EDIFICACIONES CON DISIPADORES VISCOSOS

Ph.D. Genner Villarreal Castro Ing. Marco Díaz La Rosa Sánchez

Lima – Perú 2016

EDIFICACIONES CON DISIPADORES VISCOSOS

Primera Edición Setiembre 2016

Tiraje: 1000 ejemplares

Diagramación: Víctor Dionicio Torres Carátula: Disipadores de Energía Sísmica Edificio GERPAL Centro Empresarial Reducto - LIMA - PERU Estilo: Brenda de Jesús Crisanto Panta

Autores: © Ph.D. Genner Villarreal Castro © Ing. Marco Díaz La Rosa Sánchez

Editor: © Ph.D. Genner Villarreal Castro Calle Pablo Picasso 567 Urb. El Bosque Trujillo – Perú Teléfono 202946 / 950907260 www.gennervillarrealcastro.blogspot.pe

Impresión: Editora & Imprenta Gráfica Norte S.R.L. Calle Oswaldo Hercelles 401 Urb. Los Granados Trujillo – Perú Teléfono 402705 / 969960030 graficanorte@hotmail.com

Setiembre, 2016

©Hecho el Depósito Legal en la Biblioteca Nacional del Perú Nº 2016-12733 ISBN: 978-612-00-2419-5

Prohibida la reproducción total o parcial sin autorización de los Autores.

<u>PRÓLOGO</u>

Recientes sismos han mostrado que los edificios diseñados y construidos de acuerdo a los códigos más recientes proveen una buena respuesta, pero el costo de reparación de daños y el tiempo necesario para implementar estas reparaciones son más grandes que las anticipadas. Diversos esfuerzos en Estados Unidos, Japón y Rusia, se han centrado en desarrollar criterios de diseño sísmico y procedimientos para asegurar objetivos específicos de desempeño. El incremento en las fuerzas de diseño no mejora todos los aspectos del desempeño. Tres técnicas innovadoras han sido propuestas para usarse individualmente o en combinación, con la finalidad de mejorar el desempeño sísmico de los edificios: aislamiento sísmico, dispositivos suplementarios de disipación de energía y control estructural activo o híbrido. Esta investigación está orientada a la metodología de cálculo de edificaciones con dispositivos pasivos de fluido viscoso.

En la actualidad, dicho sistema constructivo se usa con mucha frecuencia en la práctica y se considera un campo abierto en la investigación sísmica; representando el presente trabajo un aporte importante en la actualización de los métodos de cálculo de edificaciones con disipadores de energía viscosos.

Después de realizar el análisis dinámico del edificio, el diseño de los disipadores fue hecho para obtener un amortiguamiento efectivo acorde con las distorsiones de los requerimientos de la Norma Peruana de Diseño Sismorresistente. Como resultado, se obtuvo, que con los disipadores se puede reducir las fuerzas internas de diseño; también los desplazamientos, velocidades y aceleraciones de los entrepisos, y, finalmente, se obtuvo la influencia de los disipadores de energía.

La presente investigación consta de 4 capítulos, conclusiones y bibliografía.

En el primer capítulo, se analiza el estado del arte en sistemas de protección sísmica, con énfasis en los disipadores de fluido viscoso, revisando la Norma ASCE 7-10 y detallando el proceso de cálculo de la rigidez del dispositivo, el coeficiente de amortiguamiento y exponente de velocidad.

En el segundo capítulo, se presenta la metodología de cálculo de edificaciones sin disipadores de energía, dando un enfoque completo del mismo, así como el proceso de escalamiento de acelerogramas al espectro de diseño y la determinación del sismo de diseño.

En el tercer capítulo, se detalla la metodología de cálculo de edificaciones con disipadores de energía, determinando los objetivos de diseño, propiedades del disipador y obteniendo la respuesta de la estructura con disipadores de energía de fluido viscoso.

En el cuarto capítulo se evalúan los resultados de desplazamientos, distorsiones de entrepiso, esfuerzos en los elementos de corte, aceleraciones, velocidades, modos y períodos

de vibración. Luego, se agrupan los dispositivos por niveles de fuerza y eligen los tipos de disipadores viscosos.

En las conclusiones se discuten los resultados, en las recomendaciones se dan los aspectos necesarios para una correcta modelación y en las líneas futuras de investigación se mencionan algunas posibles orientaciones de temas de investigación.

La presente investigación está dirigida a ingenieros civiles, postgraduandos e investigadores en el área de Mecánica Estructural.

Ph.D. Genner Villarreal Castro genner_vc@hotmail.com Ing. Marco Díaz La Rosa Sánchez mdiazlarosas@upao.edu.pe

Lima, Setiembre del 2016

CAPÍTULO 1 ESTADO DEL ARTE

1.1 SISTEMAS DE DISEÑO SISMORRESISTENTE

Para asegurar un adecuado comportamiento de las estructuras frente a los sismos, el diseño de estas, puede plantearse de dos maneras. La primera vendría a ser a base de un diseño convencional, el cual consiste en crear estructuras lo suficientemente rígidas pero a su vez dúctiles, es decir, que tengan la capacidad de incursionar en el rango inelástico.

Esto se puede conseguir empleando sistemas estructurales aporticados, duales, así como elementos de reforzamiento como arriostres metálicos, entre otros, de tal forma que la estructura diseñada sea capaz de resistir las diferentes solicitaciones sísmicas producidas por una excitación telúrica.

Cabe mencionar que dentro de este primer enfoque, deben también tomarse en cuenta algunos criterios importantes, tales como el suelo de fundación, el cual influye en el comportamiento dinámico de la estructura; así como el material a emplearse, siendo, por ejemplo, el acero más dúctil que el concreto. También se debe de tomar en cuenta la adecuada estructuración del proyecto, tratando en este punto de evitar las irregularidades tanto en planta, como en elevación.

En este primer enfoque es de esperarse que las estructuras, al ser sometidas a sismos de altas magnitudes, como los moderados y raros, se presente un comportamiento inelástico. Al realizar este trabajo inelástico, la estructura sufre daños estructurales, en la mayoría de los casos irreparables. Es importante indicar, que en estructuras esenciales como hospitales, compañía de bomberos y otros, estos daños no se permiten.

La segunda forma de diseñar edificaciones sismo-resistentes es incorporando dispositivos de disipación de energía, cuya función principal es incrementar el amortiguamiento, reduciendo los desplazamientos laterales, velocidades y aceleraciones.

1.2 BALANCE ENERGÉTICO

La ecuación 1.1 muestra la relación de la conservación de la energía en un sistema estructural expuesto a una excitación sísmica.

$$E_{L} = E_{K} + E_{S} + E_{A} + E_{D}$$
 (1.1)

Dónde:

 $E_{\rm L}$ - Energía absoluta de entrada del movimiento sísmico.

 E_{κ} - Energía cinética.

E_s - Energía de deformación elástica recuperable.

E_A - Energía de amortiguamiento.

 $E_{\rm p}$ - Energía irrecuperable disipada por el sistema estructural a través de la inelasticidad.

Para que el sistema estructural sea capaz de soportar las solicitaciones sísmicas, la capacidad de respuesta de esta debe ser mayor que la demanda sísmica. En pocas palabras la energía de entrada (E_L) debe ser absorbida o disipada por la suma de la energía cinética (E_K), elástica (E_S), de amortiguamiento (E_A) e inelástica (E_D).

Asumiendo que la energía de entrada es constante, será evidente que el desempeño estructural puede ser optimizado de dos formas:

- A través del método convencional, es decir, aumentando la rigidez y la ductilidad en el sistema, incrementando así la energía por deformación inelástica (E_D).
- Incrementando el amortiguamiento interno (E_A) mediante la incorporación de dispositivos suplementarios colocados en lugares estratégicos.

La primera alternativa representa al diseño clásico, en donde se trabaja en función de la resistencia y la ductilidad de la estructura para que esta soporte las diferentes solicitaciones sísmicas producidas por un movimiento telúrico. El ingeniero a cargo del diseño se apoya en el amortiguamiento inherente de la estructura, la misma que oscila entre 1% y 5% (edificaciones de concreto armado). Este diseño permite cierto grado de daño en la estructura pero sin que esta llegue al colapso.

La segunda alternativa consiste en anexar a la estructura dispositivos suplementarios, estos tienen el propósito de maximizar el amortiguamiento del sistema, reduciendo la demanda de disipación de energía a través de la inelasticidad (E_D) en los diferentes elementos estructurales, tales como columnas y placas, evitando así posibles fallas o daños en los mismos.

En la figura 1.1 se muestra el balance energético de una estructura sin disipadores de energía sísmica y se puede apreciar que la energía de entrada es completamente absorbida por la estructura. En la figura 1.2 se observa la distribución de energía para la misma edificación, pero esta vez considerando dispositivos de disipación de energía dentro del diseño, en este caso, vemos que la energía de amortiguamiento aumenta, reduciendo a su vez la demanda de disipación de energía por ductilidad. Donde, la energía de ingreso del sismo se representa con el color verde, la energía que absorbe el material de construcción con el color mostaza, la energía que absorbe el disipador de energía con el color rojo, la energía cinética con el color amarillo y la energía potencial con el color azul.

Fig. 1.1 Distribución de energía en un edificio sin disipadores Fuente: Edificaciones con disipadores de energía - Villarreal & Oviedo

Fig. 1.2 Distribución de energía en un edificio con disipadores Fuente: Edificaciones con disipadores de energía - Villarreal & Oviedo

1.3 SISTEMAS MODERNOS DE PROTECCIÓN SÍSMICA

Los diferentes sistemas de protección sísmica empleados en la actualidad tienen por objetivo el control de los desplazamientos de la estructura siguiendo una o varias de las siguientes alternativas:

- Por medio de dispositivos que anexados a la estructura absorban o disipen la energía de entrada del sismo.
- Por medio de mecanismos que al iniciar la excitación sísmica, ejerzan fuerzas buscando neutralizar la acción de esta.
- Por medio de dispositivos que modifiquen las propiedades y la respuesta dinámica de la estructura, buscando reducir la energía de entrada y evitando la resonancia.

De acuerdo a las alternativas expuestas, los sistemas de control estructural pueden clasificarse en 4 grandes grupos: los sistemas pasivos, semiactivos, híbridos y activos, cada uno de los cuales posee diferentes tipos de dispositivos que producen el correspondiente control requerido.

Fig. 1.3 Clasificación de los sistemas modernos de protección sísmica

Los disipadores de energía son dispositivos, como su nombre lo indica, que disipan grandes cantidades de energía, asegurándose, de esta manera, que otros elementos estructurales no sean sobre exigidos, lo que podría ocasionar importantes daños en la estructura. Estos dispositivos captan la fuerza sísmica a través del comportamiento plástico de metales dúctiles, la fricción entre superficies en contacto bajo presión, las deformaciones de corte de polímeros, la pérdida de energía en fluidos viscosos circulando a través de orificios y así evitan que el edificio reciba todo el impacto, generando una reducción en las deformaciones de la estructura.

El ASCE 7-10 en su capítulo 18 señala que estos dispositivos se clasifican según su comportamiento en 3 categorías diferentes: dependientes del desplazamiento, dependientes de la velocidad y dependientes del desplazamiento y de la velocidad.

Fig. 1.4 Clasificación de los disipadores de energía

1.4 DISIPADORES DE FLUIDO VISCOSO

Los disipadores viscosos son dispositivos que dependen de la velocidad y no del desplazamiento, razón por la cual no varía la rigidez de la estructura, ni tampoco incrementan los esfuerzos en los elementos estructurales.

Actualmente existen dos grandes fabricantes: Kajima Corporation de Japón y Taylor Devices Incorporation de Estados Unidos. Los disipadores manufacturados por ambas empresas se basan en el mismo concepto: disipar energía mediante el flujo forzado de un fluido (aceite o silicona).

En esta investigación, se emplearon disipadores viscosos Taylor, por ser el principal fabricante a nivel mundial y el que puede encontrarse en el mercado nacional.

Los disipadores viscosos Taylor se vienen manufacturando desde hace aproximadamente 50 años, donde su uso era limitado solo para aplicaciones militares.

Con el fin de la guerra fría en 1990 se permitió la comercialización para el público en general. Dado que esta tecnología era confiable y había demostrado un buen comportamiento a través de las décadas, la implementación a estructuras comerciales se llevó a cabo rápidamente.

Fueron pocas las empresas capaces de hacer la transición de su tecnología para el mercado comercial. Taylor Devices Inc., con sede en Nueva York, es un fabricante de productos de disipación de energía para uso militar y de defensa, iniciando en 1987 sus salidas comerciales para sus productos de defensa.

Hasta la fecha, más de 240 estructuras están empleando estos disipadores viscosos para obtener un mejor comportamiento estructural ante excitaciones sísmicas o de viento.

En la figura 1.5 se muestran los componentes de los disipadores viscosos.

Fig. 1.5 Componentes de los disipadores viscosos

- Horquilla final con tratamiento térmico de aleaciones de acero con protección contra la corrosión.
- 2. Acero al carbono forjado en aluminio con protección contra la corrosión.
- Cilindro con tratamiento térmico de aleaciones de acero, protegido contra la corrosión a través de placas o pintura.
- 4. Cabeza del pistón de acero sólido o de bronce.
- 5. Fluido viscoso, silicona incompresible.
- 6. Vástago de acero inoxidable.
- 7. Sellos / rodamientos de sello, juntas dinámicas.
- 8. Tapa con tratamiento térmico de aleaciones de acero, protegido contra la corrosión a través de placas o pintura.
- 9. Fuelle, nylon reforzado de neopreno.
- 10. Cojinete esférico forjado con aleación de calidad aeronáutica.

El disipador fluido viscoso (figura 1.6) consiste en esencia de dos elementos: un cilindro de alta resistencia y de un pistón (ambos de acero inoxidable). El cilindro contiene en su interior un fluido perteneciente a la familia de las siliconas (es resistente al fuego, estable a los cambios de temperatura y a los largos períodos de tiempo).

El pistón tiene en uno de sus bordes una cabeza (figura 1.7) con pequeños orificios. Esta divide el interior del cilindro en dos cámaras.

Ante una excitación sísmica, se produce el deslizamiento del pistón dentro del cilindro, este movimiento ocasiona el paso del fluido de una cámara a otra (figura 1.8), a su vez genera una presión diferencial, la misma que origina la fuerza de amortiguamiento.

Debido al desplazamiento interno del pistón se genera la conversión de energía cinética en calor, lo que produce la expansión y contracción térmica del fluido, debido a esto el cilindro contiene una tercera cámara, denominada de acumulación, que permite que se puedan compensar las variaciones de fluido (volumen).

Fig. 1.8 Funcionamiento de los disipadores viscosos

1.5 ECUACIÓN GENERAL

Como se acaba de mencionar, la forma de trabajo de estos disipadores es simple, durante un sismo la estructura experimenta desplazamientos relativos entre los pisos, los que a su vez generan movimientos y aceleraciones en el dispositivo viscoso, el mismo que regula el paso del fluido a través de pequeños orificios, la energía sísmica se disipa tan rápido como circula este fluido de una cámara a otra.

La fuerza generada en cada disipador viscoso se caracteriza por la siguiente ecuación:

$$\mathbf{F} = \mathbf{C}\mathbf{V}^{\alpha} \tag{1.2}$$

Dónde:

F - fuerza en el disipador

- C constante de amortiguamiento
- V velocidad relativa en el amortiguador
- α coeficiente que varía entre 0.4 y 0.6 para edificaciones

Es importante observar que no hay ninguna fuerza de resorte en esta ecuación. La fuerza del disipador varía sólo con la velocidad. Para una velocidad dada, la fuerza será la misma en cualquier punto del dispositivo.

Para estimar el valor del coeficiente de amortiguamiento (C) para dispositivos nolineales se puede emplear la siguiente ecuación extraída del FEMA 274

$$\beta_{\rm H} = \frac{\sum_{j} \lambda C_{j} \phi_{ij}^{l+\alpha} \cos^{l+\alpha} \theta_{j}}{2\pi A^{l-\alpha} \omega^{2-\alpha} \sum_{i} m_{i} \phi_{i}^{2}}$$
(1.3)

Dónde:

- $\beta_{\rm H}$ amortiguamiento viscoso de la estructura
- λ parámetro lambda
- C_i coeficiente de amortiguamiento del disipador j
- ϕ_{ij} desplazamiento relativo entre ambos extremos del disipador j en la dirección horizontal (con nuestro sismo de diseño)
- $\boldsymbol{\theta}_i$ ángulo de inclinación del disipador j
- A amplitud de desplazamiento del modo fundamental (desplazamiento modal de la losa del último nivel)
- $\boldsymbol{\omega}$ frecuencia angular
- m_i masa del nivel i
- ϕ_i desplazamiento del nivel i (con nuestro sismo de diseño)

El parámetro λ es dependiente del valor del exponente de velocidad α y el FEMA 274 nos facilita la tabla 1.1

Exponente α	Parámetro λ
0.25	3.7
0.50	3.5
0.75	3.3
1.00	3.1
1.25	3.0

Tabla 1.1

El ángulo de inclinación θ_j y el desplazamiento relativo del disipador de energía ϕ_{rj} se muestran en la figura 1.9

Fig. 1.9 Angulo de inclinación y desplazamiento relativo del disipador de energía

Es importante señalar que la ecuación 1.4 considera un coeficiente de amortiguamiento constante para todos los dispositivos. El mismo que se puede estimar una vez se conozca las demás variables. De esta manera, despejando la ecuación 1.3 obtenemos:

$$\sum C_{j} = \frac{\beta_{H} \cdot 2\pi A^{1-\alpha} \omega^{2-\alpha} \left(\sum_{i} m_{i} \phi_{i}^{2} \right)}{\lambda \left(\sum \phi_{ij}^{1+\alpha} \cos^{1+\alpha} \theta_{j} \right)}$$
(1.4)

Así mismo, el valor de $\beta_{\rm H}$ depende del amortiguamiento objetivo que se desee alcanzar, este valor se puede calcular empleando el siguiente procedimiento:

1. Se determina el factor de reducción de respuesta B

$$B = \frac{D_{max}}{D_{objetivo}}$$
(1.5)

Donde la distorsión máxima D_{mx} se obtiene por medio del análisis tiempo-historia para el sismo de diseño seleccionado y la distorsión objetivo $D_{objetivo}$ por la Norma de Diseño Sismo-Resistente E030 o por medio de la relación daño-distorsión de la metodología HAZUS.

2. Se calcula el amortiguamiento efectivo β_{eff}

$$B = \frac{2.31 - 0.41 \ln(\beta_0)}{2.31 - 0.41 \ln(\beta_{eff})}$$
(1.6)

Donde β_0 es el amortiguamiento inherente de la estructura que usualmente se fija en 5% para estructuras de concreto armado.

De esta manera, se obtiene el amortiguamiento efectivo, este incluye la acción del disipador de energía y el amortiguamiento inherente de la estructura.

3. Descontando el amortiguamiento inherente se obtiene el amortiguamiento viscoso que se requiere.

$$\beta_{\rm H} = \beta_{\rm eff} - 5\% \tag{1.7}$$

El exponente " α " define la reacción del dispositivo ante los impactos de velocidad, a su vez, determina el comportamiento histerético de los disipadores empleados.

Los disipadores viscosos tienen un valor $\alpha = 1$ y son llamados "disipadores lineales", en ellos la fuerza del disipador es directamente proporcional a la velocidad relativa.

Los disipadores con un valor de α mayor o menor de 1, son los llamados "disipadores no lineales". Aquellos con valores menores a 1 son efectivos para minimizar los pulsos de alta velocidad, mientras aquellos con el valor de α mayor a 1, habitualmente no son empleados en edificaciones, porque necesitarían de grandes velocidades para incrementar significativamente la fuerza en el disipador.

Fig. 1.10 Relación Velocidad vs. Fuerza del Disipador

En la figura 1.10 se puede apreciar la eficiencia del Disipador Viscoso No Lineal ($\alpha < 1$), ya que para pequeñas velocidades relativas, puede desarrollar una mayor fuerza de amortiguamiento en comparación a los otros tipos de Disipadores ($\alpha = 1$ y $\alpha > 1$).

En la mayoría de los casos, el valor del exponente de velocidad α está comprendido en el rango de 0.3 a 1.0. Los valores de α que han demostrado ser los más empleados para el diseño sísmico de edificios y de puentes están en el orden de 0.4 a 0.5

Para el caso de puentes con bajas solicitaciones sísmicas, se puede emplear un valor de $\alpha = 2$, mientras que para todas las estructuras diseñadas bajo cargas de viento se suelen emplear valores en el rango de 0.5 a 1

1.6 RIGIDEZ DEL DISPOSITIVO "K" (RIGIDEZ DEL BRAZO METÁLICO)

Como ya se mencionó, anteriormente, este dispositivo solo depende de la velocidad para controlar la respuesta dinámica de la estructura. Para poder lograr esto, en la modelación se debe considerar la rigidez del sistema con un valor muy alto.

Es así que la rigidez que se debe tomar para la modelación es la del brazo metálico (que conecta el dispositivo con la estructura). Esto debido a que la rigidez axial de este es mucho mayor que la del disipador. La rigidez de este brazo se calcula con la ecuación 1.8

$$K = \frac{EA}{L}$$
(1.8)

Dónde:

E - módulo de elasticidad del acero

A - área de la sección del brazo metálico

L - longitud del brazo metálico

Es importante que este perfil metálico tenga un área (A) significativa, esto para minimizar las deflexiones elásticas en el brazo y maximizar las del disipador, logrando, de esta manera, que el dispositivo se active completamente ante una excitación sísmica.

Asimismo, es importante que el perfil metálico seleccionado tenga suficiente momento de inercia (I) y área (A) para que este tenga suficiente resistencia contra el pandeo en la dirección de compresión.

Para la selección del perfil metálico es muy común emplear perfiles del tipo HSS o PIPE, por las razones de estética y por las facilidades que se obtiene en la instalación.

1.7 COMPORTAMIENTO DESPLAZAMIENTO VS FUERZA

Imaginemos un pórtico como el mostrado en la figura 1.11. Este al ser expuesto a una carga sísmica experimenta desplazamientos y sale del equilibrio (t0), para que en un tiempo (t1) alcance su desplazamiento máximo, es en ese instante donde la estructura comienza a

trasladarse hacia la dirección contraria, en un tiempo (t2) regresa nuevamente al equilibrio para que posteriormente alcance nuevamente el desplazamiento máximo (t3).

Fig. 1.11 Comportamiento de un pórtico ante una excitación sísmica

Ahora, si sobre este mismo pórtico se anexara un disipador de energía viscoso (figura 1.12), cuando el pórtico llegue a su desplazamiento máximo (t1), la elongación en el dispositivo (producto de la fuerza de tracción) será máxima, cuando el pórtico regresa al equilibrio (t2), las deformaciones en el dispositivo serán igual a cero, pues este también regresa a su posición inicial, y nuevamente la deformación en el disipador (por la fuerza de compresión) será máxima en el tiempo (t3).

Fig. 1.12 Disipador de energía viscoso en el pórtico de análisis

Fig. 1.13 Desplazamientos en el disipador viscoso en los momentos (t1) y (t3) Fuente: CDV Ingeniería Antisísmica

Por otro lado, el comportamiento del pórtico puede ser idealizado como si fuese un péndulo invertido, tal como se muestra en la figura 1.14, donde F es la fuerza y Δ es el desplazamiento relativo del dispositivo.

Fig. 1.14 Idealización tipo péndulo invertido del comportamiento de un pórtico ante una excitación sísmica

Como se indicó anteriormente, los disipadores viscosos dependen de la velocidad para disipar energía, tal es así que la fuerza que se genera en estos dispositivos es $F = CV^{\alpha}$. Teniendo en consideración esto, se puede ver que cuando el pórtico llegue a su

desplazamiento máximo (t1) y (t3), la fuerza de amortiguamiento en el dispositivo viscoso será igual a cero, pues en este instante la velocidad es igual a cero.

Asimismo, la fuerza máxima de amortiguamiento ocurre cuando la velocidad es máxima y esto se da cuando el pórtico entra en equilibrio (t2), es decir, cuando el desplazamiento en las columnas es igual a cero.

Así la curva histerética o curva desplazamiento vs fuerza del disipador viscoso queda expresada como la figura 1.15

Displacement

Fig. 1.15 Relación Desplazamiento vs Fuerza (curva histerética) de un disipador viscoso

1.8 CRITERIOS DE UBICACIÓN

La mejor ubicación de los disipadores viscosos se consigue a través de un proceso iterativo, en donde el diseñador debe probar diversos modelos y ubicaciones. En este proceso es importante tener en cuenta la arquitectura y el uso del edificio; por esta razón los profesionales encargados del proyecto tanto en arquitectura como en diseño estructural, deben trabajar conjuntamente.

La Norma ASCE 7-10 en su capítulo 18 da algunas recomendaciones que se deben tomar en cuenta:

- La estructura no debe presentar irregularidades.
- Se deben emplear como mínimo dos dispositivos en la dirección a reforzar.
- Se deben disponer los dispositivos en todos los niveles.
- Para no generar torsión se debe buscar la simetría.

Existen diversas configuraciones, sin embargo los que comúnmente se emplean son Chevron y Diagonal, en ambos, se requiere de brazos metálicos para conectar el dispositivo con la estructura.

En la disposición Chevron, el dispositivo se coloca en posición horizontal (en forma paralela al plano del techo), logrando una eficiencia del 100%, debido a que en esta posición, los disipadores absorben las fuerzas horizontales directamente, es decir, que se

emplea toda la capacidad de estos para controlar los movimientos laterales producidos por la excitación sísmica.

Fig. 1.16 Disposición Chevron

La principal desventaja que se encuentra con el empleo de esta disposición es que produce sobresfuerzos en la parte intermedia de la viga cercana al disipador. Para controlar estos esfuerzos se emplea un refuerzo adicional a través de planchas o anclajes, tal como se muestra en la figura 1.17

Fig. 1.17 Refuerzo adicional en la disposición Chevron

Fig. 1.18 Esquema de la disposición diagonal

En la disposición diagonal, el disipador viscoso se orienta en el ángulo diagonal del pórtico, tal como debe ser ubicado, mostrado en la figura 1.18. El arreglo diagonal tiene

menor eficiencia que el Chevron, ya que, en este caso, solo la componente horizontal participa en la absorción de fuerzas horizontales.

El amortiguamiento que brinde depende del ángulo de inclinación del brazo metálico que va sostener al disipador, mediante la expresión $f = \cos \theta$

Debido a que el disipador es anexado a la estructura en un nudo rígido (unión vigacolumna) no se requiere de ningún refuerzo adicional en ningún elemento del pórtico, siendo así la disposición más económica, pues solo requiere extensores (brazos metálicos) para la instalación de los disipadores.

Como no genera sobreesfuerzos en la estructura, este tipo de arreglo puede ser diseñado e instalado tanto para nuevas estructuras como para las ya existentes que requieran de reforzamiento, siendo así muy efectivo para fines de rehabilitación.

Fig. 1.19 Disposición Diagonal

Fig. 1.20 Diferentes configuraciones del disipador viscoso

Fuente: Passive control of linear structures equipped with nonlinear viscous dampers and

amplification mechanisms - M. di Paola, G. Navarra

En la figura 1.20 se muestran otros arreglos que también se pueden tomar en cuenta al momento de diseñar el sistema de disipación empleando disipadores viscosos.

1.9 RECOMENDACIONES PARA EL DISEÑO

1.9.1 NORMAS Y REQUERIMIENTOS DEL CÓDIGO ASCE 7-10

La Norma ASCE 7-10 en su capítulo 18 "Requerimientos de diseño sísmico para estructuras con sistemas de disipación" plantea 4 procedimientos para el análisis de estructuras provistas de disipadores.

Procedimientos no lineales

- Análisis de la respuesta no-lineal tiempo-historia
- Análisis no-lineal estático

Procedimientos lineales

- Análisis de la respuesta espectral
- Análisis de fuerza lateral equivalente

En nuestro país el procedimiento de análisis para una estructura provista de disipadores de energía se ha fijado hacia el empleo del análisis de la respuesta no-lineal tiempo-historia.

1.9.2 RECOMENDACIONES PARA EL ANÁLISIS TIEMPO-HISTORIA

Los registros sísmicos deben ser apropiadamente seleccionados (deben ser concordantes con las características del suelo de cimentación del proyecto) y escalados individualmente.

Al menos 7 pares de registros sísmicos (en sus componentes horizontales) deben ser empleados para el análisis tiempo-historia, las fuerzas, desplazamientos y velocidades pueden tomarse como el promedio de los obtenidos en el análisis.

Si menos de 7 pares de registros sísmicos son empleados, las fuerzas, desplazamientos y velocidades deben tomarse como el máximo valor obtenido del análisis tiempo-historia.

Para el caso peruano, los especialistas de CDV Ingeniería Antisísmica, recomiendan emplear un mínimo de 3 pares de registros sísmicos, los cuales deben ser escalados a un espectro de diseño, donde el valor de R sea igual a 1, tal como lo señala la Norma Peruana de Diseño Sismorresistente. Los valores que se tomen para el cálculo de las propiedades del sistema de disipación serán aquellos que se ajusten más al espectro de diseño, considerando una variación máxima de 1,5% entre las derivas obtenidas del análisis tiempo-historia y del análisis con el espectro de diseño.

1.9.3 RECOMENDACIONES PARA EL DISEÑO DE CONEXIONES

Esta Norma señala que las conexiones deben ser evaluadas usando el criterio de diseño por resistencia y que deben ser diseñadas para que resistan las fuerzas, desplazamientos y velocidades del máximo sismo esperado, igual a 1,5 del sismo de diseño.

Para el diseño de las conexiones tener en cuenta que hay algunos elementos que son proporcionados por el mismo proveedor y que se obtienen al comprar el disipador viscoso, todos los demás elementos deberán ser diseñados.

Fig. 1.21 Conexiones en la disposición diagonal Fuente: Taylor-SAP2000 ETABS modeling

1.9.4 RECOMENDACIONES PARA LA MODELACIÓN

La base puede ser modelada como perfectamente empotrada o se puede considerar las propiedades del suelo a través de la interacción suelo-estructura.

El amortiguamiento inherente de la estructura debe ser basado en el tipo de material que se emplee, la configuración y el comportamiento de la estructura y de los elementos no estructurales. A menos de que se pueda probar un amortiguamiento mayor, este se tomará como máximo el 5% del amortiguamiento crítico para todos los modos de vibración.

CAPÍTULO 2 EDIFICIO SIN DISIPADORES DE ENERGÍA

2.1 OBJETO DE INVESTIGACIÓN

Para la siguiente investigación se empleó un edificio de oficinas de concreto armado de 8 pisos y presenta una configuración regular tanto en planta como en elevación.

Las dimensiones en planta son de 20 metros en el eje X y de 30 metros en el eje Y. El edificio se va a ubicar geográficamente en la ciudad de Lima, el suelo donde estará plantada la cimentación será grava de buena calidad.

El sistema estructural es aporticado, es decir, está conformado por vigas y columnas en ambas direcciones. Se emplearán en los entrepisos losas macizas de 15 centímetros de espesor, las cuales actuarán como diafragmas rígidos.

Fig. 2.1 Piso típico y Corte A'-A' de la edificación

El primer piso de la estructura tiene una altura de 3.4 metros y los siete restantes de 3.0 metros, todas las columnas son de 30 x 60 cm y las vigas (tanto longitudinales como transversales) tendrán un espesor de 30 centímetros y un peralte de 60 centímetros.

2.2 CONSIDERACIONES PARA LA MODELACIÓN

2.2.1 PROPIEDADES DE LOS MATERIALES

A continuación, en la tabla 2.1, se presentan las características de los materiales a emplear para cada uno de los elementos de la estructura.

I	,	•
Propiedades	s del conc	reto
Resistencia a la compresión	f'c	210kgf/cm ²
Módulo de elasticidad	Ec	217371kgf/cm ²
Peso específico	¥	2400kgf/m ³
Coeficiente de Poisson	μ	0.2

Propiedades del acero

fy

4200kgf/cm²

Tabla 2.1 Propiedades del concreto y acero para el diseño

	Módulo de elasticidad	Es	2000000kgf/cm ²
-			

2.2.2 CARGAS CONSIDERADAS PARA EL ANÁLISIS

Esfuerzo de fluencia

A) CARGA VIVA

Se emplearon los valores que se establecen en la tabla 1 de la Norma E020 (Cargas), es decir 250kgf/m² de sobrecarga para oficinas en los pisos típicos y 100kgf/m² para la azotea.

B)CARGA MUERTA

La carga muerta está constituida principalmente por su peso propio, piso terminado y tabiquería, empleando los siguientes valores:

Piso terminado: 100kgf/m² (1er al 8vo piso)

Tabiquería:100kgf/m² (1er al 7mo piso)

C) PESO DE LA EDIFICACIÓN

Para el peso de cada nivel se tomó en cuenta el 100% de la carga muerta y el 25% de la carga viva, debido a que la edificación es de categoría C (edificio común) de acuerdo a la Norma E030 de Diseño Sismorresistente.

2.3 MODELACIÓN ESTRUCTURAL

2.3.1 MODELAMIENTO GEOMÉTRICO

- 1. Ingresamos al programa SAP2000 v.17
- 2. Al ingresar observamos la siguiente ventana

- 3. Definimos las unidades en Tonf,m,C
- 4. Hacemos click en el botón de acceso rápido 🗋 (New Model...), al hacerlo aparecerá una ventana emergente, la misma que se muestra a continuación.

×			New	Viodel		1
	New Notel Vessel	n Inni Delevis with Ori There at Dasary Re	s Sec. a		1	e Honden
1	Salest Tanalda					
					A	圈
	Ban.	Bue Only	fear.	30 Tures	80 Trueses	30 Farms
2	₩.			*	Ŀ	Î
1	30 Heres	Nige .	Pat Set	State	Dacases	Soupe Studies
	Sharpsont	Seld Models				

- 5. En esta ventana primero verificamos que las unidades de trabajo sean las correctas, posteriormente seleccionamos la opción **3D Frames**
- 6. Cuando se abre la ventana **3D Frames**, introduciremos la siguiente información.

<u>.</u>		3D Frames		
30 frame Type	Open Frame Buil	ding Dinamatona		
Opes Prame Building v	Num	ber of Stories S ber of Days, X ber of Days, Y	Story Bey W Bey W	Height 3. hdb, X 5 hdb, Y 5
$\Pi^{\Pi^{\Pi^{1}}}$	Use Custor Section Propertie	n Grid Spacing and Lacate	HROW.	
		Columna Default	•][•]	
Pestraints	2	Carcel		
		γ		
Número de pisos	: 8	Altura del	piso típico	: 3.00 m
Número de tramos	en X : 4	Longitud o	de vanos en X	: 5.00 m
Númoro do tramos	en Y · 6	Longitud (le vanos en V	· 5.00 m

- Una vez hayamos ingresado estos datos, el programa nos mostrará el sistema de vigas y columnas del edificio. Debemos recordar que la altura de las columnas del primer nivel no es de 3.00m sino de 3.40m
- Para hacer esta corrección, en la ventana de trabajo nos posicionamos en la vista XY a una altura Z=0 y seleccionaremos todos los nudos tal como se muestra a continuación

 Lo que haremos ahora es mover estos nudos unos 40 centímetros hacia abajo, para ello ingresamos a la opción Edit→Move

En la ventana emergente señalar que se desea mover los nudos seleccionados 0.4m en la dirección Z

11. Una vez realizado este paso podremos observar que efectivamente los nudos se han desplazado 40cm hacia abajo, lo que además ha generado que las columnas del primer nivel ya no sean de 3m sino de 3.4m

Como se podrá apreciar, **para modelar edificios con disipadores viscosos, la altura de las columnas del primer piso será exactamente igual a la altura del primer nivel**, con la finalidad de obtener el ángulo de inclinación adecuado del disipador.

12. Debido a que el sistema de Grillas no se modifica automáticamente no podremos visualizar los nudos desplazados, es por esto que tendremos que realizar algunos ajustes. Para ello, daremos click en la ventana de trabajo y seleccionaremos la opción Edit Grid Data

 En la ventana emergente Coordinate / Grid Systems seleccionamos al sistema de grillas GLOBAL y, posteriormente, daremos un click en Modify / Show System

14. Se abrirá una ventana llamada Define Grid System Data, en la parte inferior en Z Grid Data señalar que la primera grilla que se muestre esté ubicada a -0.4m. Luego seleccionar la opción Ok hasta que se muestre nuevamente la ventana de trabajo.

	Grid D	Ordinate	Line Type	Visibility	Bubble Loc.	
1	Zt	-0.4	Prinary	Show	End	
2	Z2	3.	Primary	Show	End	
3	Z3	6.	Primary	Show	End	
4	Z4	9.	Primary	Show	End	
5	Z5	12.	Primacy	Show	End	
6	26	15.	Primary	Show	End	
7	27	18.	Primary	Show	End	
	79	74	Delman	Cheven	Fed	

15. Una vez realizado este cambio ya podremos visualizar los nudos de cimentación.

2.3.2 ASIGNACIÓN DE PROPIEDADES DEL CONCRETO

16. Ingresaremos a la opción Define y seleccionaremos la opción Materials

17. Una vez sea abierta la ventana **Define Materials** seleccionamos **4000Psi**, es decir, concreto y luego daremos click en **Modify / Show Materials**

18. En la ventana emergente podremos ver y modificar las propiedades del concreto, las mismas que se muestran en la siguiente página. Es importante recordar que las unidades con las que el programa está trabajando son Tonf y metros. En la siguiente imagen se muestra, de manera enmarcada, los datos que debemos colocar.

- 2.3.3 ASIGNACIÓN DE LAS SECCIONES DE COLUMNAS Y VIGAS
 - 19. En el menú principal nos dirigiremos a **Define**→**Section Properties**→**Frame Sections**

20. Se abrirá una ventana llama **Frame Poperties** aquí simplemente señalar que se desea añadir una nueva propiedad a través de la opción **Add New Property**. Al hacer esto emergerá la ventana **Add Frame Section Property**, en donde en el tipo de sección seleccionaremos **Concrete**.

		The survey has	July Hane S	con substit.	
	Frame Properties	The State Sector	194	ine Internet	
Properties That the property	Data le Ingent Neur Property	I	Ĩ	1	L.
	Alla Capit of Property Modify/Dires Property		I	Õ	
			Ī		

21. Tanto las columnas como las vigas que se van a emplear en este trabajo son de sección rectangular.

× Aut	tarte Section Property	
Transformer's fame Transformer Preselve Sant		1.0
	0 Ó	
IF	[

22. Iniciamos creando la sección de las columnas tal como se muestra en la siguiente imagen. Es importante verificar que el material que se vaya a emplear sea CON 210. No olvidar de verificar con la opción Concrete Reinforcement que se trata de una columna.

terine serve	COLILIXON	Decay Celler
Decides' inclus	Buddy-Share Seree	
Contraction (Terms
Det (0)	18.0	
WHERE CELLS	18.8	
V201594	Contraction of the local division of the loc	Sactian Properties
Contraction in the	Property Postment	The Designation Designation
* 1000 A 700	- in more -	the providence of the sec

23. Nuevamente repetimos los pasos 20 y 21 esta vez para crear la sección que tendrán las vigas, en este caso, es importante seleccionar la opción Concrete Reinforcement y señalar que se trata de una viga y no de una columna.

Restance for Tankros		×	Renddocern	ent Data
Sector Neter VIIIIII	Dealey Calif	Rober Material Longitudinal B Confinament S	en (Tell)	ABISORE +
Depth (21) (43) Hom (22) (43)	tenter T == + + + + + + + + + + + + + + + + + +	Design Type C: Column (M M Bham (M) C: Column (M	40 MJ Deege Deege Only: Its Longhuitrei Per Oversites for Duct	ter Catter 0.00 0.00 0.00 R State
based Provide Read Provide Read Provide Read Read Read Read Read Read Read Re	Seder Prester	Ne John	8 9.	a a

Algunos ingenieros estructurales emplean las sugerencias del ACI 318 M-05 (American Concrete Institute) para trabajar con secciones agrietadas (Artículo 10.11.1), esta norma nos señala que es importante tomar en consideración la presencia de secciones agrietadas a lo largo de los diferentes elementos estructurales (columnas, vigas y muros).

El ACI 318 M-05 nos dice que consideremos una fisuración en vigas y columnas de:

• Vigas $\rightarrow 0.35^{*}(lg)$ • Columnas $\rightarrow 0.70^{*}(lg)$

Donde Ig es la sección Bruta del elemento.

	1152200052110	n	Frame Property/Stiffness M	odification Fa
Inction Name	V8183.044	Diskey Color	Property/Stiffness Modifiers for Analys	
Sarian Salas	Analy Sine Select.		Cross-section (sale) Area	1
Deservative .	las	Delter.	Shear Area in 2 direction	1
man (17)	1.0	11	Shear Area in 3 director	1
			Torsional Constant	
			Moment of Inertia about 2 axis	0.35
			Moment of Ivertia about 3 axis	0.35
		Properties	Vass	1
	Property Studiers	Index Preamber .	Weight	1

Para considerar las secciones agrietadas en nuestro modelo estructural seleccionar **Set Modifiers**, tal como se muestra en la página anterior.

En dicha figura se puede observar que el porcentaje de fisuración se coloca en las opciones **Moment of Inertia about 2 axis** y **Moment of Inertia about 3 axis**, siendo los valores de 0.35 en ambos casos, debido a que se trata de la sección de la viga, para el caso de columnas estos valores tendrían que ser de 0.70 en ambos casos.

Es importante mencionar que el agrietamiento de vigas y columnas es opcional, esta consideración depende netamente del ingeniero estructural. Además hay que tener en cuenta que realizando este paso se puede caer en el sobredimensionamiento de la estructura por lo que a opinión de los autores no es recomendable seguir este criterio.

Los ingenieros estructurales de **CDV Ingeniería Antisísmica** tampoco toman en cuenta esta recomendación, por lo que en el presente trabajo **NO se consideró el fisuramiento de las secciones de vigas y columnas**, solo se menciona este paso para que el interesado tenga conocimiento de la modelación con este criterio.

2.3.4 DEFINICIÓN DE LOS ELEMENTOS TIPO ÁREA

24. Para esta estructura solo será necesario crear un solo elemento tipo área, la losa maciza de 15 centímetros de espesor que se empleará como losa de techo para cada uno de los niveles. Para ello seleccionamos la opción Define→Section Properties→Area Sections

25. En la ventana emergente seleccionamos el tipo de sección a emplear, como es una losa maciza para techo será del tipo **Shell** (**Shell-Thin**). Es importante verificar que el material sea **CON210**

2.3.5 ASIGNACIÓN DE COLUMNAS, VIGAS Y LOSAS

26. En la ventana de trabajo (vista XY) seleccionamos las vigas de todos los niveles.

27. Ingresamos a la opción Assign→Frame→Frame Sections

28. Luego, en la ventana emergente **Frame Properties** le indicaremos al programa que asigne la sección **VIG 0.3 x 0.6** a los elementos seleccionados.

and the second s	(Date
Feet this property	Pack New Property.
10, 23 1 04	All fex Proets
	Add Dasy of Preparty
1. Creation	Notify Steve Traperty
	Said-Augurg

- 29. Para el caso de las columnas el procedimiento es exactamente igual, esta vez en la ventana de trabajo (vista **YZ**) seleccionamos todas las columnas del modelo.
- 30. Repetir los pasos 27 y 28, asignando la sección COL 0.3 x 0.6
- 31. Ahora procedemos asignar las losas de entrepiso, para ello, hacemos click en el comando **Quick Draw Area**

32. Luego en la ventana de trabajo (vista **XY**-Primer techo) asignamos las losas dando un click en todos los paños (uno por uno).

33. Luego, hacemos click sobre cada uno los paños creados, posteriormente seleccionamos la opción Edit→Replicate y en la ventana que emerja señalaremos que deseamos replicar los elementos seleccionados 7 veces a +3 metros uno del otro en la dirección Z.

100	Two Date Day is	444 A	KRAG I	A REAL	×		Replicate				
Qs.	Factor .	100-1	CONTRACT.					10000		10-	
*	Cal.	Take .				Linea	- N	Radial	1	Metor	1
-	Case	Owl.		0	3	ciene	nta		Rep	fcale Optic	ma
17	Park.	100.0						-1			
×	Tanks .	-				OK.	ē	_	1.12	and for the	or Réplicate Option
11	And to Hinda's Frank Telepisie.						0	-	4	of 4 active	boxes are selected
	Interest of Parallel States.	(Init)				20.5	-	-	1		and the second
ШÒ	Parliam.	in.				dz	3		3	Delete C	Inginal Objecta
	timate										
Φ	Marg.	100-10			1	creme	nt Defa				
1.5	Cal Arrest					Shire Shire	17				
	10110-00			a descent		1001004	1.1	_			
	Rat Areas		-								
1	Shinklets.										
13	Ston Baphane										
	Marga Pagelines										
1.3	Change Labellin.										
									_	1.14	

Es importante que en el paso anterior no se hayan seleccionado ni vigas ni nudos, solo las losas porque si no estos también se replicarán.

34. Para tener una visualización más agradable del modelo, hacemos click en la opción **Set Display Options**.

35. En la ventana que se abre **Display Options For Active Window** en **General** habilitar la configuración **Fill Objects**.

L.	Display C	splay Options For Active Window						
Jards Labris Zabris Josephine Sprogs Local Acce Motor Vere	France/Cables/Tentons Labols Labols Sectors Resease LocalAces Frances Not in View Cables Not in View Tentons Not in View Tentons Not in View	Control Control Show Objects Control Fet Objects Control Show Edges Show Edges Show Edges Show Edges Show Edges Control	Verw by Colors of Coloring Dectors Dectors Datamas Color Protor Vinde Bestgmand, Back Objects Selected Groups Descriptions					
Areas Labets Sectors Lacal Ares Net in View	Salar SI Annen Si Annen Si Annen Si Annen Si Annen	Careto Careto Di Lareto Di Lareto Lareto Di Lareto Lareto Di Lareto Lareto	Hacebeese Show Analysis Hoder (FAvalable) Show Justis Drily Far Objects in Verw View Type Standard O Official O Extruits					
		DK Earcel	C Apply to All mindows					

36. Finalmente el modelo quedará tal como se muestra en la siguiente figura.

2.3.6 ASIGNACIÓN DE BRAZOS RÍGIDOS (COLUMNA-VIGA)

37. Para asignar los brazos rígidos se requiere como primer paso seleccionar todas las vigas del modelo creado, para ello ingresamos a Select→Select→ Properties→Frame Sections y seleccionar VIG 0.3 x 0.6

14 HB 90 / 1	5	latest .	+	61	Paperson Television		Roff- foring and t-D
1 (X) + 170m + 1-1	い間の	lander Inter Deng Talitas Natif Little	e. Davel	282.	Nay Car-Suit-E Interacting/Ny (Car-Suit-R Interacting/Inter Car-Suit-R		8 10 vm
N 10	R.	In Pressed Methods	Omi Intil	10.0	Select Long Readed To: Property:		2 ⁸ Maren Tegelan.
				. 22%	Norgeneriti Norgen, Can-G Labels, Dated M Can-A	•	Provide Statement Construction Construction Section Programment Section Programment Section Programment Section Programment

38. Al finalizar el paso 37 podremos observar que todas las vigas del modelo han sido seleccionadas, ahora ingresamos a Assign→Frame→End(Length) Offsets

The last time later lines inter inter i being beingen i	ety Dege Spine, Lain Hap 	n
A Come	 T^{ab} France Section. X^b Fragery MultiPac. U^b_a Manual Property Descentes. 	1
1111	1 gr J Antoney Partial Forty. 2 Sec Strategy Antonio State	STATE REPORT
	 Part And Desight Others. Tab. Insultant Facel. No. Well Network. 	ALL STATE
	1. Status Talana. 32. Athentica.	RURS-111
THE REPORT LINE REPORTS	n a liter sum.	MSSN 1818, DOLAR

39. En la ventana que se abra habilitar la opción **Automatic from Connectivity** y señalar que el factor de rigidez sea igual a 1(conexión perfectamente rígida)

2.3.7 CREACIÓN DE PATRONES DE CARGA Y FUENTE DE MASA

40. Para poder asignar cargas vivas o muertas, primero hay que señalarle al programa que tipo de cargas tenemos, para ello ingresar a **Define**→**Load Patterns**

In in the state	Service States	Berner Darier Derign Deren, D 10, 00, 20 Auf set set yet == 3	A ++ BR R- Inhm II-B
t and the second	Machines.	- ins	
	Include Lynnes Date.	9 9 9	
19	instaine.		STATE TO
8	Berge. Series Dill. Series Sellington and		
12	Applies		
	2 intelligence		
	I last lam		
10 A	Alexing Loads	- ¥	
16	ALL ALL ADD		

41. Generamos los siguientes tipos de cargas: PISO TERMINADO, TABIQUERIA y CV (carga viva); DEAD ya viene de manera predeterminada.

		Define Load	Patterns		
Load Patterna					Clex Te
Lood Pattern Name	Type	Self Weight Multipler	Auto Lateral Load Pattern		Add New Load Pattern
CV	LIVE	ΨĬO	2	-	Visitly Load Pattern
DEAD PSO TERMINADO	DEAD SUPER DEAD	1			Workly Lateral Loud Pattern
TABIQUERIA	SUPER DEAD	0		•	Detete Load Pattern
	1			۲	Show Load Pattern Nation
					OK
					Cancel

- 42. Una vez tengamos determinados nuestros tipos de cargas, podremos definir la fuente de masa. La fuente de masa es en esencia el metrado de cargas que realiza el software para efectuar el análisis estructural.
- 43. Ingresamos a Define→Mass Source y en la ventana emergente veremos que la fuente de masa que viene por defecto es MSSSRC1, la seleccionamos y hacemos click en Modify / Show Mass Source

Mill + KC	Artennin.	44.0	×.	Mass Source -
Name and	Sector Press Tes	· ·		
*	Max (harry)		Vasa Sources	Disk M.
	Countries for the second state.		HICKNEY !!	Add New Mass Source.
*	land Davaharma.			Add Cepy of Mass Source
	Ansan Santan Can. Januari ng Kapitagang Ka			Modify/Steve Mass Searce Deeple.Migan Depres
	Autom			Concentration of the Concentra
28	Land Patterns			Detaut Ness Source
評せ	Annal Careton Anna			MSSSRC1 w
	Memplanis			
	Stand Property Deta		15	DK Cancel

44. Cambiamos el nombre por METRADO DE CARGAS y señalamos que la fuente de masa sea a través de patrones de carga específicos, la carga DEAD es el peso propio y siempre se considera el 100% de la misma, así mismo, las cargas muertas PISO TERMINADO y TABIQUERIA tienen un factor de 1, es decir, también se considera el 100% de ellas. Con respecto a la carga viva solo se considera un 25% de ella por ser una edificación que clasifica como tipo C (Edificación Común) según la Norma de Diseño Sismorresistente E030

Maas Source Name	GAS	
Nass Source	Additional Mass	
Load Pattern	Nutipler	
CV DEAD PSO TERMINADO TABIQUERIA	v 0.25	Add Modify

2.3.8 ASIGNACIÓN DE CARGA VIVA Y CARGA MUERTA

45	. Las cargas que asig	gnaremos a nuestro modelo	serán:
	PISO TERMINADO	$= 100 \text{kg/m}^2 = 0.1 \text{Tn/m}^2$	\rightarrow En todos los techos
	TABIQUERIA	$= 100 \text{kg/m}^2 = 0.1 \text{Tn/m}^2$	→Del 1er techo al 7mo
	CV	$= 250 \text{kg/m}^2 = 0.25 \text{Tn/m}^2$	→Del 1er techo al 7mo
		$= 100 \text{kg/m}^2 = 0.1 \text{Tn/m}^2$	→En el 8avo techo

46. Como ejemplo solo se mostrará la asignación de la carga PISO TERMINADO, quedando a cargo del lector asignar las cargas de TABIQUERIA y CV donde correspondan (ver paso 45). De manera inicial seleccionamos las losas de todos los niveles (debido a que esta carga se asigna en todos los techos); posteriormente nos dirigimos a Assign→Area Loads→Gravity(All)

No bill the Date Date Set	Arry Indon Date	-	APURD v1/00 UR man - commed Twis Hop 1. Cl. & S. Pt Cl. 17.	- f
	AND DOOR			A A A A A A A A A A A A A A A A A A A
R France Fred Differen	1. W. 1. 1.		·	
	100 CT	1.1		
(i) (i)	and the second se	17.		
0	Di aver			
10	and the second	- C.		
	A respected		5	CLEMER AND AND A
() () () () () () () () () () () () () (the new root	- 10		A STATEMENT AND A STATEMENT
151	The Parel salt.	0.0		NA
1.5	Tangana Se			NO THE OWNER AND
	Trade Links			
	A Designed		Bandy 198	NKKKKKKK
	and instant	341	Indust Shift.	
	Ind/Support Londs	+	(belowing frame (bel)	NON TO SHALL
1	and interest		Salas Person (55	
2	and an internet	101.00.01	Park Pressort (Parts, André)	
	C. subt C. nump.	19-9-0	Permit and Mill.	AN X NO VINA

47. Indicar que se desea asignar la carga tipo PISO TERMINADO con una magnitud igual a 0.1Tn/m² en la dirección Z

	Gra	vity Loads
Load Pattern Name	+	DEAD v
Gravity Nutpliers		DEAD ROOTERWAADD
Global X 0	31	CV
Global Y 0	31	Options Add to Existing Loads
Giobal Z -0.1	1	Replace Existing Loads Delete Existing Loads

2.3.9 EMPOTRAMIENTO EN LA BASE, ASIGNACIÓN DE CENTRO DE MASA Y CREACIÓN DE DIAFRAGMAS

- 48. Tal como lo indica la norma ASCE 7-10 (Cap.18) la estructura que vaya a usar disipadores de energía puede ser modelada considerando el efecto de la interacción suelo-estructura o simplemente la base empotrada. En este caso, por ser un trabajo centrado en el tema de disipadores de energía, NO se considerará el efecto de la interacción suelo-estructura pudiendo ser este un tema para futuros trabajos o investigaciones.
- 49. Para modelar el empotramiento nos dirigimos a la base de nuestra estructura y seleccionamos todos los nudos (vista **XY**)
- 50. Luego iremos a **Assign**→**Joint**→**Restraints** y en la ventana **Joint Restraints** indicar que se desea el empotramiento de los nudos.

A 10 10 14 14 1 1 10	1940	· V house pt	
Anna Soundary Multipleve CVI (Status T	1000	· · · ·	Joint Restraints
	T. Bandan	1	
- T -	144	· 15 Justine	
24	1.944	- 15 Parent Surrey-	Restraints in Joint Local Directions
	Service of the servic	- 12. Magalikarian.	Translaten 1 🔽 Octation about
	(Sietunk		
	- Paralyseth		Translation 2 🖌 Rotation about
	1.0.0.1100		CE Transistion 3 CE Butation about
	- hereiter		(v) managem o (v) notation about
	- Annota - A		
0.0	(sinhammade		Fast Restraints
	Add Returns		
	Augustione. On both		<u> </u>
21	Spinster of Concession of Strate Programming		a strand the second strands in the state of the
	Carlinster of Asian		
0.4	Concerned in the second se		OK Cancel

Desafortunadamente el programa SAP2000 a diferencia del ETABS no nos indica, de manera automática, donde están ubicados los centros de masa de cada nivel por lo que estos deben ser calculados y asignados de manera manual.

La ubicación de los centros de masa está determinada por la configuración de los elementos de corte (columnas y placas), los centros de masa están en función de los pesos y las rigideces de los mismos.

En edificaciones como esta investigación, debido a su configuración simple, los centros de masa de cada nivel se pueden ubicar considerando la excentricidad accidental en cada dirección.

Es decir, primero se determina cual es el centro geométrico C.G. y luego, tomando este punto como referencia, se añade 5% de la longitud efectiva de la edificación tanto en el eje X como en el eje Y (Lex y Ley), siendo así que la ubicación de este nuevo punto será nuestro centro de masa C.M.

51. Considerando que la longitud efectiva en el eje X e Y son 20m y 30m respectivamente, el centro geométrico C.G. será el que se muestra en la siguiente imagen

- 52. Una vez ubicado el C.G. podemos crear el centro de masa. El centro de masa estará a una distancia de +5% de 20m en el eje X (es decir a 1m) y +5% de 30m en el eje Y (es decir a 1.5m) del C.G.
- 53. Para crear el centro de masa nos ubicamos en el primer techo, luego hacemos click en la opción Draw Special Joint, nos pedirá la longitud en X e Y que tendrá nuestro nuevo punto con respecto al C.G., en este caso será Offset X = 1 y Offset Y = 1.5; finalmente daremos un click en el C.G.

54. Replicamos el C.M. creado hacia los demás techos (2do al 8vo), para ello, primero seleccionamos el nudo creado, luego nos dirigimos a la opción Edit→Replicate, en la ventana que se abra le señalamos al programa que deseamos replicar el nudo 7 veces en la dirección Z a una distancia de +3m uno del otro.

44	2-b	0.0	8.4	9.9	\$ 14.0	241 B			- april and
Q.	Refer		100	11110-00		1000	Linear	Radal	Mato
*	-04	2014					bcrements		Repicate Options
8	file (0.04					100000		provide and provide the second second
103	Sec.	- 044.0		-	_		Øx 0.		Medity/Show Replicate Options
×	2 mm	fam					thy 0		2 of 2 active boxes are selected
	And to Mutor	ales.					dz 3.		Delete Orginal Objects
n1	Papilian.	044					increment Data	_	
1.5	Arrun.		340				March 17	_	
+	Maca	Canaliti					number /	_	
- 11	Tell Power		1						
	hit press			÷					
	fill them.		-						
	Strate faith.								
	Sten-Pagituker		-						
	Margi Dustione.								
	Deserved.							00	Cancel
			-						

55. Los C.M. tienen ciertas restricciones que se deben asignar en el modelo: no se pueden desplazar en la dirección vertical Z (**Translation 3**) ni rotar en los ejes X e Y (**Rotation about 1** y **Rotation about 2**); para asignar estas restricciones seleccionamos los C.M. de todos los niveles (1er al 8vo), luego nos dirigimos a la opción Assign→Joint→Restraints tal como se muestra en la figura.

the later last last	up Anto Data Data Data	MADE AT A PRE-	Joint Restraints
18 40 F = + 8	Contract Contract Contract	· 3' teres. P	1020002446002
There & Julia	(feet	- Dintam.	
	5 care. ;	· B. temp-	Restrants in Joint Local Directions
- (D -)	Testa.	- 🔩 Mater-	
	Ann	- 15 inside.	Translation 1 Rotation abo
	344	 J^a₁ Fanal Janes - 	
	Utiliant.	· Jas. Messilventer.	Translation 2 🖌 Rotation abo
Q	E Antionk		
	C Parketan		Translation 3 Rotation abo
	Contractor		
	Nucleo Look.		
	- Awrende		Fast Restraints
	and the second s		strengt second denotes and
	town Transmitteed.		
	C. And Pattern.		(mm) (mm) (mm)
2 C C C C C C C C C C C C C C C C C C C	Augustug. inches		
	and it is a set if a state		
	CherThalip-Hillingen		OK Cancel
	Carl Barris		Line in the second

56. Ahora creamos los diafragmas rígidos con la ayuda de la opción Define→Joint Constraints, en la ventana que se abra (Define Constraints) seleccionamos la opción Diaphragm y hacemos click en Add New Constraints.

	Section Properties Mess Source		D	Define Constraints
	Countrate Systems Griek		100000	
-2-	- Mart Constraints		Constraints	Choose Constraint Type to Add
	Joint Pattaney		INDLL	Body
	bings_			Batt
	Section Cutt:-			Ciabbrane
	Generalized Displacements			Plate
	Functions			Rod
:12	Loud Patterns.			Beam
112	beef Ceres	-		Equal
-0-6	Load Combinutions.			Local
	Monglash			Line
	Normal Property Sets			
	Padraver Parameter Sets		1	OK Cancel
	Named Sale			UN Gancer

57. Lo único que tenemos que hacer en la ventana emergente es escribir el nombre de nuestro diafragma, en este caso por ser el primero será TECHO 1. Nuevamente realizaremos los pasos 56 y 57 hasta crear los diafragmas de todos los niveles uno por uno.

Diaphragm Constraint	🗙 D	efine Constraints
Constraint Name TECHD 1	Constraints TECHO 3 TECHO 3 TECHO 3 TECHO 4 TECHO 5 TECHO 6 TECHO 7 TECHO 8	Choose Constraint Type to Add Diaphragm v Click to: Add New Constraint Modify/Show Constraint Delete Constraint Delete Constraint

58. Finalmente, asignamos los diafragmas en cada nivel, iniciaremos seleccionando todos los nudos (incluyendo el C.M.) del último techo.

59. Nos dirigimos a la opción Assign→Joint→Constraints y le indicaremos al programa que deseamos asignarles el diafragma TECHO 8, luego seleccionamos los nudos del 7mo techo incluyendo el C.M y le asignaremos el diagrama TECHO 7. Repetimos el mismo proceso hasta asignar todos los diafragmas.

Inter Inter Inter Inter	Addenti et tali uterani Tale Ang Tale Ang T	Assign	I/Define Constraints
Internet (Second (S		Constructs INULL TECHO 1 TECHO 2 TECHO 3 TECHO 3 TECHO 5 TECHO 6 TECHO 6 TECHO 7	Choose Constraint Type to Add Disphrapm v Dick to Add Tiese Constraint Modify/Show Constraint Desite Constraint OK Cancel

60. Finalmente, guardamos el modelo en SAP2000 como <u>MODELAMIENTO</u> <u>GEOMÉTRICO</u>.

2.4 ANÁLISIS SÍSMICO

2.4.1 RECOMENDACIONES Y PROCEDIMIENTO PARA EL ANÁLISIS

Se emplearon las recomendaciones de la Norma **ASCE 7-10** en su capítulo 18 (requerimientos de diseño sísmico para estructuras con sistemas de disipación)

para la determinación del sismo de diseño, el mismo que se empleó para el cálculo de las propiedades de los disipadores. Asimismo, se siguieron los lineamientos de la Norma Peruana de Diseño Sismorresistente y las recomendaciones de los especialistas de la empresa **CDV Ingeniería Antisísmica**, los cuales emplean esta misma norma (ASCE 7-10) pero ajustando algunos criterios en concordancia a la realidad de nuestro país.

A) RECOMENDACIONES

- ✓ Los registros sísmicos que se empleen deben reflejar la realidad del proyecto, es decir, deben de haber sido tomados en suelos con características similares al suelo donde se plantará la cimentación.
- ✓ Se deben de emplear al menos 3 registros sísmicos en sus dos componentes horizontales.
- ✓ La Norma Peruana señala que estos registros deben ser escalados a un espectro de diseño, este espectro de pseudo-aceleraciones debe ser calculado fijando el valor del coeficiente de reducción sísmica R=1.

B) PROCEDIMIENTO

Los pasos que se han de seguir para determinar el sismo de diseño son los siguientes:

- Realizar el análisis dinámico espectral de la edificación y calcular las derivas de entrepiso considerando el coeficiente de reducción sísmica R=1, esta reducción del valor de R se realiza para que el edificio entre en el rango inelástico ante un sismo severo. Es importante tener en cuenta que para la obtención de distorsiones, los desplazamientos laterales calculados en el análisis ya no se multiplican por 0.75*R sino simplemente por 1.
- Escalar los acelerogramas en sus dos componentes al espectro de diseño (paso 1). Para poder obtener una mayor exactitud se recomienda emplear un software especializado para tal tarea, en esta investigación se realizó el escalamiento con el programa SeismoMatch versión 2.1.0 (recomendado por Taylor Devices Inc.).
- 3. Realizar el análisis tiempo-historia con los acelerogramas escalados. Es importante tener en cuenta que los registros sísmicos han sido tomados en dos componentes (E-W y N-S) de manera que el método correcto para analizar la estructura se muestra en las figuras 2.2 y 2.3

Fig. 2.2 Primer Caso de análisis

Fig. 2.3 Segundo caso de análisis

Por cada registro sísmico que se emplee en el análisis tiempo-historia, deberán analizarse dos casos por separado, el caso 1, cuando la componente E-W del registro sísmico actúa sobre la dirección X-X de la estructura mientras que sobre la dirección Y-Y lo hace la componente N-S y el caso 2, donde la componente N-S del registro sísmico actúa sobre la dirección X-X mientras que sobre la dirección Y-Y lo hace la componente E-W.

Finalmente, para determinar el sismo de diseño, realizar una comparación entre las distorsiones de entrepiso obtenidas del análisis dinámico espectral (paso 1) y del análisis tiempo-historia (paso 3). El sismo de diseño será aquel que se ajuste más a las distorsiones obtenidas del análisis dinámico espectral (comportamiento esperado).

A continuación se muestra el procedimiento expuesto donde se determinó el sismo de diseño que, posteriormente, se empleó para el diseño del sistema de disipación.

2.4.2 ANÁLISIS DINÁMICO ESPECTRAL

Hasta el momento se logró modelar geométricamente la estructura, ahora realizaremos el análisis estructural de la edificación; para ello, seguiremos el siguiente procedimiento:

1. Determinamos los parámetros sísmicos

<u>Factor de Zona (Z)</u>, la ciudad de Lima se encuentra ubicada en la zona sísmica 3, por lo tanto según la Tabla Nº 1 de la Norma E030-2006 le corresponde un valor de Z=0.4

<u>Parámetros del Suelo (S) y (Tp)</u>, según la descripción de la edificación (ver pág. 23) la estructura estará ubicada sobre un suelo tipo S1 (Rígido), al mismo que le corresponde un factor de amplificación del suelo S=1 y un período Tp=0.4s como se indica en la Tabla Nº 2 de la Norma E030-2006

<u>Categoría de la Edificación (U)</u>, según la Tabla Nº 3 de la Norma E030-2006, a una edificación común (Oficinas) le corresponde un factor U=1.

<u>Factor de Reducción (R)</u>, como se mencionó, anteriormente, este valor se toma en base a consideraciones especiales, fijándose su valor R=1 (Fuente: ASCE 7-10 Capítulo 16)

Parámetros	Direcciones X e Y
Z	0.4
U	1
S	1
Тр	0.4s
Rxx=Ryy	1

Tabla 2.2 Parámetros sísmicos

2. Abrir una hoja de cálculo, en este caso emplearemos el Software Excel 2013

 Iniciaremos creando una plataforma del Factor de amplificación sísmica del suelo (C) vs el período (T)

Para esta investigación el valor de T se tomó desde 0 hasta 8 con una frecuencia de 0.2s

4. Una vez tengamos los valores de C simplemente los multiplicamos por Z, U y S

-6 A		5	B.	1		ų.	H.	1.1	3	ε.	1
21				SANENDO A	ORMAN DUE -						
9	1000	1 - 1			100 M 100 F	5		10.00			
4	 T. 	(C)		FARAMETR	OS SILMICOL			3-11-2-018			
5.1	0	2.500		2	0.4		- 8	1.000			
#-1	0.7	2,500		ų	1		0.2	1.000			
*	0.4	2,500		1	. 2		0.6	1.000			
3	0.6	1.667					0.8	0.667			
	0.8	1.250					0.8	0.500			
10.	1	1.000					3	8.400			
11	1.2	0.833					1.2	0.333			
12]	-1.4	0.714					1.4	0.205			
18.	1.6	0.625					1.0	0.210			
14.	1.8	0.556					1.8	0.222			
18	2	0.500					2	0.200			
			_		_	_		10000		_	_

La gravedad no ha sido considerada aun en los cálculos, el valor de esta será introducida directamente en el programa SAP2000 y al momento de ingresar el espectro de diseño en el software SeismoMatch v.2.1.0

En la figura 2.4 se muestra el espectro de pseudo-aceleraciones (espectro objetivo), el cual será empleado para escalar los acelerogramas seleccionados para el análisis tiempo-historia.

Fig. 2.4 Espectro de pseudo - aceleración (R=1)

5. Para iniciar con el análisis dinámico espectral de la edificación, copie los valores de T vs ZUCS/R y llévelos a un bloc de notas, guarde al archivo como <u>PLATAFORMA ESPECTRAL R=1</u>

- 6. Ingresamos al programa SAP2000 y abrimos nuestro archivo <u>MODELAMIENTO GEOMÉTRICO</u> (creado en la página 46)
- 7. Para generar el análisis espectral nos dirigimos a **Define**→**Functions**→ **Response Spectrum**

Par Lan Jane Date	The last day			SAFATE ATADIA
D. H.BH.	Maxim. Garten Properties Max Survey.	•	4	9, 8 H H H H H - 5 SI
÷	Excellente Apresen Toria. Anne Escalaren. Anne Fastaren.			
2010	Broger, Nexture Con- Descentioned Displayments,			
4 H 1	Appelers Loui Metano, Loui Cantongioni,		*	Report Sector, Territori, Form Special Sector, Sector, Special Sector,

8. En la ventana **Define Response Spectrum Functions** señalar que deseamos importar la plataforma espectral de un archivo (**From File**) y daremos un click en **Add New Function**

9. Se abrirá la ventana **Response Spectrum Functions Definition**; en ella ingresamos la siguiente información:

Function Name : ESPECTRO R1

Values are : **Period vs Value** \rightarrow es decir T vs ZUCS/R

 Daremos un click en Browse y buscaremos la ubicación del archivo creado en el paso 5 (<u>PLATAFORMA ESPECTRAL R=1</u>), recuerde que es un archivo tipo texto – Text Files (*.txt)

 Para poder visualizar de manera gráfica los datos importados daremos un click en **Display Graph** y en la siguiente imagen se muestran los pasos 9, 10 y 11

18 A A A A A A A A A A A A A A A A A A A	Response Spectrum	Function Definition	
Function Rame	ESPECTRO	RI	Function Damping Ratio
Function File File Name c'luserstienovoldesktopt r	3 Browse	Values are Frequency vs Val Period vs Value	2
Header Lines to Skip	0		
Convert to User Certined			

- 12. De manera opcional usted puede hacer que el programa guarde el archivo importado, convirtiéndolo en un archivo propio de nuestro modelo (Opción Convert to User Defined); si no se realiza este paso cada vez que cambiemos la ubicación de nuestro archivo SDB o el archivo PLATAFORMA ESPECTRAL R=1 tendremos nuevamente que cargar la plataforma espectral (ver paso 10)
- 13. Procedemos a generar los casos de carga para este tipo de análisis, para ello, nos dirigimos a **Define**→**Load Cases**

14. Se abrirá la ventana Load Case Data – Response Spectrum, a este tipo de estado de carga lo vamos a denominar ESPX (representa al sismo en la

dirección X), el tipo de análisis será **Response Spectrum**, la Combinación Modal será **CQC** (Combinación cuadrática completa), la dirección de la combinación será **SRSS** (Raíz cuadrada de la suma de los cuadrados)

15. El tipo de carga será una aceleración en la Dirección X (U1), la función a emplear será la que creamos en los pasos (7-11), es decir, ESPECTRO R1 y es en la opción Scale Factor donde ingresaremos la gravedad. En la siguiente imagen se muestran los pasos 14 y 15

	×	Load Case Data - Response	Spectrum		
	Loof Cees Name	1 are Motor	Loss Case Tool Response Sur	2	
Nota: En el	Coc 3 Stop Account Coc 3 Coc 3 Stop Coc 10 Annual Coc 10 Annual Coc 10 Annual	DARC 11 1 DARC 12 0 Personalis - Royal Typer 2000 v	Atautus Atautus Rase Source Province (RE)	4	
Perú también está permitida la combinación SRSS	Media Lood Cale Use Hiddes from His Nodel Standard - Acceleration Advanced - Depleceme Loods Applied	Laad Case (800AL + Laading nt Nertin Loading			
	5	atter Function Scott v ESPECTRO F v San	AM Maty	La gravedad es porque las uni modelo están	s 9.81m/s ² dades del en metros
	Draw Advanced Load T Other Parameters Martial Damping	A constant of 0.02	Dates PytRees	6	

 Realizaremos el mismo procedimiento (pasos 14 y 15), esta vez trabajaremos con la dirección Y, a este tipo de estado de carga lo vamos a denominar ESPY, siendo la única variación que la aceleración será en la dirección Y(U2)

¢	Load Case	Data - Response	Spectrum 🔝
Load Case Name COPY	SetDerName	Modify/Direw.	Load Cate Type Reserve Section V Desgr.
Model Combination	GMC 11 GMC 12 Herodic + Right Type	1. 0. 5R58 •	Creational Continuine SSSS C DIGS Abandate Sume Factor Mass Source Previous OfETRADD DE CARGAS)
Use Rodes from the Use Rodes from the Standard - Access Advanced - Daps Londs Applied	WobstLoad Case retor Loading exercise leasts Loading	1000.44, w	
Last Type Li Accel Lit	eat take Future ESPECTRO F	Doale Factor	
Access 142	jesiyariko k		Add Modity
Direc Advanced	K Internetiene	×[]	Celata
Modal Deriphy	Constant at	0.08 Mad	b/Show. Cercal

- 17. Como se mencionó anteriormente (ver paso 1 de la página 47) los desplazamientos que obtengamos en los C.M. ya no se amplifican por 0.75*R, así que crearemos combinaciones de carga con un factor de amplificación igual a 1. Este paso es opcional, solo se realizará para reforzar la idea y porque es costumbre en este tipo de análisis visualizar los desplazamientos empleando combinaciones en ambas direcciones.
- 18. Para crear las combinaciones nos dirigiremos a **Define**→Load Combinations

19. En la ventana emergente hacer click en **Add New Combo**, al hacer esto se abrirá la ventana **Load Combination Data** e ingresamos los datos tal como se muestra a continuación.

	Tand Continution	Data -		-	Load Combination	Date	
Load Combination Name	(ner-benedict)	COMMESSION INC.	or lines	Load Composition Rev	. Declaration	COMPANY.	and the second
Load Contradict Type		Lever Add		Loss Contender Type		Lines Add	
Derive Construitor of Loop Ca Unit Case Norm	er Annalis Lond Gene Tope	Sumilator		Define Comparison of Load Load Cash Name	Comp Retrotts Loss Comp Lines Type	Sum Taxto	and the
			Add Madfy Jones				nati tuatis Desis
-					0. 0		

- 20. Para finalizar el modelo y poder visualizar los resultados es indispensable ajustar el número de modos considerados para el análisis. En las oficinas de proyectos se consideran 3 modos por piso, en este caso se utilizaron un total de 8x3=24 modos de vibración.
- 21. Para ajustar el número de modos nos dirigimos a **Define→Load Cases**
- 22. Seleccionar Modal y hacer click en Modify / Show Load Case

23. Se abrirá la ventana Load Case Data – Modal, en la opción Maximum Number of Modes ingresar el número de modos que deseamos se considere para el análisis, en este caso 24

INCOAL Set Defiliant	a Madfylänce.	And Case Ton Andal w Design		
Affress is the		Trans of Medice		
· Zero Initial Conditions - Undressed St	(WW)	· Eper Vectors		
Cl. Doffmand of Dad of Numbers Land	1	C Bit Venters		
Superiori Apin' Lonin Institute Apin'	tonar Cane are 1077.			
under of Woles		Name Dourist		
Stationer Number of Notes	24	METHADO DE CANGAS		
Resident Runner of Budes	1			
AND ADDRESS				
Draw Adverced Low! Persenters				
The Parameters				
Preparing Shift (Senter)	8			
ExterN Frequency (Redux)				
Convergence Tolevance	1.008-09	Carriel		
Allow Automatic Francesco Stellers				

- 24. Finalmente, ya tenemos el modelo concluido y ahora podremos visualizar las distorsiones obtenidas en nuestro análisis.
- 25. Ahora corremos el modelo, para ello, hacemos click en la opción Run Analysis, en la ventana emergente no realizar ningún cambio solo dar un click en Run Now

- 26. Una vez el modelo haya corrido seleccionamos los centros de masa de cada nivel (para visualizar sus desplazamientos), para ellos nos dirigiremos a Select→Labels
- 27. En la ventana Select by Labels nos dirigimos a las opciones de selección y señalamos que deseamos seleccionar múltiples nudos de una lista, en la parte final de la lista estarán los nudos 601, 602, ..., 608 los cuales son

nuestros C.M del 1er al 8avo piso. En las siguientes imágenes se muestran los pasos 26 y 27

28. Posteriormente iremos a la opción **Display**→**Show Tables**

29. Se abrirá la ventana Choose Tables for Display en ella abriremos la siguiente ruta

30. Señalaremos que deseamos visualizar los desplazamientos en X, seleccionaremos COMBESPX tal como se muestra a continuación.

 SAP2000 nos permite exportar las tablas a Excel tal como muestra en las siguientes imágenes, recordar que estamos viendo los desplazamientos en U1 (COMBESPX), para la dirección Y (COMBESPY) tendremos que ver los desplazamientos en U2.

Tagent Current Table			To Dellar			1.2	. Caller	100.00	6.4		- B.M.	-	
Braging Connets Table			Te Arrest (h	ued, mi, Cl		- 11 - H		12- 3-	4		-		-
Print Consett Table on Test Hite		٣	-	-		-		harm			marks.		
Report All Tables	٠	t	# 407390	10146-00	1.1	1	100	1 6					
Enginey Mt Tables	٠		4.007381	4.0145-09		1.4							
Point All Tables as Test His-			8.0000112	0.0910-10		Dist.	also Disalama	and land	The second		0.000	10.000	
Save Current Sable Formet to Sable Formats File			.4.000011	-0.0028-10			Melputtan	Livelyn:	Maginger.	488	44	10	
Save All Table Formuly to Sable Formula His			8 (96)788	1,210-08		140	Teat	Perf.	feet	-	1.100.00		Red
And Annual State Course Table			-0.000784	-1.220.04		-	COMBILIAN.	Contingual	AB-1	A 417293	1.110.00	-	1
Apply Thread Thread The South States		Ŀ	a contrine	1.1000.04		NO	COMBINE.	Continuent	Max	S. OHEN, D	4.9638-217		
apply remain more than to we taken		E		11100.04		ktt .	COMBESSION.	Commission	index .	6,000013	-0.0010-07		1.
Add Tables		H	a terms	1.0011-00		100	COMPANY OF A	Tanker day	1000	A second second	1238-09		1
Render Correct Table		H	0.100.000	1 10115 200	- 6	101	COMPACTOR.	Cambongtion	Max	8.114736	1.388.08	1.1	1
Chus Farm		Ŀ	a thirde	1 10 10 10		101	COMPLETE.	Continention	Adve 1	4.11798	1386-00		11.
		A.,	a central.	1,10-08		kii	COMPLEX.	Carrienteed	Adda (8.125096	1.0010.09		100
THE CONTRACT CONTRACTOR	April 1	_	* 12 1611	11.18.48		100	COMPANY OF A	Charlengton		A 110.000	1.00.00		100
907 ISNESPA Contemptor	1844		0.16250	1.536.09		6	COMPACT NY.	Construction of	10.00	A DESCRIPTION	1.10.00		
607 EDWEEDE Contention	Mp		4.4017	-1.8.965-010	11.2	ler .	LINABULAN.	Cambridgeout	infant .	a benu	Land on		1

32. Los desplazamientos y las distorsiones obtenidas del Análisis Dinámico Espectral en ambas direcciones se muestran a continuación.

PISO	Desplazamiento en los centro de masas (m)	Distorsión de entrepiso D/h	Norma E030 (Distorsión máxima)	Control Norma E030
8	0.1689	0.0021	0.007	SI
7	0.1625	0.0038	0.007	SI
6	0.1511	0.0053	0.007	SI
5	0.1353	0.0065	0.007	SI
4	0.1157	0.0076	0.007	NO
3	0.0928	0.0087	0.007	NO
2	0.0666	0.0098	0.007	NO
1	0.0373	0.0110	0.007	NO

Tabla 2.3 Control de distorsiones en dirección X – X

Tabla 2.4 Control de distorsiones en dirección Y - Y

PISO	Desplazamiento en los centro de masas (m)	Distorsión de entrepiso D/h	Norma E030 (Distorsión máxima)	Control Norma E030
8	0.1057	0.00143	0.007	SI
7	0.1014	0.00251	0.007	SI
6	0.0938	0.00352	0.007	SI

5	0.0833	0.00439	0.007	SI
4	0.0701	0.00514	0.007	SI
3	0.0547	0.00577	0.007	SI
2	0.0374	0.00622	0.007	SI
1	0.0188	0.00552	0.007	SI

33. Finalmente, para concluir guardaremos el modelo SAP2000 como A.D.ESPECTRAL R1

2.4.3 ESCALAMIENTO DE ACELEROGRAMAS AL ESPECTRO DE DISEÑO

A continuación se mostrará de donde se descargaron los registros sísmicos y como estos fueron escalados al espectro objetivo (R=1) empleando el software SeismoMatch v.2.1

- Los registros sísmicos o acelerogramas deben de haber sido tomados en suelos que reflejen la realidad sobre la cual se proyecta el edificio, estos registros sísmicos deberán ser provistos por el Instituto Geofísico Del Perú o podrán obtenerse del REDACIS (Red Acelerografica del CISMID)
- En este caso debido a que la edificación se ubica en la ciudad de Lima sobre un suelo de Grava de buena calidad, los registros sísmicos deben de haber sido tomados en suelos tipo S1 (Muy Rígidos - Gravas)

Los registros sísmicos que se consideraron para esta investigación son los siguientes:

Sismo	Ubicación de la estación	Tipo de suelo
17 do octubro do 1066	Parque de la reserva	Grava gruesa
	(Lima)	(S1)
31 do mayo do 1070	Parque de la reserva	Grava gruesa
ST de mayo de 1970	(Lima)	(S1)
02 do octubro dol 1074	Parque de la reserva	Grava gruesa
	(Lima)	(S1)

Tabla 2.6	Registros	sísmicos	considerados	para el análisis
-----------	-----------	----------	--------------	------------------

Localización de la estación	Fecha	Componentes	Aceleración máxima (cm/s ²)	Duración (s)
Lime	17 do octubro do 1066	E - W	-180.6	65.64
LIIIId		N - S	-269.3	05.04
Lima	31 de mayo de 1970	E-W	-104.8	45.16

		N - S	-97.7	
Lima	2 do octubro dol 1074	E-W	-192.5	07.06
	3 de octubre del 1974	N - S	179	97.90

 Para descargar los registros sísmicos nos dirigimos al buscador de Google y escribiremos REDACIS, ingresaremos a la primera opción (RED ACELEROGRÁFICA DEL CISMID – Laboratorio)

4. Una vez dentro del sitio web pediremos que se nos muestre los registros sísmicos que disponen.

5. Una vez ejecutado el paso 4 podremos ver la lista completa de las estaciones acelerográficas del Perú, en cada una podremos encontrar los registros sísmicos que se hayan tomado en ellas. Nos dirigimos a la parte final de la página y pedimos que nos muestren los registros sísmicos registrados en Lima desde 1951 a 1974.

A 10-0000000	20 • L	a de como de			-			
A Red	Icel	1015	Télit	ca		. 8		Initia Contactores
	11.		The				044	725
		肥	1	102.00			-	110030
lening Anderscherben	(term)	-	Canada Manada	Constant of Marine		-		10.000
Registret Stateton Erdatet de Intention		-		101001005		-	-	(10.000
Esperi Nores Entris Innes Antise	inte	ciur	-	Contraction in Lots	-		-	
Rents de Date de Internet de Vers	(177.)	C.44	120	Constant of the second	-1199.7	105		100000
*		MOL.		Andrew County	440	-	-	-
Canada Canada	Chia.	-	-		-+ 812	11120	-	10.00
1	-	100	-	Andread in the second s		10.000	-11	-
patragen apris	-	107	-		-	-	-	17.00
-	ine a	1008	10.00	Paratition		-	-	0.000
	+ 800	-	talia ar Lin	e-mole tikt nave t	674			

6. Finalmente, podremos observar todos los sismos registrados en Lima antes de 1974, seleccionaremos los más representativos.

RED ACELERO((RAFICA (REDACIII) BASE DE DATOS											
			Derech	os Reserv	ados © (CIENTO	2007				
			R	EGISTR	05 515	MICO	ŝ				
No.	Estación	Fecha	Hora	Lat	Long	н	Mw	Ma	mb	Prof	Descarga
	proj	1951-01-31	11157	12-21	76.93	1.0	1 1	111	-	50	- arrand
2	prq	1966-10-17	16:41	10.83	78.65				6.4	1	ons d
,	prot	1970-05-33	15:23	09.27	215.04		LA.	2.6.1	0143	71.10	1003.14
4	pro	1971-11-29	15:14	11.34	37.79		5.6		5.3	53.90	proved
-	EMT	1974-01-05	03:33	12-38	26128		6.5	113	611	91.76	ear d
5	priq	1974-10-03	09:21	12.28	77.54		8.1	7,8	6.2	21.26	b.ana
	800	1974-10-03	09:21	32,20	77.54			22.1	62	21.30	100.11
8	pra	1974-10-05	03:33	12.38	76.28		6.5	6.6	6.5	91.70	b.ute
9	mpi	1974-11-09	07.59	12.52	77.59			1.2	6.0	12.00	mot d
30	pris	1974-11-09	07:59	12.52	77.59		2.2	7.2	6.0	12.80	pro d

<u>Nota:</u> Los sismos de 1966 ,1970 y 1974 son los que usualmente se toman cuando se tiene que realizar un análisis tiempo-historia en edificaciones ubicadas en Lima.

Como ejemplo, a continuación se muestra el Registro del sismo del 17 de octubre de 1966

Notas:

- 1) Solo se muestran las aceleraciones de los 0.04 primeros segundos
- 2) Prestar atención a los datos resaltados

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL CENTRO PERUANO-JAPONÉS DE INVESTIGACIONES SÍSMICAS Y MITIGACIÓN DE DESASTRES AV. TÚPAC AMARU Nº 1150 - Lima 25 - PERÚ Apartado Postal 31-250 Lima 31 Teléfonos (51 - 1) 482-0777, 482-0804, 482-0790 FAX 481-0170 e-mail: director@cismid.uni.edu.pe http://www.cismid.uni.edu.pe ARCHIVO ESTANDAR DE ACELERACIÓN: NOMBRE DEL ARCHIVO : PRQ-6610171641 REF. CATALOGO ACELEROGRAMAS : DATOS DE LA ESTACIÓN : NOMBRE DE LA ESTACION : PARQUE DE LA RESERVA CLAVE DE LA ESTACIÓN : PRQ LOCALIZACIËN DE LA ESTACIÓN : Parque de la Reserva : Lima COORDENADAS DE LA ESTACIÓN : 12.06°LAT. S : 77.05°LONG. W ALTITUD (msnm) • TIPO DE SUELO : Grava gruesa INSTITUCIÓN RESPONSABLE : DATOS DEL ACELEROGRAFO : MODELO DEL ACELEROGRAFO : NÚMERO DE SERIE DEL ACELEROGRAFO : 3 NÚMERO DE CANALES : U-D ORIENTACIÓN, Canal1/Canal2/Canal3 : E-W N-S FREC. DE MUESTREO, Canal1/Canal2/Canal3 (muestra: 50 50 50 MAX. AMPLITUD DE SENSORES, Canal1/Canal2/Canal3 : PERIODO DEL INSTRUMENTO, Canal1/Canal2/Canal3 (s: 0.064 0.064 0.065 AMORTIGUAMIENTO DE SENSORES, Canal1/Canal2/Canal:0.550.590.53INTERVALO DE MUESTREO, Canal1/Canal2/Canal3 (s):0.020.02 UMBRAL DE DISPARO, Canal1/Canal2/Canal3 (Gal) : MEMORIA DE PRE-EVENTO (s) : TIEMPO DE POST-EVENTO (s) : DATOS DEL SISMO: FECHA DEL SISMO : 17 de Octubre de 1966 HORA EPICENTRO (LOCAL) 16:41 : COORDENADAS DEL EPICENTRO 10.70°LAT. S : 78.70°LONG. W : : 24 PROF. FOCAL /DIST. EPIC. /DIST. HIPOC. (Km) 237 239 MS MW : 6.3** 7.5** 7 7 6 /* MAGNITUD 7.75S 6.4* 8* 8.1* : USCGS(**) Silgado(S) FUENTE DE LOS DATOS EPICENTRALES IGP(*)

DATOS DE ESTE REGISTRO: HORA DE LA PRIMERA MUESTRA (GMT-5) : DURACIÓN DEL REGISTRO (s), Canall/Canal2/Canal3 : 65.64 65.62 65.66 NUM. TOTAL DE MUESTRAS, Canal1/Canal2/Canal3 : 3283 3282 3284 ACEL. MAX.(GAL), Canal1/Canal2/Canal3 : -180.6 -269.3 94.2 UNIDADES DE LOS DATOS : Gal (cm/s/s) DATOS DE ACELERACION:

DT	E-W	N-S	U-D
0.00	-11.409	-14.254	4.153
0.02	-2.687	-7.775	-5.003
0.04	-3.080	-6.297	-4.567

 Antes de proceder al escalamiento de los registros sísmicos debemos copiar los valores de las Direcciones E-W y N-S en un bloc de notas (cada una por separado)

		and the second
Author Edoen Formate Yer Apr	de dechos phone Paresto ter	
-11,409	+ -14.254	
-2.687	-7.775	
-3.88	-6.297	
-4.994	1,489	
0.265	2.995	
3, 592	-1.747	
-18.503	1.753	
-18.254	5.061	
0.34	0.130	
8.475	-4.577	
-2.286	0.267	
-8.784	6.339	
4,281	3.437	
-8.945	1.713	
1.09	-1.55	
8.085	-4.162	
11.22	-0.101	
3.575	-4,356	
-1.468	-3,77	
8.234	3.12	
3.244	0.358	
5.660	2.094	
5,55	0.304	

- 8. Guarde la componente EO como <u>EO LIMA 1966</u> y la componente NS como <u>NS LIMA 1966</u>
- 9. Como ejemplo se mostrará el escalamiento de la componente EO del sismo de Lima del 66, para ello, emplearemos un software especializado (SeismoMatch), quedando a cargo del interesado repetir el mismo procedimiento para escalar la componente NS del mismo sismo y las componentes EO y NS de los sismos de Chimbote del 70 y Lima del 74.

OBSERVACIONES IMPORTANTES:

 Antes de iniciar con el escalamiento es recomendable tener en una sola carpeta los archivos tipo texto EO LIMA 1966, NS LIMA 1966 y el archivo PLATAFORMA ESPECTRAL R=1 (fue creado anteriormente).

- Debemos contar con una licencia de uso, si no la tenemos no podremos exportar los registros escalados. Obtener una licencia académica es sencillo si contamos con un correo universitario, luego llenar nuestros datos y enviarlos; en un plazo de 1 o 2 días nos estarán llegando nuestro nombre de usuario y una contraseña.
- Ingresamos al Software SeismoMatch v.2.1.0 (programa recomendado por Taylor – Principal fabricante de disipadores de energía viscosos).
- 11. Definimos las unidades, estas siempre serán las unidades del registro sísmico, en este caso las unidades son Gal (cm/s²)

UNIDADES	DE LOS	DATOS	_	: <mark>Gal (</mark>	cm/s/s)
Fig. Las day from 1		And	Seneral Heading haven Academic Sets Dis United Minimit	Settings ner (Reporte Soche) feiselet Inder Rysell Rysel Dansement Leve On Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Rysel Dans Rysel Dans Rysel Dans Rysel Dans Rysel Rysel Dans Rysel Dans Rysel Rysel Dans Rysel Rysel Rysel Dans Rysel Rysel Rysel Dans Rysel Dans Rysel Ry	2
No. of the second secon	n Maring Turning 1	N and a second s	 Presidents 	Drinodear	4

12. Con las unidades definidas procedemos a importar la componente EO de nuestro registro, para ello, nos dirigimos a Step 1: Input the Source Accelerograms → Open Single y buscamos la ubicación de nuestro archivo EO LIMA 1966 (recuerde que es un archivo tipo texto *.txt)

<u>Nota</u>: El programa SeismoMatch nos permite importar las dos componentes a la vez, por recomendación de los autores y para evitar confusiones, es mejor trabajar cada componente por separado, comenzar con la componente EO y una vez la haya escalado y exportado proseguir con la componente NS.

13. Una vez concluyamos con el paso 12 se abrirá la ventana Input File Parameters, el programa nos solicitará la siguiente información; en qué línea comienzan las aceleraciones, en que línea acaban, cual es el intervalo de muestreo, cual es el factor escala, los datos ingresados son solo aceleraciones por cada línea o tiempo vs aceleraciones, en que columna se encuentran las aceleraciones.

		Input Frie Paramete	85.)			
FatLite		Single Acceleration value	e per line	v Q€		
Listine	1274	C Tree E Accession value	tes he pie	X Canoel		
Time Steel of		C Hi, Apple Acceleratory val	kan perika	THE .		
	116	Acceleration Column	1.2	L. C. R. S. L.		
Scards son	1.0	Time Column				
-		L'anna anna a' le anna		Set As Default		
Fingency	102	Initial Values Shapped	100			
Acceleration Tile						
4.834					1	
-1.233						
-6,793						
-1.888						Barra de
2,423						docalazamiont
-1.841						uespiazamient
-0.282						
0.841				-		
AVAL MARK			Law	e1254		La última fila e

En el caso de nuestro archivo EO LIMA 1966

- ✓ Las aceleraciones comienzan desde la primera fila.
- ✓ Las aceleraciones terminan en la fila 3284 (para ver este dato emplear la barra de desplazamiento y dirigirse a la última fila existente)
- ✓ El intervalo de muestreo es un dato del registro sísmico
 INTERVALO DE MUESTREO, Canal1/Canal2/Canal3 (s): 0.02 0.02 0.02

Donde Canal1 es la componente EO, Canal2 es la componente NS y Canal3 son las aceleraciones sobre la vertical (los datos del Canal3 no se emplean).

- ✓ El factor escala es 1, ya que las unidades del programa son las mismas que las unidades del registro sísmico.
- ✓ Los valores son solo aceleraciones.
- ✓ Las aceleraciones se encuentran en la primera columna.

14. Al llenar los datos y seleccionar la opción OK aparecerá un mensaje de confirmación, algunas veces los registros sísmicos tienen entre los valores de las aceleraciones algunos errores como por ejemplo alguna coma repetida, un espacio en blanco, una letra entre los valores, etc. En estos casos no aparecerá la ventana de confirmación; el programa nos señalará que no ha podido leer bien los datos y no nos dejará avanzar hasta solucionar el problema.

15. Una vez tengamos nuestra componente correctamente importada procederemos a definir el espectro objetivo o de diseño, para ello dirigirse a Step2: Define the Target Spectrum→Define Target Spectrum

16. Se abrirá la ventana Set Target Spectrum, le señalaremos al programa que deseamos importar nuestro espectro de un archivo, para ello debemos marcar la casilla Load Spectrum from file y dar un click en Open

	Set Target Spectrum	
Type of Spanners Spanners A Claim A Claim A Claim Phylogenersel Beauty Valencie Basel Valencie A Claim Claim Basel Basel A Claim Claim Claim Basel	Parent To To To To To To To To To To To To To T	
Consequence has backed a strategies Strategie Hallen (Strategies) Record Value (St. Normal) Record Value (St. Normal) Strategie Value (St. Normal) Stra	*	A treat

17. Ahora, buscaremos la ubicación de nuestro archivo <u>PLATAFORMA</u> <u>ESPECTRAL R=1</u> y lo cargaremos

0	Abre	
(i) <- + i	+ 1/RL. + EPLATAFORMA SUBLOPED.	+ 61 Burral an Alfrance State
Organiza + 16	ere unpete	m + 11 •
of Fermittee	A Norths	Pacha de resultado - Eger
Stan minter Anterer	PLATAFORINA ESPECTRAL Pul	14/12/274 Bell 4. Patrimeter Infer
💌 filte espages 🍲 Autobleik 200		
Desperantes Excitoriz Excitoriz		
Athice R Videos	v e:	
	Nombre: PLATAFORMA ISPECTRAL Rul	✓ Text Next (*.txt)
		Abre Cancelle

- Una vez hayamos cargado nuestro archivo se abrirá la ventana Input File Parameters, SeismoMatch nos solicitará la siguiente información:
 - ✓ En que fila comienzan las aceleraciones: Será en la 1era
 - ✓ En que fila acaban las aceleraciones: En la 41 (emplear barra de desplazamiento)
 - ✓ Scaling Factor: Será 981 (al momento de crear el espectro no se consideró la gravedad, es en este paso donde debemos hacerlo, debido a que las unidades del programa son cm/s² la gravedad será igual a 981 cm/s².
 - ✓ En que columna se encuentra el periodo: Será en la 1era
 - ✓ En que columna se encuentran las aceleraciones: Será en la 2da

		input File Parameter	s 🛄
Fiel	Line 1	Preved Column	1 Carcel
For	Line 41 Ing Factor 381	Acceleration Column	2 B Hop
	- The		
4.4	0.001		
8.6	0.087		
4.8	0.083		
1.	0.080		
5.2	0.071		
5.4	0.074		
5.6	0.071		
5.8	0.069		
6	0.067		
6.2	0.063		
6.4	0.063		
6.6	0.061		
6.8	0.059		
7	0.057		
7.2	0.056		
7.4	0.054		
7.6	0.053		
7.8	0.051		
ð -	0.058		v
			Lined) Dec.7

19. El programa nos mostrará el espectro de aceleraciones en base a los datos que acabamos de ingresar, para proseguir daremos un click en **OK**.

		Set Tar	iget Spectrum
Type of Spechare	Peice	34 (6)	
C Use ECE Spectrum	0.00	W1-3065	1,00
Special requires	0.02	381.0000	1,000
# Date : Director	0.04	991.0000	HTC
	0.06	911.0000	800
PSA jow/mc2j NIII I	0.00	101.0000	851
Comping Value (1) S	0.10	101-000	800
Duchity Factor 10	0.52	881.0000	
Second Values for FCR Searching	0.14	991.0000	
# lost Olard All.	8.16	981.000	
A CONTRACT OF THE CONTRACT.	6.16	181.0000	5 m \
Dreater	0.35	W1-3005	
	0.22	981.0000	1 m
O the spectrue here loaded acceleropan	6.24	991.0000	* ex
EU-LANA VACESH	0.25	911.0002	301
Parriero Velee INI 8	6.28	181.0000	
	6.30	191.0005	20
Canad Spectrum from Me	0.32	581.0000	
	0.24	991.0000	10
Desping Value (10 5 🔍	0.35	1987.0000	
	0.00	981.0000	
0	0.40	101.0000	
Careat	1.1	1.1.1	Period (sec)

20. Para iniciar el escalamiento de nuestra componente EO el programa nos pide realizar una configuración final, por lo que nos dirigimos nuevamente a Step2: Define the Target Spectrum, nos solicita indicar cuál será el mínimo y el máximo periodo que considerará al momento de escalar la componente, si se ha de emplear factor escala y la tolerancia de ajuste.

Los valores de **Min. Periodo** y **Max. Periodo** se pueden tomar como 0.05 y 4, respectivamente, para todos los casos, el factor escala será igual a 1, ya que el espectro que hemos cargado (<u>PLATAFORMA ESPECTRAL R=1</u>) ya se encuentra en las unidades del programa y la tolerancia es el grado de ajuste que deseamos que se logre, es decir, a menor tolerancia los valores de nuestra componente EO se ajustarán más al espectro de diseño.

Ingresados todos los datos dar un click en **Do <u>Matching</u>** para iniciar con el escalamiento de los valores.

21. Una vez el escalamiento de datos esté concluido podremos visualizar los gráficos comparativos entre la componente EO original y la escalada.
| celerogram Matching Ave Misfit Max Misfit Iterations LIMA 19 Non converged 7.7 % 54.6 % 30 | | | | | |
|--|--------------|---------------|------------|------------|------------|
| LIMA 19 Non converged 7.7 % 54.6 % 30 | Accelerogram | Matching | Ave Misfit | Max Misfit | Iterations |
| | O LIMA 19 | Non converged | 7.7 % | 54.6 % | 30 |
| | O LIMA 19 | Non converged | 7.7% | 54.6% | 30 |

22. En la pestaña Input/Output podremos observar que la máxima aceleración en la componente EO original es de -180.592 cm/s² mientras que en la componente EO escalada este valor es igual a 398.40434 cm/s²

23. Para ver estos datos en tablas ir a la pestaña Time Series \rightarrow Table

ED LINA I	w 1vr.339						
Time Serves It	un Orgnal Accelerogr			Time Series #	um Malcherl Accelerop	an .	
Time (s)	Acc (cm/tec2)	Vel (cm/mec)	Distri (cm)	Time (x)	Acz (cm/sec.2)	Vel (cm/sec)	Dtep (cm)
0.0000E	-11-40900	0.0000	0.00000	0.00000	0.00000	0.00000	0.80000
0.02006	-2.68700	4.14096	-0.00170	0.02000	-13,40900	4.12409	-0.00076
0.04000	-5.08000	6.19963	-0.00508	0.0+000	-2.68700	-6.25505	6.00474
90080.0	-4.99400	0.27937	-0.00990	0.06000	-3.08900	-0.31272	-0.03040
0.08000	0.26600	-0.32565	-0.03603	0.08000	-4.99400	-0.38346	-0.81741
0.10006	3.59200	4.20007	-0.02229	0.10000	0.25600	-0.44074	-0.02992
0.12000	-93.10308	-6.35318	-0.03825	0.42000	3.99300	-0.40256	-0.03446
0.14000	-18.25400	-0.63675	-0.03799	0.14000	-90-90300	4.46727	-0.04230
0.15000	0.34900	4.81599	0.05302	0.56000	-08.25400	-0.75084	-0.05461
0.18000	8.47500	4.72774	4.06873	0.18000	11-24000	4.92998	-0.07204
1.20000	2.29600	6.66585	0.98221	0.20089	8.47500	-0.84183	-0.09003
0.22000	0.78400	-0.49555	0.00598	0.22000	-2.28600	4.77994	-0.10589
3.24008	4.28100	-6.65158	-0.10973	0.24300	-0.79400	-2.83864	-0.12184
0.26000	-0.88500	4.62742	-6.12245	0.26000	4.28100	4.77567	-0.133937
0.78000	-1.09000	-6.65297	-0.13523	0.20000	-0.86300	-0.74151	-0.15287

24. En la pestaña **Response Spectra** podremos ver nuestro registro original en formato aceleración vs periodo, así mismo podremos ver el registro ya escalado y también la comparación entre el registro original y el escalado tal como se muestra en la imagen.

25. Para exportar nuestro registro escalado nos dirigimos a la pestaña Mean Matched Spectrum, en ella seleccionaremos en Matched Accelerograms la casilla EO LIMA 1966.txt y finalmente Save Record THs

Institution for the second sec	i Trechens The		n Natifiel Spectrum	Provid Protoc Proce		
Armage PA	aliyi	Maior	un Halli	Period (10)	mun Acceleration	Seiel M
Accellenge and ED 1996 TR	Maching Non-concerpted	Armage Mult 7.7 %	Maimar-Molt 548-3	Neglare readed	Max Acceleration 1338 53624 moltree	Conver 21 Securit August Construer Call Heart Spectruer W Securit Spectruer 3 W Securit Spectruer

26. Finalmente, señalaremos que deseamos que se guarden los datos de nuestro acelerograma ya escalado y seleccionaremos la ubicación donde queremos que se guarde nuestro archivo.

Save Acceleration Time	Histories
There data have signal Accord	atched Accelorograms
Kane Ospol Analespan	
Temologial Tena Million Millionate (1946) (1946)	
Earn Matched Acceleragence # All Selected Acceleragene © Specific Acceleragene	
Senseliged Foreid @Tee @Accelerators []Velocity []Diplocement	Contro Film 3

27. Para guardar lo avanzado en el programa con respecto al escalamiento de nuestra componente EO ir a File→Save Project. Antes de iniciar el escalamiento de la componente NS cerrar el archivo actual y abrir otro (File→New Project)

10	New Project	2	14
ø	Open: Project		1.1
H	Seve Project	2010.021	100
	Save Project AL	Responses	from
0	Open Single	1	_
8	Open Multiple		
68	Save Record Time Histories		
н	Save Mean Spectrum		
8	Print		
敲	Print Preview	0	
	1 CISAUDA SISMOMATCHINS LIMATETA smp		
	2 CASALIDA SISMOMATICH/EO LIMA1974.smp		
	3 CI/SAUDA SISMOMATCH/Project/NSCHIMBOTE70.amp		
	4 O'SAUDA SISMOMATCH ProjectCHIMBOTE70.onp		
	Let .		_

28. El archivo que se exportó en el paso 26 es el siguiente:

(i) N	-EO LIMA 66: Bloc de notas 🛛 = 🖻 🚾
Archive Edición For	nato Ver Ayuda
Time Series match	hed accelerogram: ED LIMA 1966.txt
Time Step: 0.02	
Time(sec)	Acc(cm/sec2)
0.00000	0.00000
0.02000	-11.40900
0,64000	-2.68788
0.86888	-3.0000
0.08800	-4.99400
0.10000	0.26688
0.12000	3.59200
0.14000	-10.10300
0.16888	-18.25400
0.18888	0.34000
15 10000	E 47500

Nota:

- ✓ Es muy importante notar que los valores inician a partir de la fila 6.
- Como recomendación de los autores, para no confundir los archivos tipo texto de las componentes originales con las de las componentes ya escaladas, cambiar el nombre de las segundas - por ejemplo para este caso M-EO LIMA 66

Como se mencionó, anteriormente, queda a cargo del interesado escalar la componente NS del sismo de Lima del 66, así como ambas componentes de los sismos de Chimbote del 70 y Lima del 74.

2.4.4 ANÁLISIS LINEAL TIEMPO-HISTORIA

Una vez que tengamos nuestros 3 acelerogramas escalados al espectro de diseño en sus dos componentes podremos realizar el Análisis Dinámico Tiempo Historia.

A continuación se muestra el procediendo detallado para realizar el A.D. TH con el Sismo de Lima del 66 en el programa SAP2000

- 1. Ingresamos al programa SAP2000 v.17
- 2. Cargamos nuestro archivo MODELAMIENTO GEOMÉTRICO
- 3. Iniciamos importando nuestras componentes escaladas EO y NS, para ello,

ir a Define → Functions → Time History

 Encontraremos por defecto las funciones RAMPTH y UNIFTH, las seleccionaremos una por una y con la opción Delete Function las eliminamos.

and contrary concentration				
Choose Function Type to Add				
Cosine v				
Click It:				
Add New Function				
Hedity/Show Function				
Delete Function				
OK Court				

5. Ahora le indicaremos al programa que deseamos cargar nuestra componente EO de un archivo (**From File**)

6. En la ventana emergente ingresaremos los siguientes datos:

×	Time History Function Definition
Ĩ	Function Name ED LMA 66
	Function File File Name Clusers/lenovo/desktop/1/regiscros para el a.d. Values are
6	Header Lines to Skip 6 Prefix Characters per Line to Skip 0 Number of Points per Line 1 Convert to User Defined View File
	Function Graph
	5 Display Graph

- ✓ El nombre de la función será EO LIMA 66
- ✓ Los valores importados están en formato Tiempo vs Aceleraciones
- ✓ Los valores empiezan en la 6ta fila
- ✓ El número de valores (aceleraciones) por fila es 1

- ✓ En Browse buscar la ubicación de nuestro archivo tipo texto M-EO LIMA 66
- ✓ Click en Display Graph para ver el archivo de manera grafica

De manera opcional con el comando **Convert to User Defined** usted puede hacer que el programa guarde el archivo importado, convirtiéndolo en un archivo propio de nuestro modelo; si no se realiza este paso cada vez que movamos el archivo SDB o el archivo <u>M-EO LIMA 66</u> tendremos que cargarlo nuevamente.

7. Repetiremos los pasos 5 y 6, esta vez para cargar la componente NS.

8. Recordando lo expuesto en la página 48

Los registros sísmicos han sido tomados en dos componentes (E-W y N-S) de manera que el método correcto para analizar la estructura es la siguiente:

Por cada registro sísmico que se emplee en el Análisis Tiempo-Historia, deberán analizarse dos casos por separado, el **Caso 1**, cuando la **Componente E-W** del registro sísmico actúa sobre la **Dirección X-X** de la estructura mientras que sobre la **Dirección Y-Y** lo hace la **Componente N**- S y el Caso 2, donde la Componente N-S del registro sísmico actúa sobre la Dirección X-X mientras que sobre la Dirección Y-Y lo hace la Componente E-W.

 Para crear los casos de análisis nos dirigiremos a Define→Load Cases y en la ventana Define Load Cases daremos un click en Add New Load Case

-	Gentlese Properties					
*'	Man Deres.	×		Define	.cod Cases	8
-0-	Anter Garatanen.		Lost Cases	Last Care Dow		Date
	Emps. Sector (cm. Generator Departments)		ICCA DAL REDAL RED TERMINACIO TURCURNA	Nodal Linear State		Add New Lord Case
	Fulctions		CV.	Unical Dials:		Detels Load Case
11	Instian				-	
22	Lost Canina anni				20	Employ Land Caree
	Marryland				1000	Show Low! Case Tree.
	Versed Property Sett.					
	Autom Reisruhr Late				-	DK Canoel

 Crearemos el Primer caso de análisis (Cuando la Componente E-W actúa sobre la Dirección X-X mientras que sobre la Dirección Y-Y lo hace la Componente N-S). El programa nos solicitará la siguiente información: El tipo de análisis será Lineal Tiempo-Historia, el número de valores ingresados es 3284, los intervalos entre valores son de 0.02s

	Load Ca	se Data - Unear M	lodal History	×
Lost Case Neme	Set Def Name	Notes Modify/Shaw	Load Case Type Time History	+ Design
Initial Conditions			Analysis Type	Solution Type
E Zero Initiai Coni	Hors - Start from Unalty	ased State	E Linear	· Wodel
C Continue trans	Dame of Kind of Woolar Hart	14	O Noninear	O Direct Integration
reported bink	Lines from the preven	in case are included in	Heatory Type	
	and the second second		Transient	
Wedai Load Case		MODAL N	O Periodic	
Accel II	11 EO LIMA	66 0.01 84 11 0101	en e traba	el SAP2000 estamo ajando en metros, e
C Day Advance	et (nut Parameters		Cor	escala será 0.01
Show Advance Time Step Data Number of Ou Output Time S	ed Load Paramaters put Time Steps rep Size	220		nsecuencia el factor escala será 0.01
Show Advance Time Step Data Number of Ou Output Time S Other Parameters	ed Load Parameters (put Time Steps (ep Size	220		nsecuencia el factor escala será 0.01
Dhow Advance True Step Data Number of Ox Output Time S Other Parameters Model Dampin	ed Load Parameters (put Time Steps (ep Size) Coneta	7.28 0 0 11 at 0.05 Mi	D Cor	nsecuencia el factor escala será 0.01

11. Crearemos el Segundo caso de análisis (Cuando la Componente E-W actúa sobre la Dirección Y-Y mientras que sobre la Dirección X-X lo hace la Componente N-S). El programa nos solicitará la siguiente información: El tipo de análisis será Lineal Tiempo-Historia, el número de valores ingresados es 3284, los intervalos entre valores son de 0.02s

Load Case Name		Notes	Load Case Type		
CA502	Set Def Name	Medity/Show	Time History	✓ Design	
Initial Conditions			Analysis Type	Solution Type	
E Zero Initial Condition	ns - Start from Unstre	seed State	Linear	🛞 Wodal	
Continue from Stati Important Nation L	e el Erst of Model Hats Geds, from fille previsi le current hase	ery	Noninear History Type	O Direct Integration	
Nodel Load Case			• Translert		
Use Modes from Case	1	MODAL Y	O Periodic		
Accel U2 Accel U2	EO LIMA ISTRA	66 0.01 86 0.01	en e traba con	l SAP2000 estamos jando en metros, e secuencia el factor escala será 0.01	
	.ced Parameters				
Show Advanced					
Show Advanced					
Show Advanced 1 Time Shep Data Number of Output Output Time Step	Time Steps Size	328	4		
Show Advanced I Time Step Data Number of Output Output Time Step Other Parameters	Time Steps Size	328 0.00	4		

- 12. Ya para concluir no olvide ajustar el número de modos de vibración (tal como se hizo en el Análisis Dinámico Espectral con R=1). Para ello nos dirigiremos a Define→Load Cases; seleccionaremos Modal, daremos click en Modify / Show Load Case y escribiremos 24 (24 modos de vibración) en Maximum Number of Modes
- Correremos el programa y verificaremos los desplazamientos en los centros de masa para cada caso de análisis.
- Guardaremos el modelo como <u>A.D.TH LIMA 1966</u>; queda a cargo del interesado realizar el análisis tiempo historia de los sismos de Chimbote 70 y Lima 74. Al final guarde los modelos como <u>A.D.TH CHIMBOTE 1970</u> y <u>A.D.TH LIMA 1974</u> respectivamente.

15. A continuación se muestran los desplazamientos y las distorsiones de entrepiso para cada caso de análisis - sismos de 1966,1970 y 1974

Sismo de Lima del 17 de octubre de 1966

Piso	Desplazamiento de C.M. en X (m)	Distorsión en X (Δ)	Desplazamiento de C.M. en Y (m)	Distorsión en Υ (Δ)
8	0.1731	0.0032	0.1137	0.0017
7	0.1635	0.0059	0.1086	0.0030
6	0.1458	0.0078	0.0995	0.0043
5	0.1222	0.0082	0.0866	0.0053
4	0.0978	0.0065	0.0707	0.0059
3	0.0784	0.0072	0.0530	0.0060
2	0.0568	0.0083	0.0351	0.0059
1	0.0321	0.0094	0.0173	0.0051

Tabla 2.7 Caso1: Dirección X - Componente EO / Dirección Y - Componente NS

Tabla 2.8 Caso2: Dirección X - Componente NS / Dirección Y - Componente EO

Piso	Desplazamiento de C.M. en X (m)	Distorsión en X (Δ)	Desplazamiento de C.M. en Y (m)	Distorsión en Υ (Δ)
8	0.1676	0.0025	0.1181	0.0018
7	0.1600	0.0038	0.1128	0.0031
6	0.1485	0.0038 0.1034		0.0043
5	0.1372	0.0051	0.0906	0.0052
4	0.1220	0.0072	0.0749	0.0060
3	0.1004	0.0089	0.0571	0.0062
2	0.0737	0.0107	0.0384	0.0064
1	0.0414	0.0122	0.0193	0.0057

Sismo de Chimbote del 31 de mayo de 1970

Tabla 2.9 Caso1: Dirección X - Componente EO / Dirección Y - Componente NS

Piso	Desplazamiento de C.M. en X (m)	Distorsión en X (Δ)	Desplazamiento de C.M. en Y (m)	Distorsión en Υ (Δ)
8	0.1755	0.0023	0.1059	0.0015
7	0.1686	0.0035	0.0035 0.1015	
6	0.1581	0.0052 0.0936		0.0037
5	0.1425	0.0068	0.0826	0.0045
4	0.1222	0.0082	0.0691	0.0051
3	0.0977	0.0094	0.0537	0.0057
2	0.0696	0.0104	0.0366	0.0061
1	0.0385	0.0113	0.0183	0.0054

Piso	Desplazamiento de C.M. en X (m)	Distorsión en X (Δ)	Desplazamiento de C.M. en Y (m)	Distorsión en Υ (Δ)
8	0.1637	0.0017	0.1024	0.0013
7	0.1586	0.0033	0.0033 0.0984	
6	0.1488	0.0032 0.0911		0.0034
5	0.1393	0.0046	0.0809	0.0043
4	0.1256	0.0071	0.0681	0.0050
3	0.1042	0.0093	0.0532	0.0056
2	0.0764	0.0111	0.0365	0.0060
1	0.0430	0.0127	0.0183	0.0054

Tabla 2.10 Caso2: Dirección X - Componente NS / Dirección Y - Componente EO

Sismo de Lima del 3 de octubre del 1974

Tabla 2.11 Caso1: Dirección X - Componente EO / Dirección Y - Componente NS

Piso	Desplazamiento de C.M. en X (m)	Distorsión en X (Δ)	Desplazamiento de C.M. en Y (m)	Distorsión en Υ (Δ)
8	0.1761	0.0022	0.0894	0.0011
7	0.1696	0.0041	0.0860	0.0021
6	0.1573	0.0057 0.0797		0.0030
5	0.1402	0.0072	0.0706	0.0039
4	0.1185	0.0081	0.0589	0.0046
3	0.0942	0.0091	0.0452	0.0049
2	0.0669	0.0100	0.0305	0.0051
1	0.0370	0.0109	0.0152	0.0045

Tabla 2.12 Caso2: Dirección X - Componente NS / Dirección Y - Componente EO

Piso	Desplazamiento de C.M. en X (m)	Distorsión en X (Δ)	Desplazamiento de C.M. en Y (m)	Distorsión en Υ (Δ)
8	0.1574	0.0022	0.0995	0.0014
7	0.1507	0.0040	0.0955	0.0024
6	0.1386	0.0055 0.0882		0.0034
5	0.1221	0.0067	0.0780	0.0042
4	0.1020	0.0076	0.0653	0.0049
3	0.0792	0.0081	0.0506	0.0054
2	0.0548	0.0083	0.0344	0.0057
1	0.0298	0.0088	0.0172	0.0050

16. Así con las distorsiones obtenidas del análisis dinámico espectral y tiempohistoria se muestran las siguientes tablas de resumen. Tabla 2.13 Distorsiones obtenidas en X-X

		ANALISIS DINAMICO TIEMPO-HISTORIA						
Dico	A.D.	LIMA	1966	CHIMBO	TE 1970	LIMA	LIMA 1974	
FISU	Espectral	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2	
8	0.0021	0.0032	0.0025	0.0023	0.0017	0.0022	0.0022	
7	0.0038	0.0059	0.0038	0.0035	0.0033	0.0041	0.0040	
6	0.0053	0.0078	0.0038	0.0052	0.0032	0.0057	0.0055	
5	0.0065	0.0082	0.0051	0.0068	0.0046	0.0072	0.0067	
4	0.0076	0.0065	0.0072	0.0082	0.0071	0.0081	0.0076	
3	0.0087	0.0072	0.0089	0.0094	0.0093	0.0091	0.0081	
2	0.0098	0.0083	0.0107	0.0104	0.0111	0.0100	0.0083	
1	0.0110	0.0094	0.0122	0.0113	0.0127	0.0109	0.0088	

(Dinámico Espectral y Tiempo-Historia)

Tabla 2.14 Distorsiones obtenidas en X-X

(Dinámico Espectral y Tiempo-Historia)

		ANALISIS DINAMICO TIEMPO-HISTORIA					
Pico	A.D.	LIMA	1966	CHIMBO	TE 1970	LIMA 1974	
F150	Espectral	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2
8	0.0014	0.0017	0.0018	0.0015	0.0013	0.0011	0.0014
7	0.0025	0.0030	0.0031	0.0026	0.0024	0.0021	0.0024
6	0.0035	0.0043	0.0043	0.0037	0.0034	0.0030	0.0034
5	0.0044	0.0053	0.0052	0.0045	0.0043	0.0039	0.0042
4	0.0051	0.0059	0.0060	0.0051	0.0050	0.0046	0.0049
3	0.0058	0.0060	0.0062	0.0057	0.0056	0.0049	0.0054
2	0.0062	0.0059	0.0064	0.0061	0.0060	0.0051	0.0057
1	0.0055	0.0051	0.0057	0.0054	0.0054	0.0045	0.0050

Note que las distorsiones obtenidas con el análisis tiempo-historia (en cada caso de análisis) se asemejan a las distorsiones obtenidas en el análisis dinámico espectral con R=1, lo que demuestra que el escalamiento de los registros sísmicos (en sus dos componentes) se realizó correctamente.

2.4.5 DETERMINACIÓN DEL SISMO DE DISEÑO

En las siguientes tablas se muestran las variaciones que presentan las distorsiones calculadas en cada caso de análisis con respecto a las distorsiones obtenidas del análisis dinámico espectral, como criterio adicional se recomienda descartar aquellos casos en los cuales esta variación sea mayor o igual a 1.5(‰) en cualquiera de las direcciones (sea X o Y)

Tabla 2.15 Variaciones entre las distorsiones obtenidas en X-X

	ANALISIS DINAMICO TIEMPO-HISTORIA						
Dico	LIMA	1966	CHIMBC	TE 1970	LIMA	1974	
FISU	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2	
8	-0.0011	-0.0004	-0.0002	0.0004	-0.0001	-0.0001	
7	-0.0021	0.0000	0.0003	0.0006	-0.0003	-0.0002	
6	-0.0026	0.0015	0.0001	0.0021	-0.0004	-0.0002	
5	-0.0016	0.0014	-0.0003	0.0020	-0.0007	-0.0002	
4	0.0012	0.0004	-0.0005	0.0005	-0.0005	0.0000	
3	0.0015	-0.0002	-0.0006	-0.0006	-0.0004	0.0006	
2	0.0015	-0.0010	-0.0006	-0.0013	-0.0002	0.0015	
1	0.0015	-0.0012	-0.0003	-0.0017	0.0001	0.0022	

(Dinámico Espectral vs Tiempo-Historia)

Tabla 2.16 Variaciones entre las distorsiones obtenidas en Y-Y

	ANALISIS DINAMICO TIEMPO-HISTORIA						
Dico	LIMA	1966	CHIMBO	TE 1970	LIMA	LIMA 1974	
FISU	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2	
8	-0.0003	-0.0003	-0.0001	0.0001	0.0003	0.0001	
7	-0.0005	-0.0006	-0.0001	0.0001	0.0004	0.0001	
6	-0.0008	-0.0008	-0.0001	0.0001	0.0005	0.0001	
5	-0.0009	-0.0008	-0.0001	0.0001	0.0005	0.0001	
4	-0.0007	-0.0008	0.0000	0.0002	0.0006	0.0003	
3	-0.0002	-0.0004	0.0001	0.0002	0.0009	0.0004	
2	0.0003	-0.0002	0.0001	0.0002	0.0011	0.0005	
1	0.0004	-0.0002	0.0001	0.0001	0.0010	0.0005	

(Dinámico Espectral vs Tiempo-Historia)

Se descarta el Sismo de Lima 1966 en sus dos casos de análisis, así mismo, el caso 2 de los sismos de Chimbote 1970 y Lima 1974

Quedando así los sismos Chimbote 1970 y Lima 1974 (Caso 1), se consideró como sismo de diseño el de Chimbote Caso 1 por ser el que presenta menores variaciones con respecto al comportamiento esperado. Con este sismo se calcularon las propiedades del disipador viscoso.

- ✓ Sismo de Diseño : Chimbote 1970 Caso de análisis 1
- ✓ Distorsión Máxima en X : 11.3 ‰
- ✓ Distorsión Máxima en Y : 6.1 ‰

PISO	Desplazamiento de C.M. (m)	Distorsión de entrepiso D/h	Norma E030 (Distorsión máxima)	Control E030
8	0.1755	0.0023	0.007	SI
7	0.1686	0.0035	0.007	SI
6	0.1581	0.0052	0.007	SI
5	0.1425	0.0068	0.007	SI
4	0.1222	0.0082	0.007	NO
3	0.0977	0.0094	0.007	NO
2	0.0696	0.0104	0.007	NO
1	0.0385	0.0113	0.007	NO

Tabla 2.17 Control de distorsiones en dirección X – X

Tabla 2.18 Control de distorsiones en dirección Y - Y

PISO	Desplazamiento de C.M. (m)	Distorsión de entrepiso D/h	Norma E030 (Distorsión máxima)	Control E030
8	0.1059	0.0015	0.007	SI
7	0.1015	0.0026	0.007	SI
6	0.0936	0.0037	0.007	SI
5	0.0826	0.0045	0.007	SI
4	0.0691	0.0051	0.007	SI
3	0.0537	0.0057	0.007	SI
2	0.0366	0.0061	0.007	SI
1	0.0183	0.0054	0.007	SI

CAPÍTULO 3

EDIFICIO CON DISIPADORES DE ENERGÍA

3.1 DETERMINACIÓN DE LOS OBJETIVOS DE DISEÑO

Para este trabajo se consideró como **distorsión objetivo** el valor de 7‰, es decir, la distorsión máxima permitida para estructuras de concreto armado tal como lo indica la Norma Peruana de Diseño Sismorresistente. Los cálculos se realizaron solo para el eje XX, en donde la distorsión máxima (11.3‰) es superior a la permitida; el eje YY por tener una distorsión de 6.1‰ no requiere de disipadores.

Para calcular el amortiguamiento viscoso necesario para llegar a la distorsión objetivo (7‰) se sigue el siguiente procedimiento:

Como primer paso se determina el **factor de reducción de respuesta (B)** mediante el cociente:

$$B = \frac{D_{max}}{D_{objetivo}}$$
(3.1)

Donde la distorsión máxima D_{max} es la obtenida del análisis tiempo historia para el sismo de diseño seleccionado.

$$B_{xx} = \frac{0.0113}{0.007} = 1.614$$

Luego, se determina el **amortiguamiento efectivo** β_{eff} despejando la siguiente ecuación:

$$B = \frac{2.31 - 0.41 \ln(\beta_{o})}{2.31 - 0.41 \ln(\beta_{eff})}$$
(3.2)

Donde β_{o} es el **amortiguamiento inherente** de la estructura que usualmente se fija en 5% para estructuras de concreto armado.

De esta manera, se obtiene el amortiguamiento efectivo, este incluye la acción del disipador de energía y el amortiguamiento inherente de la estructura.

 $\beta_{\rm eff.xx} = 23.12\%$

Descontando el amortiguamiento inherente se obtiene el amortiguamiento viscoso que se requiere.

OBSERVACIONES IMPORTANTES:

✓ Amortiguamiento mínimo y máximo para fines de diseño

Según los fabricantes, se recomienda que los disipadores de energía viscosos sean diseñados teniendo en consideración para el cálculo un amortiguamiento viscoso $\beta_{\rm H}$ entre el 20% y 40%.

Si diseñados los disipadores de energía para lograr un amortiguamiento viscoso menor al de 20% el efecto que estos ofrezcan al sistema no será considerable, si deseamos lograr un amortiguamiento mayor al 40% esto está permitido pero solo de manera interna, no para fines de diseño.

En este caso el amortiguamiento viscoso requerido es de 18.12% ≈ 20%, si diseñamos los disipadores de energía con este valor la distorsión máxima que deberíamos alcanzar (Edificio con disipadores) sería igual a 7 ‰

Para mantener un margen de seguridad y realmente asegurar que se logre un amortiguamiento viscoso de 20% los cálculos se realizaron fijando el amortiguamiento viscoso requerido en 22%

✓ Distorsión objetivo

Como se indicó anteriormente la distorsión objetivo que se empleó en este trabajo fue la de 7‰ (máxima distorsión permisible para estructuras de concreto armado según la **Norma Peruana de Diseño Sismorresistente**), sin embargo para la determinación de la distorsión objetivo también se puede emplear una metodología de diseño basada en el control del daño por medio del control de los desplazamientos laterales.

Con esta metodología se fijan distorsiones objetivo tanto para el eje X como el Y, teniendo como base la propuesta del **Seismology Committee Structural Engineers Association of California** (SEAOC) en su libro Recommended Lateral Force Requeriments and Commentary esto para calificar el desempeño sismorresistente y relacionar los conceptos de distorsión y daño estructural siguiendo la propuesta del documento Multihazard Loss Estimation Methodology (HAZUS)

En este trabajo no se consideró esta metodología ya que aún no se hace mención a ella ni en la **Norma de Diseño Sismorresistente E030** vigente.

88

3.2 CÁLCULO DE LAS PROPIEDADES DEL DISIPADOR

1. Como primer paso, es necesario plantear una disposición inicial, en este caso se emplearán cuatro disipadores en arreglo diagonal (Dirección X-X)

Fig. 3.1 Ubicación de los disipadores en la Dirección X (Vista 3D)

Fig. 3.2 Ubicación de los disipadores en la Dirección X (Vista en elevación).

2. Una vez tengamos definida una disposición inicial, podremos calcular la rigidez del brazo metálico (K) y el coeficiente de amortiguamiento de los disipadores (C)

3.2.1 CÁLCULO DE LA RIGIDEZ

Se inicia la interacción considerando un perfil metálico estándar HSS o PIPE STD, en el presente trabajo se partió de un perfil del tipo HSS 7.50 x 0.50

Las propiedades de ese perfil son las siguientes:

Tabla 3.1 Propiedades del perfil HSS 7.50 x 0.50

Dimensiones HSS 7.50 x 0.50					
D ext.	D int.	Espesor			
(in)	(in)	(in)	Área (in ²)	Inercia (in ⁴)	
7.50	7.035	0.465	10.3	63.9	

Con los datos del perfil y la geometría de la estructura, se procede a definir la rigidez del sistema:

$$K = \frac{EA}{L}$$
(3.3)

Dónde:

Eacero = 29000 ksi = 20.4 x 10^6 T/m²

Área = 10.3 in² = 66.45 x 10^{-4} m²

L es la longitud del brazo metálico, en la figura 3.3 se muestra el valor de L considerando la longitud mínima de los disipadores de energía (31 in)

Fig. 3.3 Longitud del brazo metálico primer piso (izquierda) - 2do al 8avo piso (derecha)

Por lo tanto:

L piso N°1 = 5.26 m	L típico = 5.04 m
K piso N°1 = 25776.53 T/m²	K típico = 26878.09 T/m ²

OBSERVACIONES IMPORTANTES:

1) Es común pensar que si estamos modelando disipadores de energía, la rigidez que deberíamos de considerar es la del dispositivo y no la del brazo metálico, esta idea tiene coherencia y puede generar errores en nuestros cálculos si es que la llegamos a utilizar.

El emplear la rigidez del brazo metálico en la modelación de los disipadores es una consideración especial del fabricante, podremos encontrar esta recomendación en el archivo SAP2000 / ETABS Modeling (Documento de Taylor Devices)

2) Recordando lo que se vio anteriormente (Ver Capítulo 1) el perfil metálico a emplear debe tener un área significativa, esto para asegurar que todas las deformaciones se den en el disipador y no en el brazo metálico, haciendo que el dispositivo trabaje eficientemente ante un evento sísmico. También es importante la Inercia que tenga nuestro perfil - esto para evitar el posible pandeo de nuestro brazo metálico.

Como recomendación de los autores el perfil HSS 7.50 x 0.50 se puede emplear como una primera Sección de prueba, ya que posee suficiente Área e Inercia para cumplir con las exigencias de diseño, es importante mencionar que es el mayor perfil HSS que podemos emplear (Disipadores de 110kip y 165kip), los perfiles que tengan mayores dimensiones se entrecruzan con los pernos de la unión Brazo Metálico – Disipador (Diseño de acero de las conexiones)

Fig. 3.4 Detalle de la unión Brazo metálico – Placa Base (Disipador de 110kip-Taylor) Fuente: Tesis "Evaluación del proyecto estructural y optimización del diseño con disipadores de energía viscosos Taylor para una edificación esencial de 6 pisos" 91

3.2.2 CÁLCULO DEL COEFICIENTE DE AMORTIGUAMIENTO (C)

Antes de comenzar debemos fijar el valor del exponente de velocidad " α ". Para este caso, por tratarse de un dispositivo no-lineal, se consideró un valor de α =0.5. Posteriormente se procede a resolver la siguiente ecuación 3.4

$$\beta_{\rm H} = \frac{\sum_{j} \lambda C_{j} \phi_{ij}^{l+\alpha} \cos^{l+\alpha} \theta_{j}}{2\pi A^{l-\alpha} \omega^{2-\alpha} \sum_{i} m_{i} \phi_{i}^{2}} \quad \rightarrow \quad \sum C_{j} = \frac{\beta_{\rm H} \cdot 2\pi A^{l-\alpha} \omega^{2-\alpha} \left(\sum_{i} m_{i} \phi_{i}^{2}\right)}{\lambda \left(\sum \phi_{ij}^{l+\alpha} \cos^{l+\alpha} \theta_{j}\right)} \quad (3.4)$$

Dónde:

 $\beta_{\rm H}$ - amortiguamiento viscoso de la estructura

 λ - parámetro lambda

C_i - coeficiente de amortiguamiento del disipador j

 ϕ_{rj} - desplazamiento relativo entre ambos extremos del disipador j en la dirección horizontal (con nuestro sismo de diseño)

 $\boldsymbol{\theta}_i$ - ángulo de inclinación del disipador j

A - amplitud de desplazamiento del modo fundamental (desplazamiento modal de la losa del último nivel)

 $\boldsymbol{\omega}$ - frecuencia angular

m_i - masa del nivel i

 ϕ_i - desplazamiento del nivel i (con nuestro sismo de diseño)

Resolución:

✓ m_i: Masa del nivel i

Desafortunadamente el SAP2000 no nos muestra esta información, por lo que se requiere que efectuemos manualmente el metrado de cargas de cada nivel.

PISO	Peso (Tn)	Masa(Tn)
8	415.56	42.36
7	500.97	51.07
6	500.97	51.07
5	500.97	51.07
4	500.97	51.07
3	500.97	51.07
2	500.97	51.07
1	507.02	51.68

Tabla 3.2 Pesos por piso

 $\label{eq:big} \begin{array}{l} \checkmark \quad \beta_{\rm H} : \mbox{Amortiguamiento viscoso de la estructura} \\ \mbox{El valor de } \beta_{\rm H} \mbox{ ya lo tenemos calculado y es igual a } \beta_{\rm H,xx} = 22\% \end{array}$

 $\checkmark \quad \theta_{j} \colon$ Ángulo de inclinación del disipador j

Los dispositivos del primer nivel tienen un ángulo de inclinación de 34°

Los dispositivos del segundo al octavo nivel tienen un ángulo de inclinación de 31°

Fig. 3.5 Ángulo de inclinación de los disipadores en la estructura

 \checkmark ϕ_i : Desplazamiento del nivel i (con nuestro sismo de diseño: Chimbote-Caso 1)

 φ_{rj}: Desplazamiento relativo entre ambos extremos del disipador j en la dirección horizontal

NIVEL	φ.	φ., ,	ϕ_{rj}
	• 1	11+1	Diferencia
Base	0.0000	0.0385	0.0385
1	0.0385	0.0696	0.0311
2	0.0696	0.0977	0.0281
3	0.0977	0.1222	0.0245
4	0.1222	0.1425	0.0203
5	0.1425	0.1581	0.0156
6	0.1581	0.1686	0.0106
7	0.1686	0.1755	0.0069
8	0.1755		

Tabla 3.3 Cálculos para obtener el Desplazamiento relativo ϕ_{ij}

 A: Amplitud del desplazamiento del modo fundamental (Desplazamiento modal del techo del último nivel) Para poder ver los desplazamientos modales abrimos el SAP2000 y cargamos nuestro modelo <u>A.D.TH CHIMBOTE 1970</u>, estos valores también pueden verse en los modelos <u>A.D.TH LIMA 1966</u>, <u>A.D.TH LIMA 1974</u> y <u>A.D.ESPECTRAL R1</u>

Seleccionamos los centros de masa (1er – 8vo piso), nos dirigimos a **Display**→**Show Tables**, cuando la ventana **Choose Tables for Display** se haya abierto seleccione la siguiente ruta.

Store .	Supply Langes in ordered		
Table UNCODEL DEFWITION (3 of 60 tables series UNCODEL DEFWITION (3 of 60 tables series UNCODE) DEFWITION UNCODES	la C	2 Lost Patterns (Boder Def.) Select Law! Nations. 4 of 4 Selected Last Cases Results	Todas las casillas deber estar
Convertibility Data Canada Case Definitions Convertibility Data Convertibility Data Convertibility Convertibil	60840) 	3 Senist Lond Covers. I of 7 Solucint Modify/Draws Op Set Oxford Senistries Coolers Coolers Set Solucint Drivy Threes Unifyrmather	Seleccione Modal
30 C Jones Mannes ⊕ C Element Output ⊕ C Structure Output		Named Sets Save Record Set Annual Second Set Second Record Sec	
		4	

Los desplazamientos modales para la dirección X son:

Tabla 3.4 Desplazamiento modal por niveles

NIVEI	<u>U1</u>
	Modo 1 (m)
1	0.01522
2	0.02764
3	0.03915
4	0.04946
5	0.05820
6	0.06507
7	0.06983
8	0.07237

De donde, la amplitud es 0.07237

 \checkmark ω : Frecuencia angular

La frecuencia angular está en función de $f = \frac{1}{T}$, donde T es el periodo.

Para poder visualizar los periodos ir a **Display**→**Show Tables**, cuando la ventana **Choose Tables for Display** se haya abierto seleccione la siguiente ruta.

1.40		(287)). — —	
Edit	a selected) Ites selected) of Processing separates references	2 3 Least Patterns (Model Det.) Second Load Patterns R of a lasketing Call Dates (Neurity) Call Dates Call Dat	Todas las casillas debe estar Seleccione Modal
		4	

El periodo fundamental de la estructura en la dirección X es 1.32s

Tabla 3.5 Período fundame	ental de la estructura en X-X
---------------------------	-------------------------------

Mada	Poríodo T (c)	Masa Pa	rticipativa
MOUO	Fellodo I (S)	Masa X-X	Masa Y-Y
1	1.320 🔶	0.866	0
2	0.969	0	0
3	0.824	0	0.848

La frecuencia angular será:

$$f = \frac{1}{T} = \frac{1}{1.320} = 0.7575$$

Además:

$$\omega = 2\pi f = 2\pi (0.7575) = 4.759 \frac{\text{rad}}{\text{s}}$$

 \checkmark λ : Parámetro lambda

El parámetro λ es dependiente del valor del exponente de velocidad $\,\alpha$

El FEMA 274 nos facilita la siguiente tabla:

Exponente α	Parámetro λ
0.25	3.7
0.50	3.5
0.75	3.3
1.00	3.1
1.25	3.0

Tabla 3.6 Valores de λ respecto al exponente de velocidad α

Así con estos datos se procede a calcular el coeficiente de amortiguamiento del disipador $\rm C_{i}$

Tabla 3.7 Cálculos realizados para obtener el coeficiente de amortiguamiento C

NIVEL	Masa (T)	cosθ	cosθ^(1+α) * Φrj^(1+α)	т * Фi^2
1	51.68	0.827	0.005674	0.076
2	51.07	0.857	0.004354	0.247
3	51.07	0.857	0.003740	0.487
4	51.07	0.857	0.003047	0.762
5	51.07	0.857	0.002302	1.037
6	51.07	0.857	0.001544	1.276
7	51.07	0.857	0.000861	1.452
8	42.36	0.857	0.000456	1.305
		Σ	0.0220	6.644

Considerando un amortiguamiento viscoso de $\beta_{H,xx} = 22\%$ y asumiendo que todos los disipadores tendrán el mismo coeficiente de amortiguamiento, se procede a resolver la siguiente ecuación:

$$\sum C_{j} = \frac{\beta_{H} \cdot 2\pi A^{1-\alpha} \omega^{2-\alpha} \left(\sum_{i} m_{i} \phi_{i}^{2}\right)}{\lambda \left(\sum \phi_{ij}^{1+\alpha} \cos^{1+\alpha} \theta_{j}\right)} = \frac{0.22 \times 2\pi \times 0.07237^{1-0.5} \times 4.759^{2-0.5} (6.644)}{3.5(0.0220)} = 333.115$$

Empleando cuatro disipadores por nivel se tendrá:

$$C_{j} = \frac{333.115}{4} = 83.278 \frac{T.s}{m}$$

Se tomó el valor de $C_j = 85 \frac{T.s}{m}$, así finalmente, las propiedades de los disipadores en la Dirección X son las siguientes:

Primer piso	<u>2do al 8avo piso</u>
$C_j = 85 \frac{T.s}{m}$	$C_j = 85 \frac{T.s}{m}$
K = 25776.53 T/m ²	K = 26878.09 T/m ²
$\alpha = 0.5$	$\alpha = 0.5$

OBSERVACIONES IMPORTANTES:

1) Exponente de velocidad α

En este trabajo para el cálculo del Coeficiente de amortiguamiento C_j se fijó el valor del Exponente de velocidad $\alpha = 0.5$

Los disipadores con un α de **0.4 a 0.5** han demostrado experimentalmente un buen comportamiento para el diseño de edificaciones con registros sísmicos; sin embargo como una buena práctica se recomienda analizar otras posibilidades, es decir, realizar el cálculo del **Coeficiente de amortiguamiento** con valores de α desde **0.3 a 1.0** y elegir el caso en el que la estructura muestre un mejor comportamiento antisísmico.

<u>Nota:</u> Si desea seguir esta recomendación recuerde que el valor del **Parámetro lambda** λ es dependiente del **Exponente de velocidad** α por lo que este también variará.

2) <u>Coeficiente de amortiguamiento</u> C₁

Con la ecuación del amortiguamiento viscoso propuesta en el **FEMA 274**, el desarrollo de esta fórmula se encuentra en el documento **Seismic Design of Structures with Viscous Dampers –** escrito por **Hwang, Jenn-Shin** en el año 2002.

$$\beta_{\rm H} = \frac{\sum_{j} \lambda C_{j} \phi_{ij}^{l+\alpha} \cos^{l+\alpha} \theta_{j}}{2\pi A^{l-\alpha} \omega^{2-\alpha} \sum_{i} m_{i} \phi_{i}^{2}} \quad \rightarrow \quad \sum C_{j} = \frac{\beta_{\rm H} \cdot 2\pi A^{l-\alpha} \omega^{2-\alpha} \left(\sum_{i} m_{i} \phi_{i}^{2}\right)}{\lambda \left(\sum \phi_{ij}^{l+\alpha} \cos^{l+\alpha} \theta_{j}\right)}$$

Dónde:

 $\beta_{\rm H}$ - amortiguamiento viscoso de la estructura

 λ - parámetro lambda

C_i - coeficiente de amortiguamiento del disipador j

 ϕ_{ij} - desplazamiento relativo entre ambos extremos del disipador j en la dirección horizontal (con nuestro sismo de diseño)

 θ_i - ángulo de inclinación del disipador j

A - amplitud de desplazamiento del modo fundamental (desplazamiento modal de la losa del último nivel)

- ω frecuencia angular
- m_i masa del nivel i
- ϕ_i desplazamiento del nivel i (con nuestro sismo de diseño)

3.3 MODELACIÓN Y ANÁLISIS DEL EDIFICIO CON DISIPADORES DE ENERGÍA

3.3.1 INTRODUCCIÓN

En el capítulo anterior se calcularon las propiedades de los disipadores viscosos en base a una distorsión objetivo fijado en 7 ‰

A continuación se muestra una tabla resumen con los resultados de los cálculos realizados.

Dirección	X-X		
1er Nivel			
Rigidez (K) – T/m ²	25776.53		
Coef. Amort. (C) – Tn*s/m	85		
Exp. Amort. (α)	0.5		
2do – 8vo Nivel			
Rigidez (K) – T/m ²	26878.09		
Coef. Amort. (C) – Tn*s/m	85		
Exp. Amort. (α)	0.5		
Amortiguamiento Viscoso			
22%			

Tabla 3.8 Propiedades de los disipadores viscosos

3.3.2 MODELACIÓN DE LOS DISIPADORES DE ENERGÍA VISCOSOS

- 1. Iniciamos cargando nuestro modelo A.D.TH CHIMBOTE 1970 (Sismo de diseño)
- Los disipadores de energía en el programa SAP2000 son modelados como elementos Link para definir sus propiedades nos dirigimos a Define→Section Properties→Link/Support Properties, en la ventana emergente seleccionar Add New Property

◆ 同县 小正	Materials		CT 40 Per al at at the		
KAThee-	Section Properties		Yune Setiens.		
**	Massimares		Tendor Sectoria:		
	Deardrait Sydenu (Selb.		Catto Sectoria.		
-0-	And Company.	1	· Area bectern.		
	Jaciel Paperson.		Brid Franker,	Link/S	upport Properties
	lings.		April content the Sam.		
Section	Section Cuts	13	C Los Separtmentes.	Properties	CRUE NO.
	Researched Gright Street.	-	Frequency Orgi. Link Rogan	- Contraction -	Add New Property
	Functions	1	Hage Properties -		
21	Load Fallers				and Court of Property.
122	Lord Com.				Statistics Prophy
	Said Spreadures.	-1			Denni Philperty
	MovingLawte	· .			
	Narrad Roperty Sets	1			- 0X
	Purpheridal Parameters Salts:				

- 3. El SAP2000 nos solicitará ingresar la siguiente información:
 - ✓ De qué tipo de elemento Link se trata.
 - ✓ Cuál será el nombre que le daremos a los disipadores.
 - Las propiedades que ingresamos a que dirección pertenecen (ejes locales del dispositivo).
 - ✓ El dispositivo se comporta de manera lineal o no-lineal.
 - ✓ Cuáles son las propiedades que tendrá el disipador.
- 4. Para este caso:
 - ✓ El tipo de elemento Link con el que se modelan los disipadores viscosos es Damper-Exponential (en versiones anteriores al SAP2000 v.17 es simplemente Damper).
 - ✓ Comenzaremos creando los disipadores del primer piso, a estos elementos los llamaremos Dx-1er.
 - ✓ Las propiedades que se ingresan a los disipadores siempre son en la Dirección U1 (axiales al disipador).
 - ✓ Debido a que el exponente de amortiguamiento α que se consideró en el cálculo de las propiedades fue igual a 0.5 se trata de un disipador **no-lineal**.
 - ✓ Las propiedades para este dispositivo son Rigidez (K) = 25776.53 T/m², Coeficiente de Amortiguamiento (C) = 85 Tn*s/m y el exponente de amortiguamiento (α) es de 0.5

	Link/Si	apport Property Data		Link/Suppo	rt Direction	al Properties
LIND-port 7g	R Danser-Dr	porantal w		identification		
Property Same	24.14	St	Default harre	Property Name	Dx-1et	
Property home	A		with Sten	Director	U.I	
Titel Velia and II	nghi .			Constraint.	Parates	Press and and
Have	3	Refer Alberta F	-	Type	Campar	Exponentar
Waged	3	for al horse 2	4	NonLinear	Ves	
		Re al herta 3	a	Properties Used For Line	ar Analysis Can	
Pactors Por Line.	inte and Sold San	*	100			
Property in Carls	el for This Length	tra Line Sam	·	Effective Stiffness		1
Property is Delt	ad to: This Area in	Area and Salat.	F	Effective Damping		0.
Desitional Prope			P.Gate Reservators	Properties Used For Non	Anear Analysia C	ases
Deather Fa	d house	Properties	Advanced.	Comess		25776.53
Cite	-	marginina (p. 01		Research Parellinet		88.
0.4		and the second second		Clamping Coerribers		0.5
		and the second second		Damping Exponent		
T 41		man man in the	04	-	-	
1.141		And Address of the local division of the loc	Cantel	OK	¢	ancel
	Concession in the local data					

5. De la misma manera continuamos con las propiedades de los disipadores ubicados del 2do al 8vo nivel.

		Link/Su	pport Property Data		Link/Support	t Directional Properties
Unification Property Property N Non-Dates Name Weight	nt Type Ranner office and Yongto 1	Dempel-Do	time to the 1	Elarbad Name Indity/Deve. 8	Identification Property Name Direction Type	Dx - 2do 8avo U1 Damper - Exponential
Factors for Property is Property is Directors of Directors Of UT	Line, Arms Defined fo Defined fo Fixed	and Sold Spr r The Length I The Area In-	Addimational fraction 2 repl A state Array and Constraining Property Mode/stateworker (11)	1 1 Abria facement	Properties Used For Linear Effective Stiffness Effective Damping Properties Used For Nonlin	Analysis Cases 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
			Notes State St. C. National State St. C. National State St. C. National State St. C. National St. C.	de . Secut	Stiffness Damping Coefficient Damping Exponent OK	26878.09 85. 0.5 Cancel

6. Cuando tengamos definidas las propiedades de todos nuestros disipadores podremos modelarlos en el software, para ello ir a **Draw**→**Draw 2 Joint Link.**

- 7. Dibujar los disipadores viscosos es sencillo, solo seleccione los nudos entre los cuales va a estar ubicado el dispositivo, todos los disipadores que vayamos a emplear estarán localizados en los pórticos extremos, ya que son los lugares donde se dan las mayores velocidades.
- 8. El arreglo que emplearemos es Diagonal Alternada.
- 9. Inicie con los disipadores del primer piso, importante verificar que en **Property** este seleccionado **Dx-1er.**

 Para dibujar los disipadores ubicados en los pisos superiores seleccione en Property Dx – 2do 8vo

11. Ubíquese en la fachada opuesta y repita los pasos 9 y 10 para modelar los disipadores en este pórtico, al culminar este paso usted tendrá modelados todos los disipadores.

12. Para verificar que no haya cometido ningún error al dibujar los disipadores ingrese a **Set Diplay Options**

13. En la ventana **Display Options For Active Window** ubíquese en **Links** y active la casilla **Properties**

antes Labem Labem Storoge Lacativites India Verei		Control Objection C Strains Dispection Strains Dispects Strains Dispects Dispect Biological Dispect Biological Biological Biological Biological Dispects Disp	Verw by Casers of Gaperts Decisions Caser Preser Write Background, Back Digetts Salented Groups Mater Union Salented Groups Mater Union
trass Latens technes Local/Autos Stat in View	Selection (Loss Lates Projection LosstAnce Mater View	Housekareaux Show Anapyas Model (H'Avabalie) Show Anapyas Model (H'Avabalie) Show Anapyas Only For Objects In Yew Yew Type # Standard \circ Office Dervies

14. El programa le mostrará las propiedades de los disipadores que ha dibujado, verifique en ambos pórticos si todos estos están ubicados de manera correcta

15. Antes de correr el modelo debemos realizar algunos ajustes en los casos de carga, por lo tanto diríjase a **Define**→**Load Cases**

16. Recordemos que el sismo de diseño es el de CHIMBOTE – CASO1, en consecuencia el caso de análisis 2 no va a ser empleado por lo que lo

eliminaremos, por consiguiente seleccione en **Load Cases** CASO2 y haga Click en **Delete Load Case**

Load Cases			Ches to:	
Lost Case Name	Land Case Type		Add New I	Load Case
DEAD MODAL RED TERMILADO	Linear Static		Add Cepy 6	Load Case .
TABILIERIA	Linear Static		Wodfy/Show Last Case	
CV CA501	Linear Static Linear Modal History		Delete L	and Case
			Display Load Care	
			Shaw Load	Case Tree
		_	OK.	Caricel

17. En la misma ventana (Define Load Cases) seleccione en Load Cases CASO1 y haga click en Modify/Show Load Case. Recordemos que el comportamiento de los disipadores es no-lineal, por lo que debemos señalarle al programa que el tipo de análisis debe ser Tiempo Historia No-Lineal.

CASO1	Set De	dName	Nodify/SI	WK	Load Case Type Time History	↓ Design
nitel Conditione		Analysia Type	Solution Type			
· Zero Initial Con	iditions - Start fr	sm Unstreased	State		O Litear	Modal
C Contras ture	Note at bod of I	ALCO Harry			🕷 tioninear	O Deact integratio
Important limite	Loads Family	the previous per	es ere siche	init (t	Hatory Type	1111220-0701-02002
	The Collins of				· Translant	
Vodal Load Case	S.		money		C Person	
Use stodes from	Lase		MODAL.			
Lands Applied						Hese Source
Load Type	Load Name	Punction to cumpto	Scale I	fecter .		Previous (VETIGADO
ACCEL V		EU CHIRBOT	1001	10	L'and L	
Acon	412	ILS CHMBOTE	7 9.01		AB	
					Modity	
		č i	6		Delete	
C Show Group	and I shall Distant	-	0.0			
Time Step Deta				00000		
Number of O	stput Time Steps	£				
Output Time 1	Step Size	16				
Other Parameters						
Rindal Darrys	ά Π	Constant et	0.05	Madely	Stow	DK
Trachuse Reconstant Other			1	Madel	Cancel	

18. Finalmente, guarde el archivo como <u>EDIFICIO CON DISIPADORES</u>, ahora correremos el modelo para ver los resultados obtenidos.

3.3.3 RESPUESTA DE LA ESTRUCTURA CON LOS DISIPADORES DE ENERGÍA

A) DESPLAZAMIENTO EN LOS C.M. Y CONTROL DE DISTORSIONES

 Los desplazamientos y las distorsiones obtenidas del Análisis Dinámico Tiempo Historia No-Lineal de nuestro edificio con disipadores de energía se muestran a continuación.

PISO	Desplazamiento de C.M. (m)	Distorsión de entrepiso D/h	Norma E030 (Distorsión máxima)	Control Norma E030
8	0.1755	0.0023	0.007	SI
7	0.1686	0.0035	0.007	SI
6	0.1581	0.0052	0.007	SI
5	0.1425	0.0068	0.007	SI
4	0.1222	0.0082	0.007	NO
3	0.0977	0.0094	0.007	NO
2	0.0696	0.0104	0.007	NO
1	0.0385	0.0113	0.007	NO

Tabla 3.9 Control de distorsiones en la dirección X – X (Edificio Sin disipadores)

Tabla 3.10 Control de distorsiones en la dirección X – X (Edificio Con disipadores)

PISO	Desplazamiento de C.M. (m)	Distorsión de entrepiso D/h	Norma E030 (Distorsión máxima)	Control Norma E030
8	0.1028	0.0011	0.007	SI
7	0.0993	0.0023	0.007	SI
6	0.0926	0.0032	0.007	SI
5	0.0829	0.0041	0.007	SI
4	0.0706	0.0048	0.007	SI
3	0.0563	0.0054	0.007	SI
2	0.0402	0.0059	0.007	SI
1	0.0225	0.0066	0.007	SI

Como se puede observar la distorsión máxima en la Dirección X de 11.31‰ (Edifico sin disipadores) se redujo hasta 6.62 ‰, valor que es menor al máximo permitido (7‰), de esta manera se satisfacen las condiciones en cuanto al control de distorsiones que establece la Norma Peruana de Diseño Sismorresistente.

B) COMPORTAMIENTO HISTERÉTICO DE LOS DISIPADORES

Ahora se mostrará cómo obtener la gráfica de Desplazamiento vs Fuerza (Curva de histéresis) de un disipador de energía.

20. Nos dirigimos a Display→Show Plot Functions, y en la ventana Plot Function Trace Display Definition daremos un click en Define Plot Functions

Load Tana Hick-degreet Cannol (64	w 181
Ne Fundaria The Res	
Define Rel Functions	R Read Defaults
	y (halilik Ba Kas Lunia Kas
	Networks
Parameter for Function (1982)	a tireby
	Association Terre
	Not functions

21. Se abrirá la ventana Plot Functions, en ella le indicaremos al programa que queremos añadir una función tipo Link Forces/Deformations, para obtener las Curvas Histeréticas del disipador precisamos crear dos funciones una de deformaciones y otra de fuerzas (ambas del mismo disipador)

	Plot Functions
Plot Functions	Choose Function Type to Add
Input Energy	Add Link Forces/Deformation: v
	Click fe:
	2 Add Plot Function
	Hodity/Shew Per Function
	Multily Multiple Ped Functions
	Deters Per Facutors
5	OK Cencel

22. Como ejemplo trabajaremos obteniendo solo las Curvas Histeréticas del disipador número 15 de nuestro modelo estructural. Iniciamos creando la función de desplazamiento o deformaciones de dicho disipador, recuerde que se trata de las deformaciones axiales que experimenta el dispositivo durante el sismo - en consecuencia se trata de una deformación en la Dirección U1 (ejes locales del disipador)

×		Link Plot Function					×			
	Plot Fu	inction Nar	ne		Unkts	2				Es muy importante saber el nombre de la Función creada, en este caso es Link15
		Elem	C tra		1		£		1	
	Compor	trent							- 1	
2		Ut	0	用1					- 1	
-	0	U2	0	92					- 1	
	0	U3	0	R3					1	
	Type								1	
3	۰	Deformatio	in O	End-i	Force	4	OK.		- 1	
			0	End-J	Force		Cancel	i i		

23. Realizamos nuevamente el paso número 21, es decir, añadimos otra función tipo **Link Forces/Deformations**, esta vez crearemos la función Fuerza, recuerde que se trata de la fuerza axial que experimenta el disipador durante la acción sísmica.

K Link	Plot Function	×	
Plot Function Name	Link15-1		Es muy importante saber el nombre de la Función creada, en este caso es Link15-1
2 Component Axial Force Shear 3-3 Type D 3 0 0 0 0 0 0 0 0 0 0 0 0 0	Torsion Moment 2.3 Moment 2.3 End-1 Force End-1 Force	OK 4	Elegir End-I Force o End-J Force es exactamente igual ya que el dispositivo experimenta la misma fuerza en ambos extremos.

- 24. Cuando tengamos nuestras dos funciones creadas, debemos regresar a la ventana **Plot Function Trace Display Definition**. Recuerde que el nombre con el que se crearon las funciones fue:
 - ✓ Link15 Deformación Eje Horizontal
 - ✓ Link15-1 Fuerza Eje Vertical

	Load Case (Multi-stepped Cases)	CASO1	
Choose Plot Functions		Time Range	
Define Pot Functiona		From 0.	Reset Defaulta
List of Functions	Vertical Functions	0.	
Link15 Input Energy	Add In Ad	A Range Override	De Bar
A Stevenstra	«. Remove	Horizontal	-
	Show	Vertical	
	Income Text Information	Axe Laten	
		DESPLAZAMENTO(N	urbrital
3 Hurizontal Plet Function Link15 v		Very and the second sec	ricel
Calendard Des Furnet	ing I ma Orthoga	Public A(III)	
O Sold Line	O Dashed Line Detted Line	Gnd Overtay	
Vertical Sca	le Factor	Save Named Set	Display.
Line Calor		And Distances in the	Contra 1

25. Al dar un click en **Display** obtendremos las Curvas Histeréticas del disipador, tal como se muestra en la siguiente figura.

OBSERVACION IMPORTANTE:

Como ejemplo solo se empleó el disipador número 15, al momento de trabajar en un proyecto real es indispensable verificar el comportamiento histerético de todos los disipadores en el sistema.

A partir de las curvas histeréticas, se puede prever, que aquellos disipadores que no se ajustan a la forma elíptica, no trabajan correctamente, esto es, no aportan
significativamente en el incremento del amortiguamiento y en la reducción de las distorsiones.

<u>Ejemplo:</u> En la siguiente imagen (Izquierda) se puede ver que no se logró la forma elíptica propia del comportamiento histerético de los disipadores viscosos, en ese caso se optó por cambiar la disposición de los disipadores logrando mejores resultados (Derecha).

Fuente: Tesis "Evaluación del proyecto estructural y optimización del diseño con Disipadores de Energía Viscosos Taylor para una edificación esencial de 6 pisos"

C) BALANCE DE ENERGÍA

Ahora se le mostrará como ver de manera gráfica el balance de energía del edificio con los disipadores de energía.

26. Repita el paso 21, al hacerlo se abrirá la ventana **Plot Functions** en ella le indicaremos al programa que queremos añadir una función de energía.

 Tenemos que señalarle al programa que energías queremos que considere en nuestro diagrama de balance energético. En este caso emplearemos las más importantes – Input Energy (energía de entrada del sismo) – Modal **Damping Energy** (energía que disipa el edificio por sí mismo) – **Link Damper Energy** (energía que es disipada por los disipadores de energía viscosos).

×	Energy Functions
	 Input Energy Kinetic Potential Energy Modal Damping Energy Link Damper Energy Link Hysteretic Energy Error
	OK Cancel

- 28. Cuando culminemos con el paso 27, debemos regresar a la ventana Plot
 Function Trace Display Definition. Recuerde que en el diagrama de balance de energía los ejes son:
 - ✓ Eje Vertical Energía (T.m)
 - ✓ Eje Horizontal Tiempo (s)

Nosee Plot Functions		From 0. Reset Defaulte
Define Put Fun	ctors	76 8.
List of Functions	Vertical Functions Hout Energy Medal Damping E	Axis Range Override Min Max
Dyin	c	Ava Labels Horizontal TEMPO(S)
Horipontal Plot Function	n Talis U	Writeal ENERGIA(TII-M)
elected Pat Function Line Option	•	A first framework

29. Daremos un click en **Display** y obtendremos el diagrama de balance de energía tal como se muestra en la siguiente figura.

La energía de entrada se muestra en color amarillo, la energía de amortiguamiento inherente a la estructura con color verde y la de los dispositivos viscosos con color rojo.

 Si deseamos ver los valores de la energía de entrada, de amortiguamiento y la tomada por los disipadores de manera numérica, debemos dirigirnos a Display→Show Tables donde seguiremos la siguiente ruta.

El porcentaje de disipación de energía se calcula de la siguiente manera:

% disipación de energía = $\frac{\text{Energía del sistema de amortiguamiento}}{\text{Energía de entrada del sismo}}$

Tabla 3.11 Porcenta	je de disipación de	e energía en la ed	ificación con disipadores

	Energía(T.m)			
Entrada	Inherente de la estructura	Disipadores		
289.72	142.78	146.94		
100%	49.28%	50.72%		

En el gráfico de balance energético se puede apreciar que gran parte de la energía es tomada por el sistema de disipación (50.72% de la energía de entrada). Este porcentaje es significativo y se debe principalmente a la numerosa cantidad de disipadores fluido-viscosos empleados (32 dispositivos).

Con este porcentaje de disipación podemos esperar la disminución de desplazamientos en los centros de masa de los pisos, así como la reducción de fuerzas y momentos en los diferentes elementos estructurales.

CAPÍTULO 4 DISCUSIÓN DE RESULTADOS Y ELECCIÓN DEL DISIPADOR VISCOSO

4.1 EVALUACIÓN DE RESULTADOS

A continuación se presentan los resultados comparativos en cuanto a desplazamientos, distorsiones, aceleraciones y otros del edifico en estudio (con y sin disipadores de energía) teniendo como sismo de diseño el de Chimbote 1970 (Caso 1).

Archivos empleados:

- ✓ A.T.H. CHIMBOTE 1970
- ✓ EDIFICIO CON DISIPADORES

4.1.1 DESPLAZAMIENTOS EN LOS CENTROS DE MASA

Dirección X-X

La incorporación de disipadores de energía viscosos en la estructura reduce los desplazamientos de piso en la dirección X-X en un rango de entre 42 a 43% tal como se muestra en la figura 4.1 y tabla 4.1

Dico	Sin	Con	%
FISU	disipador	disipador	Reducción
8	175.55	102.77	41.46%
7	168.64	99.33	41.10%
6	158.09	92.56	41.45%
5	142.51	82.85	41.86%
4	122.18	70.63	42.19%
3	97.67	56.33	42.33%
2	69.57	40.25	42.15%
1	38.47	22.51	41.50%

Tabla 4.1 Porcentaje de reducción de los desplazamientos máximos en los C.M. de cada piso

4.1.2 DISTORSIONES DE ENTREPISO

Dirección X-X

Las distorsiones de entrepiso en la dirección X-X se redujeron en un rango entre el 36% y 51% tal como se aprecia en la figura 4.2 y tabla 4.2. Es importante mencionar que la distorsión máxima en la estructura con disipadores de energía viscosos se presenta en el primer piso y es igual a 6.62 ‰, valor que satisface la distorsión objetivo de 7.0 ‰ es decir la máxima distorsión permitida por la Norma Peruana de Diseño Sismorresistente E030

Fig. 4.2 Distorsiones de entrepiso (Dirección X-X)

Dico	Sin	Con	%
FISO	disipador	disipador	Reducción
8	2.30	1.15	50.25%
7	3.52	2.26	35.84%
6	5.19	3.24	37.68%
5	6.78	4.07	39.88%
4	8.17	4.77	41.64%
3	9.37	5.36	42.78%
2	10.37	5.91	42.95%
1	11.31	6.62	41.50%

Tabla 4.2 Porcentaje de reducción de las distorsiones de entrepiso

4.1.3 ESFUERZOS MÁXIMOS EN LOS ELEMENTOS DE CORTE

Las fuerzas cortantes y los momentos flectores de todas las columnas se redujeron. A manera de ejemplo se realizó una comparación de estas fuerzas (edificio con y sin disipadores) en la columna que se muestra en la siguiente imagen.

Fig. 4.3 Vista en planta de la estructura

Fig. 4.4 Vista en elevación del Pórtico 4

Para verificar las fuerzas cortantes y momentos flectores de las columnas en el programa SAP2000, recordar la siguiente regla:

Acción sísmica en la Dirección X – Verificar V2 y M3

Acción sísmica en la Dirección Y – Verificar V3 y M2

Considerando la acción del sismo en la Dirección X-X (V2-M3)

Fig. 4.5 Fuerza cortante máxima en cada piso para la columna seleccionada

Diag	Sin	Con	%
FISU	disipador	disipador	Reducción
8	29.99	17.57	41.43%
7	30.47	17.38	42.96%
6	27.80	15.87	42.89%
5	24.80	14.26	42.51%
4	21.93	12.47	43.14%
3	18.91	10.09	46.64%
2	15.93	7.09	55.52%
1	9.40	3.76	60.03%

Tabla 4.3 Porcentaje de reducción de la fuerza cortante en la columna seleccionada

Fig. 4.6 Momento flector máximo en cada nivel para la columna seleccionada

Piso	Sin disipador	Con disipador	% Reducción
8	53.14	31.11	41.46%
7	45.99	26.25	42.92%
6	41.96	23.95	42.91%
5	37.41	21.53	42.44%
4	33.17	18.88	43.08%
3	28.49	15.36	46.10%
2	24.28	10.88	55.18%
1	14.72	5.91	59.81%

Tabla 4.4 Porcentaje de reducción del momento flector en la columna seleccionada

4.1.4 ACELERACIÓN Y VELOCIDADES

A continuación en las tablas 4.5 y 4.6 se muestran los valores máximos y mínimos de las velocidades y aceleraciones de los centros de masas de cada piso, para el edifico sin y con disipadores respectivamente.

Aceleraciones y velocidades de los C.M. en la Dirección X-X

Tabla 4.5 Velocidades y aceleraciones en los C.M. de cada piso en la edificación sin

Piso	Valor	Velocidad	Aceleración
1 130	valor	(m/s)	(m/s²)
0	Máx.	0.850	5.013
0	Mín.	-0.948	-6.265
7	Máx.	0.817	4.215
1	Mín.	-0.914	-4.771
6	Máx.	0.764	3.770
0	Mín.	-0.851	-3.532
5	Máx.	0.705	3.439
5	Mín.	-0.765	-4.903
Α	Máx.	0.634	3.417
4	Mín.	-0.672	-5.042
S	Máx.	0.530	3.40
5	Mín.	-0.573	-3.889
0	Máx.	0.397	3.013
2	Mín.	-0.456	-3.355
1	Máx.	0.316	2.378
I	Mín.	-0.333	-3.175

disipadores

Tabla 4.6 Velocidades y aceleraciones en los C.M de cada nivel en la edificación con disipadores

		-	
Piso	Valor	Velocidad	Aceleración
F 150	valoi	(m/s)	(m/s ²)
0	Máx.	0.4862	2.86767
0	Mín.	-0.6082	-2.71412
7	Máx.	0.4726	2.64862
7	Mín.	-0.5897	-2.47951
6	Máx.	0.4457	2.2981
0	Mín.	-0.5552	-2.39301
5	Máx.	0.4216	2.07802
5	Mín.	-0.4966	-2.37932
4	Máx.	0.3967	2.10258
	Mín.	-0.4717	-2.60355
3	Máx.	0.3665	1.9353
	Mín.	-0.4333	-2.97662
2	Máx.	0.332	1.78959
2	Mín.	-0.3858	-2.96409
1	Máx.	0.2919	2.11722
1	Mín.	-0.3752	-2.88152

En las figuras 4.7 y 4.8 se puede ver la comparación entre las aceleraciones y velocidades del edificio sin y con disipadores; así mismo en las tablas 4.7 y 4.8 se muestra el porcentaje de reducción de estos valores con el uso de disipadores viscosos.

Fig. 4.7 Comparación de las aceleraciones máximas en los C.M.

Dico	Sin	Con	%
FISU	disipador	disipador	Reducción
8	5.013	2.868	42.79%
7	4.215	2.649	37.17%
6	3.770	2.298	39.05%
5	3.439	2.078	39.58%
4	3.417	2.103	38.46%
3	3.400	1.935	43.08%
2	3.013	1.790	40.61%
1	2.378	2.117	10.96%

Tabla 4.7 Porcentaje de reducción de las aceleraciones máximas en los C.M.

Fig. 4.8 Comparación de las velocidades máximas en los C.M.

Diec	Sin	Con	%
PISO	disipador	disipador	Reducción
8	0.850	0.486	42.81%
7	0.817	0.473	42.13%
6	0.764	0.446	41.69%
5	0.705	0.422	40.16%
4	0.634	0.397	37.40%
3	0.530	0.367	30.86%
2	0.397	0.332	16.27%
1	0.316	0.292	7.74%

Tabla 4.8 Porcentaje de reducción de las velocidades máximas en los C.M.

4.1.5 MODOS Y PERÍODOS DE VIBRACIÓN

A continuación en la tabla 4.9 se muestran los periodos resultantes de la edificación con los disipadores viscosos incorporados en ella.

Modo	Período T	Masa Participativa		
	(s)	Masa X-X (%)	Masa Y-Y (%)	
1	1.320295	86.59	0.00	
2	0.968685	0.00	0.00	
3	0.823678	0.00	84.76	

4	0.43981	9.11	0.00
5	0.320761	0.00	0.00
6	0.271283	0.00	9.68
7	0.26165	2.61	0.00
8	0.189667	0.00	0.00
9	0.187784	1.01	0.00
10	0.157838	0.00	3.08
11	0.148014	0.43	0.00
12	0.134017	0.00	0.00
13	0.124529	0.18	0.00
14	0.118742	0.00	0.00
15	0.111995	0.00	0.17
16	0.110405	0.07	0.00
17	0.110126	0.00	1.19
18	0.10835	0.00	0.00
19	0.103681	0.00	0.00
20	0.102769	0.01	0.00
21	0.102434	0.00	0.00
22	0.101924	0.00	0.00
23	0.094546	0.00	0.00
24	0.094024	0.00	0.00
Sumatoria		100.00	98.89

Se puede apreciar que los períodos resultantes son los mismos a los de la estructura sin los disipadores de energía, esto se debe a que estos dispositivos no incrementan la rigidez de la estructura, lo que generaría que los periodos no varíen.

4.2 DISEÑO DE LOS DISPOSITIVOS DE AMORTIGUAMIENTO 4.2.1 AGRUPACIÓN DE LOS DISPOSITIVOS POR NIVELES DE FUERZA

Cuando terminemos con nuestro modelo estructural y estemos satisfechos con los resultados obtenidos en cuanto a distorsiones, energía sísmica disipada y otros, podremos agrupar a los dispositivos por sus niveles de fuerza para así poder solicitar su pedido.

Para ello debemos saber cuáles son las fuerzas máximas (compresión o tracción) que experimentan nuestros dispositivos bajo la acción de nuestro sismo de diseño.

- 1. Para obtener estos valores abrimos el archivo <u>EDIFICIO CON DISIPADORES</u> y correr el modelo.
- 2. Luego nos dirigiremos a **Display**→**Show Tables**
- 3. En la ventana Choose Tables for Display seguiremos la siguiente ruta

4. Las fuerzas que obtengamos deben ser expresadas en kip y estandarizadas a los siguientes valores 55kip, 110kip, 165kip, etc.

Fuerzas máximas en los disipadores ubicados en la Dirección X-X

Disipador	Fuerza(T)	Fuerza(kN)	Disipador(kN)
1	28.68	63.22	110
2	28.54	62.92	110
3	25.42	56.04	110
4	22.54	49.68	55
5	21.73	47.91	55
6	21.55	47.51	55
7	19.67	43.37	55
8	15.88	35.00	55
9	11.52	25.39	55
10	25.50	56.22	110
11	22.94	50.58	55
12	21.72	47.88	55
13	21.49	47.38	55
14	19.71	43.46	55
15	15.85	34.95	55
16	11.52	25.40	55
17	25.50	56.22	110

Tabla 4.10 Fuerzas máximas en los disipadores de energía

18	22.94	50.58	55
19	21.72	47.88	55
20	21.49	47.38	55
21	19.71	43.46	55
22	15.85	34.95	55
23	11.52	25.40	55
24	25.42	56.04	110
25	23.00	50.72	55
26	21.73	47.91	55
27	21.55	47.51	55
28	18.27	40.27	55
29	15.88	35.00	55
30	11.52	25.39	55
31	28.54	62.92	110
32	28.68	63.22	110

Tabla 4.11 Agrupación de los dispositivos por niveles de fuerza

Fuerza (kip)	Número de dispositivos
55	24
110	8
Total	32

4.2.2 ELECCIÓN DE LOS DISIPADORES DE ENERGÍA

Tomando en cuenta los niveles de fuerza obtenidos, se procede a determinar los dispositivos a emplear dependiendo de su capacidad de carga.

Los disipadores que vamos a emplear son los manufacturados por la corporación **TAYLOR DEVICES INC**., principal fabricante de los disipadores de fluido viscosos. En las figuras 4.9 y 4.10 se muestran las dimensiones provistas por este fabricante para los diferentes niveles de fuerza.

Fig. 4.9 Propiedades de los dispositivos TAYLOR DEVICES INC.

						NOTE:
FORCE	"A"	"В"	"C"	"D"	PLATE THICKNESS (INCHES)	VARIOUS STROKES ARE AVAILABLE, FROM ±2 TO ±36 INCHES. FORCE CAPACITY MAY BE REDUCED FOR STROKE LONGER THAN STROKE LISTED IN TABLE. ANY
55 KIP	7.00±.12	5.00±.01	•	0.81±.01	1.50±.03	STROKE CHANGE FROM THE STANDARD STROKE
110 KIP	11.12±.12	8.00±.01		1.25±.01	1.50±.03	VERSION DEPICTED CHANGES MID-STROKE LENGTH
165 KIP	13.50±.12	10.00±.01	5.00±.01	1.12±.01	2.40±.03	BY FIVE INCHES PER ±1 INCH OF STROKE.
220 KIP	16.50±.12	12.50±.01	6.25±.01	1.25±.01	3.00±.06	EXAMPLE: 220 KIP +4 INCHES STROKE MID-STROKE
330 KIP	17.00±.12	13.00±.01	6.50±.01	1.375±.010	3.00±.06	LENGTH IS 41.25 INCHES
440 KIP	18.00±.12	13.50±.01	6.75±.01	1.500±.010	4.00±.06	220 KIP ±6 INCHES STROKE,
675 KIP	20.00±.12	16.00±.01	8.00±.01	1.63±.01	4.00±.06	6-4 = 2 TIMES FIVE = 10
900 KIP	t	t	t	t	t	41.25+10 = 51.25 INCHES MID-STROKE LENGTH
1450 KIP	t	t	t	t	t	
1800 KIP	t	t	t	t	t	BELLOWS MAY BE REPLACED WITH A STEEL SLEEVE
						TAYLOR DEVICES FOR STROKE OVER ± 12 INCHES AND/OR FOR FORCE CAPACITIES FOR STROKE LONGER THAN LISTED IN TABLE. * DENOTES 4-BOLT MOUNTING PATTERN † DENOTES CUSTOM PATTERN. CONSULT FACTORY.

Fig. 4.10 Dimensiones de la placa base TAYLOR DEVICES INC.

Los disipadores viscosos seleccionados son los de capacidades de **55kip** y **110kip**. En las figuras 4.11 - 4.14 se muestra el detalle de las dimensiones de cada uno de ellos.

Es importante señalar que cada dispositivo cuenta con su propio factor de seguridad, por lo que no se requiere de ninguna amplificación adicional a las fuerzas obtenidas del análisis tiempo historia.

Fig. 4.11 Dimensiones del disipador de energía de 55kip (cm)

Fig. 4.12 Dimensiones de la placa base del disipador de 55kip (cm)

Fig. 4.13 Dimensiones del disipador de energía de 110kip (cm)

Fig. 4.14 Dimensiones de la placa base del disipador de 110kip (cm)

CONCLUSIONES

- 1. El **primer modo de vibración** (modo fundamental) de la edificación se mantiene igual al implementar en la estructura los disipadores de energía viscosos con lo que se comprueba que el uso de estos dispositivos no altera la rigidez de la estructura.
- 2. En edificaciones con un diseño tradicional, la estructura se encarga de tomar el 100% de la energía de entrada, pero al adicionar disipadores de energía dentro de la misma, la disipación de energía sísmica la realizan los disipadores y reducen la energía sísmica absorbida por la estructura, es decir, una reducción de la energía inelástica a través del incremento de la energía de amortiguamiento, ocasionando menos daños estructurales.
- La implementación de estos disipadores en la estructura, ha generado una disminución de los desplazamientos máximos presentados en el octavo piso en un 41.46%, así como la reducción de las distorsiones de entrepiso desde un 35.84% hasta un 50.25%.
- 4. Se pudo observar una reducción significativa en las fuerzas internas de las columnas. A manera de ejemplo, en la columna seleccionada se pudo observar que esta reducción fue desde un 41.43% hasta un 60.03% para la fuerza cortante y hasta 59.81% para el momento flector.
- La disipación de energía con los disipadores viscosos es del 50.72%, demostrándose así que con el uso de estos dispositivos se incrementa la capacidad de disipación de energía ante la acción de un sismo.

RECOMENDACIONES

- Modelar la edificación empleando acelerogramas que hayan sido tomados en suelos que reflejen la realidad sobre la cual se proyecta la edificación. Estos registros sísmicos deberán ser provistos por el Instituto Geofísico del Perú o podrán obtenerse del REDACIS (Red Acelerográfica del CISMID).
- 2. Escalar los registros sísmicos a un espectro de pseudo-aceleraciones creado como lo establece la Norma Peruana de Diseño Sismorresistente E030, considerando para esto las condiciones de importancia, tipo de suelo, etc y fijando el coeficiente de reducción sísmica a la unidad, para considerar el comportamiento inelástico de los elementos estructurales.
- 3. Emplear un software especializado para obtener el mejor ajuste del registro sísmico al comportamiento esperado (espectro creado).

LÍNEAS FUTURAS DE INVESTIGACIÓN

- Diseñar el sistema de disipación de energía para una edificación no existente empleando para el análisis el efecto de las condiciones de suelo a través de la interacción sueloestructura y comparar los resultados obtenidos, como desempeño del sistema, costos y otros, con el obtenido en la estructura considerando la base empotrada.
- Diseñar el sistema de disipación de energía de una edificación empleando un análisis del tipo no-lineal estático o pushover evaluando el nivel de daño en la edificación sin disipadores y compararla con la edificación provista de estos dispositivos.
- 3. Evaluar la respuesta de una edificación provista de disipadores de energía viscosos realizando un **análisis lineal de respuesta espectral o fuerza lateral equivalente**.
- Proponer mejoras en los lineamientos de las Normas Americanas ASCE 7-10, FEMA 273,
 FEMA 274, ajustándolo a la realidad y las condiciones que se presentan en nuestro país.

BIBLIOGRAFIA

- American Society of Civil Engineers (ASCE). ASCE 7-10: Minimum Design Loads for Buildings and Other Structures. EEUU, 2010.
- Avilés, Raúl. Tesis: Dispositivos para el control de vibraciones. Universidad Austral de Chile. Valdivia, Chile, 2001.
- Díaz La Rosa Sánchez Marco. Tesis: Evaluación del proyecto estructural y optimización del diseño con disipadores de energía viscosos Taylor para una edificación esencial de 6 pisos. Universidad Privada Antenor Orrego. Trujillo, 2014.
- 4. **Falk Peter.** Tesis: Análisis del comportamiento de estructuras de acero provistas de disipadores de energía tipo "Slotted Bolted Connection". Universidad de Chile. Santiago de Chile, Chile, 2010.
- Federal Emergency Management Agency (FEMA). Commentary on the Guidelines for the Seismic Rehabilitation of Buildings – NEHRP. FEMA 273-274. Washington, D.C. EEUU, 1997.
- 6. Hwang, Jenn-Shin. Seismic Design of Structures with Viscous Dampers. Taiwan, China, 2002.
- M.D. Symans et al. Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Deselopments. EEUU, 2008.
- Oviedo Sarmiento Ricardo. Tesis: Dispositivos pasivos de disipación de energía para diseño sismorresistente de estructuras. Universidad Nacional de Ingeniería. Lima, 2008.
- Pardo, Juan Pablo. Tesis: Control de la respuesta dinámica de estructuras mediante el uso de disipadores de energía de fluído viscoso del tipo lineal. Universidad Austral de Chile. Valdivia, Chile, 2007.
- T.T. Soong y M.C. Constantinou. Passive and active structural vibration control in civil engineering. New York, EEUU, 1994.
- 11. **Villarreal Castro Genner.** Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas. Asamblea Nacional de Rectores. Lima, 2006.
- 12. Villarreal Castro Genner. Análisis de estructuras con el programa LIRA 9.0. Lima, 2006.
- 13. Villarreal Castro Genner. Interacción suelo-estructura en edificios altos. Asamblea Nacional de Rectores. Lima, 2007.
- 14. Villarreal Castro Genner. Análisis estructural. Lima, 2008.
- Villarreal Castro Genner Oviedo Sarmiento Ricardo. Edificaciones con disipadores de energía. Asamblea Nacional de Rectores. Lima, 2009.
- 16. Villarreal Castro Genner. Resistencia de materiales. Lima, 2009.
- 17. Villarreal Castro Genner. Estática: Problemas resueltos. Lima, 2011.
- 18. Villarreal Castro Genner. Resistencia de materiales I: Prácticas y exámenes USMP. Lima, 2012.
- 19. Villarreal Castro Genner. Resistencia de materiales II: Prácticas y exámenes USMP. Lima, 2013.
- 20. Villarreal Castro Genner. Ingeniería sismo-resistente: Prácticas y exámenes UPC. Lima, 2013.
- 21. Villarreal Castro Genner. Mecánica de materiales: Prácticas y exámenes UPC. Lima, 2015.
- 22. Villarreal Castro Genner. Diseño sísmico de edificaciones: Problemas resueltos. Lima, 2015.
- 23. Villarreal Castro Genner. Estática: Prácticas y exámenes resueltos. Lima, 2016.
- 24. Villarreal Castro Genner. Ingeniería Sismorresistente: Prácticas y exámenes resueltos. Lima, 2016.
- 25. Villarreal Castro Genner. Dinámica Estructural: Curso breve. Lima, 2016.

ÍNDICE

(ÓLOGO

CAPITULO 1. ESTADO DEL ARTE

1.1.	Sistemas de diseño sismorresistente	05
1.2.	Balance energético	05
1.3.	Sistemas modernos de protección sísmica	. 07
1.4.	Disipadores de fluido viscoso	. 09
1.5.	Ecuación general	. 12
1.6.	Rigidez del dispositivo "K" (Rigidez del brazo metálico)	. 15
1.7.	Comportamiento desplazamiento vs fuerza	. 15
1.8.	Criterios de ubicación	. 18
1.9.	Recomendaciones para el diseño	21
1.9.1	I. Normas y requerimientos del código ASCE 7-10	. 21
1.9.2	2. Recomendaciones para el análisis tiempo-historia	. 21
1.9.3	3. Recomendaciones para el diseño de conexiones	. 22
1.9.4	I. Recomendaciones para la modelación	. 22

CAPITULO 2. EDIFICIO SIN DISIPADORES DE ENERGÍA

2.1. Objeto de investigación	. 23
2.2. Consideraciones para la modelación	. 24
2.2.1. Propiedades de los materiales	. 24
2.2.2. Cargas consideradas para el análisis	. 24
2.3. Modelación estructural	. 24
2.3.1. Modelamiento geométrico	. 24
2.3.2. Asignación de propiedades del concreto	. 29
2.3.3. Asignación de las secciones de columnas y vigas	30
2.3.4. Definición de los elementos tipo área	. 33
2.3.5. Asignación de columnas, vigas y losas	34
2.3.6. Asignación de brazos rígidos (columna-viga)	. 37
2.3.7. Creación de patrones de carga y fuente de masa	. 38
2.3.8. Asignación de carga viva y carga muerta	40
2.3.9. Empotramiento en la base, asignación de centro de masa y creación	de
diafragmas	41
2.4. Análisis sísmico	46
2.4.1. Recomendaciones y procedimientos para el análisis	46

2.4.2. Análisis dinámico espectral	. 49
2.4.3. Escalamiento de acelerogramas al espectro de diseño	. 61
2.4.4. Análisis lineal tiempo-historia	. 77
2.4.5. Determinación del sismo de diseño	. 84

CAPITULO 3. EDIFICIO CON DISIPADORES DE ENERGÍA

3.1. Determinación de los objetivos de diseño	87
3.2. Cálculo de las propiedades del disipador	89
3.2.1. Cálculo de la rigidez	90
3.2.2. Cálculo del coeficiente de amortiguamiento (C)	92
3.3. Modelación y análisis del edificio con disipadores de energía	98
3.3.1. Introducción	98
3.3.2. Modelación de los disipadores de energía viscosos	98
3.3.3. Respuesta de la estructura con los disipadores de energía	105

CAPITULO 4. DISCUSIÓN DE RESULTADOS Y ELECCIÓN DEL DISIPADOR VISCOSO

4.1. Evaluación de resultados	113
4.1.1. Desplazamientos en los centros de masa	113
4.1.2. Distorsiones de entrepiso	114
4.1.3. Esfuerzos máximos en los elementos de corte	115
4.1.4. Aceleración y velocidades	118
4.1.5. Modos y períodos de vibración	120
4.2. Diseño de los dispositivos de amortiguamiento	121
4.2.1. Agrupación de los dispositivos por niveles de fuerza	121
4.2.2. Elección de los disipadores de energía	123
Conclusiones	128
Recomendaciones	129
Líneas futuras de investigación	130
Bibliografía	131