libro. Dado un segmento, si fijamos uno de sus extremos como centro y lo
utilizamos como radio para describir un circulo con un compds, al comenzar el dngulo
es de cero grados. Cuando describimos la vuelta completa, el dngulo es de 360°.

Si dividimos el circulo en cuatro partes iguales con dos rectas perpendiculares, al 4ngu-
lo recto le corresponden 90°. Cada grado se divide a su vez en sesenta minutos, 1° = 60’,
y a su vez, cada minuto se divide en sesenta segundos, 1° = 60”. Este sistema es el llama-
do sistema sexagesimal (de base 60), similar al que empleamos en la divisién de las horas.
En realidad, se supone que se origina en una antigua divisién del afo en 360 dias, ins-
pirado en el dngulo que, supuestamente, recorre el Sol cada dia en su 6rbita anual.

iSe puede dividir un circulo en seis sectores iguales, cada uno de 60°, utilizan- Ejercicio 2

do sdlo la regla y el compas?

Existe otra unidad de medida, muy empleada, el [ h
radidn. Para definirlo, consideremos un circulo de
radio » = 1 cm. Su perimetro es igual a 2z cm. Un 1cm

dngulo tendrd 1 radidn, si la longitud del arco de cir-
cunferencia es 1 cm, (ver figura 3.3).

La unidad que empleemos para medir el radio no
importa, podemos pensar que un dngulo en radianes se
obtiene como el cociente de la longitud de su arco y el
radio del circulo. Esto es importante porque nos dice
que el radidn es adimensional, es decir, no tiene asocia-

da una magnitud fisica, ya que es un cociente de dos longitudes y sus unidades se
cancelan. Asi, un dngulo de un radidn es aquel cuyo arco tiene la misma longitud que
el radio del circulo.

Ahora, el equivalente a 360° es 27 radianes. Un dngulo llano tiene 180°, equivalente a
7 radianes; y un dngulo recto, 7/2 radianes. Como 7 es un niimero irracional, no tene-
mos una expresion exacta para 1°, que en radianes es:
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o2mrad
360°
~ 0,01745 rad.

o

A la inversa, podemos expresar en grados a cuanto equivale un radidn:

360°
2w rad
~ 57,2958°.

1rad = 1rad

Ejercicio 3 Pasar a radianes los siguientes angulos 30°, 45°, x° donde x es un namero arbi-
trario entre 0 y 360.

Ejercicio 4 Pasar a grados los siguientes angulos n1/3 rad; 1,5 rad; y rad donde y es un
nimero arbitrario entre 0 y 2.

Nuestro objetivo es analizar ahora algunos métodos précticos para determinar un dngulo.

3.2.1. Instrumentos de medicién

Dado un dngulo, se puede utilizar un transportador para medirlo. Lamentablemente,
en distintas aplicaciones, no es posible hacer tal medicién en forma directa.

Por ejemplo, vemos desde la terraza de nuestro edificio (o el techo de nuestra casa)

dos antenas (o dos drboles, u otros dos edificios) y queremos saber el 4ngulo que for-

man a la distancia tomando nuestra posicién como el

éa Vertical - vértice. El instrumento mds simple que podemos

imaginar para hacerlo es una mira que puede girar,

ubicada sobre un disco graduado. Apuntamos en una

direccién y anotamos el valor del disco, giramos

hacia la otra y anotamos el nuevo valor: la diferencia

es el valor que buscamos. Este tipo de aparatos se

conocen como gonidmetros, y la mira suele ser un
anteojo con aumento.”

Horizontal

Otro aparato indicado para medir dngulos es el reodo-
lito (ver figura 3.4). Consiste en un anteojo que puede
rotar en dos direcciones, horizontal o vertical, con un
disco graduado en cada una para medir el dngulo que
rotamos el anteojo en una direccién o en la otra.

Figura 3.4

* La precision es tan grande que sirve para medir la separacién de las lineas atémicas de distintos elementos quimicos.
Cuando la luz atraviesa un prisma o una red de difraccién se descompone en haces segiin el color, los cuales forman dis-
tintos dngulos con la direccién de incidencia.
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El problema que menciondbamos en la introduccién, orientar-
se en un barco en altamar, requerfa medir el dngulo vertical de
determinadas estrellas. Este dngulo varia segtin qué tan cerca
estemos del Ecuador. Para esto, se emplearon diferentes instru-
mentos (cuadrantes, sextantes, octantes), pero el mds elemental

de todos fue la ballestilla.

Simplemente, una varilla de madera cuyo extremo O se aproxi-
maba al ojo, con otra varilla perpendicular que podia alejarse o
acercarse a la vista, y se la movia hasta que sus extremos coinci-
dian con los dos objetos (situados en A y en B) cuya separacién angular querfa medirse. El
dngulo se determina ahora ficilmente a partir del tridngulo OAB;, cuyas longitudes se pue-
den medir, o se leen directamente si la varilla tiene marcas como una regla (ver figura 3.5).

3.3. Las funciones trigonométricas

Nuestro objetivo es analizar las funciones trigonométri-
cas. Para esto, consideremos la figura 3.6. Comencemos

<

por marcar en el plano dos rectas perpendiculares, los y A

ejes X e Y. El punto de interseccion serd el origen de

coordenadas O, y seleccionamos un segmento que con- < X
sideraremos la unidad de longitud. Este segmento,
ubicado en el eje X; ird desde el punto O en un extremo
hasta otro a su derecha que senalaremos con 1. Tomando
este segmento como radio, describimos un circulo que
llamaremos el cireulo unitario.

<
<

Elijamos un punto cualquiera de la parte de la circunferencia que queda en el primer
cuadrante (por encima y a la derecha del origen), y llamémoslo A. Al unirlo con el ori-
gen determina un dngulo « entre 0 y 7/2. Este punto tiene coordenadas x e y en nuestro
sistema de ejes, que se obtienen de la siguiente forma: trazamos la perpendicular al eje
X que pasa por el punto elegido, y la interseccién de la perpendicular con X nos da el
punto x; trazando la perpendicular al eje Y] la interseccién de ambos nos da la coorde-
nada y. Observemos que la distancia 04 estd dada por el teorema de Pitdgoras, porque
se forma un tridngulo recténgulo OAx:

OA = /22 + 42

OA =1,

yes igual a 1 por ser un radio de la circunferencia unitaria. En términos de longitudes,
x e y son las longitudes del cateto adyacente y del cateto opuesto, respectivamente.

Ahora, de acuerdo a las relaciones trigonométricas, como la longitud de la hipotenusa
es 1, obtenemos
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Q
b

cos(a) = N
cos(a) = <
cos(a) = z,
Cco
sen(a) = 73
Y
sen(a) = T
sen(a) = y.

Es decir, x = cos(a), y = sen(a).

Gracias a esto, tenemos una interpretacién gréfica del seno y del coseno para cualquier
dngulo « en el primer cuadrante. Con esta interpretacién podemos demostrar geomé-
tricamente la siguiente relacién:

Figura 3.7
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;Existe también una representacion gréfica de la tangente? Si volvemos a su definicién, dividi-
mos arriba y abajo por la hipotenusa, y recordamos la definicién del seno y el coseno, tenemos

tg(a) = g—i
t9(0) = Gy
ta(o) = .

Observemos la figura 3.8. Si trazamos la tangente al cir-
culo que pasa por el 1 del eje X, hasta que se interseca
con la prolongacién de la hipotenusa de nuestro tridn-
gulo inicial, obtenemos un tridngulo que es semejante a
éste, ya que tiene dos dngulos congruentes (es un tridn-
gulo rectdngulo, y comparten el dngulo 4
correspondiente al vértice O). Llamemos z a la longitud
de este lado. Ahora, por la semejanza de tridngulos y
usando que y = sen(a), x = cos(a), tenemos que

E_Y

1 =z

L sen(a)'
cos(a)

<

Figura 3.8

Luego, tenemos una interpretacién geométrica para la tangente, que explica incluso su nombre.

el origen del nombre seno es mas complicado.
Originalmente, los griegos estudiaron la longitud de la cuerda
correspondiente a un angulo a, y en el siglo V d.C. los hindiies
comenzaron a trabajar con la mitad de la cuerda, que correspon-
dia a la mitad del angulo. (ver la figura 3.9). El término que
empleaban fue utilizado luego por los arabes aunque no tenia
sentido en esta lengua, y luego, cuando se tradujeron sus obras
al latin, lo confundieron con la palabra arabe correspondiente a
“cavidad” o “bahia” que en latin se dice “sinus”.

Figura 3.9

Consideremos las funciones trigonométricas reciprocas (secante, cosecante y
cotangente), definidas como

sec(a) = cosec(a) = %

CA

cotg(a) =

Expréselas en términos de senos, cosenos y tangentes.

Trigonometria

Ejercicio 5
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Ejercicio 6 Representar geomeétricamente la secante, la cosecante, y la cotangente de

un angulo #

La construccién geométrica que hemos hecho relacionando cos(4), sen(a) con las coor-
denadas (x, y) del punto A nos permite extender la definiciéon del seno y el coseno para
dngulos que no estdn entre 0 y 7/2.

Por ejemplo, el dngulo del segundo cuadrante de la [~ MY
figura 3.10 es mayor a /2, e igual definimos el seno y
el coseno como las coordenadas del punto A.
Observemos que, en este caso, el coseno es un niime-
ro negativo.

Observando con atencién la figura 3.10 encontrare-
mos relaciones entre el seno y el coseno del dngulo 2 y
del dngulo (n - 4) similares a las que vimos antes para

ay (5 - a).

Figura 3.10

Ejercicio 7 | Demuestre esta proposi

De la misma forma, definimos el coseno y el
seno de # cuando el dngulo estd entre ny 2 =,
en ambos casos tenemos cos(a) = x, sen(a) = y
(ver figura 3.11).

Y 1 Y

Ny
A J

Figura 3.11

N
.
>

las formulas
sen(a) = sen(m — a), cos(a) = —cos(m — a)

sen(a) = cos(§ — a) cos(a) = sen(g — a)

valen para todo angulo entre 0 y 2r. La demostracion es analoga a las anteriores, y basta conside-
rar siempre el triangulo que queda formado en el cuadrante al cual pertenece el angulo, que si es
un triangulo rectangulo cuyo angulo esta en el primer cuadrante. No vamos a demostrarlo pues
seria repetir los razonamientos anteriores.
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3.4. Algunos resultados importantes

Por la forma en que hemos definido las funciones trigonométricas hay dos resultados
que se obtienen de inmediato:

Para todo anguloa, 0 <a <27, Identidad

sen?(a) + cos?(a) = 1. Pitagoérica

Como podemos ver, este resultado fue una consecuencia del teorema de Pitdgoras.
Como consecuencia de esta identidad, tenemos la siguiente Proposicion:
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Teorema

El préximo resultado explica porqué se acostumbra, en relacién a las funciones trigo-
nométricas, medir los dngulos en radianes. Antes, necesitamos algunas desigualdades.

Recordemos, primero, que dado un dngulo de # radianes, el arco de la circunferencia
unitaria que le corresponde tiene longitud 4 (en las unidades que se trabaje).
Observando la Figura 3.8 tenemos las siguientes desigualdades:

sen(a) < a < tg(a)

La primera es evidente, observemos que el sez(2) es la mitad de la cuerda del dngulo 24
(como vimos en la figura 3.9), y esta cuerda es mds corta que el arco (que mide 2a).
Entonces,

1 1
sen(a) = Ecuerda del dngulo2a < §2a =a.

La segunda es ligera-
mente mds complicada: necesitamos utilizar que la férmula del drea del circulo es = -
72, donde 7 es el radio. Aqui, 7 = 1. El drea del sector circular de dngulo # es /2 (si esta-
mos midiendo en radianes), con lo cual, el drea del sector circular es menor que el drea
del tridngulo formado entre el eje X (cuya base mide 1), la tangente, y la prolongacién
de la hipotenusa. Entonces, las dreas nos dan la desigualdad

a _1-tg(a)
2= 2

que es equivalente a la desigualdad buscada, 2 < 7¢(a).

Claramente, podemos ver en la Figura 3.9 que cuando el dngulo # se aproxima a cero, también
el seno y la tangente se aproximan a cero. El coseno, en cambio, se aproxima a 1. El siguiente

| Elcociente de sen(a)y a se aproxima a 1 cuando a se aproxima a 0. '
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resultado serd conocido seguramente para quienes ya han visto el concepto de limite.

Otro resultado importante es conocido como Zeorema del Coseno. Como veremos, este
teorema generaliza el teorema de Pitdgoras para tridngulos que no son rectdngulos, y su

Sea el triangulo ABC de angulos 4, b,y ¢,y sean x, y, zlas longitudes de los lados. Entonces, Teorema

2=x2+y2-2x.y- coslc).

Figura 3.12

principal aplicacién es que permite conocer la longitud del tercer lado de un tridngulo
si conocemos dos de ellos y el dngulo que forman.
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Ejercicio 8

Demostrar el siguiente teorema:

Teorema

Sea el triangulo ABC de dngulos a, b, y c, y sean x, y, z las longitudes de sus lados
como en la figura 3.12. Entonces,

y _ x _ z
sen(a) ~ sen(b) ~ sen(c)

Dejamos, como ejercicio, el Teorema del Seno, que se utiliza para determinar los lados
restantes de un tridngulo cuando se conocen dos dngulos y un lado.

No hemos considerado atin cémo calcular senos y cosenos, salvo que hagamos un
grafico y midamos en ¢él las longitudes. En la prictica, no existen métodos senci-
llos para calcularlos, pese a que se los utiliza en numerosas aplicaciones. Por
ejemplo, el Almagesto, el tratado astronémico escrito por Ptolomeo en el siglo II,
contiene una tabla de cuerdas calculadas cada medio grado y con cinco decimales
de precisién. Como ya mencionamos, la mitad de la cuerda de un dngulo corres-
ponde al seno de la mitad de este dngulo, y puede considerarse entonces la primera
tabla trigonométrica: una lista de los valores del seno (y del coseno, o la tangente)
para muchos valores del d4ngulo. El armado de estas tablas fue un trabajo compli-
cado pero imprescindible, y fueron sustituidas, recién en las Gltimas décadas, por
las computadoras. Para calcularlas resultan muy utiles las siguientes relaciones que
nos permiten obtener senos y cosenos de sumas y restas de dngulos, si bien es un
tema que no profundizaremos.

Si nos dan dos dngulos a y 4, y el valor de sus senos y cosenos, tenemos

sen(a + b) = sen(a)cos(b) + sen(b)cos(a)

sen(a - b) = sen(a)cos(b) - sen(b)cos(a)

cos(a + b) = cos(a)cos(b) — sen(a)sen(b)

cos(a - b) = cos(a)cos(b) + sen(a)sen(b)
Por ejemplo, si conociéramos sen(12), calculamos cos(19) utilizando la relacién pita-
gérica. Luego las férmulas nos permiten calcular el seno y el coseno de 2°, 3°, 40,
5°,.... ya que:

sen(2°) = sen(1° + 1°)
= sen(19cos(1°) + sen(1°)cos(19)

cos(2°) = cos(1° + 1°)
cos(19)cos(19) - sen(1°)sen(1°)
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(Observemos que conocemos los valores que aparecen en el lado derecho). Seguimos,

de la misma manera, calculando los otros valores:

sen(3°) = sen(2° +1°)
= sen(29)cos(1°) + sen(19)cos(29)

Finalmente, mencionemos las coordenadas polares. En
general, para situar un punto A en el plano, utilizamos
las coordenadas cartesianas y damos valores en los ejes
X e ¥, indicdndolo con el par (x, y). Otra posibilidad
para indicar un punto del plano es dar los siguientes
dos valores:

r = distancia de A al origen
¢ = dngulo que forma con el eje X
El par (r ) son las coordenadas polares de un punto
A (ver la Figura 3.13). La relacién entre las coordena-

das cartesianas estd dada por las siguientes ecuaciones:

x=7- cos(Q),
y =7 - sen(Q),

como puede comprobarse sin dificultad.

>

P

/

A
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Capitulo 4
Aplicaciones

Santiago Laplagne

En este capitulo veremos distintas aplicaciones de los teoremas de semejanza de tridngulos.
A grandes rasgos, podemos clasificarlas en tres grandes grupos: el andlisis de transformacio-
nes que mantienen la forma de una figura (como las traslaciones, rotaciones y homotecias),
el cdlculo de distancias o longitudes que no podemos medir directamente (tales como la
altura de un drbol, o el radio terrestre), y el estudio de dngulos inscriptos en una circunfe-
rencia (tema que cierra la discusion iniciada al final del segundo capitulo).

Como veremos mas adelante, todas estas aplicaciones ilustran conceptos
centrales para la resolucion del problema de calcular las distancias al Sol

y a la Luna, y sus tamaiios.

4.1. Congruencia

El pantdgrafo es un instrumento de dibujo que permite copiar una figura
o reproducirla a una escala distinta. Para utilizarlo se fija un punto llama-
do pivote, y luego se desplaza el punto de referencia sobre el dibujo
original, mientras que un ldpiz situado en el punto de copiado reproduce
la imagen. El dibujo puede estar a una escala menor o mayor dependien-
do de las distancias entre el pivote y los puntos de reproduccién y copiado.

Vamos a estudiar como funciona un pantdgrafo, porqué genera una ima-
gen congruente o semejante a la original, y cémo puede construirse uno.

4 c Y

F Puntode
copiado

pivote

Punto de
referencia

Figura 4.1

Aplicaciones

Para tener
en cuenta al
resolver el
problema

o

Punto de referencia

\

Comenzamos analizando

/ ,—»Pumo de Copiado

S

Pivote

el siguiente pantdgrafo.

Los segmentos AC y CF son iguales. El
punto B es el punto medio de AC, y D
es el punto medio de CE Los segmentos
BE y ED son iguales a la mitad de los
segmentos AC y CE

En la figura 4.2, vemos cémo funcio-
na el pantégrafo. A medida que
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desplazamos el punto de referencia sobre el cora-
z6n, el pivote queda fijo, y en el punto de copiado
se reproduce el corazén.

Para demostrar que es una copia exacta, observemos
que las distancias desde el pivote hasta el punto de
referencia y desde el pivote hasta el punto de copia-
do son siempre las mismas. Y ademds, esos tres

pivote . puntos estdn alineados.

Punto de
referencia

Punto de
copiado

: La imagen copiada serd entonces simétrica a la imagen de
Figura 4.2 referencia, tomando como centro de simetrfa el pivote.

4.1.1. Simetria central

Veamos primero qué quiere decir que dos figuras sean simétricas.

é '\ Dada una figura en el plano y un punto O, una simetrfa central de la
figura con centro O consiste en asignar a cada punto P de la figura
otro punto P’ en el plano tal que los puntos P, O y P’ estén alineados
y ademds la distancia de P a O sea igual a la distancia de O a P’.

Dos figuras simétricas son iguales, pero giradas 180°.

Por ejemplo, la figura de la derecha es una simetria de la figu-

ra de la izquierda con centro O.

Las lineas punteadas muestran los puntos simétricos de dos puntos.

Ejercicio 1 | En la figura 4.3, jcual es el simétrico del punto P?

Ejercicio 2 En las siguientes casos, ;cuales son figuras simétricas con respecto al punto 07

O
[ ]
Figura 4.4 Figura 4.5

Volviendo al pantégrafo, para demostrar que las figuras que se forman son simétricas,
tomando el pivote E como centro, tenemos que ver que los puntos A, E y F estdn ali-
neados y que ademds AE = EE

62 Las Geometrias



Miremos la figura 4.6: ( <

Vamos a demostrar primero que los tridngulos ABE y
EDF son congruentes. B D

El cuadrildtero BCDE es un rombo porque todos sus

lados son iguales (asi habiamos elegido los puntos B y A F
1 . Punto de pivote P d
D, en la mitad de los segmentos AC y CE, que tenfan i Punto de

la misma longitud). Por lo tanto, los lados BC y DE
son paralelos. Como los dngulos EDF y BCD son

correspondientes entre paralelas, son congruentes. Los dngulos BCD y ABE también
son correspondientes entre paralelas y por lo tanto son congruentes. Luego, los dngu-
los ABE y EDF son congruentes.

Ademds, sabemos que los lados AB, BE, ED y DF son todos congruentes. Entonces,
podemos usar el criterio de congruencia LAL que vimos en el capitulo 2. Luego, los

tridngulos ABE y EDF son congruentes.

Como los tridngulos son congruentes, en particular los segmentos AE y EF son con-
gruentes, como querfamos demostrar.

Nos falta ver que A, E y F estdn alineados. Para eso, vamos a probar que:
BEA + BED + DEF = 180°

Ya vimos que DEF = BAE. Ademds ABE = BED, por ser alternos internos entre
paralelas. Tenemos entonces que:

BEA + BED + DEF = BEA + ABE + BAE
- 180°

donde la tltima igualdad se obtiene, porque los dngulos del tridngulo ABE suman 180°.
Con eso queda demostrado que los puntos A y F son simétricos con respecto al centro E.

Por lo tanto, la figura que dibuja el 1dpiz colocado en F es simétrica a la figura que sigue el
puntero colocado en A, y entonces la figura va a ser una copia exacta, aunque girada 180°.

Se utiliza un pantdgrafo para reproducir el
triangulo de la izquierda. Dibujar como
quedara reproducido.

¢ Punto de
Pivote copiado
Punto de
referencia
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4.1.2. Otras transformaciones: rotaciones

En la seccién 1.1 vimos qué es una simetria central. Esta es un caso especial de una
transformacién mds general del plano, llamada rotacién.

Para realizar una rotacién también vamos a tomar un punto O que serd el centro de la rota-
cién. Dada una figura en el plano, la rotacién de esta con centro en O consiste en asignar
a cada punto P de la figura un punto P’ tal que el dngulo PO P’ tenga siempre una medi-
da constante, que llamaremos dngulo de la rotacion, y ademds PO sea congruente a OP'.

Ejercicio 4

Ejercicio 5

64

c -\ Por ejemplo, en la figura realizamos una rotacién del tridgngulo ABC de

A 90° con centro O.
A > B’

N Vemos que los dngulos AOA" y BOB miden 90°. (También el dngulo
COC’ mide 90°.) Ademds, si tomamos un punto cualquiera en el tridn-
gulo ABC y dibujamos su rotacién, serd un punto en el tridgngulo AB’C’.

La rotacidn, al igual que la simetria, cumple que la figura original y

Figura 4.8 la figura rotada son siempre congruentes.

Dibuja la rotacion del cuadrilatero ABCD con centro
0 y angulo 60°. El punto A ya se encuentra rotado.

O wmmmmmmmmemnes 3

Luego de aplicar una rotacion al segmento AB
se obtuvo el segmento A'B’. ;Cual es el centro de
rotacion? ;Cual es el angulo de rotacion?

Sugerencia: Como los segmentos AO y A0 deben ser con-
gruentes, el triangulo AOA' resultara isosceles. ;Donde
puede estar ubicado el punto O para que esto pase?

Ahora veremos que la simetrfa central siempre puede ser vista como una rotacién. ;Cudl es el
dngulo de la rotacién? Vimos que dado un punto Py un centro O, el punto simétrico P’ debe
cumplir que B, O y P’ estén alineados. Por lo tanto, el dngulo que forman es siempre de 180°.

Descubrimos entonces que

La simetria central de centro O es una rotacion de 180° con el mismo centro.
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En ciertos casos, una figura se puede Ejercicio 6
obtener a partir de otra mediante distin-
tas transformaciones.

Dadas las siguientes figuras, encuentra
un centro 0 para que el cuadrado de la
derecha sea una simetria central del cuadrado de la izquierda, con centro 0.

Encuentra ahora otro punto 0’ para que el cuadrado de la derecha sea una rota-
cion de 90° del cuadrado de la izquierda.

4.2. Semejanzas

Nuestro objetivo es ahora medir la altura de cosas altas. Vamos a ver
cémo hacetlo... jmidiendo la sombra! Realmente es muy simple,
porque la sombra de un objeto la obtenemos con la luz del Sol, y si
se proyecta sobre el piso, podemos medirla sin mayor dificultad. En
la figura 4.12, vemos la sombra de un drbol y de una bandera.

Cuando tenemos varios objetos, ;cdmo van a ser las sombras?
En la figura 4.13 vemos tres objetos diferentes, y las lineas pun-

teadas representan los rayos del Sol. Podemos pensar que los :
rayos del Sol llegan paralelos a la Tierra.

;Existe alguna relacién entre la altura de los objetos y la lon-
gitud de las sombras? Para saberlo, vamos a ver que los
tridngulos que forman el objeto, la sombra, y los rayos del Sol
son semejantes.

En la figura 4.14, los tridngulos ABC y PQR son semejantes. Para
demostrarlo, usamos que AB y PQ son paralelas, y también lo son PR
y AC (los objetos que consideramos se elevan perpendicularmente,
no estn torcidos ni inclinados). Ademds B, C, Q y R se encuentran s
todos sobre la misma recta (la recta del piso). Por lo tanto,

Figura 4.13

POR = ABC

por ser dngulos correspondientes entre paralelas. Ademas,

porque los dos dngulos son rectos. Figura 4.14

Entonces podemos usar el criterio de semejanza de tridngulos. ;De qué nos sirve saber que son
semejantes? Porque midiendo la sombra de un objeto del que conocemos la altura, podemos cal-
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cular la altura de otro objeto. La idea es similar a la que utilizamos en el capitulo anterior, si bien
ahora no vamos a medir los dngulos que se forman para utilizar las razones trigpnométricas.

é \ Por ¢jemplo, en la figura 4.15, AC representa el mds-
til de la bandera y BC es la sombra; PR es un palo de
1 metro de altura y RQ es su sombra.

= >

Si la sombra del palo (RQ) mide 0,4 metros, y la som-
L bra de la pared (BC) mide 2 metros, podemos

averigurar la altura de la pared.

2m

B
C R Q

_ Como sabemos que los tridngulos son semejantes,
Figura 4.15 usando la razén de semejanza, tenemos que
AC CB
PR RQ
=5

dado que 2/0,4 = 5. Despejamos entonces
AC = 5m.
iEsta es la altura del méstil!

Puede probarse esto con objetos reales. Se puede medir la altura de edificios, drboles o
cualquier otra cosa. En los préximos ejercicios vamos a ver algunos ejemplos.

Ejercicio 7 Queremos calcular la altura de un edificio, como el de la figura. ;Como podemos
hacerlo? ;Como tenemos que medir la sombra?

Ejercicio 8 En la figura vemos el patio de una escuela, la sombra de las paredes y una perso-
na con su sombra. Conociendo la altura de la persona y la longitud de su sombra,
¢Como podriamos calcular la altura de las paredes de la escuela?

Ejercicio 9 Se quiere calcular la altura de una piramide. Veamos primero el caso en que los
rayos del Sol son paralelos a la base de la piramide.

Para calcular la longitud de la sombra, tendriamos que medir el segmento OP.
Pero no podemos meternos adentro de la piramide. Sin embargo, podemos medir
los lados de la base de la piramide.

Si los lados de la base miden 50 m y la distancia de T a P es de 30 m, jcual es la
altura de la piramide?
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Figura ejercicio 7 Figura ejercicio 8

Figura ejercicio 9

4.3. Homotecias

Nuestro objetivo es ahora armar un pantégrafo que nos va a per-
mitir reproducir imdgenes a escala. Es decir, vamos a poder
achicar o agrandar las imdgenes.

Veamos un ejemplo.

El mecanismo es idéntico al visto cuando desarrollamos congruencias,
pero intercambiamos la ubicacién del pivote y con el punto de referencia.

uando movamos el punto de referencia sobre la imagen que

Cuand | punto de ref bre 1

queremos reproducir, ;qué obtendremos en el punto de copiado?
endremos la misma figura pero magnificada por 2. En matematica, decimos que

Obtend 1 fi ficad 2.E temdtica, d

hemos hecho una homotecia de razén 2. En las cimaras de fotos o microscopios, diri-

amos que estamos haciendo un “zoom 2x”.

[

¢Qué es una homotecia?

Dado un punto O del plano, una homotecia consiste en asignar
a cada punto I un punto P en la recta IO de tal forma que PO / IO sea
constante. El cociente PO / IO se llama la razén de la homotecia.

Punto de

referencia Punto de

copiado
Pivote

En la figura 4.21 vemos qué pasa cuando aplicamos una
homotecia de razén ¥2 a varios puntos y a un segmento S.

Aplicar la homotecia al segmento S, significa aplicarle la

homotecia a cada uno de los puntos de este segmento.
Obtenemos asi un nuevo segmento, paralelo al anterior, cuya longitud es la mitad de la
longitud del segmento original.

Para ver que nuestro pantdgrafo estd haciendo una homotecia, siguiendo la definicion,
tenemos que ver que O, Iy P estdn siempre alineados y que PO /10 = 2.

Aplicaciones
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Pero esto es exactamente lo que vimos antes (pues s6lo
hemos intercambiado el pivote y el punto de referen-
cia). Ya habiamos visto que O, I y P estaban alineados
y que OI = IP. Por lo tanto, PO /10 =210/10

= 2.

:Qué pasa si c
queremos

agrandar o

achicar la ima- B D

gen en otra razon distinta de 2? Tenemos que
adaptar el pantdgrafo. Si por ejemplo, queremos
hacer un pantdgrafo que multiplique por 3, debe- 0 P

mos hacer que OP sea 3 veces OI. Obtenemos el Pivote

Punto de
copiado

Punto de
referencia

pantdgrafo de la figura 4.23 (las muescas x2, x3, x4,
x5 permiten cambiar la longitud de los segmentos).

Pivote Punto de referencia

Punto de copiado
C
D
B
(0] P
Pivote Punto de Punto de
referencia copiado

Esquemdticamente, tenemos el diagrama de la figura 4.24.

Este pantégrafo estd construido de forma tal que

BI = CD = BO y BC = DI = DP. Ademids, BC = 2 CIL

Queremos ver que OP = 3 OL. Para eso, necesitamos probar
que IP = 2 OL

La demostracién es similar a las anteriores, y puede hacerse
en los siguientes pasos.

BCDI es un paralelogramo.

1. Los dngulos OBI e IDP son congruentes.

2. Los tridngulos OBI e IDP son semejantes.

3. Larazdn de semejanza entre los tridngulos IDP y OBl es 2.
4. Los puntos O, I y P estdn alienados.

Probando esas cinco afirmaciones, vemos que O, I y P
estdn alineados y OP = 3 OI. Por lo tanto, al mover el
punto I sobre el dibujo de referencia, el ldpiz del punto
P va a realizar una homotecia del dibujo de razén 3.

4.4, Angulos inscriptos

El mural de la Dolorosa, en la iglesia del Pilar, tiene 10 metros de largo. Nos pregun-
tamos desde dénde puede una persona verlo completamente. El campo visual de un ser



humano es de unos 180°. Esto quiere decir que
puede ver todo lo que esté delante de él, como ilus-
tramos en la figura de la izquierda.

Por lo tanto, una persona va a poder ver todo el mural en — o
. , . L. Zonadevision ~ Zona de visién
cualquier lugar en que esté parada. Sin embargo, si cierra tidimensional  monocular

0 3 Campo visual vertical
uno de los ojos, el campo visual se reduce a unos 150°. Campovisual horizontal

En ese caso, ;desde donde podrd ver todo el mural?

Se puede hacer una prueba. Buscar algin mural o una pared ® ¢ 6 o _ 4 o
larga, y observar desde dénde se puede ver completamente con °o *ee® % o
un solo ojo (se puede mover el ojo hacia los costados, pero no se o ! o % °
puede girar la cabeza). Si marcdsemos con un circulo los lugares ee °® e e ° ®e o

desde donde se puede ver completamente, y con un rombo los
lugares desde donde no, obtendriamos algo como la figura 4.26.

Tratemos de resolver este problema matemdticamente. Llamemos
AB al segmento que representa el mural (ver figura 4.27). Si
tomamos un punto P en el plano, podremos ver completamente
el mural si el dngulo APB que se forma es menor que 150°. Si es
mayor que 150°, el mural no entra en nuestro campo visual.

Busquemos el borde entre las dos regiones. Es decir, los pun-
tos del plano en los que el dngulo que se forma es exactamente 150°.

Pero, empecemos con algo mds ficil. Busquemos los puntos
en los que el dngulo es exactamente 90° (ver figura 4.28).

Tenemos, como antes, los puntos A, B y P. Llamemos O al punto
medio del segmento AB. Entonces sabemos que AO = BO.
Vamos a probar que ademds PO = AO = BO.

iVeamos una demostracién muy ingeniosa! En la figura 4.29,
completamos un rectdngulo.

Y ya sabemos que las diagonales de un rectangulo son iguales y se
cortan en el punto medio, asi que AO = PO = BO = QO.

Podemos pensar que todos estos segmentos son radios de una cir-
cunferencia de centro O (ver figura 4.30). Como A, O y B estdn
alineados, AB es el didmetro de la circunferencia.

:Qué podemos concluir de todo esto? Si APB = 90°, obtenemos que P se encuentra en
la circunferencia de didmetro AB.
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Pensemos mds en general. Si tenemos un segmento AB, ;dénde estin
todos los puntos que forman un cierto dngulo con el segmento?

Vamos a probar que todos esos puntos se encuentran en un arco
de circunferencia que pasa por A y B. O podemos mirarlo al
revés. En la figura 4.31, tomamos una circunferencia y dos pun-
tos A 'y B en la circunferencia. Tenemos que probar que para
todos los puntos de cada uno de los dos arcos, los dngulos que se
forman miden siempre lo mismo.
Tomemos O el centro de la circunferencia (ver figura 4.32).
Vamos a probar que el dngulo APB es igual a la mitad del
dngulo AOB.

AOB + AOP + BOP = 360°
Despejando AOB,

AOB = 360° - (AOP + BOP)
En el tridngulo AOD,

AOP + OPA + PAO = 180°
Pero OPA = PAO, porque OPA es un tridngulo isésceles. Entonces

2 OPA = 180° - AOP.
Haciendo lo mismo en el tridngulo OBP,
2 OPB = 180° - BOP.
Sumando las dos igualdades,
2 (OPA + OPB) = 360° - (AOP + BOP)

Y por la igualdad que tenfamos al principio,

2 (OPA + OPB) = AOB

Si miramos el dibujo, vemos que OPA + OPB = APB. Concluimos que

como querfamos.

APB = AOB/ 2



Entonces, para cualquier punto Q que tomemos en el arco
APB, el dngulo AQB va a medir siempre lo mismo.

Regresando a nuestro problema del comienzo de la seccién,
como el dngulo que abarca uno solo de nuestros ojos es de 150°,
nos interesard descubrir en qué puntos P nos podemos ubicar tal
que se forma un dngulo APB de exactamente 150°. Todos estos
puntos estdn en un arco como se puede ver en la figura 4.33.

Si nos paramos adentro, el 4ngulo va a ser mayor que 150°, en
cambio afuera va a ser menor. ;Cémo podemos hacer para
dibujar ese arco de circunferencia? Nos alcanza con encontrar
un punto P que forme un dngulo de 150° con AB y luego tra-
zar la circunferencia que pase por los puntos A, By P,

Por ejemplo, en la figura 4.34 dibujamos el punto P en el
medio del arco

Los dngulos PAB y ABP suman 30°. Como son iguales,
cada uno mide 15°. Por lo tanto, podemos trazar las rec-
tas por A'y B que forman dngulos de 15° con AB y marcar

P en la interseccion (ver figura 4.35). Figura 4.35

El campo visual de los perros es de unos 240°. Por lo tanto pueden ver completamente Ejercicio 10
cualquier pared. Pero, qué pasa con el mural de la figura 4.36, que ocupa dos paredes
de un patio. jDesde donde podran verlo completamente?

En la figura 4.37, probar que los triangulos AQB y CQD son semejantes. ;Cuales son los Ejercicio 11
angulos correspondientes?

En la figura 4.38, el angulo DAB = 80°. ; Cuanto mide el angulo BCD? Ejercicio 12

Figuras
Ejercicios

Figura 4.36

Figura 4.37 Figura 4.38
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Problema

4.5. El radio de la Tierra

Como iltima aplicacion, calcularemos aproximadamente el radio terrestre. Para esto,
explicaremos el método que fue utilizado por Eratostenes en el siglo lll a.C. Este sera

uno de los datos que utilicemos luego en el capitulo 9, cuando resolvamos nuestro pro-
blema principal: estimar la distancia al Sol y a la Luna, y sus tamaiios.

Los elementos de los cuales disponia Eratstenes para averiguar el radio de la Tierra eran los siguientes:

e conocia la distancia 4 entre dos ciudades del norte de Africa (Siena -hoy
Assuan- y Alejandria);

e sabia que estas ciudades estaban précticamente alineadas en la direccién Norte-Sur;

e sabia que en el solsticio de verano (el 21 de junio para el hemisferio Norte),
los rayos del Sol al mediodia cafan perpendiculares a la Tierra, reflejdindose en
el fondo de los pozos de agua;

e sabia cuindo era el mediodia en Siena;

e sabia la longitud de un bastén y de la sombra que proyectaba en Alejandria en
el mediodia del 21 de junio.

Con estos datos fue capaz de deducir el perimetro de la Tierra y el radio. ;Son féciles
de obtener? ;Cémo lo hizo?

Sobre el primer punto no hay mucha informacién histérica: aparentemente, hizo el camino
en carro, con sus esclavos ocupados en contar las vueltas que daba la rueda. El valor calcula-
do difiere segtin las fuentes, especialmente porque se desconoce el valor exacto de la unidad
de medida que menciona (el estadio). La distancia entre Alejandria y Siena varifa entre 780 y
950 kilémetros, segin se utilice el estadio egipcio o el ateniense; tiene sentido que fuese el pri-
mero porque ambas ciudades quedan en Egipto, pero también debe considerarse que estamos
hablando de uno de los grandes representantes de la cultura helenistica. Vamos a considerar,
entonces, que la distancia era aproximadamente de 800 kilémetros.

El segundo punto es més sencillo: sélo requiere salir de Siena y viajar siempre en direc-
cién norte (si llegamos a Alejandria, es porque estaban alineadas en esa direccién).
¢Cémo viajar en direccién Norte? Hoy dia es sencillo, y una brajula serfa nuestra mejor
guia, pero Eratdstenes vivié mds de un milenio antes de su invencidn; en esa época, el
mejor método serfa viajar de noche orientdndose con la estrella polar.

Respecto al tercer punto, profundizar sobre los solsticios escapa de los objetivos de este libro,
aunque entenderlos es mds una cuestién geométrica que astrondmica. La Tierra gira alrede-
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dor del Sol en una 6rbita eliptica, que pricticamente estd con-
tenida en un plano. A este plano se lo llama el plano de la

ecliptica. Sin embargo, ese plano no estd alineado con el plano
ecuatorial (es el plano donde vive el circulo que forma el
Ecuador en la Tierra, ver la figura 4.39. Para imaginarnos este
plano, podemos pensar en la Tierra como una naranja, dibuja-

mos en ella el Ecuador, y la cortamos por este circulo en dos
mitades: la superficie de cada mitad es un plano, el llamado
plano ecuatorial).

Cuando la Tierra gira alrededor del Sol, hay dos oportunidades a lo largo de un ano en los cua-
les pasa simultdineamente por ambos planos (cuando el plano de la ecliptica y del Ecuador se
cruzan, y la Tierra pasa por esa interseccién). En estas dos ocasiones, el dia y la noche duran
exactamente doce horas cada uno, y esos los rayos del Sol caen perpendiculares sobre el Ecuador
(ocurre el 20 de marzo y el 22 de septiembre, los equinoccios). Luego, como la drbita terrestre
estd sobre el plano de la ecliptica, se aleja del plano ecuatorial, y cuando ha recorrido un cuar-
to de la vuelta los rayos caen perpendiculares a los trépicos (al trépico de Céncer, en el solsticio
de verano del hemisferio Norte -que coincide con el solsticio de invierno del hemisferio sur, el
dia 21 de junio-; o al trépico de Capricornio, en el solsticio de invierno del hemisferio Norte -
que coincide con el solsticio de verano del hemisferio sur-, el dia 21 de diciembre). Estos dos
dias, los solsticios, corresponden en verano al dia en que la noche es mds corta, y en invierno
es el dia en que la noche es mds larga.  En la época de Eratdstenes se entendia el papel de los
solsticios y los equinoccios en relacién a las estaciones, asi que no necesité determinarlos. En
cambio, midi6 el dngulo de inclinacién de estos planos (;Se nos ocurre c6mo? Lo veremos en
el transcurso del capitulo), cuyo valor es de aproximadamente 23, 5°.

El cuarto punto es sencillo (hoy dia que disponemos de relojes), pero también puede
determinarse con un reloj de Sol. De todos modos, para armar el reloj de Sol, hay
que indicar cudndo es el mediodia, y el procedimiento para hacerlo es el siguiente
(observe la figura 4.40): se clava una estaca en la Tierra, y durante el dia se marca la
sombra que hace; al mediodia no siempre el Sol estd perpendicular a la estaca, pero
serd el momento en que la sombra es mds corta; se marca esa direccién, y listo.

El quinto y dltimo punto se obtiene midiendo el bastén
y la sombra que proyecta al mediodia del 21 de junio.

La figura 4.41 nos muestra un bosquejo de la situacion.
Hemos indicado con S la ubicacién de Siena, con A la de
Alejandria, 4 es la distancia entre ambas, y R es el radio
terrestre. Los rayos solares vienen paralelos, y si bien en el
punto S no producen sombra, si lo hacen en A.

Luz solar

Como los rayos son paralelos, la recta formada por el radio

terrestre y su prolongacion, el bastén, produce dngulos
iguales (ya que son alternos internos entre paralelas, como
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Observacion

Este es un valor
muy cercano al de
6.378 km, que es el
radio promedio de
la Tierra. Esto
sugiere que, efec-
tivamente, utilizo el
estadio egipcio
como unidad de
medida. Sin
embargo, en otra
de sus obras,
cuando calcula la
distancia al Sol, si
utilizamos el esta-
dio ateniense se
obtiene una distan-
cia de 148 millones
de kilometros (un
valor muy préximo
al verdadero, de
aproximadamente
149 millones).

vimos en la Introduccién). Podemos averiguar el dngulo 6, recordando del capitulo anterior que

cateto opuesto
1g(0) = ———
cateto adyacente

y observando que en el tridngulo que se forma en 4, el cateto adyacente es el baston, y
el opuesto es su sombra. Para averiguar el dngulo, podemos utilizar una calculadora,
pero también podemos dibujar a escala el tridngulo formado por el bastén y la sombra,
y lo medimos con un transportador.

La medicién de Eratéstenes dio 6 = 7,2°, y su razonamiento fue el siguiente:
si a un dngulo de 7,2° le corresponde un arco de 800 £,

36; - 40.000 .

a uno de 360° le corresponde un arco de 800 /.

>

Por lo tanto, el perimetro de la Tierra es de unos 40.000 km, y calculamos su radio uti-
lizando la férmula para el perimetro de un circulo de radio r:

perimetro = 27 - 7,
40.000 = 27 - R,

donde R es el radio terrestre, y despejamos R = 6.366 km.
T

Ejercicio 13

Ejercicio 14
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Para determinar la direccion Norte-Sur, se clavaba un baston en la tierra antes de
mediodia, y se trazaba un circulo tomando su ubicacion como centro y su sombra
como radio (marcando el punto donde tocaba la circunferencia). Luego, la sombra
se acortaba y caia dentro del circulo, hasta que mas tarde tocaba nuevamente la
circunferencia... ;Como determinaban ahora el Norte?

Si dos ciudades estan alineadas de Norte a Sur y en cada una de ellas clavamos un

baston, y medimos su altura y la longitud de la sombra, ;podemos calcular con esta
informacion el radio terrestre conociendo la distancia entre ellas? ;Hace falta que
sea un 21 de junio o un 21 de diciembre?

en la Argentina hay numerosas ciudades alineadas que podrian servir para hacer el
experimento. Se puede coordinar el momento de la medicion para hacerla en simultaneo, pero pri-
mero hay que determinar el mediodia solar, que seguramente no coincide con las 12:00.
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Capitulo 5

(Geometria esférica

Nicolds Santier

5.1. Introduccién

Supongamos que miramos el horizonte parados a la orilla del mar, en un dia de muy
buena visibilidad (digamos, diez mil metros) y nos dicen que a seis kilémetros de alli,
en el agua, flota una boya luminosa. ;Podremos verla desde donde estamos? ;Y si utili-
zdramos prismaticos?

Arriesguemos una respuesta, y digamos que si. Un
razonamiento que puede avalar esta impresion es el
siguiente. Seis kilémetros son menos que los diez mil d

metros de visibilidad, asi que deberfamos ver la boya, 2m

aunque... podemos comenzar a dudar: la boya estd a

seis kilémetros de nuestros pies, pero nuestros ojos A
A

estin mds altos, supongamos a dos metros de altura 6 Km
(parados sobre algo, si hace falta). En este caso, la dis-

tancia d entre nuestros ojos y la boya debe ser mayor.

Un esquema de la situacién (figura 5.1) y el teorema de Pitdgoras deberfan convencer-
nos de que no hay problemas para ver la boya.

En la figura 5.1 A es el punto de la playa donde estamos parados, O es la ubicacién de
nuestros ojos, y B es la boya. La distancia & que queremos calcular es la longitud de la
hipotenusa OB, y como datos tenemos que 2 metros son 0,002 kilémetros (la longitud
del lado AO), y la base AB mide 6 kilémetros. Ahora, sabemos gracias a Pitdgoras que

d2=0,0022 + 6%,
Despejando, la distancia  que buscamos es, en kilémetros,

d = +/0,0022 + 62
~ 6,00000033 ...

que no tiene gran diferencia con los seis kilémetros en linea recta.

Bien, entonces la distancia no parece ser un obstdculo para ver la boya. ;Qué otro pro-
blema podria haber?
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\  Pensemos un momento antes de responder. El dibujo anterior no
representa exactamente la realidad. Sabemos que la Tierra es aproxi-
madamente esférica, con lo cual la base AB no deberia ser recta, sino
curva. ;Tendrd influencia este hecho? La Figura 5.2 deberia conven-
cernos de la importancia de que la superficie de la Tierra sea curva.

iObservemos que si la boya estd debajo del punto donde se tocan la
recta y la circunferencia, no la podemos ver! Esto nos debe resultar
creible, porque no podriamos verla si estuviera en nuestras antipodas,
del otro lado de la Tierra. Debe haber un punto donde las cosas que-

Figura 5.2 den debajo de nuestra linea de visién. Aqui, la pregunta es si estd

Para tener
en cuenta al

resolver el
problema
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antes o después de los seis kilometros en donde estd ubicada la boya.

Por lo tanto, la curvatura terrestre no debe descartarse tan rdpido, porque genera dis-
tintas dificultades. El objetivo de este capitulo serd reconocer esas dificultades e intentar
superarlas. En principio podemos plantear una pregunta muy sencilla, quizd la pregun-
ta mds sencilla:

e ;qué quiere decir que la boya estd a seis kiléometros?

En este caso, nos estamos preguntando, ;cémo medimos distancias sobre superficies
curvas? En el plano, la distancia entre dos puntos se calcula midiendo la longitud del
segmento que los conecta, y es suficiente con moverse en linea recta de un punto al
otro. Sin embargo, esto genera un nuevo problema:

e ;cudl es el equivalente a moverse en linea recta sobre la esfera?

Cuando no podemos medir las distancias concretamente porque son demasiado
grandes, por ejemplo la distancia entre la Tierra y la Luna o la distancia entre dos
ciudades de la Tierra, usamos las herramientas de la trigonometria, como por
ejemplo, el teorema de Pitagoras o los teoremas de equivalencias de triangulos,
que valen en un plano esto es, en un espacio llano. Aqui debemos trabajar sobre
una esfera, que no es llana. Por lo tanto, estas herramientas de la trigonometria
clasica no sirven y debemos desarrollar nuevas adaptadas a la esfera.

Con todas esas herramientas estaremos en condiciones de resolver el problema que
planteamos al comienzo del capitulo.

En este capitulo, también veremos las nociones de paralelismo sobre una esfera, y los

problemas que causa la curvatura a la hora de trazar mapas, como asi también las prin-
cipales proyecciones utilizadas en su trazado. Si bien estos problemas no tienen relacién
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directa con la situacién problemdtica planteada en el comienzo, son aplicaciones cldsi-
cas de la geometria y la trigonometria esférica utiles desde un punto de vista tanto
préctico (las mapas de la Tierra son esenciales para cualquier viajero) como teérico (los
espacios curvos son fundamentales en fisica: la teoria de la relatividad general elabora-
da por Albert Einstein al principio del siglo XX afirma que el universo no es llano).

Como introduccidn a este tema, consideremos el siguiente problema, variante de uno
muy conocido: un cazador sale de su carpa y ve un oso en direccién sur. Apuntando
con una escopeta al punto donde vio el oso, camina diez pasos en direccién sur, pero
como ahora no lo ve, dobla hacia el oeste y camina otros diez pasos con el cafio de la
escopeta descansando sobre el brazo izquierdo (sigue apuntando hacia el sur). Luego,
camina diez pasos en direccién al norte, ahora con la escopeta sobre el hombro apun-
tando hacia atrds. Tras dar esos diez pasos, volvié al punto de partida.

El problema cldsico no menciona la escopeta, y pregunta: ;de qué color era el oso?
Vamos a hacer, en cambio, otra pregunta: cuando llega a la carpa, sestd la escopeta
apuntando en la misma direccién que cuando salié?!

Veremos mds adelante las herramientas necesarias para resolver este problema (ver la
seccién sobre la holonomia). Por el momento podemos obtener una idea intuitiva de la
respuesta tomando una pelota para representar la Tierra y un fésforo o una ramita como
escopeta, y reproducir la situacion saliendo del punto equivalente al Polo Norte. En este
caso, observaremos que al regresar al punto de partida el f6sforo apunta en otra direc-
cién, el dngulo correspondiente al desplazamiento de este a oeste.

5.2. Caminar derecho sobre una esfera

Queremos hacer geometria sobre una esfera, es decir, estudiar figuras formadas con pun-
tos, rectas y circulos, pero sobre la superficie de una esfera. Esta es una geometria que vale
la pena estudiar dado que, es la geometria que describe mejor la superficie de la Tierra.

! La respuesta al problema clésico es que el oso es blanco, pues sélo cerca del Polo Norte se puede dar esta situacién.
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En los capitulos anteriores trabajamos en el plano o en el espacio. Debemos empezar
por definir qué es, sobre la esfera, el objeto geométrico mds bésico después del punto:
la recta. Vamos a analizar qué es esencialmente una recta en el plano, para definir su
andlogo sobre una esfera.

Supongamos que somos un pequeno insecto bidimensional, es decir, que se puede mover
tnicamente en el plano. Podemos avanzar, retroceder, y girar, pero no saltar o elevarnos;
no tenemos siquiera la intuicién de que existe la altura. Si comenzamos a movernos,
sc6mo podemos decidir si el camino que estamos siguiendo es una recta? Una posibilidad
serfa la siguiente: tendremos la sensacién de andar derecho si la direccién de nuestro
movimiento no cambia, es decir, si las direcciones de nuestro movimiento en un instan-
te y en cualquier otro instante posterior son iguales (ver figura 5.3).

y Imaginemos ahora la misma experiencia sobre una esfera: somos
el mismo insecto bidimensional caminando sobre la superficie de
una pelota. Sentimos que caminamos derecho, es decir que el
camino es una recta, si la direccion de nuestro movimiento coin-
cide siempre con la que estamos siguiendo. Una forma
matemdtica de expresarlo que involucra derivadas (un concepto
que no todos han visto atn), serfa decir que estamos caminando
derecho si se anula la derivada del vector que da la direccién de

La direccion de las flechas, es decir del movi-

miento, no varia solamgnte cuando el camino nuestro movimiento (el vector tangente a la curva que estamos
ue estamos recorriendo es una recta . . . . , .
a : recorriendo cuando lo derivamos en la direccion de si mismo);
Figura 5.3 esto es, que este vector no varfa a lo largo de la caminata.

Podemos ver que los caminos derechos son exactamente los circulos méximos o gran-
des circulos, es decir, las curvas que se obtienen como interseccién de la esfera con un
plano que pasa por el centro de la esfera (ver la figura 5.4). Llamaremos entonces rec-
tas a estos circulos méximos, y dnicamente a ellos.

Ejercicio 1 Probar que si dos puntos de una esfera no son diametralmente opuestos, enton-
ces pasa por ellos exactamente un circulo maximo. Probar que si son
diametralmente opuestos, pasan infinitos circulos maximos (ver la figura 5.5).

Observemos que dos rectas (es decir, dos grandes circulos) distintas tienen siempre,
exactamente, dos puntos de interseccién diametralmente opuestos (ver la figura 5.5).
Estas son las primeras grandes diferencias entre la geometria esférica y la geometria
plana: mientras en el plano dos rectas paralelas distintas nunca se cortan, dos rectas
sobre una esfera siempre se cortan. Y en el plano, si dos rectas distintas se cortan, lo
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hacen en un tnico punto, aqui se cortan dos veces.
Notemos también que por dos puntos diametralmen-
te opuestos pasan una infinidad de rectas, mientras en
el plano por dos puntos distintos pasa una tnica
recta.

Otra manera de llegar a considerar los circulos maxi-
mos como el andlogo sobre la esfera de las rectas de la
geometria plana, es recordar que en el plano una recta
que pasa por dos puntos es el camino mds corto entre
estos puntos. Se puede definir una manera de medir
la longitud de una curva sobre una esfera a partir de
la distancia usual del espacio y utilizar ésta para defi-
nir la distancia entre dos puntos. Ocurre que los
circulos mdximos son los caminos mds cortos para
esta distancia. Para visualizar eso, podemos tomar una
pelota de tenis y pasarle un eldstico. El eldstico va a
intentar moverse para minimizar su tensién. Si lo
ponemos a lo largo de un circulo mdximo, no se va a
mover, pero si lo ponemos segtin cualquier otro cami-
no sobre la pelota, va a deformarse.

Definimos la distancia 4(A4, B) entre dos puntos A y
B de una esfera como la longitud de la porcién mds
chica de un circulo mdximo que pasa por A y B
(como demostramos en el ejercicio anterior, este
circulo mdximo es tGnico si A y B no son diametral-
mente opuestos -también llamados antipodales-, es
decir si A y B no son simétricos con respecto al
centro O de la esfera. Por ejemplo, el polo norte y
el polo sur son antipodales, pero Buenos Aires y
Nueva York no).

Si la esfera tiene radio Ry centro O, entonces
d(4,B) = ROA, OB) 2.1)

donde ((74, (ﬁ) es el %gulo medido en radianes
entre los vectores OA y OB. En general, trabajaremos
en la esfera unitaria, tomando R = 1, e identificaremos
la distancia entre A y B con el dngulo (04, OB).

Cuando 4

son diametralmente opuestos,

Una recta (AB) obtenida como interseccion de la esfe-

ra con el plano generado por los vectores

y .
—

Dos rectas (AB) y (A'B) se cortan siempre en dos

puntos Cy C’diametralmente opuestos.

Distancia entre Ay B. El circulo es el circulo maximo,

es decir, la recta que pasa por Ay B.

B
entonces (OA, (ﬁ) = 7 y obtenemos d(A4, B) = 7R, es decir, la mitad del perimetro de

un circulo (mdximo) de radio R.

—



Ejercicio 2
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Observemos que hemos definido una funcién 4, que llamamos distancia, pero no sabemos
aun si verifica las propiedades que se requieren de una distancia. Estas son las siguientes:

e d(A,B) = d(B,A), es decir, la distancia es simétrica;
e d(A4,B) = 0siysolamente si A = B; y

o d(A,B) <dA QO + d(CB), la desigualdad triangular. Esta la veremos mds adelante.

Si consideramos que la Tierra es una esfera de radio R = 6.378 km, jcuanto vale
la distancia entre el Polo Norte y el polo sur? ;Y entre el Polo Norte y una ciu-

dad ubicada en el Ecuador?

Ahora, podemos contestar a la pregunta de la introduccidn: si estamos a la orilla del
mar, ;podemos ver una boya situada a 6 km de la

= playa? Ya sabemos que el camino mds corto para lle-

b & csamosac gar a la boya es el tnico circulo méximo que pasa por
K dpumomiigee | €L lugar donde estamos parados y por la boya.
Yo == auwpodemosser | Consideremos la figura 5.7 donde R = 6.378 km es el
R/ | radio aproximado de la Tierra, el punto 6 = R + 2m

; } y-awb | Iepresenta NUESros ojos.

Figura 5.7

2.2)

Xo

Buscamos primero la pendiente « de la recta que repre-
senta nuestro campo visual y las coordenadas (x;, y,) del
punto més lejos que podemos ver. Como este punto per-
tenece a la recta de ecuacion y = ax+b y al circulo centrado
en el origen de radio R = 6.378 km, cuya ecuacién es:

;Podemos ver la boya?

X2+ =R,

tenemos que sus coordenadas cumplen simultdneamente
2, 2 2
Yo=awo+b y zp+y = R

Luego, reemplazando y;, tras desarrollar el cuadrado y agrupar los términos, obtenemos
una ecuacién cuadrdtica

z3 + (azo +b)? = R* & (1 + a®)x3 + 2abzo + b* — R? = 0.

El punto x, es una raiz de la ecuacién cuadrdtica. Recordemos brevemente que, dada
una ecuacién

Ax* + Bx+ C=0,
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sus raices estin dadas por

—B++/B? - 4AC
a5 =
2A ’

si B2 -4AC > 0
En particular, ambas raices son iguales si y sélo si el discriminante A = B2 ~4AC se anula.
La pendiente # de la recta es tal que esta recta corta en un dnico punto al circulo, lo
que se traduce matemdticamente en el hecho de que la tltima ecuacién tiene una tnica
raiz, y su discriminante A es nulo:

0=A=2ab?-4(1 + a*(b* - R?)

= 4R2a* - 4(b* - R?).

Luego, despejando nos queda

, V2 —R?
T TR

b\? b\ 2
a2:(}—%> —lea=+ (E) =i

Obtenemos asi dos rectas posibles que son simétricas con respecto al eje y. Como el proble-
ma es simétrico con respecto a este eje podemos, sin perder en generalidad, suponer que la
recta que buscamos tiene pendiente a negativa como en la figura 5.7. Luego tomamos

Volviendo a la ecuacién cuadritica, y recordando que el discriminante es nulo, tenemos

—2ab
1+ a2

2( )
R\? [/b)\?
-(3) W) -
2
-#)(1-5)-
Por otro lado, como x, = Rcos 0, igualamos ambas y nos queda

[ R\ 2
cosf = (1_€> ,

g =
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meridiano de
Greenwich

con lo cual podemos calcular el 4ngulo como

2
6 = arc cos (1 — %) .

Estamos en condiciones de calcular el dngulo, ya que conocemos R = 6.378 km y
b= R + 0,002 (suponemos que nuestros ojos estdn a 2 m de altura). Utilizando una cal-
culadora obtenemos 6 ~ 1,57, con lo cual el punto més lejano que podemos ver estd
situado a una distancia aproximada de (5 - 6) R = 5,0509 km. Por lo tanto, no pode-
mos ver la boya pues estd a 6 km de la orilla.

Para poder calcular las distancias entre dos puntos cualesquiera de la Tierra necesitamos
una manera de ubicarlos con precision. En el plano utilizamos dos ¢jes perpendicula-
res, el eje x y el eje y, e indicamos las coordenadas en cada uno. En la esfera es similar,
y lo vamos a hacer usando dos rectas particulares de la Tierra, el Ecuador y el meridia-
no de Greenwich, lo que nos lleva a las nociones de latitud y longitud de un punto.

5.3. Latitud y longitud

Ubicar un punto de la Tierra con su latitud € y longitud ¢, significa ubicarlo con res-
. . . y g . g
pecto al Ecuador y al meridiano de Greenwich (este tltimo es el segmento que une los
polos y que pasa por el observatorio de Greenwich en Inglaterra). El meridiano de
Greenwich define el este y el oeste. Su simétrico con respecto al centro de la Tierra, es
y p
decir, el segmento que une los polos y pasa por el punto opuesto a Greenwich con res-
pecto al centro de la Tierra, es la linea internacional de cambio de fecha. La eleccién de
este meridiano como punto de referencia para medir la longitud es arbitraria. De
hecho, hasta 1884 el meridiano de referencia pasaba por Paris.
p

Vamos a considerar la Tierra como una esfera de radio

R = 6.378 km. (es una aproximacién, pues en realidad

la Tierra es més llana en los polos que en el Ecuador).

o Introducimos un sistema de coordenadas x, 3 z centrado

A F dfambeiiain | en el centro de la Tierra como en la figura 5.8. Por ejem-
plo, el Polo Norte tiene por coordenadas (0, 0, R).

ecuador

Sea un punto M de la Tierra de coordenadas (x, 3 z).

Para determinar su latitud y longitud consideramos la

proyeccién M’ de M sobre el plano xy. Entonces M

Latitud 8y longitud ¢ de un punto M de la Tierra. tiene por coordenadas (x, 3 0). La longitud ¢ de M es

el dngulo entre OM" y el eje Ox es decir entre OM’ y
el plano que contiene al meridiano de Greenwich. Su
latitud € es el dngulo entre OM y OM’, es decir entre OM vy el plano ecuatorial.
Entonces ¢ € (-7, 7) y 0 € (-7/2, 7/2). La longitud de los polos no puede ser definida.



Probar que las coordenadas (x, y, z) de un punto M de longitud ¢ y latitud 8 son Ejercicio 3

(RcosO cosp, RcosO senyp, Rsenb).

Asi, ubicamos cualquier punto de la Tierra, sin ambigiiedad, con su latitud y longitud. Esto se
traduce, matemdticamente, en que disponemos de una aplicacién f: § — (-7/2, 7/2) x (-7, 7)
que a un punto M de la esfera S, que no sea un polo y que no pertenezca a la linea interna-
cional de cambio de fecha, asocia su par latitud-longitud (6, ¢) que llamaremos coordenadas
esféricas de M. No consideramos los puntos M de la linea internacional de cambio de fecha
porque queremos que esta aplicacién sea continua, es decir, que si nos estamos acercando a
algtin punto de coordenadas (6, ) con una sucesién de puntos de coordenadas (6,, ¢,), . .
.» (fn, pn), . . . queremos que las latitudes y longitudes de nuestras sucesivas posiciones sean
aproximaciones cada vez mejores de (6, ). Esto se escribe de la siguiente forma: 6n — 6y
¢n — . Si nos acercamos a un punto de la linea internacional de cambio de fecha por el
oeste tenemos pn — -7, y por el este, on — 7: la longitud salta al cruzar esta linea. Por eso,
consideraremos Gnicamente puntos de longitud estrictamente entre -7z y 7.

En la prictica se suele medir la longitud y la latitud en grados, minutos, y segundos.
Por ejemplo, la ciudad de Honolulu tiene por latitud @ = 21°18,3 (es decir 21 grados

y 18,3 minutos) y longitud ¢ = 157°52,3’. el valor g Ia milla néutica

depende del lugar de la Tierra
Por lo tanto, que la latitud y longitud son medidas angulares, no nos sirven para medir donde estemos (pues 3 Tierra
distancias. Una unidad habitual para medir las distancias es la milla ndutica (mn), que N0 g5 erfctament esfrica.
se define diciendo que un arco de 1’ de un circulo médximo mide 1 mn. Como 7 radia- Su vlor ol e5 1852
nes son 180°, tenemos 1’ = 7/(60 - 180) = 2,9089 - 10-4 radianes, y luego - Egr?]r;av"allnu sr o 185 ko

Lmn = 2,9089 - 104R = 2,9089 - 104 . 6.378

(3.3)
= 1,8553 km
en vista de la definicién de distancia (2.1).
Supongamos que queremos medir la distancia entre dos puntos de misma longitud, digamos entre
un punto A de coordenadas (), ,) = (30°25’, 40°) y B de coordenadas (0, ¢3) = (75°10, 40°).
Estos dos puntos pertenecen al mismo meridiano. Luego, la distancia entre ellos vale
Oy - O, = 44°45 [ ] h
perenccen Ay B
= 4460’ + 45 e
A
=2.685 A
= 2.685 mn
— 4.98 1)5 km
Distancia entre Ay B.

Geometria esférica Figura 5.9 &
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Un triangulo esférico ABC

(4.4)

(4.5)

(4.6)

Pudimos calcular la distancia entre A y B porque ambos puntos pertenecian al mismo meri-
diano. Podriamos calcular de la misma manera la distancia entre dos puntos del mismo
paralelo, es decir, entre dos puntos de misma latitud. Pero por el momento, el problema de
calcular la distancia entre dos puntos de coordenadas cualesquiera estd fuera de nuestro alcan-
ce. Para resolverlo necesitaremos algunos conceptos de trigonometria esférica.

5.4. Tridngulos y trigonometria sobre una esfera

5.4.1. Definicién y primeras propiedades

Definimos un tridngulo esférico de vértices A, B,C de la misma
manera que se define un tridngulo ABC en el plano: conside-
ramos tres puntos A,B,C distintos sobre una esfera (ver la
figura 5.10) y dibujamos las rectas (4B), (AC) y (BC), esto es,
los tres circulos médximos que pasan por cada par de vértices
(estdn bien definidos y son distintos dos a dos si suponemos
que no hay vértices antipodales y que A,B,C no pertenecen a
la misma recta, lo que supondremos siempre). Obtenemos asi
ocho tridngulos posibles. De estos ocho candidatos vamos a
guardar Gnicamente el tridngulo tal que los dngulos

a:= (0B,0C), b:=(04,00), c:=(0A4,0B)

pertenecen a (0, 7). Un tridngulo tal se llama a veces pequerio tridngulo. Aunque las £6r-
mulas de trigonometria que vamos a ver valen también por cada uno de los otros 7
tridngulos posibles, consideraremos tinicamente los pequenos tridngulos.

Sabemos que en geometria plana existen relaciones entre los lados y los dngulos de un
tridngulo. Por ejemplo, en un tridngulo cualquiera ABC del plano (ver figura 5.11),
existe el llamado Teorema del Coseno,

a? = b% 4 ¢? — 2be. cos(A),

b?> = a® + ¢* — 2ac. cos(

B),
¢ = a? + b% — 2ab. cos(C)

)

a b @

sen(A)  sen(B) sen(C)

Queremos ver si existen férmulas de este tipo para los tridngulos
esféricos. Ya sabemos como medir la distancia entre dos puntos
v, por ende, los lados de un tridngulo: si usamos nuestra defini-
cién de distancia (2.1) con las notaciones (4.4), obtenemos

a

Un tridngulo plano ABC



AB = longitud del lado AB = Rc, AC = Rb, BC = Ra,

donde R es el radio de la esfera.

Ahora, ;cémo definimos los dngulos en los vértices de un tridngulo, por ejemplo el dngu-
lo A en el vértice A de un tridngulo esférico ABC? Muy cerca de 4, el circulo méximo que
pasa por Ay Bes casi llano. La recta que aproxima, de la mejor manera posible, este circu-
lo méximo en A es la recta tangente a este circulo en A (ver figura 5.12). Las rectas
tangentes en A a los lados AB'y AC son distintas y se cortan en A. Luego, definen un plano:
el plano tangente a la esfera en A. Definimos ahora 4 como el dngulo entre estas dos rec-
tas en este plano (ver figura 5.13). Definimos de la misma manera los dngulos B y C
correspondientes a los vértices By C del tridngulo ABC.

Probaremos las siguientes relaciones, que son las relaciones andlogas a (4.5) y (4.6) en geo-
metria esférica. Se las suele llamar las relaciones fundamentales de la geometria esférica:

Vamos a probar estas férmulas de manera geométrica. La prueba es un poco larga pero

sencilla. Luego veremos una demostracién analitica.

(

recta tangente en A al circulo

La recta tangente en A al circulo méximo que pasa por
Ay Bes larecta perpendicular a (0OA) que pasa por A.

\ﬁ Figura 5.12

Geometria esférica

(

recta tangente
a (AC) en

El angulo Aes por definicién el &ngulo entre las rec-
tas tangentes en A a las rectas (AB) y (AC).

Figura 5.13
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Demostracion de las relaciones fundamentales.

Figura 5.14

Demostracion de las relaciones fundamentales.

Figura 5.15
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Aplicar (4.9) en AB'Cy usar que sen(m - 0) = sen(d) para todo ¢ para deducir que | Ejercicio 4

(4.9) vale también en ABC con a > n/2.

Nos queda el caso a, b 2 /2:

Inspirarse en el ejercicio anterior para probar que (4.9) vale también en ABC | Ejercicio 5
con a, b > nf2.

Necesitaremos la siguiente relacién en la préxima y tltima etapa de la prueba:

e c 3

Demostracion de
las relaciones
fundamentales.

c

Probar que sen(b) = tg(a) cot(A). | Ejercicio6

Supongamos ahora que ABC es un tridngulo cualquiera e introduzcamos la recta ortogo-

nal al lado AB que pasa por C. Esta recta corta AB en D. Llamamos 2 la distancia entre

Ay D, hladistancia entre C'y D. En cada tridngulo ADC'y CDB recténgulo en D pode-

mos aplicar el caso anterior. Por un lado en ACD y en BCD fenemos respectivamente
sen(h)

sen(h) _ _
—sen(/i) sen(b), y wen(B) sen(a).

y por lo tanto

sen(a) _ sen(b)

sen(4)  sen(B)

Por otro lado en BCD,

cos(a) = cos(h) cos(c —m)
= cos(h) cos(m — ¢)
= cos(h) cos(m) cos(c) + cos(h)sen(m)sen(c),

y en ACD,

cos(b) = cos(h) cos(m),

sen(m) = tg(h) cot(A) por el ejercicio 6
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Entonces

cos(a) = cos(b) cos(c) + sen(c)sen(h) cot(A)

Como % =sen(b) obtenemos finalmente

cos(a) = cos(b) cos(c) + sen(b) cos(A)sen(c).
Veamos una prueba analitica de las primeras relaciones fundamentales. Para esto, se
requieren nociones de métodos vectoriales, tales como la relacion entre el producto
interno de dos vectores y el dngulo que forman, que definiremos a continuacién. Si
bien puede evitarse su lectura, es un buen ejemplo de las ventajas de los métodos ana-

liticos por su brevedad. En este caso, introduciremos los elementos imprescindibles
para que se pueda seguir la demostracién.

Dados los vectores OA = (ay by, ) y OB - (a5 by, ¢,) (donde (a;, by, ;) v (a5, by, )

son las coordenadas de los puntos A y B), definimos su producto interno como
Oj'@:al'ag—i—bl'bz—kcl'CQ.

El coseno del dngulo @ entre ambos es

 Gi.oB
" Vox oAvoB 0B

cos(a)

Obsérvese que si dos vectores son Qrgg_zjonales, como cos(7/2) = 0, el producto interno
OA-O

entre ellos es nulo. Ademads, = OA es la longitud del vector OA.

B
‘
4 o
' b
C
Otra prueba de las relaciones fundamentales.

Figura 5.17
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Intuitivamente, podemos decir que una porcién pequena de una esfera es muy pareci-
da a un plano. Luego, podemos preguntarnos si las relaciones fundamentales de la
geometria esférica no darfan alguna relacién de la geometria plana, cuando se conside-
ra tridngulos de lados muy chiquitos. Entonces, supongamos que 4, 4, ¢ son muy
pequefios. Debemos saber cémo se comportan cos(x) y sen(x) por x chico. Vimos que

2

cos(z) = 1— % y sen(z) = x (4.11)

cuando |x| es chico. Se puede comprobar grificamente en las figuras 5.18 y 5.19.

4 4

05,

-1 -05 0 05 1 -1 -05 0 0.5 1

Los graficos de cos(x) (en azul) y (en rojo) coin- Los gréficos de sen(x) (en azul) y x (en rojo) coinciden

ciden mésy més al acercarse de 0 més y mas al acercarse de 0.
ﬁ Figura 5.18 Figura 5.19
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Ejercicio 7 Usar las aproximaciones (4.11) para mostrar que se puede considerar las relaciones
fundamentales de la geometria plana (4.5) como un caso limite de las relaciones

fundamentales de la geometria esférica cuando se toma triangulos esféricos de
lados muy chicos.

Una consecuencia de las relaciones fundamentales es la validez de la desigualdad trian-
gular para la distancia definida por (2.1):

Ahora, podemos usar las relaciones fundamentales para calcular la distancia entre dos pun-
tos de la Tierra. Por ejemplo, si queremos calcular la distancia entre Honolulu (lat:
21°18,3’, long: 157°52,3’) y San Francisco (lat: 37°47,5’, long: 122°25,7’), consideraremos
el tridngulo cuyos vértices son el Polo Norte y estas dos ciudades (ver figura 5.20). Tenemos

a=90" —37°47,5
=52°12,5
=0,9112 rad

b= 90° — 21°18,3’
= 68°41,7
=1,199 rad

C = 157°52,3' — 122°25,7
= 35°26,6'
= 0,6186 rad.
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Luego

cos(c) = cos(a) cos(b) 4 sen(a)sen(b) cos(C)
= 0,8225

y

¢ = arccos(0,8225) = 0,6051 rad
= 34,6689° pues 7 rad = 180°
= 34°40,134' pues 1° = 60’
= 2.080,1" = 2080, 1 mn por definicién de milla nautica 4
= 3.859,2 km por (3.3). Sun francisco ‘

¢Como calcular la distancia entre Honolulu y
San Francisco?

B

Honolulu

Entonces, la distancia entre Honolulu y San Francisco es de

2.080,1 77 = 3.859,2 k. —_—

5.4.2. Area de un tridngulo esférico y suma de sus dngulos

Sabemos que la suma de los dngulos de un tridngulo plano vale
7 cualquiera sea el tridngulo, y que su drea estd determinada por
sus dngulos y uno de sus lados, es decir, dilatando un tridngulo
dado en el plano, podemos obtener tridngulos con los mismos
dngulos que el tridngulo de inicio, pero con cualquier 4rea. La
situacién es completamente distinta en el caso de los triéngulos
esféricos. Podemos ver, por ejemplo, en la figura 5.21, un tridn-
gulo cuyos dngulos B y C son rectos cualquiera sea A. Luego, la
suma de sus dngulos es mayor que 27 y no es un nimero fijo 3 D )

(basta variar A). Veremos que, en general, la suma de los angu- | U1 "anoulo: esférico cuyo @ngulos suman

los de un tridngulo esférico es un ndmero entre 7y 37 y que su
drea? depende tnicamente de esta suma.

El resultado, conocido como teorema de Girard sobre el drea de un tridngulo esférico,
es el siguiente:

El drea del triangulo esférico ABC sobre una esfera de radio R vale Teorema
(4.13)

2 Ubicando un punto de una esfera usando su latitud y longitud, es decir usando sus coordenadas esféricas (ver figura
5.8), podemos definir el drea de una parte A de la esfera por

(4.12)

Por ejemplo, el drea del cuarto de esfera 4 = {(, ¢), 0 < 6 < /2,0 < ¢ < 7}, vale
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Ejercicio 8 (En qué medida podemos ver el resultado, segiin el cual la suma de los angulos

de un triangulo plano vale 2m como un caso limite de esta formula?

La férmula (4.13) puede generalizarse a poligonos esféricos de 7 lados exactamente
como en el plano.

Ejercicio 9 Consideremos un poligono esférico P, con n > 3 lados sobre una esfera de radio
R. Suponemos P, convexo (es decir el segmento que une dos puntos del interior
de P, esta totalmente incluido en el interior de P,). Probar que

area(P)=(A,+---+ A, - (n-2)mR2

o Sugerencia: hacer como en la
donde A1' .. 'An son los vertices de P,,. demostracion del primer capitulo.

Veamos una demostracién geométrica del Teorema de
Girard basada en calcular el 4rea de partes de la esfera llama-
das lunas. Una luna es una de las cuatro partes de la esfera
delimitadas por dos circulos madximos (ver figura 5.22). Por
ejemplo, la esfera es la luna de dngulo 27, una media-esfera
es una luna de dngulo 7.

Llamamos A(a) al drea de una luna de dngulo a € [0, 27].
Una luna de angulo A y vértjce A

Figura 5.22
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Dividimos la esfera en lunas de igual 4ngulo y con
los mismos vértices, por ejemplo, los polos norte y
sur. Miramos la esfera desde uno de estos vértices.

Figura 5.23

Mostrar la formula del area de una luna usando (4.12).
Sugerencia: Describir la luna en coordenadas esféricas:
luna ={(6, ¢), 6y < 0 <07, v < @ < g}

con 6y, 64, ©g. 1 a determinar.

Podemos probar ahora la férmula de Girard sobre el drea de un tridngulo esférico:

Ejercicio 10

El tridngulo ABC y las tres lunas Ly, Lg, L

Figura 5.24
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Si reescribimos la férmula de Girard como

At Bl — areag;BC’) e

y observamos que el drea del tridngulo pequefio ABC, que puede ser incluido en una

hemisferio por ser pequeno, es por un lado, un nimero positivo y por otro lado, infe-
rior al drea de una semiesfera que es 27R2, obtenemos

Corolario 42.5 | Lasuma de los dangulos de un triangulo esférico pequerio es un niimero entre 1y 3.

5.4.3. Aplicacién de la férmula de Euler para los poligonos

Vamos a usar el teorema de Girard para probar la conocida férmula de L.Euler, que
veremos en mds detalle en el capitulo 7 sobre los poligonos (ver el capitulo 7 para otra
demostracién). Consideremos un poligono cualquiera, y llamemos F, E, V a la canti-
dad de caras, aristas y vértices, respectivamente. La férmula es la siguiente:

(4.14) V-E+F=2.

 Por ejemplo, un cubo tiene F = 6 caras, £ = 12 aristas y
V= 8 vértices. Luego V-E+F =6-12+8
= 2.

Para probar esta férmula, consideremos un punto O adentro
del poligono P, y una esfera centrada en O de radio R bas-
tante grande para que contenga P. Ahora, proyectamos P
sobre la esfera de la siguiente manera: a cada punto P de P
le asociamos el punto de interseccién de la esfera con la

Proyeccion (en rojo) de un poligono (en azul) & semirecta [OP] (ver ﬁgura 5.25).
sobre una esfera.

Figura 5.25

Ejercicio 11 Probar que una arista de P se transforma en una porcion de circulo maximo, y

también que cada cara se transforma en un poligono esférico.

Las caras de P se transforman en F poligonos esféricos P, . . . Py . Aplicamos la férmu-
la de Girard en cada uno (recuerde el ejercicio 4.2.2):

area de P;

suma de los angulos de P; = 72

+ 7(cantidad de lados de P; — 2)

Ahora sumamos sobre los £ poligonos P;:
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suma de las areas de los P;
R2

F
suma de los angulos de los P; = +7 Y _(cantidad de lados de los P; — 2F).
=1

Examinemos cada término:
e si sumamos los dngulos de los 7;, no segtin los poligonos sino segin los vérti-
ces, vemos que en cada vértice sumamos todos los dngulos que salen de este

vértice. Como esta suma vale 27, el miembro de izquierda vale 27V;

e los P, cubren totalmente la esfera. Luego, la suma de sus dreas es igual al drea de
la esfera que vale 47R2. El primer término del miembro de la derecha vale 47;

e cada lado de cualquiera de los poligonos P, que corresponde a una de las £
aristas de P, pertenece a dos poligonos esféricos, entonces estd contado dos
veces en la suma: > ;_; (cantidad de lados de los P; = 2E).

Obtenemos entonces

27V = 4r + n(2E - 2F)

que es exactamente la férmula (4.14).

5.5. Paralelismo sobre la esfera
El famoso quinto postulado de Euclides afirma que:

Si dos lineas cruzan una tercera de tal manera que la suma de los dngulos interio-
res en un lado es menor de dos angulos rectos, entonces las dos lineas deben
cruzarse una a la otra de ese lado, prolongadas lo suficiente.

Sean las rectas D y D’y la transversal las corta formando los
dngulos Ay B con A + B < r (ver figura 5.26), entonces Dy
D’se cortan.

Un enunciado equivalente, hallado por el matemdtico J.
Playfair en el siglo XIX, es el siguiente:

E1

El 5to postulado de Euclides.

Por un punto pasa una tdnica recta paralela a una recta dada, que no contiene
a este punto.

E2
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Muchos intentaron, sin éxito, deducir este postulado de los demds axiomas de Euclides.
Hasta que en el siglo XIX, algunos matemdticos como Gauss, Lobatchevski, Bolyai se
preguntaron qué pasaria si este postulado fuese falso sin tocar los demds axiomas de
Euclides. Lejos de encontrar una contradiccién, que hubiera surgido si este quinto pos-
tulado fuese consecuencia de los demds axiomas como se suponia hasta entonces,
desarrollaron otras geometrias, las llamadas geometrias no-euclidianas, entre ellas la
geometria esférica, la hiperbdlica y, mds generalmente, las geometrias riemanianas (que
se usan, por ejemplo, en la famosa teoria de la relatividad general de Einstein).

Vamos a estudiar los dos enunciados E1 y E2 en el marco de la geometria esférica. Una
primera observacién es que E1 vale siempre sobre una esfera, porque dos rectas de la
esfera se cortan siempre (en exactamente dos puntos antipodales). Ahora, para estudiar
E2 debemos aclarar primero la nocién de paralelismo sobre la esfera, esto es, definir
cudndo dos rectas (o sea, dos circulos mdximos) son paralelas. De la misma manera que
al principio de este capitulo, primero vamos a examinar con cuidado esta nocién en el
plano, para después intentar definirla sobre la esfera.

5.5.1. Transporte paralelo en el plano

Generalmente, se dice que dos rectas en el plano son paralelas si nunca se cortan o, de
manera equivalente, si la distancia entre ambas se mantiene constante. El problema es
que no podemos usar ninguna de estas dos propiedades para definir el paralelismo sobre
una esfera, porque alli dos rectas cualesquiera se cortan siempre y la distancia entre ellas
no es constante.

Una tercera definicién que va a resultar mds conveniente es
la siguiente: dos rectas Dy D’en el plano son paralelas si for-

man el mismo dngulo con respecto a una tercera recta D”
que corta ambas (ver la figura 5.27). Luego, para dibujar

una paralela a D debemos mover, deslizar D a lo largo de D”
o de manera que el dngulo entre D y D”, o mejor dicho entre

El transporte paralelo de D a lo largo de D' dos vectores @ y v dirigiendo D y D” respectivamente, se

Ejercicio 12

mantenga constante a lo largo del desplazamiento. Deslizar

4 alo largo de D” de esta manera, se llama hacer el transpor-
te paralelo de @ a lo largo de D”. También decimos que D’ es el transporte paralelo de
D alo largo de D” y viceversa.

Una propiedad importante del transporte paralelo en el plano es que no depende de la
recta D” que usamos para desplazar D:

En la figura 5.28 probar que el angulo x es igual a
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Si en la situacion de la figura 5.28, el angulo Ejercicio 13
xesiguala ,entonces la suma de los angu-

los de cualquier triangulo plano vale m.

Finalmente, podemos decir que dos rectas en el
plano son paralelas, si una es el transporte para-
lelo de la otra a lo largo de una (y entonces

cualquiera) tercera recta que las corta. El transporte paralelo no depende de la recta

que usamos para desplazar.

Figura 5.28

5.5.2. Transporte paralelo sobre la esfera

La idea del transporte paralelo de un vector a lo largo de una [~
recta en el plano puede usarse para definir el transporte para-
lelo de un vector tangente a la esfera a lo largo de una recta de
la esfera: deslizamos un vector tangente @ a lo largo de una
recta de la esfera de manera que el angulo entre @ y el vector
tangente ¥ a la recta (su vector velocidad) se mantenga cons-
tante. Si utilizamos conocimientos de derivadas, otra forma
de decirlo, es que lo desplazamos de manera que la derivada
de @ en la direccion de ¢ sea nula a lo largo del desplazamien-
to (ver figura 5.29)."

El transporte paralelo de alo largo de 7.

Entonces, podemos hacer el transporte paralelo de una recta de la esfera a lo largo de
otra aplicando esta idea. Vimos recién que la nocién de transporte paralelo en el plano
llevaba a la nocién de paralelismo, porque el resultado del transpor-

te paralelo no dependia de la recta que usibamos para deslizar y que
eso se debia a que la suma de los dngulos de un tridngulo cualquiera
del plano vale 7. Ahora sabemos, por el teorema de Girard, que la
suma de los dngulos de un tridngulo esférico no es constante. Luego,
podemos sospechar que el transporte paralelo sobre la esfera va
depender de la recta usada para deslizar, lo que podemos comprobar
en la figura 5.30 donde D’ (resp. D) es el transporte paralelo de D
alo largo de D” (resp. D). Més precisamente se puede mostrar que
dos rectas Dy D’ son paralelas a lo largo de D” si y solamente si D”
es la Gnica recta que corta ortogonalmente Dy IV’ (es decir D” es el
eje de simetria de la luna definida por Dy D).

El resultado del transporte paralelo
depende de la recta usada.

Figura 5.30

En conclusién, no podemos decir que dos rectas de la esfera son paralelas, sino tnica-
mente que una es el transporte paralelo de la otra a lo largo de tal recta.

Ahora, podemos discutir la validez del enunciado E2. Por lo que vimos, no podemos
definir la nocién de paralelismo sobre la esfera, sino Gnicamente la de transporte para-
lelo. Por lo tanto, E2 stricto sensu es falso. Pero si reescribimos E2 como
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E2

Ejercicio 14

98

(5.15)

Por un punto pasa una recta que es el transporte paralelo de una recta dada que
no contiene al punto.

Obtenemos, en vista del dltimo ejercicio, que existe un nimero infinito de rectas que pasan por
el punto y que son el transporte paralelo de la recta dada, pues por el punto pasa un nimero
infinito de rectas y cada una es el transporte paralelo de la recta dada segtin una cierta otra recta.

En conclusidn, el quinto postulado de Euclides, E1 o E2, puede ser verdadero o falso
segun si consideramos la version E1 o E2, que son equivalentes en el plano pero no sobre
la esfera, y lo que entendemos por “paralelismo”.

En la siguiente seccion introducimos la nocién de holonomia, que muestra que la
imposibilidad de definir el paralelismo se debe a la “curvatura” de la esfera.

5.5.3. Holonomia

Consideremos un tridngulo ABC en el plano y un vector con base en A. Si hacemos el
transporte paralelo de este vector sucesivamente a lo largo de [AB], [BC] y [BA] (ver
figura 5.31), observamos que el vector obtenido después de estos tres transportes para-

lelos sucesivos coincide con el vector original. Luego el dngulo entre ambos vectores,
que se llama holonomia H(ABC) de ABC, es nulo.

Ahora, hacemos lo mismo con un tridngulo esférico ABC (ver figura 5.32). Esta vez el
vector obtenido después de los tres transportes paralelos hace un dngulo non nulo
H(ABC) con el vector original. Pero ocurre que H(ABC) no depende del vector que
desplazamos, sino tnicamente de los dngulos del tridngulo:

Escribiendo que H=m - u” + A - u, y encontrando una relacion entre uy u’ por
un lado y u’y u” por otro lado, probar que

Decimos que H(ABC) es la holonomia del tridngulo ABC.

Usando la férmula de Girard podemos expresar la holonomia de ABC en funcién de
su drea y del radio R de la esfera:

area(ABC)

H(ABC) = =5

Por otro lado, vimos que la holonomia de un tridngulo en el plano es nula. Como el
miembro derecho de (5.15) se achica mds y mds a medida que R crece, es decir, como
la holonomia de un tridngulo esférico se acerca mds y mds a la holonomia de un tridn-

Las Geometrias



gulo plano cuando
R crece, obtenemos
de nuevo el plano
como caso limite
de una esfera de
radio “infinito”.
Entonces 1/R2 mide

cuan ]ejos estd un Transporte paralelo de un vector a lo largo de
los lados de un tridngulo plano.

B

esfera del plano.
Decimos que 1/R?
es la curvatura de
Gauss de una esfera de radio R, y “0” la curvatura del plano.

Una consecuencia del “teorema egregium” de Gauss dice que: si existiera una funcién entre
la esfera y el plano que guardara las distancias (es decir la distancia entre dos puntos de la
esfera es igual a la distancia, en el plano, de los puntos del plano que les corresponden por
esta funcidén), entonces la esfera y el plano deberian tener la misma curvatura de Gauss, lo
que es falso. Luego, no existe tal aplicacién. En particular, no existen mapas de la Tierra,
una esfera, sin distorsién.

5.6. Mapas de la Tierra o cémo volver llana una esfera

El problema que queremos abordar en esta Gltima parte es representar la Tierra con
mapas. El problema que surge es que, como vimos recién, un mapa perfecto sin distor-
sién no existe. Un mapa que preserve las distancias no existe porque la Tierra es curva
y el mapa es llano. Luego, lo mejor que se puede hacer es disefiar mapas preservando
algunas propiedades con la medida de los dngulos, un tal mapa se califica de conforme,
o que preserve las dreas, o que no deforme demasiado algunas zonas.

Matemdticamente, un mapa o proyeccién es una aplicacién P de la esfera de radio R en el
plano R? , que a un punto de coordenadas esféricas (6, ¢) le asocia un punto (x, y) de R?
donde x, y son funciones de Oy ¢: x = x(0, ), y = y(0, ¢). El siguiente teorema, que no
vamos a probar, da una condicién necesaria y suficiente para que P conserve el drea por un
lado y los dngulos por otro lado, e involucra las derivadas de la transformacion:

Consideremos

Transporte paralelo de un vector a lo largo de
los lados de un tridngulo esférico.

Teorema 2
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Teorema 2 1. La proyeccion P conserva las areas, si y solamente si
(6.16)
para todo (0,p) € (-11/2, 1/2) x (-m, m).

2. La proyeccién P conserva los dngulos, si y solamente si C = 0, y existe una fun-
cion D(6,p) > 0 continua tal que

(6.17) A =R2D, B = R? cos?(0)D
para todo (0,p) € (-11/2, 1/2) x (-m, m).

El criterio (6.16) es una simple consecuencia del teorema de cambio de variable por
funciones de varias variables.

Vamos a examinar ahora tres proyecciones distintas: la proyeccién estereografica, la
cilindrica y la de Mercator.

5.6.1. Proyeccién estereogréfica

Dado un punto M de la esfera distinto del Polo Norte /V, consideramos la recta que
pasa por N'y M. Esta recta corta el plano ecuatorial xy en un punto M’ (ver figura 5.33).
La aplicacién M € § — M € R? se llama proyeccién estereografica.

Ejercicio 15 Si M tiene Eor coordenadas esféricas (0, @), mostrar que las coordenadas
de M’ en R son

(;Por qué 1 - sen(0) = 07?)

Ejercicio 16 | ;Cual es la imagen de un meridiano? ;Y de un paralelo? (ver figura 5.34)

Proyeccion estereografica del punto M. Proyeccion estereografica de un meridiano y un paralelo.
Figura 5.33 v Figura 5.34
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Vamos a ver que la proyeccidn estereografica conserva los dngulos. Ya lo podemos com-
probar con los meridianos y paralelos, pues un paralelo cualquiera y un meridiano
cualquiera son ortogonales y sus imdgenes respectivas son un circulo y una recta que es
su didmetro, y por lo tanto, se cortan también ortogonalmente. Para probar que esta
proyeccién conserva los dngulos en general, basta verificar que (6.17) se cumple.
Tenemos

oz _ R () Oz Recos(f) @)
00 1 —sen() O B T 1 sen(6) el
oy 0y  Recos(9)

90~ 1—sen(d) sen(p), dp  1—sen(h) cos()

Luego, usando cos*(0) + sen?(0) = 1 por todo 6, obtenemos
B R ? _( Rcos() ’ B
A_<1—sen(0)) ’ B_<1—sen(0)) , €=0.

2
Entonces, obtenemos (6.17) con D = (T%) .

En cambio, la proyeccidn estereogréfica no conserva el drea, pues (6.16) no se cumple
para todo 6, ¢:

R

1 —sen

4
AB-C? = ( (9)) cos () #R4cosz(0) si 0 #0.

Pero si 6 = 0, es decir cerca del Ecuador, entonces sen(f) = 0, luego AB - C* es casi cos?(6).
Por lo tanto, esta proyeccidn es bastante fiel a la realidad cerca del Ecuador.

Si en lugar de proyectar sobre el plano ecuatorial, proyectamos sobre el plano paralelo
al plano ecuatorial que pasa por el polo sur obtenemos una buena carta de la Antdrtida.
Si nos interesa otra regién de la Tierra, giramos la esfera hasta que coincidan esta regién
con el polo sur (0, 0,-1) y luego proyectamos.

/‘d\ cortamos el cilindro

5.6.2. Proyeccién cilindrica S snesiine

La proyeccién cilindrica consiste en llevar de YTORK I
alguna manera una esfera sobre un cilindro. || /-4

Consideremos un cilindro tangente a la esfera | === i X
(ver figura 5.35). Llamamos M” la proyeccién de Vi

M sobre el eje de simetria del cilindro, y luego S -
llamamos A7 el punto de interseccién de [M”, M) (p)

con el cilindro (ver figura 5.35). Asi, obtenemos
asi una aplicacion M — M de la esfera en el
cilindro. Finalmente, cortamos el cilindro segin

Proyeccion cilindrica.
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Ejercicio 17

la recta ¢ = 7 y lo aplanamos. La proyeccién cilindrica es la aplicacién Pe: M — M,
con el punto M en el plano. Si tomamos coordenadas x, y en el plano cuyo centro
corresponde al punto (0 = 7/2, ¢ = 0) de la esfera,

Probar que la aplicacion P;: M= (6, ¢) — M’=(x, y) viene dada por

102

Esta proyeccién tiene la ventaja de conservar las dreas. Para probarlo, basta verificar que
(6.16) se cumple. Se tiene que

ox ox

% = 0, % = R’
9y _ 9y _
20 — Rcos(), 9o 0.

Luego,
A= R%cos?(), B=R? C=0.

y (6.16) sigue.

5.6.3. Proyeccién de Mercator

Ahora, queremos modificar la proyeccion cilindrica para obtener una proyeccién que
conserve los dngulos. Seguimos tomando x(6, ¢) = Ry y buscamos y tal que:

1. y sea una funcién de 0 ; es decir 2 = 0,
2. 9(0) >0si60>0y»0) =0,y
3. se cumpla (6.17).

Como

A=y(0)? B=R’ C=0,

obtenemos que (6.17) se cumple si y solamente si existe una funcién D(0, ¢) tal que:

A=y (0)
= R?D,
B = R?

= R%cos*(9) D.
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De la segunda ecuacién sacamos D(0, ¢) = 1/ cos(0)?. Obtenemos de la primera que

y'(0) = cof(ﬁ) con y(0) =0.

Se puede resolver esta ecuacién. Obtenemos

y(6) = Rln (tg (% + g)) :

Definimos entonces la proyeccién de Mercator (de Gerardus Mercator que la hall$

0, 9) — (Rgo,Rln (tg (% + g))) :

i Cual es la imagen de un meridiano {¢ = ¢,}? ;Y de un paralelo {0 = 6,}? | Ejercicio 18

en 1569) como

Se puede ver el grifico de y(6) y la funcién identidad en la figura 5.36. Observe como
9(0) se parece mds y mds a la identidad al acercarse de 6= 0 y como en cambio toma
valores mds y mds grandes al acercarse de £5 ~ £1,57: podemos pensar que la pro-
yecciéon de Mercates serd bastante fiel a la realidad cerca del Ecuador pero la
distorsionard mucho cerca de los polos. Vedmoslo tedricamente: la proyeccién de
Mercator conserva los dngulos por construccion pero no las 4reas pues

2

—_— R
ST cos(0)

# R?cos(f)

y luego la condicién (6.16) no se cumple. Pero cuando 8 = 0, es decir cerca del Ecuador,
(6.16) se cumple aproximadamente pues cos(f) = 1. Entonces cerca del Ecuador la pro-
yeccion de Mercator conserva los dngulos y también las dreas de manera aproximada:
es una mapa bastante buena cerca del Ecuador. El ejercicio siguiente da una propiedad
util para la navegacion de esta proyeccién:

Supongamos que estamos a bordo de un bote cuyo recorrido hace un angulo constan- Ejercicio 19
te con los meridianos. ;Cual es el recorrido sobre una mapa de la Tierra obtenido con

la proyeccion de Mercator? Sugerencia: esta proyeccion conserva los angulos.
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Capitulo 6
Geometria proyectiva

Inés Saltiva

6.1. Introduccién
Observemos las dos mesas de la Figura 6.1

Y veamos la figura 6.2 ;Qué ocurre si se la mira desde el borde derecho de la pagina?

Dentro de estos ejemplos hay mucha geometria escon-

dida y, para encontrarla, tenemos que remontarnos al
siglo XV, a la época del Renacimiento y, en lugar de
buscar entre los matemdticos de esa época, hacerlo
entre los pintores. Esto no suena tan raro, dado que los

ejemplos se tratan de dibujos y de su interpretacién.

Uno de los cambios que se produce en la pintura del

y

Figura 6.1

Renacimento es el estudio de la perspectiva, y uno de [~
sus precursores fue Giotto di Bondone. El marcé un
nuevo rumbo en la bisqueda de realismo y sensacién
de profundidad. Lo siguié Filippo Brunelleschi, que
logré encontrar leyes geométricas para la perspectiva.

-\

No escribié ningtn tratado sobre el tema, sino que :
mostrd su sistema en la prictica. Pinté dos paneles que Figura 6.2

representaban dos plazas de Florencia usando su técni-

ca. Para aumentar la sensacién de realismo, pinté el cielo de uno de sus paneles con
plata, de manera que el cielo real se reflejara, y entonces se podia ver cémo las nubes
corrfan empujadas por el viento sobre la perfecta composicién de edificios pintados.

Hubo varios artistas impresionados por las obras de Brunelleschi. Los primeros en tra-
bajar usando perspectivas geométricas fueron Masaccio, Fra Angélico y Paolo Ucello.
Sin embargo, serfa Ledn Battista Alberti quien por primera vez dejarfa por escrito esas
reglas. Nacido en 1404 en Roma, fue arquitecto, matemdtico, poeta, filésofo, musico y
arquedlogo. Entre otras obras, publicé “De Pictura” en 1436, donde escribié la prime-
ra definicién cientifica de perspectiva, que puede analizarse de la siguiente manera.

Supongamos que miramos una nube a través de una ventana. El ojo recibe los rayos lumino-

sos que salen de cada punto del objeto, y con estos rayos forma la imagen que recibe el
cerebro. Ahora, para cada uno de esos rayos marquemos el lugar donde cruza la ventana;

Geometria Proyectiva
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cuando la nube se haya ido, todavia podremos “verla” en la ventana (ver la figura
6.3) . Es muy importante no cambiar de posicién durante todo el proceso.

A los rayos que usamos para dibujar en el vidrio se los llama proyeccion, y al
conjunto de los puntos que quedaron marcados en la ventana, y que forman
el dibujo de la nube, se lo llama seccion.

El problema era, en ese entonces, cémo se debia pintar un objeto para que

pareciera estar “mds alli” de la tela. Piero della Francesca, Andrea Mantegna

y mis tarde Alberto Durero se suman a la bisqueda de esa técnica. Pero, para

esa época, el estudio de las proporciones ya no estaba restringido sélo a los
pintores y artistas. En 1509 Luca Pacioli publica “De Divina Proportione”, un libro
con ilustraciones de Leonardo da Vinci que trata sobre la proporcién durea y la pers-
pectiva, entre otros temas geométricos. Gracias a esta obra, Durero se interesa por la
matemdtica en relacién con el arte, con lo que empieza un estudio de la misma que no
abandoné en su vida y que marcé una profunda influencia en sus obras.

La evolucién de la perspectiva en la pintura se puede observar a partir de los cuadros
de distintos artistas renacentistas. Hemos elegido algunas que muestran esta evolucidn,
en los cuales se observa gradualmente cémo mejora la técnica para dotar de profundi-
dad a la pintura, y cémo varian las proporciones a la distancia. Primero, en La dltima
cena (1302/05) de Giotto di Bondone, se observa una nocién de perspectiva muy bisi-
ca, y alejada de la que asociamos al cuadro de igual nombre de Da Vinci, pintada casi
doscientos anos después. Por otra parte, en E/ Nacimiento de San Nicolds, su vocacion y
la distribucion de limosna a los pobres, de 1437, se observan ya nociones mds precisas, si
bien no siempre se mantienen paralelas lineas que deberfan serlo. En E/ Tributo de
Masaccio (iniciado por Massolino en 1424, terminado en 1480 por Lippi) se observa
claramente el uso de la perspectiva para resaltar la figura central de Cristo, quien estd
dibujado de la misma altura que los Apéstoles, y convergen a ¢l las lineas de los escalo-
nes, el dintel de la puerta, el frente del edificio (antes se acostumbra representarlo mds

alto, para indicar su importancia). Por tltimo, en
ver | El trdnsito de la Virgen (1462) de Andrea
g Mantegna se observan ya las reglas de la perpec-
tiva de Alberti excelentemente combinadas, por
ejemplo: la linea del horizonte bien definida, un

|-



punto de fuga que da una perspectiva central, un
segundo falso punto de fuga en la iglesia que se
ve en el horizonte, el embaldosado del piso inte-
grado a esta perspectiva.

6.1.1. ;Cémo hacer para pintar en
perspectiva’

En el caso mds sencillo, cuando se busca el efecto
de una vista de frente, los artistas utilizan lo que se
llama “punto de fuga’. Un ejemplo tipico, es el
dibujo de las vias del tren cuando el observador se

sitGia en ellas. Las vias parecen unirse a lo lejos aun- o

que en la realidad sean paralelas. Vamos a dibujar El transito de

la Virgen

una caja sobre el suelo para ver cémo se hace.

El primer paso (figura 6.4) es decidir /- N T
dénde estd el horizonte y cudl serd el

punto de fuga.

En el segundo paso, vamos a marcar
las esquinas del frente de la caja y

7/

°
marcar suavemente las rectas que W = c
B 1 r . | r .
unen cada una de estas esquinas con

el punto de fuga (figura 6.5) /- ~N /T

Ahora, sobre estas rectas tenemos que
marcar las esquinas visibles de la

=

o

parte trasera de la caja (figura 6.6) / /

Ahora, completamos las lineas hori- : _
zontales y verticales que podemos ver Figura 6.6 Figura 6.7

de la caja (figura 6.7)

.

Y, como twltimo paso, hacemos las lineas laterales
siguiendo las rectas del punto de fuga (figura 6.8).

Geometria Proyectiva
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Esta técnica permite conseguir cualquier tipo de vista: frontal, desde arriba o abajo, desde
la derecha o la izquierda. El efecto cambiard segtin como elijamos el punto de fuga.

Con este procedimiento se logra traer el infinito hacia un punto en la tela, con lo que,
por comparacidn, se puede dar una sensacién de distancia y profundidad.

Conviene hacer distintas vistas, cambiando el punto de vista, para entender cémo fun-
ciona el efecto.

6.1.2. Secciones conicas

Como vimos, es relativamente sencillo dibujar en perspectiva objetos con bordes
rectos, ya que basta con encontrar los vértices y completar con lineas rectas. El
caso de objetos con bordes curvos como, por ejemplo, una rueda es mas dificil.
Una figura tan sencilla como un circulo no se verd, dibujado en perspectiva, como
otro circulo.

Consideremos el siguiente ejemplo: iluminamos con una linterna una hoja de papel. Si
la linterna se encuentra perpendicular a la hoja, el cono de luz tiene forma circular; pero
si inclinamos la linterna, el circulo se empieza a deformar y toma varias formas distin-

tas (ver figura 6.9).

Se puede pensar estas figuras como la inter-

( seccién de un cono y un plano: el cono es

el haz de luz de la linterna y el plano es la

. hoja de papel. Estas intersecciones se lla-

man  secciones conicas: elipse (incluye a la
circunferencia), pardbola e hipérbola.

Las secciones cénicas, o mds brevemente
las conicas, pueden definirse de distintas
maneras. Analiticamente, son las curvas
definidas por una ecuacién del tipo:

ax? + 2hxy + by? + 2gx + 2fy + ¢ =0

donde a, b, ¢, f, g, y h son nimeros fijos.

Ejemplo: una circunferencia de radio R estd dada por la ecuacién
xz+y2- R?2= 0.

Las cénicas se pueden definir segtin ciertas propiedades de tipo métrico.



Podemos definir la circunferencia como el conjunto de puntos que equidistan de un
punto que llamamos su centro.

Para el caso de la elipse, existen dos puntos llamados focos con la
siguiente propiedad: desde cualquier punto de la elipse, si trazamos dos
segmentos conectindolos con los focos, como se muestra en la figura
6.10, la suma de las longitudes de estos segmentos no varia. En parti-
cular, en la circunferencia estos dos puntos se confunden en el centro
de la misma.

Observacion.

Definimos una elipse de dos formas diferentes (si cortamos el cono con un plano, o via
las distancias a los focos), veamos que efectivamente si cortamos un cono con un plano
inclinado adecuadamente obtenemos una elipse.

Esta demostracién fue dada por Germinal Dandelin, y utiliza las
llamadas esferas de Dandelin. Estas esferas son tangentes al
mismo tiempo al cono y al plano; una por arriba y otra por deba-
jo. Esto significa que cada esfera toca al cono en una
circunferencia, y al plano en un punto.

Llamemos S, a la esfera inferior, K, a la circunferencia que com-
parte con el cono y F; al punto donde toca al plano. Y de la
misma manera, sean S, la esfera superior, K, la respectiva circun-
ferencia de tangencia y F, la interseccién con el plano.

Probemos que F, y F, cumplen la propiedad que se pide a los
focos de una elipse. Para eso elijamos un punto P cualquiera que
pertenezca a la interseccién del plan con el cono. Tenemos que
mostrar que la distancia

D - F,P + PF,
no depende del punto P elegido, o sea que es constante.
Tracemos una recta que una a P con el vértice del cono O, y lla- o,

memos Q, al punto donde esta recta cruza a la circunferencia K,
y Q, al punto donde cruza a la circunferencia K,.
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Ejercicio 1

Consideremos los segmentos PF, y PQ);, que pertenecen a rectas tangentes a S; y que pasan ambas
por P, Por la simetria radial de la esfera, tenemos que ambos segmentos deben medir lo mismo.

Trabajando de la misma manera con la esfera superior, tenemos que las distancias PF,
y PQ, son iguales.

Entonces tenemos
PF, = PQ, PF,= PQ,
Si sumamos ambas ecuaciones nos queda
PF, + PE, = PQ, + PQ,
O sea

D - PQ, + PQ,
= QQ,

Como las circunferencias de tangencia son perpendiculares a la recta que une al vérti-

ce con P para cualquier punto B, tenemos que Q,Q), sélo depende de la inclinacién del
plano, como querfamos ver.

Analizar las propiedades geométricas que definen a la parabola y a la hipérbola.
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Hallar las ecuaciones de las conicas en coordenadas polares y cartesianas.

6.1.3. Anamorfosis

Hemos empezado a descubrir cudl es la geometria
oculta detrds de nuestro primer dibujo pero, ;qué
pasa con los rectdngulos de la figura 6.2? ;Cémo
se deforman?

Si miramos detenidamente el cuadro Los embaja-
dores de Hans Holbein (figura 6.13.), ;Qué es lo
que se ve a los pies de los embajadores? ;Y si se
mira desde la parte inferior derecha de la hoja? Se
ve la calavera de la figura 6.14

En este famoso cuadro Holbein usa la técnica de
la  anamorfosis. La anamorfosis es un tipo de
representacién de un objeto. En esta representa-
cién la perspectiva estd deformada de modo tal



que obliga al espectador a colocarse en un punto especial y tinico (que no
es el usual frente a la pintura) para verlo bien. El rectdngulo a la derecha
en la Figura 6.2 es una representacién anamérfica de un cuadrado.

De esta forma, la geometria puede ensefarnos cémo “deformar” los objetos,
o ayudarnos a saber si existe algtin punto desde el cual mirar una pintura para
encontrar figuras “ocultas”.

¢Cémo hacer un dibujo anamérfico? Se traza una cuadricula sobre
el dibujo que se quiere convertir en imagen anamorfica, numeran-

do cada uno de los cuadrados y senalando la diagonal del cuadrado
que conforma el contorno externo de la cuadricula (ver figura 6.15).

A continuacidn, se procede a distorsionar la red de la forma siguiente: se |
traza un lado del mismo tamano y nimero de divisiones que el de la ima-
gen original. Se elige un punto X a considerable distancia de dicho lado | =

y se unen las divisiones con el punto X, como en la figura 6.16.

Desde el punto X se traza una recta vertical ligeramente menor
a la altura de la cuadricula original y se une su punto extremo,
que denominaremos como Y, con el punto inferior izquierdo
de la nueva cuadricula, ver figura 6.17.

Esta ultima linea cortard las lineas que concurren en X en 2

varios puntos. A partir de los puntos asi obtenidos, se trazardn
unas rectas verticales, paralelas entre si, que formardn la cua-
dricula distorsionada, como en la figura 6.18.

A continuacion, se ird dibujando la imagen, trasladando
todos los puntos bésicos a sus lugares correspondientes en
la nueva red distorsionada (figura 6.19). Para poder ver el

dibujo sin distorsiones, tal y como es en la realidad, se debe o

colocar el papel en forma casi perpendicular a la cara y

mirar la imagen desde la derecha.

Cuanto mds lejos se halle del punto X, mayor serd la distorsién
de la imagen, que aparecerd estrecha y aplastada.

Esta es una forma muy Y
elemental de generar
una imagen anamorfi- —
ca, en la actualidad 2

cualquier reproductor
digital de peliculas, o
programas de procesa-
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miento de imdgenes, pueden cambiar las proporciones de la imagen segtin los formatos

habituales. También se puede lograr esta clase de efectos mediante lentes especiales,
« 3 g

como en el viejo “Cinemascope”.

En la actualidad, existen diversos usos de los dibujos anamérficos. En algunas canchas
de futbol o rugby se pueden ver imdgenes publicitarias pintadas sobre el césped con la
particularidad de que si son tomadas por determinadas cdmaras parecen realmente car-
teles verticales; y pueden provocar alguna sorpresa cuando un jugador les camina por
encima y parece flotar sobre un cartel.

También es muy util la deformacién anamérfica en la senalizacién vial. Si nos detene-
mos a mirar las sefiales que se encuentran pintadas en el pavimento vemos que se
encuentran muy alargadas, y son incémodas para que un peatén las interprete. Esto se
debe a que no estdn hechas para los peatones sino para los automovilistas, que tienen
un punto de observacién mds bajo (figura 6.20).

6.2. Teorema de Desargues

Una vez que se desarrollaron las técnicas de perspectiva, su estudio quedé completo
para los pintores del Renacimiento y por mucho tiempo también para los gedmetras,
hasta la llegada de Gérard Desargues (1591-1661) un arquitecto e ingeniero militar
francés que encontré un nuevo camino a seguir.

Esto no quiere decir que la geometria no hubiera avanzado, sino que no habia avanza-
do respecto del estudio de la perspectiva. En paralelo, con Descartes (1596-1650) y
Fermat (1601-1665) se desarroll6 la geometria analitica; lamentablemente no tenemos
posibilidad de profundizar en ella en este trabajo.

En general, la geometria analiza las propiedades de las figuras en el plano o en el espa-
cio, pero no todas las propiedades de una figura tienen que referirse a las mismas
“caracteristicas” de la figura; podemos querer saber propiedades cuantitativas (por ejem-
plo, el tamano de un tridngulo, su drea, la longitud de los lados, la medida de sus
dngulos) o propiedades cualitativas (la forma que tiene: si es rectdngulo, por ejemplo, o
si todos sus dngulos son menores a un recto).



La pregunta natural es entonces: ;cudles son las propiedades que estdn relacionadas con la
perspectiva, es decir, con la proyeccién? La Geometria Proyectiva se encarga de estudiar estas
propiedades, y Desargues se considera su fundador dado que escribié el primer tratado sobre
el tema, en 1639, en el cual se encuentra uno de los primeros teoremas proyectivos:

Si dos triangulos ABC y A'B’C’ en un plano estan situados de tal manera que las

rectas que unen los vértices correspondientes (Ay A’, By B’, C yC’) se cruzan en Desargues
un punto 0, entonces los pares de lados correspondientes se intersecan en tres

puntos que estan situados sobre una misma recta.

La figura 6.21 nos puede ayudar a comprender el enunciado del teorema.

sQué es lo que hace a este teorema diferente a los que se prueban en
la geometria euclidiana clésica? Lo principal es que su enunciado se
puede considerar como una descripcién de una situacién tridimen-
sional: los tridngulos pueden estar en dos planos diferentes, y la
figura 6.21 es una representacién de cémo los ve un observador
desde el punto O (en lugar de un cono, podemos pensar en una
pirdmide). Gracias a esto resulta un caso ficil de demostrar.

Cambiemos la perspectiva desde la que vemos la figura 6.21. En la
figura 6.22 tenemos dos planos, el tridngulo ABC en uno de ellos,
n;, y AB’C’ en el otro, 7,. Los dos planos se cortan en una recta (si
fuesen paralelos, los pares de lados no se intersecarian). Veamos
ahora la demostracién.

Figura 6.22

En definitiva, para demostrar el teorema en el plano hay que “salir” a tres dimen-
siones y mirar el dibujo original en el plano como una proyeccién. Pero para esto

Geometria Proyectiva
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es necesario definir qué significaba una proyec-
cién en términos un poco mds formales, y es lo
que haremos en la préxima seccién.

Antes de hacerlo, démosle una tltima mirada a nuestro
teorema, desde otro punto de vista. Supongamos que los
tridngulos estuvieran pintados sobre papeles lo suficien-
temente grandes para que no viéramos los bordes y los
fuéramos viendo uno por uno desde el punto O.

sPodriamos distinguir cudl de los tridngulos estamos viendo? No, para nuestros ojos son todos

iguales ya que lo que el ojo mide es el dngulo entre los vértices y no el tamano lineal (ver la

figura 6.23).

y = DPara convencernos, hagamos el siguiente test: en la figura 6.24,
sobserva un hexdgono o un cubo?

Lo que ocurre en este caso es que nuestro cerebro tiende a con-
siderar a las figuras simétricas como bidimensionales, por lo que
pierden su sentido de perspectiva. Asi es como se logra el efecto
de profundidad, los objetos no salen del plano pero nuestro
cerebro lo interpreta de esta manera gracias a experiencias pre-

Figura 6.24 vias, a tonos de luz, comparaciones, agrupaciones y otras

« a » o p
herramientas” de la percepcion.

Por ejemplo, cuando la Luna recién aparece sobre el horizonte nos parece que es
mds grande que cuando se encuentra en lo alto del cielo, pero en realidad el
dngulo visual no varfa. Ante un mismo estimulo el cerebro responde de dos
maneras diferentes.

0.3. La geometria proyectiva

6.3.1. Proyecciones

Supongamos que tenemos dos planos © y 7’ en el espacio. Entonces podemos hacer una
proyeccién central de 7 en 7" desde un centro O dado.

Es decir, conectamos los puntos P y O con un segmento, y buscamos su intersecciéon
con el plano 7. También se puede hacer una proyeccion paralela, donde las rectas de
proyeccién son todas paralelas.

114 Las Geometrias



Ambas proyecciones se muestran en la figura 6.25.

Algunas propiedades bésicas que surgen de estas definiciones son las siguientes:

e Un punto se proyecta en un punto.

e Una recta se proyecta en una recta.

e Si un punto esta en una recta, la proyeccion del punto estara en la proyec-
cion de la recta y si una recta pasa por un punto la proyeccion de la recta

pasara por la proyeccion del punto.

e Si tres puntos estan en una misma recta, sus proyecciones estaran en una
misma recta.

e Si tres rectas pasan por un mismo punto, sus proyecciones pasaran por un

4 Y

mismo punto.

\ .

Es importante notar que en la demostracién del teorema de Desargues en el espacio se
utiliz6 que la proyeccién era central, y que los pares de lados correspondientes no eran
paralelos (asi las prolongaciones se intersecaban). Para eliminar estas hipStesis deberfa-
mos hacer una demostracién nueva.

Este tipo de situaciones se repiten constantemente cuando se trata de teoremas de la
Geometria Proyectiva, que suelen no involucrar longitudes pero si intersecciones. El
gran aporte de Desargues fue encontrar la manera de que todos esos casos especiales
cayeran dentro de un tnico caso general. ;Cémo lo hizo? Amplié el sentido de “punto”
y de “recta’ de manera que cumplieran dos objetivos esenciales:

é Y

g g 1 7 pr
Proyeccién central Proyeccién paralela
\ Figura 6.25 y
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e Que siguieran valiendo los primeros 4 postulados de Euclides, con lo cual
valdrian todos los teoremas demostrados usando esos postulados.

e Que dos rectas paralelas se intersecaran en un Gnico punto.

6.3.2. Las geometrias no-euclidianas.

Ya vimos los primeros cinco postulados de Euclides en el capitulo 2:

1. Desde cualquier punto a cualquier otro se puede trazar una recta..

2. Toda recta limitada puede prolongarse indefinidamente en la misma
direccion.

3. Con cualquier centro y cualquier radio se puede trazar una circunferencia.
4, Todos los angulos rectos son iguales entre si.

5. Siunarecta, al cortar a otras dos, forma de un mismo lado angulos internos
menores que dos rectos, esas dos rectas prolongadas indefinidamente se
cortan del lado en que estan los angulos menores que dos rectos.

Durante siglos los matematicos creyeron que, en realidad, el quinto postulado podia
ser demostrado en base a los demaés. Gracias a estos esfuerzos lo que se consiguid
fueron diferentes enunciados que eran equivalentes al original; o sea, eran verdade-
ros si éste lo era pero no eran demostrables en si mismos. Ya vimos uno en el
capitulo anterior, cuando analizamos la geometria esférica. Listemos aqui distintos
enunciados equivalentes:

e Dos rectas paralelas son equidistantes.

e Si tres puntos estan de un mismo lado de una recta y equidistan de ella, los
tres puntos pertenecen a una misma recta.

e Si una recta encuentra a una de dos paralelas, encuentra necesariamente a
la otra. Esto también puede enunciarse diciendo que dos rectas paralelas a
una tercera son siempre paralelas entre si.

e Por un punto exterior a una recta se puede trazar una y so6lo una paralela
a dicha recta.



e Por un punto cualquiera, tomado en el interior de un angulo, se puede siem-
pre trazar una recta que encuentre a los dos lados del angulo.

e Dado un tridngulo cualquiera existe siempre uno semejante de magni-
tud arbitraria.

e [a suma de los angulos interiores de un triangulo es igual a dos rectos.
e Existen triangulos de area tan grande como se quiera.

e Por tres puntos no alineados pasa siempre una circunferencia.

El problema era que algunos de estos enunciados parecian demasiado evidentes para
nuestra percepcion del mundo, no podian “no ser ciertos”. La “realidad” los apoyaba.

Por ejemplo; segiin Euclides, dos rectas paralelas son aquellas que, estando en un
mismo plano, no se encuentran al prolongarlas indefinidamente en ambas direccio-
nes siendo una recta “aquella linea que yace igualmente respecto de todos sus
puntos”. Con esta imagen, practicamente estamos obligados a pensar en una recta
como en una linea “derecha”. Pero, ;qué pasa si deformamos el plano donde esta
contenida esa recta? Nuestra recta podria estar “curvada”, como lo vimos con los
circulos maximos en el capitulo anterior. En esta nueva situacion tiene mucho sen-
tido plantearse si dos rectas podrian acercarse indefinidamente sin tocarse.

Después de siglos de tratar de demostrar el quinto postulado se empez6 a pensar en
probar por otro camino... suponer que no se podia demostrar. La idea era directa-
mente negar el postulado y construir nuevamente la geometria sin ¢él, con la
esperanza de llegar a una contradiccion. Lo que se logro fue la construccion de geo-
metrias diferentes e igualmente validas a la geometria euclidiana; todas ellas
consistentes l6gicamente (o compatibles) solamente si las otras también lo eran.

Partiendo de la formulacién “por un punto exterior a una recta se puede trazar una
y solo una paralela a dicha recta” podemos elegir dos caminos para la negacion del
postulado. Una opcion es decir que no se puede trazar ninguna paralela, con lo que
llegamos a lo que se denomina geometria eliptica (la geometria esférica es un caso
particular, cuando la elipse es en realidad un circulo; podemos pensar en la geome-
tria sobre una pelota de rugby). Otra opcién es admitir la existencia de paralelas,
pero que no sean Unicas. Si se propone que por un punto externo a una recta pasan
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varias rectas paralelas se obtiene la geometria hiperbolica. Esta ulti-

N D ma es la que obtendriamos suponiendo que dos rectas paralelas se
p cruzan en un unico punto.

B Otra manera de llegar a las geometrias no euclidianas es usando el lla-
mado Cuadrildtero de Saccheri (figura 6.26). Por los extremos de un
segmento AB se trazan segmentos iguales AC y BD, ambos perpendi-
culares a AB y se unen los puntos C y D con una recta. Se demuestra

que los dngulos a y B son iguales, pero las posibilidades para o y B son:

1. ambos angulos son rectos.
2. ambos angulos son obtusos.

3. ambos angulos son agudos.

Estas son conocidas como las hipétesis del angulo recto, obtuso y agudo. Se puede
demostrar que equivalen, en la forma del postulado “la suma de los angulos interio-
res de un triangulo es igual a dos rectos” a suponer dicha suma igual, mayor o
menor que dos angulos rectos.

Siguiendo la primera hipdtesis se llega a la geometria euclidiana. Siguiendo la
segunda hipotesis se deduce que las rectas deben ser finitas, lo que fue tomado en
su momento como un absurdo; sin embargo, se trata de las rectas de la geometria
eliptica (y en el caso particular de la geometria esférica ya vimos que la suma de los
angulos interiores de un triangulo era mayor a dos rectos). Finalmente si se consi-
deran los angulos agudos se obtiene la geometria hiperbolica.

Observacion:

6.4. Los axiomas de la geometria proyectiva

Para seguir adelante en la construccién de nuestra geometria tenemos que decidir cudl
es el punto donde se cruzan dos rectas paralelas. Nuevamente, los ejemplos de la pers-



pectiva en el arte o el de las vias del tren nos sirven: muy lejos o en el “infinito”... y eso
funciona. Agregaremos el punto del infinito. Primero, agreguemos algunas definiciones
que simplifiquen el lenguaje.

Tendremos ahora otro lugar donde hacer geometria con los nuevos elementos que agre-
gamos: serd el plano proyectivo. Este plano estd formado por los puntos y rectas del
plano de la geometria usual (de Euclides) y los nuevos puntos del infinito.

Lo que queremos que se cumpla es lo siguiente:

e Que cada recta del plano usual tenga asociado un punto ideal (punto en el infinito).

o El punto ideal de una recta pertenecera a todas las rectas paralelas a la dada y a
ninguna otra (todas las rectas paralelas a una dada se encuentran en este punto).

Para lograrlo, basta con pedir que se cumplan los dos siguientes axiomas:

Dados dos puntos existe una Unica recta incidente a ambos. | Axioma1

Dadas dos rectas existe un unico punto incidente a ambas. | Axioma2

Hasta ahora nos preocupamos porque todas las rectas pudieran intersecarse, pero tam-
bién tiene que cumplirse el viejo axioma de que por dos puntos pase siempre una tinica
recta. Cuando estos puntos son dos puntos ideales, la recta no puede ser una recta usual
ya que ésta tiene un Unico punto ideal. Lo mds sencillo es introducir una recta ideal,
formada por todos los puntos ideales, la recta del infinito. Una manera muy grafica de
pensar en ella es asociarla a la recta del horizonte.

Faltaria ver si estos cambios afectan a las definiciones de proyeccién, pero en realidad
el nuevo plano nos ayuda, ya que lo que antes era una proyeccion paralela ahora es una
proyeccién central desde un punto ideal (como los rayos que proyectan son paralelos
entre si, se cruzan en el punto ideal).
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Por ejemplo, en los dibujos en perspectiva estdbamos proyectando
desde el punto de fuga y nuestro horizonte correspondia a la recta
del infinito. En la figura 6.1, el punto de fuga es un punto ideal.

Una vez definido el espacio donde la geometria proyectiva tiene
sus figuras, vamos a tratar de descubrir las propiedades que se
preservan si proyectamos esas figuras desde cualquier punto. Y
ya vimos que, por ¢jemplo, incidencia, concurrencia y colinea-
—_ lidad son propiedades proyectivas. O sea que el teorema de
Desargues en el espacio es un teorema de la geometria proyecti-

va: lo Ginico que usamos para demostrarlo fueron intersecciones (incidencias).

En el caso del teorema en el plano, proyectar puede ayudarnos mds todavia. Como las
propiedades se mantienen en cualquier figura a la que lleguemos usando proyecciones,
si encontramos alguna para la que quede demostrado, entonces vale para todas.

Con todas estas nuevas definiciones se puede probar Desargues en el plano con poco trabajo. Para
esto vamos a usar la siguiente version del Teorema de Thales, correspondiente a la figura 6.27.

Teorema Sean dos rectas que se cruzan en un punto 0, y que intersecan un par de rectas I,
y I, en los puntos A, B, C, D. Entonces, |, es paralela a ,si y sélo si

04 _0B
oc 0D

Ejercicio 2 | Demostrar este teorema.

Veamos ahora otra demostracién del Teorema de Desargues:

Teorema de Si dos triangulos ABC y A'B°C’ en un plano estan situados de tal manera que las
Desargues rectas que unen los vértices correspondientes (Ay A, By B’, C y C’) se cruzan en
un punto 0, entonces los pares de lados correspondientes se intersecan en tres
puntos que estan situados sobre una misma recta.

Demostracion Supongamos que podemos llegar a la situacion de la figura 6.28 (donde Q y R estan
en el infinito) por alguna proyeccion de la figura original. Si el teorema vale en esta
situacion, entonces vale en general.

Para ver que B, Q, y R son colineales, como Ry Q estdn en el infinito, bastaria con ver
que P estd en el infinito también (B’A’ paralela a BA). Lo que queremos ver es que los
tres puntos estdn en la recta ideal. Para eso, en la figura 6.29 introducimos las distan-

cias a los puntos A, B, C, A’, B’, C’ desde O.
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Por el Teorema anterior, si podemos probar que v/u=s/r
entonces B'A’ es paralela a BA.

Pero sabemos que A'C’ es paralela a AC y que C'B’ es para-
lela a CB entonces, utilizando nuevamente el Teorema,

y _ s

X ; r
y también

y _ Vv

X U

S
r

Por lo tanto, igualando % hemos obtenido que + =

Ahora veamos cémo llegar a esta figura utilizando proyecciones.

Para que una proyeccién mande Q y R al infinito tene-

mos que elegir el centro de proyeccién O’ de manera que esté en
un plano 7 que también contenga a Q y R (ver figura 6.30).
Entonces, si hacemos la proyeccién sobre un plano paralelo a ©
como 7, las rectas que unen O’ con Ry Q son paralelas al plano

7, y por lo tanto lo cortan en el infinito.

A pesar de lo novedoso de la idea de Desargues, s6lo interes6 a un
pequefio grupo de matemdticos ya que en ese momento la geome-
tria analitica estaba en pleno desarrollo. En ese grupo se encontraba
Blaise Pascal, quien con sélo 16 afos y siguiendo el trabajo de
Desargues escribié su primer tratado de matemdtica, y en él probd
un teorema que llamé mysterium hexagrammicum y que ahora lleva su nombre.

Si los vértices de un hexagono yacen alternativamente en un par de rectas que se
intersecan, entonces las tres intersecciones P. Q y R de los lados opuestos del

hexdgono son colineales.

Como se puede ver en la figura 6.31,
se trata de un hexdgono en el sentido
amplio, o sea que puede intersecarse a
si mismo.

Teorema de
Pascal
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Ejercicio 3 | Demostrar el teorema de Pascal.

Casi 160 anos después, con Gaspard Monge y su discipulo
Charles Julien Brianchon, logra renacer la geometria proyectiva.
En el caso de Monge, quien era oficial del ejército de Napoledn
y fisico ademds de matematico, su aporte principal fue a la geo-
metria descriptiva, aquélla que investiga sobre técnicas de tipo
geométrico que permiten representar objetos tridimensionales
sobre superficies planas y la forma de recuperar las caracteristi-
cas de estas figuras en dos dimensiones en su correspondiente
del espacio. Por su parte Brianchon logra demostrar el teorema
— dual del teorema de Pascal, que reproducimos en la figura 6.32:

Teorema de Si los lados de un hexdagono pasan alternativamente por dos puntos Py Q fijos,
Brianchon entonces las tres diagonales que unen pares de vértices opuestos del hexdgo-
no son concurrentes.

Ejercicio 4 | Demostrar el teorema de Brianchon

La relacién entre los teoremas de Pascal y de Brianchon, que hemos denominado dual, es
un concepto profundo que aparece con la geometria proyectiva. Los teoremas duales surgen
de reemplazar “vértices” por “lados”, “yacen alternativamente” por “pasan alternativamen-
te”, “puntos” por ‘rectas’ y “son colineales” por “son concurrentes’. Todo teorema que
involucra estos términos puede dualizarse, y obtenemos asi un nuevo teorema.

Por ejemplo, en la geometria euclidea sabemos que por dos puntos siempre pasa una
recta (dos puntos son colineales). Pero no siempre dos rectas se intersecan (no siempre
son concurrentes). En cambio, en el plano proyectivo son enunciados duales:

Dos puntos son colineales
Dos rectas son concurrentes.

Esto no es casualidad, ni ocurre para estos casos particulares, sino que ocurre para todos
los teoremas de la geometria proyectiva. Este hecho fue descubierto por Jean-Victor
Poncelet, otro militar francés, quien escribié un tratado de geometria proyectiva en la
prisién de Saratoff, durante la campana de Napoledn contra Rusia, entre 1813 y 1814.

Poncelet descubri6 esta relacion dual entre puntos y rectas, asi como algunas de sus operaciones.
Por ejemplo, trazar una recta por un punto es la operacion dual de marcar un punto en una recta.

Principio de dua- El dual de cualquier teorema de la geometria proyectiva, también es un teore-
lidad de Poncelet | mga de /a geometria proyectiva.
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Es decir, si un teorema es verdadero entonces su teorema dual también lo es. Esto sélo
puede valer donde todo elemento tiene su dual. En la geometria cldsica, por ejemplo, no
existe el dual de un dngulo. Esto proviene de una caracteristica particular de la construc-
ci6n del plano proyectivo, pero para verlo mas claramente era necesario salir de los métodos
axiomdticos y de alguna manera incluir los métodos algebraicos y numéricos que siempre
se habian rechazado en este tipo de geometrfa. Esto se logré gracias a Julius Pliicker,
Augustus Mébius y Etienne Bobillier, cuando alrededor de 1829 y en medio de una pelea
entre matemdticos “sintéticos” (aquellos que defendian una geometria conceptual, basada
en los axiomas) y “algebraicos” (quienes proponian introducir coordenadas) introdujeron
el uso de las coordenadas homogéneas en la geometria proyectiva.

6.5. Coordenadas homogéneas

Hemos visto brevemente el uso de coordenadas en la geometria euclidiana y en la geo-
metria esférica, como asi también recorrimos algunos de los principales sistemas de
coordenadas (cartesianas, polares). Las coordenadas homogéneas juegan el mismo papel
de las coordenadas cartesianas, pero parametrizan el plano proyectivo. Son ternas de
ndimeros que identifican sus puntos, por lo que pusieron al alcance de los geémetras
todas las herramientas algebraicas y analiticas que antes no tenian.

En general, las coordenadas de un objeto geométrico
son cualquier conjunto de ndmeros que caracterice ese
objeto de forma tnica. En el plano usual, con las coor-
denadas cartesianas se necesitan dos ndmeros para
identificar un punto; por ejemplo, podemos elegir el D e
primero para la posicién horizontal y el segundo para (:3:-3) o
la vertical (ver figura 6.33). e

En el caso de las coordenadas polares, ddbamos el dngulo con
el eje Xy la distancia al origen.

Pero para el plano proyectivo tendriamos problemas con
los puntos del infinito. Sin embargo, la solucién viene de
“salir” del plano para agregar una nueva coordenada que
nos diga si el punto es ideal o no.

Pensemos en el plano proyectivo 7 ubicado en el espacio
tridimensional como se muestra en la figura 6.34

O sea, si la tercera coordenada de un punto en el espa-
cio es la altura, los puntos del plano euclideo usual
serfan de la forma (x, y, 1), pero esto no alcanza para los puntos en el infinito: si
un punto del infinito estuviese indicado como (a, b, 1), coincidiria con el punto
del plano de coordenadas cartesianas (a, b).
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Volvamos entonces a la idea de proyeccién. Si nuestro centro es

n el origen de coordenadas O = (0,0,0), entonces para cualquier
punto de 7 tenemos una recta que pasa por O. Y para los pun-

tos en el infinito, tenemos rectas paralelas a = que pasan por el

@ origen (ver figura 6.35)

Las coordenadas homogéneas de cualquier punto P del plano pro-

yectivo van a ser las coordenadas en el espacio de cualquier punto

Q (distinto del origen) que esté en la recta que une a P con O. Si

el punto es ordinario podemos elegir, por ejemplo, (a,b,1); pero
en general sirve cualquier terna de la forma

(ta, th, t) con t=0.

(Estamos usando aqui la ecuacién paramétrica de una recta en el espacio.) En otras
palabras, a cada punto del plano le hemos asociado una recta. En el caso de un punto
en el infinito, lo representaremos como (x, y, 0). Podemos pensar que (x,y) nos da la
direccién de las rectas paralelas que se cruzarian en este punto ideal P.

Entonces, a cada punto del plano le hemos asigna-
do una recta del espacio tridimensional. ;Y qué les
toca a las rectas? Veamos la figura 6.36 n L

Hemos dicho que a cada punto de L le correspon-
dia una recta del espacio pasando por el origen.
Entonces, juntando todas estas rectas podemos
pensar que a L le corresponde, en el espacio, un
plano. Este plano pasa por el origen y contiene la
recta L.

Deberfamos darle a L las coordenadas de ese plano en el espacio. Esto se aclara cuando
miramos la ecuacién que satisface un plano: un punto (x, y, z) estd en un plano que
pasa por el origen cuando es solucién de una igualdad del tipo

ax + by +cz=0
donde a, b y ¢ son nimeros que nos dicen cémo es el plano (qué “inclinacién” tiene).
Asi que podemos definir las coordenadas de L como la terna de nimeros (a, b, ¢) que
corresponden a la ecuacién del plano que pasa por el origen y que tiene al vector (a, b, ¢)
como normal. Esto incluye la recta en el infinito, porque en este caso el plano que da

las coordenadas es el plano paralelo a © que pasa por el origen de ecuacién z=0.

Estas coordenadas nos muestran como rectas y puntos pueden intercambiar lugares en
la geometria proyectiva.



En primer lugar, puntos y rectas quedan definidos por ternas de ntimeros (distintos de
(0, 0, 0)), es decir que si nos dan una terna de coordenadas, no podemos distinguir si
son de una recta o de un punto.

En segundo lugar, si tenemos dos ternas de coordenadas (x, y, z) y (a, b, ¢) que cum-
plen que ax + by + cz = 0 (o, equivalentemente, xa + yb + zc = 0). ;Dirfamos que el
punto de coordenadas (x, y, z) pertenece a la recta de coordenadas (a, b, ¢) o que el
punto de coordenadas (a, b, ) pertenece a la recta de coordenadas (x, y, z)? Todo depen-
de de la interpretacién que queramos darle y no de una diferencia real.

Observemos también que las ternas que definen tanto a puntos como a rectas estdn aso-
ciadas con direcciones, la direccidn de la recta que pasa por el origen para los puntos,
y la normal al plano para las rectas.

Recordemos que una de las propiedades bésicas de las proyecciones era que una recta se
proyectaba en otra recta. Gracias al sistema de coordenadas que introducimos, ahora
podemos darle una forma matemdtica a la proyeccién. Una recta en el plano proyectivo
estd dada por las coordenadas (ta, tb, t) con t # 0, y queremos que su proyeccién sea otra
recta del plano proyectivo dada por (tc, td, t) con t # 0. Las Ginicas funciones que cum-
plen con esta propiedad, sin contar las translaciones, son las transformaciones lineales.

Las transformaciones lineales dilatan y contraen al espacio de una manera tal que las pro-
piedades proyectivas se conservan. ;Existird algin grupo de funciones que tampoco
cambien el tamano de los objetos? La respuesta es que si, y son los movimientos rigidos:
las rotaciones y reflexiones; que son un subconjunto de las transformaciones lineales.

En 1872, y alos 23 anos de edad, el matemdtico alemdn Félix Klein presentd el llama-
do Programa de Erlangen, donde mostraba que todas las geometrias podian definirse de
una manera distinta a la axiomdtica; cada geometria abarcaba el estudio de las propie-
dades del espacio que son invariantes bajo un grupo dado de transformaciones. En el
caso de la geometria euclidea, son los movimientos rigidos; en el caso de la geometria
proyectiva, son las transformaciones lineales.

6.6. Habitacién de Ames

Una habitacién de Ames es una ilusién éptica tridimensional,

donde una persona parece cambiar de tamano a medida que se Posicion actual
de la persona A

mueve lateralmente desde una pared a la otra. -

. o . Posicion aparente
La ilusién se vale del hecho que nuestro cerebro cree ver una habi- | delapersonaa

tacion cuadrada cuando en realidad el cuarto estd deformado de
manera que una esquina estd mds alejada. Esto sucede porque el
ojo no recibe informacién sobre el tamano de los objetos sino orma aparene”
sobre el dngulo que abarca su imagen en la retina. Ya menciona- | delahabiacion Mirilla

Posicién actual
y aparente de la
persona B
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Esquina vista

por un adulto mos que vemos la Luna mds grande en su proximidad con el hori-

zonte; como la comparamos con algo que se encuentra mds cerca

e automdticamente debe ser porque el tamafo es mayor. En este

trasera juego se basa la ilusién de la habitacién de Ames, no nos damos

‘ | cuenta que la persona se aleja, y por lo tanto la interpretacion es
/ | que se achica.

’I Esquina vista
‘E porunnine Para construir una habitacién de Ames pequefa se puede ampliar

Céamara

e imprimir la siguiente figura.

Q%

Una vez caladas las ventanas, el techo y el punto de observacién (marcados con x), se
arma y se pega. Se pueden pasar objetos no muy grandes por detrds de las ventanas para
ver cémo cambian de tamafio o colocar distintos objetos dentro para compararlos.

Ahora, si se quiere construir una habitacién dC Ames de mayor tamano es necesario un
poco mas dC trabajo.

Queremos lograr que el observador situado en A vea una habitacién normal.
Entonces las esquinas del lado izquierdo y de la parte de atrds deberfan ser E,,
y E,. Este es el lado que se construird mds atrés.
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Marcamos la linea de vision de la esquina, L y elegimos cudn lejos queremos
que se vea la esquina E,, en el punto .

Como queremos que la unién de las dos paredes sea
recta, nos queda determinada la posicién de la falsa
esquina E;, Q en la interseccién de la vertical que
baja de P al suelo. Observemos que quedan alinea-
dos el punto donde realmente estard la esquina de la
habitacién, el punto donde nosotros la veremos y
nuestros pies.

Para poder completar el disefio interior, necesitamos saber como se altera cada objeto
que nos encontremos: las baldosas del piso, alguna ventana, una puerta. En general se
utilizan objetos con bordes rectos para facilitar los clculos.

Para lograr esto lo mds conveniente es pensar que una transformacién lineal T deforma
el espacio de tal manera que manda las lineas rojas a las verdes. Para encontrarla usare-
mos que las transformaciones lineales quedan definidas dando su valor sobre una base.
Elijamos entonces un origen de coordenadas, por ejemplo nuestro origen se encontra-
rd en la esquina inferior derecha de la parte frontal de la habitacién. De esta manera es
facil interpretar la posicién de todas las esquinas, en particular de E; y E,.
E\=(x,5,0) E,=(x,5,2) E;=(x,0,0)

Si pensamos en estos puntos como vectores ya tenemos nuestra base
y la transformacién queda definida como la tnica transformacion
que cumple:

TE)=Q T(E,)=P T(E;)=E,

Veamos un ejemplo, si consideramos una habitacién original de 4 m
de frente, 4 m de profundidad y 2,5 m de altura tenemos

x=4 y=4 z=2,5
Entonces
E,=(4;4;0) E,=(4;4;2,5) E;=(4;0;0)
Y por lo tanto nuestra transformacién cumple que
T(4:4;0)=Q T(4;4;2,5)=P T(4;0;0)= (4;0;0)

Ahora tenemos que elegir P en la linea de visién que corresponde a E,, o sea P tiene
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que pertenecer a la recta que pasa por E, y A. Consideremos un punto de observacién
centrado y a 1,7m del piso, o sea

A=(0;2;1,7)
Los puntos (a,b,c) que pertenecen a la recta que pasa por E, y A son de la forma
(a,b,c) = t(4;2;0,8) + (4:4;2,5)
Para t>0, obtendremos puntos “detrds” de E,. Si elegimos t=0,5 obtendremos
P=(a,b,c)=(6;5;2,9) y como Q se encontraba bajando desde P en forma vertical nos

queda Q=(6;5;0).

De esta manera, cuando una persona camine por el fondo de la pieza, se estard alejan-
do 2m hacia atrds y 1m en sentido lateral.

Obtuvimos entonces los tltimos datos necesarios para encontrar T
T(4;4;0) = (6;5;0) T(4;4;2,5) = (6;5;2,9) T(4;0;0) = (4;0;0)

T estd dada por

T(x,x0%3) = (x,+0,5%,;1,25%,;1,16x%3)
Con esta funcién podemos terminar de determinar la posicidn correcta para cada obje-
to o figura que queramos agregar, como por ejemplo un cuadro en la pared posterior.
Basta con ubicar las coordenadas de los vértices en la habitacién original y ver dénde
los ubica nuestra transformacion.
Veamos c6mo obtener esta tltima expresién.
Por definicién una transformacion lineal cumple que:

T(u+v)=T(u)+T(v)
TAu)=A T(u)

donde u y v son vectores (ternas de niimeros en nuestro caso) y A es un nimero cualquiera.
Queremos encontrar una expresién para T(x,y,z) sabiendo que

T (4;4;0)=(6;5;0) T(4;4;2,5)=(6;5;2,9) T(4;0;0)= (4;0;0)

Y que los vectores (4;4;0), (4;4;2,5) y (4;0;0) forman una base, o sea que dado un vector
(x,y52,) cualquiera, podemos encontrarle una tnica terna de niimeros (o,B,y) que cumple



(%y,2) = a(4:4;0) + B(4;4;2,5) + y(4;0;0)
Para eso igualamos coordenada a coordenada, obteniendo un sistema de ecuaciones
(x,y52) = au(4;4;0)+P(4;4:2,5)+y(4;050)

= (4o+4B+4y;40 +40;2,5B)

x=4o+4p+4y (D)

y=4a +4p (IT)

2=2,5p (I11)
De III tenemos que B=0,4z
Reemplazando en II podemos despejar 4o=y-4B=y-1,62
Entonces 0=0,25y-0,4z
Reemplazando ahora en I obtenemos 4y=x-40-4P=x-(y-1,62)-1,6z=x-y
Entonces 1=0,25x-0,25y

Volvamos ahora a nuestra funcién T
T(x,y,2) = T(0u(4;4;0)+P(4;4;2,5)+y(4;050))
= aT(4;4;0)+BT(4:4:2,5)+yT((4;0;0)
Por ser una transformacién lineal.
Usando ahora los datos que tenemos queda
T(x,y2) = a(6;5;0)+B(6;5;2,9)+7(4;0;0)
- (0,25y-0,42) (6;5;0)+0,42(6;5;2,9)+(0,25x-0,25y) (4;0;0)
= (1,5y-2,42;1,25y-22:0)+(2,42;22;1,162) + (x-y;0;0)

= (x+0,5y;1,25y,1,16z)
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Capitulo 7

Que no entre quien no
sepa topologia
Pablo Amster

7.1. Revelacién de un amor

Corria el ano 1629 cuando el filésofo inglés Thomas Hobbes se encontraba de visita en
Paris. Entonces tuvo una sorprendente revelacién, que habrfa de cambiar el rumbo de
su pensamiento. Segin relata un amigo suyo, J. Autrey, en A Brief Life of Thomas
Hobbes, 1588-1679:

Tenia 40 arios cuando por primera vez se fijé en la geometria; y ello acontecid acci-
dentalmente. Encontrdbase en la biblioteca de un caballero; abiertos estaban los
Elementos de Euclides, y fue la Proposicion 47, El. libri 1. Leyd la Proposicion. Por
Dios (pues de cuando en cuando gustaba de proferir un exaltado Juramento, para
mayor énfasis) jesto es imposible! Leyé pues la Demostracion, en la que aludia a una
Proposicion previa; proposicion que también leyd. La cual mencionaba otra anterior,
que leyd también. et sic deinceps [y asi sucesivamente] hasta quedar al fin demostra-
tivamente convencido de aquella verdad. Ello le hizo enamorarse de la geometria.

A partir de ese dia, comenz6 a proclamar cosas tales como: “No entiende teologia quien
no entiende filosofia” y “no entiende filosofia quien no sabe matemdticas”, que deben
haber causado cierta inquietud entre los filésofos (y mds atn entre los te6logos).

y

Para el lector que no se conozca de memoria los cinco libros de Euclides, conviene acla-
rar que la tan misteriosa “Proposicién 47” no es otra que el mds célebre enunciado
geométrico de todos los tiempos, aquel que se conoce como Teorema de Pitdgoras. Y las
proclamas de Hobbes remiten sin duda a la inscripcién que se hallaba a la entrada de
la renombrada Academia de Platén: “Que no entre quien no sepa Geometria”.

Esta puede parecer una acogida un tanto extrafia para el visitante desprevenido, bastan-
te diferente de las frases de bienvenida que suelen leerse en los felpudos. Sin embargo,
refleja toda una doctrina. Para Platén, el mundo real es una copia de un mundo de
ideas, que se rige por la idea del Bien y fue construido por un Demiurgo o creador. Pero
la piedra fundamental de su creacién es matemdtica; mds concretamente, podemos
decir que no se trata de una sino de cinco piedras. En efecto, el principio fundamental
de la creacién lo constituyen aquellos cinco poliedros regulares que hoy se conocen
como cuerpos platdnicos: el tetraedro, el cubo, el octaedro, el icosaedro y el dodecaedro.
Los cuatro primeros corresponden a los cuatro elementos (fuego, tierra, aire y agua),
mientras que el Gltimo se reserva para dar al universo el toque final, su dltima pincela-
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da: como dice el Zimeo de Platén, “Dios se sirvié de él [el dodecaedro] para componer
el orden final del Todo”. La importancia que se concedié a estos cinco sélidos es tan
grande, que hay quienes sostienen que los Elementos de Euclides son apenas una narra-
cién detallada (y sin duda excelente) de la teoria de los cuerpos platénicos.

A pesar de su aparente ingenuidad, la influencia de las ideas platénicas persiste hasta
nuestros dias'; en cierto sentido, esa es la razén por la que la matematica tiene tanta pre-
sencia en los programas de estudio, desde el primer afio de la escuela hasta el dltimo.

Pero los tiempos han cambiado desde entonces. Para los griegos, la matemdtica se redu-
cia casi exclusivamente a la geometrfa: lo demds era apenas un apoyo, un pufiado de
instrumentos auxiliares para estudiar las verdades concernientes a ese mundo minucio-
samente descripto en los Elementos. Sin embargo, la matemadtica actual se compone de
muy diversas ramas de gran importancia: incluso la propia geometria, se ha extendido
y desarrollado a tal punto que la geometria “cldsica” o euclidiana es tan sélo una peque-
fia porcién. Y, de alguna forma, puede decirse que la auténtica base del pensamiento
geométrico se encuentra en una de estas nuevas ramas, que comenzarfa surgir unos
veinte siglos después de Euclides. En efecto, fue el gran matemdtico y filésofo G.
Leibniz quien esbozé sus primeros fundamentos en unas cartas que escribi6 alld por
1679 y le dio el nombre de Analysis Situs; luego Euler avanzé otro poco. Pero recién en
el siglo XIX esta nueva rama cobraria un rol preponderante, con los trabajos de Mébius
y en especial de Listing, quien le dio el nombre con el que hoy se la conoce: Topologia.

En este capitulo presentaremos las ideas bésicas de esta nueva y extrafia “geometria’, en
la que los objetos y las figuras parecen cobrar formas distintas. En especial, veremos que
la topologia prescinde por completo de la nocién de métrica o distancia: las propieda-
des que estudia no son de cardcter cuantitativo sino mds bien cualitativo.

Ahora bien, a pesar de su gran nivel de abstraccién, la topologia posee numerosas apli-
caciones en los mds variados terrenos. En particular, en las préximas pdginas
mostraremos c6mo es posible verificar a partir de ella un notable hecho de cardcter
puramente geométrico, en el més cldsico sentido de la palabra: la inexistencia de otros
poliedros regulares aparte de los mencionados por Platén. De algiin modo, las aplica-
ciones de esta clase parecen confirmar la opinién de otro gran matemdtico, el francés
Poincaré en su libro Ultimos Pensamientos:

[...] es para favorecer tal intuicion [la geométrica] que el gesmetra tiene necesidad de dibu-

jar figuras o, por lo menos, representdrselas mentalmente. Ahora bien, si desprecia las
propiedades métricas o proyectivas de estas figuras, si sélo se atiene a sus propiedades pura-
mente cualitativas, solamente entonces la intuicion geométrica interviene verdaderamente.
No es que quiera decir con esto que la geometria métrica reposa sobre la légica pura, que
en ella no intervenga ninguna verdad intuitiva, pero estas son intuiciones de otra natura-
leza, andlogas a las que desempernian un papel esencial en aritmética y dlgebra.

1 El inglés Alfred Whitehead llevé esta aseveracién al extremo, cuando anuncié que “toda la filosofia occidental es apenas una
coleccién de notas a la filosoffa de Platén”. Como cabe imaginar, esta observacién no cay6 del todo bien a sus colegas filésofos.



Como sea, no deja de resultar sorprendente que un enunciado tan “métrico”, que se
refiere a los cuerpos platdnicos pueda comprobarse apelando a ideas tan no-métricas,
de orden exclusivamente topoldgico. No es aventurado imaginar que, de haberse topa-
do con una demostracién asi, Hobbes se habria enamorado también de esta cautivante
disciplina, nacida cincuenta afios después de su “exaltado Juramento”.

7.2. Débil es la geometria

En la seccién previa hemos presentado a la topologia como una suerte de “geometria
no métrica’. Pero esto que parece un contrasentido refleja en realidad un aspecto pro-
fundo de la matemdtica, como veremos a continuacién.

Para comenzar, recordemos aquella antigua frase que dice: la geometria es el arte de
razonar sobre figuras mal hechas. Esto se ve cuando inferimos alguna propiedad a par-
tir de un dibujo: trazamos unas lineas (acaso en la arena, intentando imitar a
Arquimedes) y observamos que las alturas de un tridngulo se cortan en un dnico punto,
o que la recta tangente a una circunferencia resulta perpendicular al radio. Sin embar-
go, de algiin modo, estamos razonando sobre figuras mal hechas, especialmente en el
sentido platénico mencionado en la seccién previa: los dibujos no concuerdan con los
objetos perfectos, ideales de la geometria. Pero pese a su imperfeccion, el dibujo es una
valiosa ayuda a nuestra intuicién, pues nos permite vislumbrar ciertas propiedades. De
alguna manera, nos convencemos de que el dibujo “mal hecho” nos dice algo que es
cierto; entonces llega el momento de recurrir a los postulados geométricos, para efec-
tuar la demostracién como Euclides manda. Recién en ese momento podemos dar por
vélidas las propiedades intuidas, presentidas en el dibujo.

Poincaré va un poco mds alld, y se pregunta: ;qué es una figura
mal hecha? En la geometria euclidiana, dos figuras son equivalen-
tes si se puede poner una sobre otra empleando Unicamente
rotaciones y traslaciones; desde este punto de vista hay que decir
que el dibujo de la figura 7.1 es un circulo algo mal hecho.

En cambio, no lo es para la geometria proyectiva desarrollada en
el capitulo anterior: un circulo es equivalente a una elipse por-
que, a grandes rasgos, una de las figuras es una “perspectiva” de
la otra. Pero aun aceptando perspectivas tan amplias, todo el
mundo pensard sin duda que la curva de la figura 7.2 es una cir-
cunferencia MUY mal hecha. Todo atisbo de geometria parece
haber quedado olvidado en ese sinuoso recorrido que en casi
nada se asemeja a la circunferencia original.

Sin embargo, para la topologia todavia se trata de figuras equivalentes: como se puede

sospechar, el secreto reside en el “casi” del pdrrafo previo. Poincaré lo presenta del
siguiente modo:

133



134

Supongamos un modelo cualquiera y la copia de este modelo, realizada por un dibu-
Jjante poco diestro; las proporciones estdn alteradas; las rectas, trazadas por una mano
temblorosa, han sufrido importunas desviaciones y presentan curvaturas malhada-
das. Desde el punto de vista de la geometria proyectiva, las dos figuras no son
equivalentes; por el contrario, lo son, desde el punto de vista del Analysis Situs.

Esto justifica un poco mejor nuestra anterior circunferencia tembleque, y sus malhada-
das curvas: un artista pldstico sentirfa que esta copia tan mal hecha es un fracaso, capaz
de motivarlo a “colgar los pinceles”. Sin embargo, las propiedades topoldgicas de la cir-
cunferencia se conservan: se trata de sus aspectos mds esenciales; mejor dicho, los que
hacen a su esencia topoldgica.

Segtin hemos mencionado informalmente, la topologia pasa por alto las “cantidades” y
s6lo se fija en “cualidades”: dos objetos O, y O, son equivalentes siempre que se pueda
pasar de uno al otro por medio de cierto tipo de transformacién, denominada homeo-
morfismo. En términos mds o menos rigurosos, se trata de una funcién f: O, — O,
que tiene las siguientes propiedades:

1. Es continua.
2. Es biyectiva.
3. La funcién inversa /! : O, — O, es continua.

Para entender esto, resulta conveniente dar una nocién aproximada de la idea de conzi-
nuidad, que en el espacio comun y corriente responde a la nocién intuitiva de
deformacidn, sin cortes o desgarraduras. En un curso bdsico de andlisis matemadtico, se
suele decir que una funcién es continua cuando a medida que nos aproximamos a cual-
quier valor x, los valores de la funcién se aproximan a su imagen f(x). Pero esta definicién,
al margen de que le falta rigor, presenta el inconveniente de que la idea de “aproximarse”
lleva implicita alguna nocién de distancia. Para nuestros fines alcanza con aclarar que exis-
te una manera de corregir este defecto, de modo que si cierta familia de puntos converge
(en un sentido que se puede hacer preciso) a un valor x, entonces las respectivas imdgenes
de dichos puntos convergen a f{x). Esta idea algo vaga es suficiente para entender que un
homeomorfismo, que es una funcién continua “ida y vuelta” -es decir, con inversa conti-
nua- preserva determinadas propiedades de los objetos, los denominados invariantes
topoldgicos. Una circunferencia conserva muchas de sus propiedades por més que se la esti-
re, se la comprima un poco o se la deforme. Mientras no la cortemos o peguemos algunos
de sus puntos entre si, seguird siendo una curva cerrada, sin autointersecciones. Esta par-
ticularidad que tiene la topologia de ser tan “flexible” justifica aquel nombre coloquial con
que también se la conoce: geometria del caucho. El resultado es una geometria con menos
axiomas que la usual, que hace la vista gorda a las diferencias de orden “métrico” y s6lo se
concentra en otros aspectos mds esenciales. Una geometria -por asi decirlo- mds permisi-
va: por eso suele decirse también que es una geometria débil.



7.3. Formulo, luego existo

En esta seccién nos ocuparemos de una de las férmulas mds notables de la geometria
de poliedros, conocida como Fdrmula de Euler aunque, como sugiere el subtitulo, el
primero que la demostré fue Descartes?. Nuestra intencidén es mostrar que para cual-
quier poliedro simple vale la relacién

ViC-A4=2,

en donde V', C'y A denotan, respectivamente, el nimero de vértices, caras y aristas.
Pero antes de dar una prueba debemos aclarar el contexto en el que vamos a trabajar.
Sin entrar en mayores detalles, diremos que un poliedro simple es aquel que resulta
topoldgicamente equivalente a una esfera: de alguna forma, podemos imaginar que lo
“inflamos” hasta obtener una pelota de futbol. En el fondo, esto no parece tan desacer-
tado, pues uno de los disenos mds comunes de tan popular objeto estd basado en un
poliedro que pensé y dibujé un gran hombre del Renacimiento: Leonardo da Vinci.

Para nuestros fines es conveniente observar que todo poliedro simple se puede

: "y ’
llevar a un plano de la siguiente manera: basta con eliminar una de sus caras
y “estirarlo” sobre el plano como si se tratase de un antiguo pergamino. Por

ejemplo, en la figura 7.3 tenemos un posible aplanamiento de un cubo.

Es claro que el proceso obliga a alterar algunas de las caras y aristas del

poliedro, y en consecuencia las dimensiones también se modifican respec-
to del original. Sin embargo, el nimero de vértices y aristas se conserva.
Aunque si se produce un cambio en el ndmero de caras, pues hemos per-

dido una en el camino: de este modo, la férmula que debemos probar para
esta clase de redes planas de poligonos es la siguiente:

ViC-A=1.

Para ello, vamos a definir una serie de operaciones “admisibles”, que transformardn este
gréfico en otro, para el cual la relacién serd obvia. Las operaciones son:

1. agregar una arista que una dos vértices no conectados previa-
mente. De esta forma, V'se mantiene, mientras que el niimero
de caras y de aristas aumenta en una unidad. Esto quiere decir
que el ndmero V'+ C - A no se modifica;

2. si un tridngulo de la red comparte exactamente dos lados con
el resto, se puede eliminar la arista no compartida, como se
observa en la figura 7.4.

3

2 El matemético alemdn Felix Klein dijo una vez que si un teorema lleva el nombre de un matemtico, entonces es segu-
ro que este matemdtico no es su autor. Esto es algo exagerado, aunque hay ejemplos bastante notables, como el binomio
de Newton, el tridngulo de Pascal, o el propio teorema de Pitdgoras.
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El ntimero de vértices queda igual, pero se elimina una cara y una arista: nue-
vamente, la cantidad V'+ C - 4 se conserva.

3. si un tridngulo de la red comparte un solo lado

con el resto, se puede eliminar el vértice y las dos
aristas correspondientes (ver figura 7.5)
De esta forma, el nimero de caras y el de vérti-
ces disminuye en una unidad, y el de aristas
disminuye en dos unidades. Una vez mds el
valor V'+ C - A permanece inalterado.

En base a estas operaciones, se puede proceder de la siguiente manera: en primer lugar,
agregamos todas las diagonales que hagan falta, hasta que quede una red compuesta
exclusivamente por tridngulos. Luego vamos eliminando estos tridngulos uno a uno,
haciendo uso de las dos operaciones restantes. De este modo, llegaremos finalmente a
un tridngulo, en donde V'=3 = A4, y C = 1, de modo que la férmula es vdlida. Cabe
aclarar que nuestro argumento intuitivo puede hacerse mds riguroso, de modo que se
convierta en una verdadera demostracién. Se puede verificar, sin mucha dificultad, lle-
vando a cabo la reduccién descripta partiendo por ejemplo de un dodecaedro: en
primer lugar, hay que aplanarlo, quitdndole una de sus caras y estirando la figura hueca
que queda, como si se tratase de un coqueto centro de mesa compuesto de pentdgonos.
Luego, bastard con agregar dos diagonales a cada pentdgono para obtener una red de
tridngulos, que se irdn desvaneciendo uno a uno por medio de las operaciones 2 y 3,
como se observa en el siguiente gréfico:

A modo de comentario final de esta seccidn, vale la pena observar que el valor 2 que
aparece en la férmula de Euler-Descartes puede verse directamente como una propie-
dad de la esfera, pues vale para cualquier subdivisién poligonal que se trace sobre ella.
Se trata de un invariante topoldgico, que se denomina “caracteristica’. La caracteristica
de una esfera (y de cualquier otra superficie equivalente a ella) es 2. Para otras super-
ficies diferentes, dicho valor caracteristico es distinto.



7.4. Los cinco platénicos

En esta seccién brindaremos, tal como hemos anunciado, una demostracién elemental
de ese hecho geométrico que tanto cautivé a los griegos: existen solamente cinco polie-
dros simples regulares, vale decir, cuyas caras son poligonos regulares iguales. Nuestra
herramienta principal va a ser topolégica: la férmula de Euler-Descartes.

En primer lugar, conviene efectuar una observacién muy sencilla, que se desprende jus-
tamente de la regularidad de un poliedro: si el nimero de lados por cara es 7, y el
ndmero (siempre el mismo) de aristas concurrentes en cada vértice es 4, entonces vale

kV'= 24, nC = 2A.

Esto es asi, en efecto, ya que cada arista tiene dos vértices, y es compartida por exactamen-
te dos caras. La férmula de Euler-Descartes se reescribe entonces de la siguiente manera:

24 24
——— A=Y
k n

0, equivalentemente

+

S|
|
Do | =
e

el

Vamos a ver que # o 7, al menos uno de ellos, tiene que ser igual a 3. En primer lugar,
es evidente que 4, 7 = 3, y si fueran ambos mayores se tendrfa entonces que 4, 7 > 4.
Resultarfa entonces que

171+1 1<1+1 170
A k' n 24 4 2 7
lo que es absurdo.
Ahora, si # = 3, se obtiene que
1 1,1 1 _6-n
A 3 n 2 6n’

de donde se concluye que 7 < 6. Los valores posibles son:
e 7n=3yA=0, que corresponden al tetraedro.
o n=4yA=12, que corresponden al cubo.

e 1n=5yA= 30, que corresponden al dodecaedro.
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Observemos ahora que, en la férmula anterior, los roles de 4y 7 se pueden intercam-
biar. Por eso, si planteamos ahora 7 = 3 obtenemos las siguientes posibilidades:

e k=3yA-=06, que corresponden al tetraedro;
o k=4yA-=12, que corresponden al octaedro;

e k=5yA-=30, que corresponden al icosaedro.

Claramente, el primer caso se repite, lo que hace un total de cinco poliedros. Quizds
sea demasiado pronto para enamorarse, pero debemos reconocer que la demostracién
tiene su encanto...

7.5. Algunas actividades

La demostracién de la seccién previa es muy seductora, en especial porque da cuen-
ta de un hecho sorprendente, que constituye uno de los pilares del misticismo
platénico. Pero sin necesidad de ponernos tan misticos podemos ver, a modo de
ejercicio, algunas otras propiedades geométricas que se deducen de la férmula de
Euler-Descartes. Como dice el matemdtico francés H. Lebesgue en su trabajo
Quelques conséquences simples de la formule d’Euler, el nimero de propiedades que se
puede obtener con el procedimiento que veremos es infinito; nos limitaremos a
deducir apenas unos hechos bdsicos, tales como:

1. Todo poliedro simple contiene un tridngulo o una triada (es decir, un vértice
con tres aristas concurrentes).

2. Todo poliedro simple tiene una cara con menos de 6 lados.

Se puede intentar una prueba, antes de continuar. En esencia, el razonamiento es muy
similar al de la seccidn previa. Sin embargo, ahora no hay valores tnicos de 4y 7; por
eso, resulta conveniente denominar por ejemplo C,al ndmero de caras que tienen 7
lados, y Vial nimero de vértices que tienen # aristas concurrentes. Esto tiene sentido
obviamente para 4, 7 > 3, y ademis es claro que los nimeros C,y V,sélo pueden ser dis-
tintos de 0 para un ndmero finito de valores de 7 y k. Por ejemplo, supongamos que el
valor médximo de lados por cara es 7, y el valor méximo de aristas concurrentes por vér-
tice es 4; se tiene entonces:

C=C+Ci+...+C,, V=V3+V+...+V}.

Por otra parte, contando la cantidad total de caras y vértices, se deducen las siguientes férmulas:



3C; +4C +... + NC=24, 3V; +4V,+...+KV)=24.

Multipliquemos a los dos términos de la férmula de Euler-Descartes por 4; de esta
forma resulta:

4Cy+...+C)+4(Vy+...+ V) -44=8.
A su vez, escribiendo
4A4=24424=3C, ...+ NC 3V, +...+ KV},
podemos reagrupar los términos de la igualdad anterior para obtener:
4-3)Cy+ (4-DC +...+G-NCpr 4-3)V, + G-V, +...+(4-KV}=8

Finalmente, observemos que, en la tltima expresién, sélo resultan positivos los coefi-
cientes correspondientes a Cy y Vi, ambos iguales a 1: esto prueba que

G+ V5 28
Como consecuencia, hemos demostrado la primera de las afirmaciones. En verdad,
hemos demostrado algo mds: en todo poliedro simple el ndmero total de tridngulos y

triadas es por lo menos igual a 8.

Para ver la segunda propiedad, podemos multiplicar ahora a la igualdad de Euler-
Descartes por 6, y escribir 64 = 24 + 44, de modo que

6(G+...+C)-24+6(V; +...+Vp) -4A4=12
La identidad que se obtiene ahora es
6-3)C +(6-49Cs+...+6-mMCy+ 6-0V; + (6-8)V; +...+(6-2hV)=12.

En este nuevo caso, los tinicos coeficientes positivos son los correspondientes a Cj, C
y Cs, y vale

3C3 + 2C4 + CS > 12.
Como antes, lo que se prueba es un enunciado algo mds fuerte, mds preciso que la afir-

macién original que pretendiamos demostrar: en todo poliedro simple, el nimero de
caras de menos de 6 lados es como minimo igual a 12.

A modo de ejercicio, se puede intentar probar el siguiente enunciado, concerniente a
una clase especial de poliedros:
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Ejercicio 1 En un poliedro simple cuyas caras no contienen triangulos o cuadrilateros (es
decir, C; = C, = 0) y todos sus vértices son triadas (es decir, V = V,), existe

siempre algiin pentagono que toca a otro pentagono, o bien a un hexagono.

La demostracion es algo mds complicada, pero resulta de multiplicar a la férmula de
Euler-Descartes por 14, y escribir 144 = 44 + 10A.
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Capitulo 8

Tierra, Sol, Luna
Juan Pablo Pinasco

8.1. El problema

Estamos ahora en condiciones de resolver el problema planteado en la introduccién:

Calcular las distancias al Sol y a la Luna, y sus tamaios.

En principio, los valores que estamos buscando son cuatro, como ya seiialamos:

R, distancia entre el Sol y la Tierra. Problema

r, distancia entre la Luna y la Tierra.
D, diametro del Sol.
d, diametro de la Luna.

Antes de resolver el problema, es importante saber distinguir el
tipo de datos que necesitamos, y cémo calcularlos. Por ejemplo,
supongamos que el Sol, la Tierra y la Luna forman un tridngulo
recténgulo, como en la figura 8.1

Llamemos aqui R = ST y = TL.

Figura 8.1

Ahora, si conocemos el dngulo # y la distancia SL entre el Sol y
la Luna, podemos utilizar los argumentos trigonométricos que ya vimos para calcular
las distancias buscadas:

cateto opuesto
hipotenusa

5L

C ST

sen(a) =

Entonces, conociendo @y SL, calculamos el seno de 4, y luego despejamos la distancia
entre la Tierra y el Sol ST
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R=S8T
SL
sen(a)’
Ahora, conociendo ST podemos calcular la distancia entre la Tierra y la Luna, T'L:

cateto adyacente

cos(a) = hipotenusa

T
- ST

porque en el paso anterior hemos calculado ST, y despejamos
TL = cos(a) - ST.
Observemos que podemos escribir esta tltima ecuacién como
r = cos(a) - R.

Lamentablemente, para resolver de esta forma el problema de las distancias, estamos supo-
niendo que tenemos cierta informacién, es decir que conocemos tres datos importantes:

1. los puntos S, 7, L forman un tridngulo rectdngulo,
2. conocemos el dngulo 4,

3. conocemos la distancia SL.

Sin embargo, serfamos deshonestos si terminamos el libro resolviendo el problema de esta
manera. Si pudiéramos medir en forma directa, o con observaciones, la distancia entre el
Sol y la Luna, seguramente podrfamos medir entonces la distancia entre el Sol y la Tierra
(y entre la Tierra y la Luna) sin necesidad de utilizar argumentos geométricos.

Necesitamos buscar otra manera de encarar el problema, y la solucién debe estar dada
en términos de datos a los que realmente tengamos acceso. En teoria, la solucién ante-
rior es perfecta; en la prictica, depende de conocer una distancia tan dificil de calcular
como las que queremos averiguar.

Por otra parte, notemos que nos quedan por analizar los otros dos factores que utiliza-
mos en esta solucién del problema: la suposicién de que el Sol, la Luna y la Tierra
formen un tridngulo recténgulo, y la posibilidad de conocer el dngulo a.

La Luna se ve muchas veces durante el dia, aunque no siempre presenta la misma forma: va
desde una estrecha cinta en forma de medialuna, hasta el disco completo de la luna llena. En



algunos casos, cerca de los cuartos crecientes y los menguantes, vemos iluminado exactamen-
te un semicirculo: en ese momento, cuando vemos iluminada la mitad, la Luna se ubica en
el vértice que corresponde al dngulo recto de un tridngulo rectdngulo (ver la figura anterior).

Es muy dificil determinar con precisién el momento en que exactamente la mitad de la Luna
estd iluminada, porque al ser esférica, y su superficie rugosa, no vemos exactamente una linea
recta que separa la zona iluminada de la zona en sombras, pero es posible determinar ese
momento con una aproximacién muy buena. Desde ya, culpa de esto se cometen errores en
la medici6n, pues tal vez el momento elegido para medir no corresponde exactamente al
momento en que el Sol, la Luna y la Tierra forman un tridngulo recténgulo.

Prolongando el borde donde comienza la regién en sombras de la Luna hasta nuestra
ubicacién en la Tierra, obtenemos el cateto adyacente al dngulo 4, y la hipotenusa es el
segmento que une a la Tierra y el Sol. Ahora, necesitamos medir el dngulo 4, y esto
puede hacerse aunque con cierta dificultad, indiquemos brevemente cémo hacerlo.

Tenemos que determinar el dngulo que hace el cateto adyacente con la hipotenusa, es decir, la
recta que une el punto donde estamos parados con el Sol. Como ya explicamos, es posible hallar
el dngulo entre dos objetos que estamos viendo a la distancia (utilizando
un teodolito, u otro instrumento similar). Pero aqui, el problema es que
alinear esta recta imaginaria entre nuestros ojos y el Sol es peligroso, y
nos puede costar la vista. Si se quiere hacer la medicién, se puede inten-
tar lo siguiente: en vez de “mirar” en direccién al Sol, conviene mirar en
la direccién opuesta, lo cual no es tan dificil, ya que es la direccion de
nuestra sombra. En lugar de medir el dngulo 4, podemos tratar de medir
su complemento, que debe ser 180°— # (como en la figura 8.2).

Para obtener una medicién precisa hay que utilizar un radiotelescopio, o cdmaras de
rayos ultravioletas (pero cuidado, jno se debe mirar en la direccién del Sol!). Este 4ngu-
lo, medido con la tecnologia actual, resulta ser de 89,853°. Sin embargo, fue medido
con métodos elementales por Aristarco en el siglo III a.C.; y el valor que calculé fue de
87°, que no estd tan lejos del valor real, pero veremos que esos 2,853° e diferencia
generan un gran error en los valores estimados finales. A ¢l debemos también la idea de
hacer las mediciones cuando S7Z forman un tridngulo rectdngulo.

1

Calcule 3 iSon muy diferentes? | Ejercicio1

_ 1 y#
cos(87°)" ' cos(89,85

En definitiva, la suposicién de que S7Z forman un tridngulo rectdn- Observacion:

gulo resulta razonable, y también es posible medir el dngulo 4. En

cambio, no podemos medir la longitud de uno de los catetos, o de

la hipotenusa, de manera directa. Es conveniente razonar de este

modo con todos los datos que se introducen para resolver el proble- /
ma, verificar si existe alguna forma de obtenerlos, o si es que han

salido de la nada, como por arte de magia. En este dltimo caso, debemos descartarlos.
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8.2. Tamanos y distancias

El objetivo de la seccién anterior fue tomar conciencia de que existen datos que pode-
mos obtener en la prictica (a través de una medicién) y otros que no. En esta seccién
vamos a enfocar otro aspecto del problema, establecer relaciones entre los valores que
queremos calcular aunque no sepamos cudnto valen. Si bien los cuatro valores D, d, R
y r caen dentro del tipo de datos a los que no podemos acceder en forma directa, la geo-
metria nos permite despejar unos en funcién de los otros.

Por ejemplo, en la seccién anterior vimos que
r = cos(a) - R,

y como el dngulo 2 puede medirse, es suficiente averiguar una de las dos distancias para
obtener la otra.

Con una calculadora obtenemos aproximadamente ¢05(89,853) ~ 0,002565, con lo
que podemos despejar la distancia al Sol,

1
0,002565
~ 389, 867,

R =

y por lo tanto la distancia entre la Tierra y el Sol es unas 390 veces la distancia entre la
Tierra y la Luna.

;Cémo aprovechar esta relacién? ;Cémo medir una de estas distancias? La respuesta,
provisoria, pasa por estimar los didmetros que estamos buscando. ;Nos sirve una regla
comun, graduada en centimetros y milimetros...? jEn contra de todo lo que podamos
imaginar, la respuesta es que si!

Si una noche extendemos una regla con el brazo y “medimos” el didmetro que
vemos de la Luna, sabemos que el tamano real de la misma no son esos pocos mili-
metros que ocupa en la regla. Pero esta medicién no es tan inttil como puede
parecer, ya vimos en el capitulo dedicado a la geometria proyectiva que hay reglas
precisas de cudnto y cémo debe achicarse una figura que estd en un cuadro para
que nos dé una impresién de estar a la distancia.

Pensemos, entonces, en hacer un sencillo experimento: intentar atrapar la Luna entre
dos dedos. Antes, vamos a hacerlo con este libro. Déjelo en una mesa o en el piso, a un
metro o dos de distancia, y separe el indice y el pulgar unos tres centimetros. Ahora,
cerrando un ojo, y acercando la mano al (otro) ojo, trate de hacer coincidir el libro
entre los dos dedos, como si lo estuviese sosteniendo entre ellos. Evidentemente, el libro
no mide tres centimetros, pero se ve de ese tamafo si la mano estd ubicada a unos diez
o veinte centimetros de nuestra cara. Los resultados de tridngulos semejantes que vimos



antes no nos permiten calcular el tamano del libro ni la distancia a la cual lo dejamos,
pero si sabemos que se mantiene la siguiente proporcidn:

distancia al libro B distancia a los dedos

tamano del libro — separacion de los dedos’

Realizar este experimento, separando los dedos unos tres centimetros, midiendo Ejercicio 2
a que distancia estan los dedos de su ojo, y verifique que el cociente entre la

distancia al libro y su tamaiio es igual al cociente que calculo.

Podemos repetir este experimento con la Luna, y obtener asi una
relacién entre el didmetro & de la Luna y la distancia 7 a la que
estd, el cociente 7/d puede calcularse con un experimento similar
(ver figura 8.3). Es decir, resulta que 7/d es un cierto valor que si
puede calcularse, pero la precision del valor que obtendremos
dependerd del cuidado con el cual hagamos las mediciones. Se

tiene, aproximadamente, Figura 8.3

r

~ 110,

SH|

aunque, con seguridad, si lo intentamos nuestra
aproximacion serd muy pobre. ;Verifiquelo en una
noche de luna llena!

8.2.1. Célculo del didmetro angular de la Luna

Para calcular el didmetro angular de la Luna necesitamos conocer su velocidad: sabe-
mos que el ciclo lunar tarda 29,5 dias. Este tiempo se puede medir entre dos lunas
llenas consecutivas, si bien hay que repetir la medicién a lo largo de algunos meses para
obtener esta aproximacién (por ejemplo, si suponemos que el periodo es de 29 dias,
veremos que cada dos meses se atrasa un dia). Como la Luna da una vuelta completa
alrededor de la Tierra en ese tiempo, sabemos que recorre 360°en unas 708 horas. Esto
nos permite calcular su velocidad angular:

360°

708h
~ 0,51°/h.

velocidad angular =

Luego, dado que conocemos la velocidad angular, si podemos calcular cudnto tarda en
recorrer su propia distancia, tendremos una estimacién de su didmetro angular, ya que
conocemos su velocidad angular. Una forma de calcularlo es observar cuando la Luna pasa
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por delante de una estrella (en una
noche de luna llena,), tomando el

Para realizar este calculo solo deben determi-

Estrella narse la duracion del ciclo lunar, y el tiempo que tiempo que la estrella permanece
Figura 8.4 tarda la Luna en recorrer su propio diametro. oculta, y calculando asi la distan-

Puede hacerse de otras formas, por ejemplo, el cia angular que recorre; esta
tiempo en que tarda en ocultarse detras de un edificio, o un arbol. e o ngular es igu al 2 su did-

metro angular, ver la Figura 8.4.

El tiempo que tarda es pricticamente una hora, apenas un poco mds de una hora, con
lo cual el didmetro angular es de 0,52°, 6 30’.

Ejercicio 3 Intentar hacer esa medicion en una noche de luna llena, y verifique que el
tiempo es de aproximadamente una hora.

\  Conociendo el didmetro angular, obtenemos la relacién entre 7 y
d utilizando un argumento trigonométrico. Observemos los
tridngulos de la figura 8.5.

¥ El primero es un tridngulo isésceles, con la superficie de la
o  |dr2 . :
0.26 [ Luna como base; el segundo es un tridngulo rectdngulo que
r . . 7
obtenemos bisecando el 4ngulo, cuyos catetos son 7y d/2. En

y
definitiva,
Figura 8.5
cateto opuesto

tan(b/2) =

cateto adyacente
d/2

7
_1d
27

Luego, utilizando ahora una calculadora, podemos despejar

N

d  2tan(b/2)
- 1
~0,009075
~ 110.

En definitiva, aunque no podemos medir ni 7 ni 4, si podemos calcular su cociente 7/d
(y de dos formas diferentes). Puede parecernos poco este logro, pero observemos que
hemos eliminado otra variable de nuestro problema: si sabemos calcular 7, tenemos
resuelto cudnto vale 4 (o, a la inversa, si podemos calcular 4, averiguamos 7). Y, en
ambos casos, podemos calcular luego D.
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8.2.2. Didmetro angular del Sol

A primera vista, nos puede parecer que podemos repetir el experimento con el Sol y

obtener de la misma forma un valor para el cociente R/D... ;NO! Si lo intentamos,
corremos el riesgo de perder la vision del ojo que dejamos abierto.

No siempre el método que sirve para medir un objeto, conviene para medir otro obje-
to distinto. Debemos buscar otra manera de obtener informacién sobre Ry D, sin mirar
directamente al Sol, y en este caso, utilizaremos los eclipses de sol. Puede resultar para-
déjico que para obtener alguna informacién del tamafo del Sol, utilicemos

precisamente el momento en que no estd visible.

Si observamos imdgenes de eclipses solares (figura 8.6), veremos que la Luna se super-

pone casi perfectamente sobre el Sol.

Esta situacion se puede representar en un diagrama
como el de la figura 8.7: y, por semejanza de tridn-
gulos, tenemos:

R

- ~ 110.
d

En definitiva, también el didmetro angular del Sol
es de aproximadamente 30’ (6 0,5°).

Hemos obtenido entonces otra relacién, ahora para
nuestras incégnitas Ry D: basta conocer una de las
dos, y obtenemos la otra. Es la misma relacién que
hay entre 7y d, con lo cual alcanza con conocer los
radios para saber las distancias (o conocer las dis-
tancias para calcular los radios).

Recapitulando, si conociéramos, por ejemplo, la distan-
cia al Sol R, obtenemos despejando el didmetro solar

_ R
© 109

Ahora, gracias a que conocemos el dngulo 2 = 89,
853°, podemos calcular el didmetro lunar,

d = c0s(89,853) - D
c0s(89,853) - R
110 ’

Sol
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Ejercicio 4

y tendriamos también la distancia a la Luna

r=110-d
110 - co0s(89,853) - R
110
= co0s(89,853) - R.

(recordemos que c0s(89,853) = 1/390).

Verifique que si conoce alguno de los valores D, r o d, también es suficiente

para averiguar los restantes.
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Antes de pasar a la siguiente seccidn, conviene meditar un momento la siguiente cues-
tién: ;Qué convendrd intentar averiguar, la distancia al Sol o a la Luna? ;O tal vez el
didmetro del Sol, o el de la Luna? Y, cualquiera sea la respuesta que elija, ;Cémo podria
intentar calcularlos?

8.3. La sombra de la Tierra

Respondamos ahora las preguntas que dejamos al final de la seccién anterior: podemos
calcular un valor cualquiera de lo que nos interesa, ya sean los didmetros o las distan-
cias, sean del Sol o la Luna. Para cualquiera de los dos, debemos considerar la sombra
que proyecta la Tierra. Hay un argumento muy ingenioso que permite calcular el did-
metro lunar de manera sencilla, y luego obtener de éste la distancia. Vamos a describir
las dos formas de hacerlo, porque son de gran interés histérico.

Una, fue ideada por Aristarco de Samos (310 - 230 a.C.); la otra, por Hiparco (190 - 120 a.C.).

En ambos casos, el truco para obtener mds informacién es pensar en un eclipse lunar.
Esencialmente, en este caso es la Tierra la que se interpone entre la Luna y el Sol, con
lo cual la Luna queda fuera de nuestra vista durante cierto tiempo. Ahora podemos
hacer un nuevo argumento de semejanza de tridngulos, con el cual despejar el didme-
tro lunar en funcién del didmetro terrestre.

8.3.1. El argumento de Aristarco

La idea de Aristarco es sencilla, y depende de estimar el tiempo que tarda la Luna en
atravesar el cono de sombras de la Tierra durante un eclipse, pricticamente la misma
idea que utilizamos para calcular el didmetro angular de la Luna.

Durante un eclipse de Luna, la Tierra proyecta un cono de sombras, y entre el momen-

to en el cual comienza a entrar la Luna y el momento que sale, pasan poco mds de tres
horas y media. En la figura 8.8 hemos representado ademds la distancia x, que sumada
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a 7 nos da la longitud total del cono de sombras
terrestre. Hemos indicado también la distancia y
que recorre la Luna durante el eclipse:

Si bien no conocemos x, sabemos que, aproximadamen-
te, y = 2,6 dya que cada hora la Luna recorre una distancia
igual a su didmetro angular y tarda 3,6 h en atravesarlo.

Figura 8.8

Podriamos preguntarnos por qué esta distancia es 2,6d y no 3,6d, si tarda en realidad 3,6 h. La respues-
ta esta en como estamos midiendo la duracion del eclipse: desde que la Luna entra en el cono de

sombras, hasta que sale completamente. El punto del borde que ingresa primero en las sombras tarda
2,6 horas en salir, pero debe transcurrir una hora mas hasta que el resto de la Luna sale de las sombras.

Por semejanza de tridngulos, tenemos tres relaciones entre estas longitudes:

2,6d Dt
x T+
_ D
- z4+r+R

Antes de despejar, recordemos que

D =390d
R=110D
R=110-3904
R = 42.9004
r=110d,

y que el radio terrestre es de 6.378 km, con lo cual el didmetro es Dz = 12.756 km.
Reemplacemos para eliminar 7 y las variables que dependen del Sol (podriamos haber
eliminado tres cualesquiera sin dificultades):

2,6d  12.756
x  x+110d
390d

= 2+ 110d + 42.900d

Por comodidad, omitiremos las unidades durante la cuenta. Igualando la primera
y la tercera,

2,6d  390d
x x4+ 43.010d
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despejamos el valor de x:

(2,6d)(z +43.010d) = 390dx
2,6dz + 111.826d> =  390dx
2,60 +111.826d = 390z

387, 4z = 111.826

z = 288,6d

Ahora, igualando las dos primeras expresiones, tras reemplazar x,

2,6d 12.756
288,6d  288,6d + 110d
2,6  12.756
288,6 398, 6d
2,6 398,6d = 12.756 288,6
~ 12.756 - 288,6
~2,6-398,6
d = 3552,2...

Conociendo 4, calculamos los otros valores:

D = 390-d

= 1.385.358 km
r = 110-d

= 390.742 km
R = 110-D

= 152.389.380 km

8.3.2. El argumento de Hiparco

Un siglo después de la medicién de Aristarco (que dio valores muy inferiores a los
reales, dado que su error en la medicién de a lo llevé a
la relacién D = 204), Hiparco dio un argumento dife-
rente para calcular el tamano de la Luna, también
aprovechando un eclipse. Veremos que su idea es
mucho mds geométrica.

La clave aqui fue considerar la sombra que hace la Tierra
sobre la Luna, observe la figura 8.9.

Puede resultar dificil de creer, pero esa imagen alcanza para
estimar el radio lunar en funcién del radio terrestre grafica-
mente, como se indica en la figura 8.10.
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Trazando dos cuerdas en el borde de cada circulo
(en el borde de la Luna, y en el contorno de la
sombra de la Tierra), podemos determinar el cen-
tro de cada circulo (ver el final del capitulo 3).
Midiendo ambas distancias, podemos ver que el
radio de la sombra terrestre es 3, 7 veces mayor
que el radio de la imagen que vemos de la Luna.

Ahora, dado que las proyecciones mantienen las
proporciones de las imdgenes entre ellas, el radio
terrestre serd 3, 7 veces el radio lunar, y la misma
proporcién se mantiene para los didmetros:

Dt = 3,7d,

con lo cual, dado que conocemos el didmetro
terrestre, obtenemos

12.756
d—
3,7
= 3447,5...

que es un valor cercano al que obtuvimos antes, y mucho mds exacto. Con este
valor, obtenemos

r = 110-d

= 379.225
D = 390-d

= 1.344.525
R = 110-D

= 147.897.750

8.4. Comentarios finales

Con herramientas geométricas elementales hemos calculado el radio lunar: sélo utiliza-
mos el grifico de la sombra terrestre sobre la Luna.

Para calcular la distancia a la Luna es suficiente armar un tridngulo semejante, “atrapan-
do” la Luna entre dos dedos y midiendo la separacién de los mismos y la distancia de
la mano a nuestra cara. O, mejor ain, medimos el tiempo que tarda en dar una vuelta
completa alrededor de la Tierra, y el que tarda en atravesar un punto fijo para calcular
su didmetro angular. Conociendo el cociente 7/d, y d, averiguamos r.
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Y también podemos calcular & a partir del tiempo que tarda la Luna en atravesar el cono
de sombras durante un eclipse lunar.

Para conocer el didmetro solar, sélo necesitamos saber que el Sol y la Luna se ven del
mismo tamafo desde la Tierra: para esto utilizamos que en un eclipse solar la Luna
oculta casi perfectamente al Sol.

Si somos capaces, ademds, de medir el dngulo # -la separacién con que vemos a la Luna
y el Sol-, podemos calcular también la distancia al Sol.

Sélo este tltimo paso es dificil de realizar, todos los demds son sencillos y no se necesi-
ta mds que un reloj y una regla. Vamos a dejar, como problema abierto para discutir, si
la distancia al Sol puede averiguarse sin necesidad de conocer este dngulo a. Desde ya,
hay que detallar cémo se harfa cualquier medicién, evitando cualquier procedimiento
que requiera mirar en direccion al Sol.

Planteamos, en la introduccién, una serie de hipdtesis sobre nuestro problema. En espe-
cial, asumimos que las 6rbitas lunar y terrestre eran circulares, con lo cual las distancias
7y R estaban bien definidas como los radios de estas 6rbitas.

Pero sabemos desde principios del siglo XVII, gracias Kepler, que las 6rbitas son en rea-
lidad elipticas, con lo cual las distancia varia segtin la época del ano. En el caso de la
Luna, las distancias en el afelio (el momento en que la Luna estd mds lejos de la Tierra)
y el perihelio (el momento en que estd mds cerca) son 384.400 km y 363.300 km res-
pectivamente (nuestra aproximacién dié 379.225 km). Para el Sol, tenemos
147.100.000 km y 152.100.000 km (obtuvimos 147.897.750). Como puede verse, la
aproximacién que hemos obtenido es muy buena. Mejorarla, ya no depende de la geo-
metria, sino de la tecnologia para mejorar las mediciones.



Solucién de los Ejercicios

Capitulo 1

Ejercicio 1

Una distancia de cuatro afos-luz es aquella que recorre la luz viajando durante cuatro
anos. Como La velocidad de la luz es, aproximadamente, 300.000 km/s, tenemos que
ver cudntos segundos hay en cuatro anos y multiplicarlos por 300.000 km/s. Para ave-
riguar esto, slo debemos efectuar los siguientes célculos:

un minuto — 60s
una hora — 60minutos = 60 - 60.5s = 3.600s
un dia — 24h = 24 - 3.600s
un anio — 365dias = 365 - 24 - 3.600s

La distancia buscada es de 300.000 - 4 - 365 - 24 - 3600 km = 3,78432 x 1013 km.

Ejercicio 2

Una letra N.

Ejercicio 3
Si los dngulos de la base midieran mds de dos rectos, la prolongacién de los dos lados
del tridngulo no podrian cortarse.

Ejercicio 4
Observemos que sélo podemos conectar dos vértices entre si. Al hacerlo, descompone-
mos la figura en dos tridngulos, y los dngulos interiores de cada uno suman 180°.
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Capitulo 2

Ejercicio 1

Observemos que DE es congruente con DF por ser radios del circulo centrado en D.
Como DA es congruente a DC (es un tridngulo equildtero), resultan congruentes AE'y
CF. Pero AB y AE son congruentes, pues son radios del circulo que trazamos con cen-
tro en A; y por lo tanto, CFy AB son congruentes.

Ejercicio 2

Por la construccién anterior, sabemos que
podemos obtener un segmento CF con-
gruente al AB, no necesariamente en la recta
dada. Ahora, con centro en Cy radio CF, tra- D
zamos un nuevo circulo, y buscamos su
interseccién E con la recta CD. El segmento

CE es el buscado.

Ejercicio 3
No siempre serdn congruentes. En la figura, si las hipote-
nusas son paralelas, cada cateto forma dngulos congruentes
al cortarlas (se deduce de los resultados sobre alternos inter-
nos entre paralelas, y para un dngulo externo se utiliza que
son opuestos por el vértice, ver la figura:

Y

Ejercicio 4

No siempre serdn congruentes. Observe la siguiente figu- c
ra, donde los tridngulos ABC y ABC no son c
congruentes, pero comparten el dngulo en 4, comparten N
el lado AB, y son congruentes los lados BC'y BC . A B

Ejercicio 5

La respuesta es que si, pues si tienen dos dngulos congruentes, el tercero también lo
serd. Ahora, por los resultados de semejanza de tridngulos, ambos son semejantes, pero
como tienen un lado congruente, resultan congruentes.

Ejercicio 6
Tracemos dos cuerdas distintas en el arco, y tracemos sus bisectrices. Como ambas
pasan por el centro del circulo, éste estard en el punto donde se cortan.



Capitulo 3

Ejercicio 1
Como sen(30°) = 0, 5y sen2(30°) + cos%(30°) = 1, debe ser

1\ 2
(5) + c0s?(30°) = 1

y, despejando,

I
=
|

cos(30°)

[l
A

ol%
RSN It

Ejercicio 2
Si. La construccién es similar a la que hicimos para obtener un tridngulo equildtero. Se
toma un punto de la circunferencia, y con éste como centro se traza un
nuevo circulo de igual radio que el anterior.

Como el tridngulo ABC es equildtero, sus tres dngulos son iguales y miden
60°. Repetimos el proceso a partir del punto B y obtenemos un nuevo
tridngulo. Cada tridngulo de éstos divide el circulo en seis sectores iguales. A .

Ejercicio 3

Para resolver este ejercicio recomendamos que: el equivalente a 360° es
27 radianes. Un dngulo llano tiene 180°, equivalentemente, 7 radianes;
y un dngulo recto, 7/2 radianes. Como 7 es un niimero irracional, no tenemos una
expresién exacta para 1°, que en radianes es

o 2mrad
360°

O_

~ 0,01745 rad.

A la inversa, podemos expresar en grados a cuanto equivale un radidn:

o

1rad = 1rad 360

~ 57,2958°.
27 rad ’

Entonces, como 1° = 0, 01745 rad, tenemos que, en general,
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z°=x-1°~x-0,01745 rad,

con lo cual 30° = 0, 5235 rad y 45° =~ 0, 78525 rad.

Ejercicio 4
Como 1 rad =~ 57,2958°, tenemos que, en general,

yrad =y -1rad ~y-57,2958°,

con lo cual 7/3 rad = 60° y 1, 5 rad ~ 85, 9437°.

Ejercicio 5

Tenemos
A
cos(a) = % entonces sec(a) =
sen(a) = % entonces  cosec(a) =
cO
tg(a) = oA entonces cotg(a) =

Ejercicio 6

Representemos en la circunferencia trigonométrica el
dngulo 4, y tenemos 1 = OA, cos(a) = OB, sen(a) = AB,y
tg(a) = CE. Ahora, trazamos la perpendicular a OB por
el punto O, hasta su interseccion a la perpendicular a
OA por el punto A, y llamemos D a ese punto.
Prolonguemos, también, el radio OA hasta el punto E.

Los tridngulos OCE'y OAD son semejantes al tridngulo

OAB, con lo cual se tienen las siguientes
o8 _ 1
OC  cos(a)
= sec(a),
ob_ 1
OA  sen(a)
= cosec(a),

H 1
CA ~ cos(a)

H 1
CO ~ sen(a)

CA 1
CO ~ tg(a)

4 D .

{

-




pues OC= OA = 1.

Ejercicio 7
Observando la figura 3.10, vemos que en el segundo cuadrante Y
se forma un tridngulo rectdngulo, y uno de sus dngulos mide 7 - 4.

: . : Ly
Como su hipotenusa mide 1, y su cateto opuesto mide y = sen(x - a), \
~ ) x

tenemos la primera igualdad. Para la segunda, como x < 0, tenemos B

que el cateto adyacente mide -x, con lo cual cos(a) = -x = -cos(x - a). Q/

Ejercicio 8
En la figura 3.12 (pdg. 57), observemos que
sen(a) sen(b)
T Y

y despejando, se tiene la primer igualdad. La otra se obtiene trazando cada una de las
perpendiculares a los otros lados. En el caso en que uno de los dngulos del tridngulo sea
mayor que un dngulo recto, se resuelve de la misma forma, dibujando la perpendicular
hasta la prolongacién del lado correspondiente.

Capitulo 4

Ejercicio 1

El punto simétrico es P’. Para
encontrarlo, trazamos la recta que
paso por Py por O, y buscamos el
punto P’ tal que PO = OP’.

Ejercicio 2
a) Estas figuras no son simétricas con respec- ® 0
to a O. Por ejemplo, vemos que la imagen
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del centro del ojo, no es del centro del ojo de la figura de la izquierda.

‘ . ’
Ejercicio 7

Para poder calcular la altura, podemos tomar considerar
el punto A del edificio y determinar su sombra, siguien-
do el contorno de la sombra. La sombra es el punto A'. B

b) Estas figuras si son simétricas.

Ahora buscamos cudl es el punto que se encuentra
sobre el piso, justo debajo de A. Este punto se llama QL

la “proyeccién ortogonal” de A sobre el plano del p B
piso, porque el segmento AP es ortogonal (o perpen- ‘
dicular) al plano del piso.

\. A

Luego tomamos un poste BQ del que sepamos la
altura, medimos la sombra y con estos datos podemos calcular la longitud de AP, que
es la altura del edificio.

Ejercicio 8
En este caso, el punto mds fdcil para calcular la —x N
sombra es el punto A.

La sombra de A es el punto A’ y la proyeccién
de A es el punto P

—

Midiendo la longitud de AP podemos calcular A'
la altura de la pared como antes. L )

Ejercicio 9
En este caso, no podemos medir la longitud de a N

PO. Pero sabemos que

PO = PR + RO.
PR podemos medirlo. En este caso mide 30 m. o 8/ som b
Para calcular la longitud de RO observamos que, \* ™ & y




como O es el centro del cuadrado que forma la base de la pirdmide, RO es igual a la
mitad de la longitud del lado AB. Por lo tanto RO mide 25m y PO mide 55m. Con
ese dato, ya podemos calcular la altura. OQ.

Ejercicio 10

Si el perro estd parado en el punto P, podrd ver todo
el mural si el dngulo APB es menor o igual que
240°. Por lo tanto, para encontrar la regién, traza-
mos el arco capaz de 240° y desde cualquier punto
fuera de la regién comprendida entre este arco y las
dos paredes, el perro podrd ver todo el mural.

Ejercicio 11

Los dngulos BAD y BCD se encuentran inscriptos en el
arco BD. Por lo tanto son congruentes. Andlogamente,
los arcos ABC y ADC son congruentes. C

Concluimos que los tridngulos AQB y CQD son

semejantes, siendo C el correspondiente de Ay D el
correspondiente de B. B

. P WV
Ejercicio 12 ( )
Como DAB = 800, a = 2 x 80° = 160°, por ser el dngulo A
central correspondiente. Luego B = 360° - 160° = 200°.
Obtenemos que DCB = 200° / 2 = 100°. B

Ejercicio 13
La cuerda que pasa por los puntos donde entré y salié de la circunferencia sefiala la
direccién Este-Oeste. La direccién Norte-Sur es la perpendicular a la cuerda.

Ejercicio 14
Podemos calcular el radio, y no hace falta una fecha especial. Observemos la siguiente figura:
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Si Ay B son las ciudades, podemos cal-

cular el dngulo ¢ a partir de los dngulos2 | Y>
y b, ya que utilizando el mismo argu- B
mento de antes, tenemos que ¢ = b -a. | TN o
Sabiendo la distancia entre A y B, y .
conociendo el dngulo ¢, el resto se dedu- AT
ce como antes.
d .
G,
____________ . R 6%
\ S v,

Capitulo 5

Ejercicio 1
Basta recordar que por 3 puntos no alineados del espacio pasa un tnico plano, mien-
tras hay una cantidad infinita de planos que pasan por una recta dada.

Ejercicio 2

Como el radio terrestre es aproximadamente R = 6.378 km, la distancia entre los dos
polos vale Rz = 20.037 km, y la distancia entre el Polo Norte y una ciudad cualquiera
ubicada sobre el Ecuador Rz/2 = 10.019 km.

Ejercicio 3

Llamemos O al centro de la esfera. Sea M'la proyeccién ortogonal de M sobre el plano
xy (el punto donde la recta perpendicular al plano xy que pasa por M corta el plano xy),
con lo cual el tridngulo OMM ' tiene un dngulo recto en M. Luego, la coordenada z de
M, es decir la longitud del lado MM’ de este tridngulo, es

z=MM'" = OMsenf
z = Rsenf.
Para encontrar x ¢ y introducimos la proyeccién ortogonal A" de M sobre el eje x (el

punto donde la recta perpendicular al eje x que pasa por el punto M" corta al eje x). El
tridngulo OM'M" es rectingulo en M’ y tenemos

x=0M" y=M"M
x = OM'cosp y = OM'sengp.

Volviendo al tridngulo OMM' vemos que



OM' = OM cosf

= Rcos0.

Luego,
x=RcosOcosep 'y y= Rcosfsenyp.

Ejercicio 4
Aplicando la férmula en AB’C, tridngulo rectdngulo en C, obtenemos

sen(m —c)  sen(m —a)

sen(m —C)  sen(m — A)

cos(m — ¢) = cos(m — a) cos(b).

Como sen(7 — x) = sen(x) para todo x € R, llegamos a

senc sena

= = ——
senC  senA

cosc = cosacosb = cos acosb -+ senasenb cos C'.

Ejercicio 5

Introduzcamos el punto A’ antipodal de A. Como A(CA) = dA,A)—d(CA) = n—b < 7/2 (pues
suponemos que & > 7/2), podemos aplicar las relaciones fundamentales en el tridngulo CBA’ rec-
téngulo en C de la misma manera que en el ¢jercicio anterior para obtenerlas en ABC.

Ejercicio 6
Lo probaremos primero en el caso 4, & < 7/2. Usando las relaciones trigonométricas que
probamos al principio, obtenemos

senb = @ tga = Sena cot A = cos A
oD’ cosa senA
y
BD . DEFE
tgazO—D, cotA:E.
Luego
_ED BDDE
senb = 0D — ODBD

senb = tga cot A.
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Después extendemos este resultado al caso 4, & > 7/2 de la misma manera que en
los dos ejercicios anteriores usando sen(z—x) = senx y cos(z—x) = —cos x que
implican tg(r — x) = —tgx y cot(r — x) = —cot x.

Ejercicio 7
Como suponemos 4, &y ¢ chicos podemos hacer las siguientes aproximaciones:

a2 b2 2
cos(a) = 1 — = cos(b) = 1 — ok cos(c) = 1— oY
sen(b) ~ b, sen(c)~ c.

Entonces podemos reescribir la primera relacién fundamental

cos(a) = cos(b) cos(c) + sen(b)sen(c) cos(A)

a2 b2 C2 A
1-— = (1 - 5) (1 = 5) + becos(A).

Simplificamos y obtenemos

como

o b2
a® = b® + ¢ — 2bccos(A) — -

Como 6%c* es mucho mds chico que £, ¢ y bc, lo podemos olvidar y nos queda
a® ~ b+ 2 — 2bccos(A)

por a, by ¢ chicos.

Ejercicio 8
Segtin el teorema,

area(ABC)

A+B+C —m= 2

A medida que el radio R de la esfera aumenta, el miembro de derecha se acerca
mds y mds a 0. Luego si consideramos el plano como una esfera de radio infinito
obtenemos

A+B+C—rm=0.



Ejercicio 9
Llamemos A4,, 4,, ..., A, los 7 vertices de P, (recorridos en el sentido de las agujas del
reloj), y consideremos los #—2 tridngulos A4,4,As, A,A3A44 AAAs, ..., A1A4,,,4,,. El

drea de P, es la suma de las dreas de estos tridngulos. Haciendo la suma
area(A; AsAz) = (A + Ay + A3 — m)R?
+area(A; Az Ay) = (1211 +As + Ay — 7T>R2
+area(A; AyA5) = (1211 + Ay + A5 — 7)R?
SEE
+area(A1An—1A,) = (1211 +An 1+ A, — 7T>R2

(0jo que el A, de la lera linea es el dngulo del vértice 4, en el tridngulo A4,4,4;, mien-
tras el A, de la 2nda linea es el dngulo del vértice 4, en el tridngulo 4,434, ..., y que
la suma de todos estos A; da el A; de e idem por 4,,. . . Al obtenemos

area(P,) = area(A; AsAs) + - - + area(A1A,—14,)

=(A + -+ A, — (n—2)7)R2

Ejercicio 10
Sea una luna cualquiera de dngulo o Para describirla en A ~
coordenadas polares consideremos la figura 1. Vemos que la ‘
luna es el conjunto

{6.9),-F<6<70<p<a}.

us
2

Luego su drea vale

il @ = &
R2/2 / cos@d@dgo:RQ/z cosede/ il x
—z Jo —z 0

= 2R%a.

La luna en rojo se describe e
\polares como {(0.¢), -5 <0<

[SIE R

coorde
,0<p<al.

Ejercicio 11

Por construccién la imagen de una arista es la interseccién con la esfera del dnico plano
que pasa por el centro de la esfera y esta arista. Recordando que por definicién un cir-
culo mdximo es la interseccion de la esfera con un plano que pasa por el centro de la
esfera, obtenemos que la imagen de una arista es una porcién de circulo médximo.
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Ejercicio 12

Sabemos que la suma de los dngulos de cualquier cuadrildtero vale 27z (lo probamos
como consecuencia de que la suma de los dngulos de un tridngulo vale 7). Usando esto
en el cuadrildtero formado por las cuatro rectas obtenemos

A+ (r—A)+z+ (r— B) =2m.

Simplificando llegamos a x = B.

Ejercicio 13

Consideremos un tridngulo plano ORS cualquiera y la recta (MN) definida
como el transporte paralelo de (RS) a lo largo de (OR) (ver figura 2). Por defi-
nicién del transporte paralelo tenemos MOR = ORS. Por hipotesis tenemos
también NOS = OSR. Luego

ORS + ROS + RSO = MOR + ROS + SON

— MON

Ejercicio 14
Examinando los vertices C'y B vemos que R\ SA )

ut+v'+C=n y v —u +B=n

es decir

Luego

Ejercicio 15
Llamemos M a la proyeccién ortogonal de M sobre el plano xyy O el centro de la esfe-
ra. Si conociéramos OM” tendriamos resuelto el ejercicio pues
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r=0M"cosp y y=OM"seny.

Busquemos entonces OM”. Como la recta (MM”) es paralela a la recta (ONN) podemos
aplicar el teorema de Thales en el tridngulo ONM’ para obtener

MMI/ MI/MI

"ON ~ OM'~
Como
ON =R,

MM"” = coordenada z de M = Rsen0,

M"M' =OM'—OM" = OM’' — Rcos#.
tenemos

send — OM’ — Rcosf
oM’

i.e.

OM' — Rcosf = OM'senf < OM'(1 — senf) = Rcos 6.

Como habiamos supuesto que M = IV, es decir, 6 = 5, tenemos (1 — send) = 0 y luego
podemos dividir en la dltima igualdad por (1 — sené). Obtenemos asi

Rcos0
oM = —— .
(1 — send)
Finalmente,
0
z=0OM" cosp = %cosg&
Rcos0
=0OM" = .
Y sen(p [ = send) seng

Ejercicio 16

Examinando la figura 5.33 (ver pdg. 100) vemos que la imagen por la proyeccién este-
reografica de un meridiano (respectivamente, de un paralelo) es una recta pasando por
el origen (resp., un circulo centrado en el origen) en el plano xy. Vamos a probarlo ana-
liticamente usando el resultado del ¢jercicio anterior.
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Una mitad de meridiano estd formado por los puntos de coordenada ¢ constante, es
decir, es un conjunto de la forma {(6, ¢), -3 <0 < I, = goo} por algtin ¢, € [0, 27)
(la otra mitad tiene por ecuacion gp 900 +m). Luego si cospg # 0,

Rcos@ Rcosf senyy  senyg
= —"-

A (1 — send) SR (1 — send) O8O o8 0o  COS Py

Esta ecuacién es la ecuacién de una recta que pasa por el origen pues es de la forma

Yy = axr con a = %. Sipg=0ie @o= +Z entonces
Rcosf 0
Tr=-——-C0Spy =
(1 — send) A=
y
Rcosf " Rcos@

= sengg=+———
4 (1 — send) = (1 —send)’

con —5 <6 <3. Como la funcién () = (11%50:“%) , —% <6 <%, es continua y crecien-

te (pues fO) = 1= seng > 0), i—n/2) = 0, lim g_, /5 f(#) = +00, es una biyeccién de
[—7/2, 7/2) sobre [0,+ o). Luego, la imagen de una mitad de meridiano con cos ¢, = 0
es la parte positiva (respectivamente, negativa) del eje y si ¢, = 7/2 (respectivamente, si
¢y = —n/2), y la imagen del meridiano completo es todo el eje y.

Probamos ahora que la imagen de un paralelo es un circulo centrado en el origen, es
decir, un conjunto de ecuacién x? +y? = 72 para algin » > 0 (el radio del circulo).

Un paralelo tiene por ecuacién 0 = 6, por algiin 0, ¢ € (—=/2, 7/2). Luego,

R cos
v (1 — senfy) S
= 1 COS p,
R cos b
A (1- sen@o)semp
= rseny,

donde Aeosbo es una constante que depende de 6, y ¢ € [0, 27). Entonces,

1—sen
2% + y? = r?(cos® ¢ + sen’y)

:T'Q.

Luego, la i imagen del paralelo de ecuacién 6 = 6, es el circulo centrado en el origen de radio
r= 228 _ £6,). Como la funcién fes creciente con f{—7/2) = 0 y lm f( 0)o—sr/2 = +00,




el radio del circulo crece desde 0 cuando 6, = —7/2 (el circulo en este caso se reduce al polo
sur de la esfera) y va tomando valores mds y mds grandes a medida que 6, se acerca a /2.

Ejercicio 17

La coordenada y de M’ se encuentra de la misma manera que la coordenada z de las coor-
denadas esféricas. La coordenada x es por definicion la longitud de un arco de circulo de
radio Ry dngulo . Como medimos los dngulos en radianes, obtenemos x = Rp.

Ejercicio 18
La imagen del paralelo de ecuacién 6 = 6, es el segmento horizontal

—Rrn <z < Rm, y=Cste

0
= Rlogtg (% 4F 70> .

La imagen del meridiano de ecuacién ¢ = ¢, es la recta vertical

x = Ry

pues cuando 0 recorre el intervalo (—7/2, 7/2), y = Rlog tg (T + g) recorre todo IR.

Ejercicio 19

Si el bote hace un dngulo constante con los meridianos, entonces su recorrido sobre una
mapa obtenida con la proyeccién de Mercator hace también un dngulo constante con las
rectas verticales (pues la proyeccién de Mercator conserva los dngulos por construccién y
la imagen de un meridiano es una recta vertical como ya vimos). Entonces, el recorrido
es una recta pues en ningin momento cambia la direccién de su movimiento.

Capitulo 6

Ejercicio 1

a) La pardbola se define como el conjunto de puntos cuya [~ N

distancia a un punto fijo (foco) es igual a la distancia a una diectriz __——

recta fija (directriz). En el grafico, las distancias a y b son /7

iguales entre si; lo mismo que las distancias c y d. < o 000

a

La hipérbola se define como el conjunto de los puntos .
. . . . . ~—

cuya diferencia de distancias a dos puntos fijos (focos) —

es constante. \ y
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Antes de pasar a las expresiones analiticas de estas

cénicas veamos una de las aplicaciones inmediatas de
estas definiciones: una variante del método del jardi-
nero para el trazado de una hipérbola.

Se necesitan una regla, un hilo y un ldpiz. La regla se
apoya sobre el papel con un extremo fijo al mismo. EI  \_
hilo también estd fijo al papel y al otro extremo de la
regla. Para dibujar una hipérbola basta con sostener el hilo tenso contra la regla
con el ldpiz y hacer girar la regla. En la figura, nuestra regla estaria representada en
dos posiciones P y P’ (con el extremo fijo en F,), el ldpiz estaria en Q y Q’ respec-
tivamente y el hilo recorreria el camino magenta en ambos casos.

4 2 0 2 4
X

O sea que los puntos P y P’ se encuentran a la misma distancia de F, ya que la
regla tiene una longitud fija y tenemos:

PF,-QF,=QP y P’F-QF=QP’
Entonces
PF, = QP + QF, y P’F, = QP + QF,
QP+QF, = QP’+Q’F,
QF, = QP-QP+QF,

Si Q y Q’ estdn en una hipérbola entonces se tiene que cumplir que:
QF;- QF, = QF;- QF, = constante
Pero esto vale porque
QF, = PF,-QP y QF, = PF,QP’
QF, - QF, = QP-QP+Q'F, - QF,
= QP-QP+Q’F,-(PF,-QP)
= QP + (PF, - QP’) -PF,
= QF,- QF,

Como queriamos ver.
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b) Dado un punto en el plano, las coordenadas polares r, O representan su distancia al
origen y el dngulo que forman con el eje de abscisas.

4 )
Se cumplen entonces las relaciones: yl— P
r
X =1 cosO
y =1 sen6
0 X
que nos servirdn para pasar las expresiones que obtengamos en coorde- | )

nadas polares a coordenadas cartesianas.

Ecuacién para la pardbola:

Sea P un punto de la pardbola de coordenadas r y 6, por lo tanto cum- Y
ple que las distancias OP y PD son iguales.
Del gréfico obtenemos que
PD =PE + ED S~
O sea, usando las coordenadas polares \__ £

r=rcosf+p
Despejando queda

r (1 - cosO)=p
P
1-cos6

Esta es la relacién que cumplen ry 6 cuando describen puntos que pertenecen a una
pardbola.
En general, se tiene la ecuacién general de una cénica es

P
1— & cosO

Donde ¢ se dice la excentricidad de la cénica. Existen variaciones sobre esta ecuacién
que corresponden a la orientacién de la figura.

Esto corresponde a una forma mds general atin de definir a las cénicas de una forma métrica.

Dada una recta directriz L y un foco F una cénica es el conjunto de puntos P que
cumplen la relacién
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PF = ¢ PL
Donde PD representa la distancia de P a la recta L

Si e>1 se define una hipérbola; si €=1, es el caso de la pardbola ya visto y si O<e<1 se
obtiene una elipse.

Veamos ahora que forma toma esta ecuacion general en coordenadas cartesianas

Para eso notemos que

cosO = x/r
Reemplazando
- p __re
= g% T r-ex

Entonces, cancelando r y despejando queda

—exX = p
r=ptex

Elevando al cuadrado ambos miembros

r2: (p+ SX)Z

Usando Pitdgoras tenemos
2= y24 2
Por lo tanto, nuestra ecuacién queda
y2+ X2 = (p+ €X) 2
(1-¢%) X2 + y272psxfp2 =0
como queriamos ver.
Ejercicio 2

La propiedad que queremos demostrar en realidad se trata de una reformulacién del
teorema de Thales y su reciproco.
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Teorema de Thales

Si 4,y ¢, son paralelas oD _ O—i entonces,

BD

lo que ademds estamos asegurando es que vale la vuelta.

Para demostrar todo esto vamos a mirar los tridngulos AOB y COD.

Dentro del tridngulo AOB consideramos los tridngulos BCA y 0
BDA; dado que tienen la misma altura y base, su drea es la
misma. Por lo tanto, las dreas restantes que corresponden a los

D C
tridngulos BOC y DOA también son iguales.
Entonces ° .
AC.h DB.h’ OC.h OoD.h’
2 2 2 2
Dividiendo queda
OoD.h’ OC.h
2
DBh"  ACh
2 2
O sea
oD _ _ocC
DB AC

Reciprocamente, si vale la relacién entre segmentos llegamos a la conclusion de que las
dreas amarillas deben ser iguales y por lo tanto las rectas |, y 1, paralelas.

Para pasar al enunciado de nuestra propiedad usamos que
OC+AC=0A OD +BD = OB
O sea
OC=0A-AC OD=0B-BD

Entonces, como vale Thales tenemos
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0oC OA-AC OA OB OB-BD oD

= = -1 = 1= =
AC AC AC BD BD BD
OA _ OB
AC BD

Y vale nuestra propiedad

Ejercicio 3

Como hicimos en la demostracién del teorema de
Desargues, podemos suponer que los puntos P y
Q son ideales y, por lo tanto, basta con ver que R
también es un punto ideal.

Como P y Q estdn en el infinito, las rectas 2-3 y
5-6 (en verde) son paralelas, asi como las 1-2 y
4-5 (en azul). Veamos que también los son las rec-
tas 1-6 y 3-4(en magenta).

Volveremos a usar la misma propiedad sobre paralelas que en el teorema de Desargues.
Seana, b, x, y, ry s las distancias entre Oy 6, Oy 1,6y 2, 1 y 5,2y 4 y 5 y 3 respectivamente.
Entonces se cumple que

a_ __ bty b atx

atX ~ b+y+s bty T atx+r

Si dividimos ambas ecuaciones y operamos queda

a b

atx+r ~ bty+s

Y de vuelta, esto nos dice que 16 y 34 son rectas paralelas.

Ejercicio 4
En este caso queremos ver que tres rectas pasan por un punto, el caso més sencillo de
demostrar es cuando ese punto es ideal. O sea las tres rectas serdn paralelas.

Tomemos dos de esas rectas, se intersecan en algin punto. Mandemos ese punto
y el punto P al infinito, entonces tendremos dos rectas paralelas. Para ver que la
tercer recta es concurrente con las otras dos basta con probar que es paralela a
alguna de ellas.



Como dijimos, podemos considerar P y en el infinito y que las rectas 1-4 y 3-6, por
ejemplo, son paralelas.

u
Vv

Como 1-4 y 5-6 son paralelas tenemos

Pero como ademds consideramos a P en el infinito nos quedaron parale-
las 2-3, 1-6 y 4-5, entonces tenemos

X __a u
y b % S
Y por lo tanto
X \. 4
y S

Con lo que las rectas 2-5 y 3-6 son paralelas, como querfamos ver.

/
Capitulo 7
Ejercicio 1
En esta seccidn resolveremos, paso por paso, el ejercicio propuesto al final del capitulo.
Segin mencionamos, al tratarse de un poliedro simple entre cuyas caras no hay tridngu-
los o cuadrildteros, vale C; = C; = 0, y en consecuencia la férmula que resulta ahora es:

5Cs +6Cg +...+ NC, =2A

Por otro lado, dijimos que todos los vértices son triadas y entonces

3V =3V, =24

Siguiendo la sugerencia, vamos a escribir la férmula de Euler-Descartes como
14C —4A + 14V — 104 = 28, vale decir:

14C5 + 14C +. ..+ 14C,, — 2 - (5C5+ 6Cg + ... + NC)) + 14V — 5.3V =28,
Reagrupando los términos, se obtiene:
(14 —10)Cs + (14 — 12)Cs + (14 — 14)C, +. .. (14 = 2N)C,, =28 + V]
de donde resulta

4C5 +2C6228+V
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Ahora podemos imaginar que a cada dngulo de cada cara del poliedro le asignamos un
valor fijo, por ejemplo 1. De esta forma, la suma total de los valores de todos los 4ngu-
los es 3V, pues en cada vértice concurren exactamente tres aristas (y en consecuencia,
se forman exactamente tres dngulos).

Supongamos ahora que no hay dos pentdgonos contiguos: en tal caso, la cantidad de vértices
que pertenecen a una cara pentagonal es 5C5, pues no hay vértices “repetidos”. Esto dice que
dichos vértices aportan, a la suma total, un valor igual a tres veces la cantidad 5C, es decir:
15C;. Si ademds ningtin hexdgono toca a un pentdgono, entonces cada uno de los dngulos
de las caras hexagonales aporta por lo menos 1 a la suma total, con lo que resulta

3V>15C + 6C; > 3(4C5 + 2C,) > 3(V+28) >3V,

lo que es absurdo. Esto prueba que alguna de las dos suposiciones que hicimos es
falsa: en otras palabras, o bien hay pentdgonos contiguos, o bien algin hexdgono
toca a algin pentdgono.

Capitulo 8

Ejercicio 1
Calcule 1/cos(87°), y 1/cos(89, 853°). ;Son muy diferentes?

Utilizando una calculadora tenemos cos(87°) = 0,0523, cos(89, 853°) = 0,0025. Por lo
tanto, 1/cos(87°) = 19,1, y 1/c0s(89, 853°) = 389, 8.

Ejercicio 4
Recordemos las relaciones que hemos obtenido:

(1) D=390-d

(i) r=110-d
(77i) R=110-D

Supongamos que conocemos D. Utilizando la ecuacién (i), averiguamos 7; ahora, gra-
cias a (ii), averiguamos 7; finalmente, utilizando (iii), calcularmos R.

Si conocemos 7, la ecuacién (ii) nos permite averiguar 4; conociendo 4, averiguamos D
con (i), y finalmente, como averiguamos D, despejamos R de (iii).

Por tltimo, si conocemos R, con la ecuacion (iii) calculamos D; reemplazamos D en (i)
y tenemos 4, y finalmente, con la ecuacién (ii) calculamos 7.
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